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Abstract. Several techniques are currently used to evaluate recom-
mender systems. These techniques involve off-line analysis using eval-
uation methods from machine learning and information retrieval. We
argue that while off-line analysis is useful, user satisfaction with a rec-
ommendation strategy can only be measured in an on-line context. We
propose a new evaluation framework which involves a paired test of two
recommender systems which simultaneously compete to give the best
recommendations to the same user at the same time. The user interface
and the interaction model for each system is the same. The framework
enables you to specify an API so that different recommendation strate-
gies may take part in such a competition. The API defines issues such as
access to data, the interaction model and the means of gathering posi-
tive feedback from the user. In this way it is possible to obtain a relative
measure of user satisfaction with the two systems.

1 Introduction

Acting upon recommendations from other people is a normal part of life. We
do it when we eat at restaurant on the advice of a friend, or we see a movie
having read the review in the newspaper of our choice. In each case our decision
to act upon a recommendation is based on essentially three premises: first, we
trust the recommender; second, we assume that the recommender has sufficient
knowledge of our tastes or of the tastes of people like us; third, we assume that
the recommender has knowledge of the alternatives available.

By using recommendations we can take a shortcut to the things we like
without having to try many things we dislike or without having to acquire all the
knowledge to make an informed decision. Unsurprisingly, systems that automate
this facility have become popular on the Internet. Irrespective of the techniques
used, the success of the automated recommender is still reliant upon the trust
of the user, having sufficient knowledge of the user’s requirements, and having
knowledge of the range of items available.

Increasingly, there has been a demand for objective evaluation criteria for
these types of systems. This stems from a difficulty in evaluating which rec-
ommender is better than another, and in judging which criteria to use when



making this evaluation. There are many aspects of a recommender system we
could analyse [12] - for instance the ease with which it can be used is certainly
an important factor for success. This has much to do with HCI factors such as
presentation and the interaction model employed. The most common evaluation
approaches are performed off-line using techniques from machine learning and
information retrieval such as cross validation and measures of recall/precision.

In this paper we present an evaluative framework for recommender systems
based on the idea of system utility - a comparative measure of how one rec-
ommendation strategy performs against another. We draw attention to the fact
that evaluation has to measure whether real people are willing to act based on
the advice of the system. Therefore it is necessary to evaluate recommendation
strategies as part of live, fully realised applications. In sections 2 and 3 we intro-
duce related evaluation methods used by the machine learning and information
retrieval community and we propose that, while these techniques may provide
useful insights, only an on-line evaluation methodology can truly gauge user
satisfaction with a recommendation strategy. Section 4 introduces a new evalua-
tion methodology to compare the utility of different recommendation strategies
running in a fully realised application. Unlike the off-line analysis, this method-
ology plays one recommendation strategy against the other in an on-line setting
and measures the relative degree of success of each strategy according to how
the user utilises the recommendations of either system. This framework doesn’t
measure absolute user satisfaction but only relative user satisfaction with one
system over another. We examine how we might maintain user trust during the
evaluation period, and how we might offer each recommendation engine equal
opportunity for success. Finally, in section 5 we discuss some advantages and
some open issues related to the deployment of the proposed methodology.

2 Existing Approaches

Konstan and Riedl [9] suggest that existing approaches to evaluating recom-
mender systems can be divided into two categories:

Off-line evaluation: where the performance of a recommender mechanism is
evaluated on existing datasets.

On-line evaluation: where performance is evaluated on users of a running
recommender system.

Konstan and Riedl argue that on-line evaluation is problematic because of
the need to field a fully engineered system and build up a community of users.
Consequently they favour off-line evaluation, not because it is better but because
it is easier to do.

Off-line evaluation uses existing datasets such as the publicly available Each-
Movie dataset or on data gathered during the operation of a recommender pro-
totype [8]. In off-line evaluation, recommendation can be seen as information
retrieval, i.e. the selection of the subset of assets that are relevant to the user.
From this perspective the metrics for evaluation are the well known measures
of precision and recall [3]. Precision is the proportion of retrieved assets that



are relevant and recall is the proportion of relevant assets actually retrieved.
Basu and Hirsh [4], in evaluating their recommender system, defined the upper-
quartile of the movies rated by the user as the relevant set. So the precision is
the percentage of upper-quartile movies in the set returned.

The alternative to viewing recommendation as an information retrieval prob-
lem is to view it as a classification or regression problem. In a situation where
users have rated assets, the recommendation problem may be cast as the predic-
tion of these ratings - a regression problem. Alternatively, it may be viewed as a
classification problem - the classification being whether an asset will be liked or
disliked. The measure of accuracy may be: 0/1 error for classification, absolute
or root-mean-square (RMS) error for regression or a measure of the correlation
of predicted ratings with actual ratings (e.g. Pearson’s correlation coefficient).
This allows for the type of evaluation that is common in Machine Learning where
the data is partitioned into training and test data - using the training data to
produce predictions for the test data. These estimates may be improved by using
k-Fold Cross Validation or by using a Leave-One-Out evaluation, i.e. a rating is
predicted by using all the data except the rating itself [5].

