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Torque in Nested Halbach Cylinders 
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Abstract - Permanent magnet variable flux sources are 
produced by rotating two nested N-segment, permanent 
magnet, Halbach cylinders. Torque is primarily an end 
effect, determined by field non-uniformities due to the fmite 
length and' segmented structure of the cylinders. Due to 
symmetry, one cylinder experiences zero torque In a uniform 
applied field. Experiment and numerical simulation reveal 
that the torque is composed of a dominant term of frequency 
1/(2n) and harmonics a t  ( k N i  l)/(Zn), where k is an integer. 

Index Terms- Permanent magnet variable flux souces, 
Halbach cylinders, torque, surface charge method, motors. 

I. INTRODUCTION 
Permanent magnet variable flux sources are finding increasing 

application in markets traditionally dominated by the 
electromagnet. They can provide high, uniform, localised 
magnetic fields up to 2 T, while being smaller and lighter than 
their electrical counterparts [l]. They require no special power 
supply or cooling unit, and can be designed to produce close to 
zero stray field outside a region of interest. Many geometries 
have been explored [2] - (41. Applications range from laboratory 
insmentation to the mnufaaoture of magnetic thin film devices 
to NMR imaging. 

Halbach cylinders, or dipole rings, have particularly general 
and wide-ranging applicability The ideal design [4] is shown in 
Fig.l(a). The magnitude of magnetisation is constant, while its 
orientation vanes continuously: at an angular position 4 in the 
cylinder, measured clockwise from'the y-axis, the magnetisation 
has orientation 2$. An infmitely long cylinder produces a 
uniform magnetic field in the y-direction within the bore, and 
zero field everywhere outside the cylinder. 

(0 )  

Fig.1: (a) the ideal, infinitely long design, with uniformly varying 
magnetisation; (b) finite length approximation to (a) using 8 segments; (0) 
nested cylinders can produoe varying fields in their oentral bore. 

Finite length approximations to this design [SI are constructed 
from a discrete number N of segments, typically eight, as shown 
in Fig.l(b). Variable flux sources are developed by nesting two 
such cylinders [3], and rotating them relative to each other as in 
Fig. l(c) so that the field in the bore is the vector sum of the twcr 
individual fields. 

Torque between the cylinders as they rotate is an important 
consideration when attempting to implement this design. Here 
we present results of experiment and numerical simulation of 
torque in nested systems, and show that a direct relationship 
exists between torque and the finite length and segmented 
structure ofthese devices. 

11. EXPERIMENTAL RESULTS 
We measured the variation in torque as a function of a for a 

two cylinder nested system, where a is the angle through which 
the inner cylinder is rotated kom the position .where its 
magnetisation is M y  aligned with that of the outer. The cylinder 
dimensions are given in Table I. 

TABLE I 
DIMENSIONS OF MAoNBTIC CYLINDERS 

Inner Cyllnder Outer Cylinder 
Inner Radlus (m) 26 52.5 
Outer Radlus (mm) 47.5 110 
Length (nun) 100 100 
Segment Number N 8 8 

Each cylinder was connected, via a system of gears, to a d.c. 
motor. The gearing system comprised a gearbox and a worm 
wheel assembly. The position of each cylinder at any moment of 
time was recorded via an angular position encoder. 

The torque r generated by a d.c. motor is directly proportional 
to I ,  the current it draws, 

where kT is a torque constant. For these motors, operating at low 
frequency of rotation of the motor head (as is the case here), kT is 
given by 

(2) 
where Vis the operating voltage, R is the resistance at the motor 
terminals and o is the ang'ular speed of the rotor in radiansls. 

We mn the motor at constant voltage and monitor variations 
in current and motor speed. From these data we calculate the 
torque generated by the motor at any angle a. This is then related 
to the torque experienced by the cylinder via 

(3) 

where rgb is the gearbox ratio, the number of teeth in the 
worm wheel and n,m the number of starts. qm. qw and qgb are 
the motor, worm-wheel and gearbox efficiencies respectively. 

r = kTI (1) 

kT = (v- IR) 1 U )  

r = rmot r8b (n..,~, 1 n 8 3  nLn nw qgb 

For a constant applied voltage of 12 V, Fig.i(a) plots the 

rotations of the inner cvlinder. Here the cylinder is rotatine in the 
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The variation in torque is essentially sinusoidal around one 
full rotation of the cylinder, as will become clear in Section 111. 
For one half of each cycle, the motnr is working ta overcome the 
magnetic torque, so that an increase in load torque is reflected by 
an increase in the current drawn by the motor and a decrease in 
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Fig.2, (a) Torque measured On the inner oylinder 88 it is rotated clockwise 
through angle a in the bore of the static outer cylinder: (b) torque over 2.4 
rotations ofthe inner deduced fi.orn both olackwise and antiolockwise rotation. 

Angle- b6) An& il (rad) 

For the second half of each cycle, both the motor and the 
magnetic torque rotate the cylinder in the same direction. So 
there is effectively zero load on the motor. The cwent drawn is 
reduced and the speed increased. However, the maximum (no 
load) speed no and the minimum (no load) current 10 are 
determined by the applied voltage and the terminal resistance of 
the motor, and their values are defined for a given motor. Hence, 
in this region of the graph, both current and speed remain 
approximately constant. 

Similar data were collected for rotation in the anticlockwise 
direction. These two sets of data were combined to indicate the 
structure of the torque variation over 360 degree cycles (in the 
process, the absolute values were shifted downwards by a 
constant value), The combined data for the torque variation over 
2.5 full rotations of the inner cylinder are shown in Fig.Z@). 

Fig.3 shows a Fourier transform of the data in Fig.Z@). 
Amplitudes of the Fourier coefficients for torque are plotted 
against frequency. The dominant term is evident at f = 1/(2%), 
indicating that the variation is mainly sinusoidal. Higher 
harmonics of this fundamental are also evident, in particular at 
7f; 15f and 23f, each with a smaller neighbouring peak around 
9f, 17fand Ztfrespeotively. Thus harmonics OOCUI at (kN f lx 
where N = 8 is the number of segments in the cylinders. 
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Fig3 : Fourier transform of data in I 
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111. NWRICAL MODEL 
Our numerical simulation has two stages. Firstly we calculate 

the field in the bore of the outer cylinder; secondly we calculate 
the torque experienced by the inner cylinder in this field. 

1) Field Calculalion: Our method of field calculation is based 
on the assumption that each segment has a perfectly rigid 
polarisation J. The magnetic induction within a block of 
magnetic material is B = ~ Q H  + J. In a magnetostatic system, 

V x H = 0, so we may define a scalar potential CP by H = - VD. 
Given also that V.B = 0, then, V . H  = - V'O = - (V.J) / A. So 
that 0 satisfies a Poisson equation with magnetic charge density. 
p = -V.J. The solution to this Poisson equation is given in terms 
ofvolume and surface charge densities [6]. 

In the case of a segmented cylinder, however, each segment is 
assumed to have uniform and perfectly rigid J. The volume 
magnetic charge density p in each segment is zero, p = -V.J = 0, 
so the magnet can be represented by charged surfaces, each with 
surface magnetic charge density U given by D = J . n , where n is 
the unit normal to the surface. Analytical expressions for the 
vector field at a point, due to a charged rectangular surface, have 
been derived by Akoun and Yonnet [7]. A segmented cylindrical 
magnet is a combination of prisms. The total field at any point is 
simply the sum of the field contributions from each face. 

On a cross-section of the outer cylinder, we specify a grid of 
points, each with co-ordinates r I (xyj). At each of these points 
we calculate the components of the field H,, Hy and H,. The field 
varies along the length of the cylinder as well as across the width 
of the bore, and so is calculated across similar grids on a numbei: 
of different, equally spaced planes. Each point at which the field 
is calculated, is surrounded by an element of material with 
volume AV. 

2) Torque Calculation: The total torquer experienced by the 
inner cylinder is calculated by summing the torques r" on the 
volume elements A@ of the inner cylinder, due to the field ofthe 
outer cylinder, 

r = c r ( i )  = z A v J ( i )  xH(') +r(i) xF(') 
i i (4) 

where at a point r@) in the inner cylinder, H" is the field due to 
the outer cylinder, J" is the polarisation of the inner cylinder, and 
the force F"' due to the field gradient is found npmerically from 

F(j) = -(VE) = V(J(i),H(i))AV(i), (5) 
Symmetry of t h ~  system implies zero values for r, and ry, so 

that the only non-zero component of torque is r ,  about the axis 
of the cylinder. This is confirmed by calculation. 

3) Numerical Results: Fig.4 shows r, as a function of a. E::fq 
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Fig.4 : Calculated torque on inner cylinder 88 a firndim of a. 

The fundamental variation in r, goes as r, = Asina. In addition, 
r is modulated by structure associated with segmentation. 
Fig.S(d) shows a Fourier transform of the calcplated torqueue. 

The fundamental frequency f = l/(Z%) corresponds to the 
leading sine term. The 7" harmonic is also strong. Higher 
harmonics are present, but with smaller amplitudes. To see these 
more clearly, we fit a curye of the form Bsina + Csin(7a) to the 
data in Fig.4, where B and C are constants. The fit curve is then 
subtracted from the original data, In so doing we largely remove 
thefand 7f terms. A Fourier transform of the remaining data is 
shown in Fig.5@). Higher harmonics can now be seen to occur 
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in pairs at (N- lx ( N t  llt; (2N- lx (U" lx etc., that i s  at 
(kN f lx where N = 8 is the number of segments and k is an 
integer. These harmonics coincide with the frequencies found 
experimentally in Fig.3. The peak calculated value of 13 Nm is 
larger than that observed experimentally due to the fact that the 
polarisation is not perfectly rigid. 

Frrqucncy (lirad) 

Fig.5: (a) Fourier w a d o m  of data in Fig.4; (b) without the f and 7ftems. 

IV. ORIGN OF THE TORQUE 
The Reciprocily Theorem states that the energy of one piece of 

magnetic material in the field of another is equal to the energy of 
the second in the field of the first. Thus both magnets must 
experience equal and opposite torques. 

Consider now the case of two ideal, i n f ~ t e  length oylinders as 
in Fig. l(a), nested concentrically. Both cylinders have completely 
uniform bore fields, and zero external stray fields. So the outer 
cylinder experiences zero applied field, and thus zero torque. By 
reciprocity, the inner cylinder also experiences zero torque. So 
there is zero torque on the inner cylinder in a constant applied 
field. Similarly, a segmented cylinder of even N, experiences zero 
torque in constant applied field as the torque on each segment is 
exactly cancelled by torque on another segment. This is 
confirmed numerically. The torque in our systems must therefore 
arise from the field non-uniformities due to their finite length and 
segmented structure. 

Consider the field profile in the bore of a cylinder with the 
radial dimensions given Table I, calculated using the surface 
charge model. Fig.6(a) shows the profile of By in the bore at the 
centre (z = 0) when the cylinder is very long and has a large 
number of segments (N = 128) to approximate the case of infinite 
length and uniformly varying magnetisation in Fig. l(a). By 
remains constant at all points inside the bore as expected for an 
ideal cylinder. In a real cylinder, however, there are two main 
features in field non-uniformity: 

I )  Finife Length: Fig.6@) shows the profile for a cylinder with 
length 100 mm, and N = 128 to approximate uniformly varying 
magnetisation. 

The magnitude of the field at 0 = 0 and 0 = n is greater than 
that at 9 = d 2  and 9 = 3 d 2 .  As the cylinder is made longer, the 

extent of this effect at the central z = 0 position decreases, 
although it persists at both ends. This effect is therefore an end 
effect associated with the f ~ t e  length of the cylinder. This is the 
cause of the leading sinusoidal variation in the torque. 

2) Segmenfafion: Fig.6(c) shows the profile for an 8-segment, 
fmite length cylinder. Again the end effect is apparent, but 
additional peaking in the field occurs near the boundaries 
between adjacent segments. Here there are 8 peaks. For a 16- 
segment cylinder there would be 16 peaks and so on. This is the 
origin of the smaller, N dependent, torque variation, 

Numerical values of the contributions to the torque from 
different cross-sections along the axis in the cylinder, show that 
the main contributions come from the end regions. The total 
value of the torque is unchanged by increasing the length of the 
cylinder to larger, finite values, and the contribution from the 
central region becomes negligible. This indicates that the torque 
is primarily an end effect 

Fig.6: Field profile in ihe hare of (a) an infini&ly'long cylinder, with uniformly 
varying magnetisation; (h) a finite l e n y l  oylinder with unifomly varying 
magndisation; (c) a fmiie length, 8.segnent oylinder. 
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