An interesting on-line approach has been taken by Swearingen and Sinha
[11] whereby recommendations from recommender engines are compared to rec-
ommendations from friends. In the next section, we will outline the drawbacks
in only using off-line analysis. We will suggest that the datasets used for this
evaluation ignore the context in which recommendations are made. Users may
give assets quite different ratings depending on their interests or information
needs at the time. Elaborating the work of Swearingen and Sinha we will pro-
pose a methodology to compare the relative strengths of two recommendation
strategies, both automated.

3 Evaluating Contexts

Recommender systems generally operate as augmentative systems within larger
application systems. Intuitively, their purpose is to help the user exploit the re-
sources available within the larger application domain. Therefore, when employ-
ing a recommender system, the goal is to translate continued user satisfaction
into continued use of the system resources. It is the continuing use of these re-
sources based on the advice of the recommender which requires analysis when
conducting an evaluation of a recommender system.

How does a recommendation strategy maintain user satisfaction? Generally,
a recommendation engine will present a list of n resources based on the user’s
feedback or a user profile. The simplest way to do this is present an ordered list of
recommendations based on a score calculated by an algorithm. This score might
reflect the similarity of a resource to user profile/query or a score predicted by a
collaborative filtering algorithm. However, a recommendation engine may choose
other strategies to present a relevant list of resources to the user.

Smyth and McClave [10] show that a recommendation set that contains too
many similar items may be highly redundant whereas a small, diverse set would



offer the user more choice. Swearingen and Sinha’s research [11] would suggest
that including “trust generating items” in a recommendation set is perceived as
being ‘useful’ by the user. In the area of music recommendation, Hayes et al. [7]
introduce a notion of context sensitivity that boosts recommendations that are
pertinent to the users’ current listening habits.

In each of these cases there is a concern for maintaining the trust of the user
by providing items that are useful within the user’s context. We define context
as the discourse which informs the users’ current behaviour in the system -
their current requirements, their motivation, their previous experience, their
preferences and the knowledge available to them.

3.1 Problems with existing approaches

In Section two we described an evaluation of a recommender system from a
machine learning perspective which treated recommendation as a classification
or a regression task. There are a number of problems with an off-line approach
like this.

Classification and regression are well established machine learning techniques
and can be applied with many of the datasets available from the UCI ma-
chine learning repository. Typically, a measure of generalisation error indicates
whether a classification/regression model is performing well. However, there is
no evidence to suggest that people are sensitive to minor improvements in gen-
eralisation error as far as algorithmic performance is concerned. In fact standard
social research methodologies include metrics such as the test-retest correlation
to account for the variance that occurs when people are given the same test
on two different occasions. Hill et al. [8] observed a reliability correlation of of
0.83 on ratings taken six weeks a part in the Bellcore project. This situation
is complicated by the fact that users may not always give explicit feedback on
recommendable items. More noise is introduced where the system must infer an
implicit score based on the user’s usage of the system. This factor is exacerbated
where there is latency between the time a recommendation is made and when it
is ultimately ‘consumed’.

The recommendation task, however, is not as well defined as the classifi-
cation/regression task. It would be a mistake to assume that domain specific
datasets such as those from the EachMovie and MovieLens projects can be used
to test every Recommendation System. These datasets contain a date-time field
which allows the use-data to be ordered. However, current evaluation practices
do not make use of this information. For classification/regression purposes each
data point is treated as a set of un-ordered feature-value pairs. Using the un-
ordered dataset one algorithm is judged to have better generalisation error than
another. While this may provide us with insight into the success or failure of a
recommendation strategy, it gives us no knowledge as to whether lower gener-
alisation error translated into continued use of the system. Nor do we have any
indication whether resources were used as a result of a recommendation. Indeed,
the drawbacks of off-line evaluation become quite apparent when we consider



how we might use this date-time information. Let us consider an evaluation sce-
nario where we simulate the usage patterns of each user in the dataset. Using
the temporal constraints of the dataset we make predictions for each simulated
user at discrete intervals of time. At each time slice the recommender engine
may only use the data in the system up to that instant. After each prediction
we evaluate whether the user actually goes on to use the items we predict. If the
user doesn’t use that item the prediction of our algorithm shouldn’t necessarily
be considered a false positive since the test data was collected under the advice
of another algorithm. We have very little information to indicate whether our
prediction would have been successful using a data set biased by another rec-
ommendation strategy. This example enforces the view that an on-line analysis
captures use-context. Context is something which is affected by the recommender
algorithm itself. We suggest that you cannot successfully evaluate one algorithm
using the data from another algorithm, even in a simulated test where temporal
constraints are observed. Since the dataset is tied to the methods and domain
in which it was collected, it is inappropriate that two datasets become the test
data for evaluating every recommendation strategy.

However, in order to accurately measure the effectiveness of a recommender
system in an off-line situation we would need to capture an unfeasibly large
amount of state information about the user’s interaction with the system. In the
next section we propose a new evaluation framework which involves an on-line
paired test of two recommender systems in which we are able to define a relative
measure of user satisfaction without having to capture the implicit notion of
context.

4 Methodology

In this section we outline a methodology for evaluating two competing recom-
mendation strategies. Our evaluation environment consists of a real on-line ap-
plication used by a community of users, with a well defined recommendation
task using a specific user interface. The application is serviced by two compet-
ing recommendation engines. In order to be able to gauge a relative measure
of user satisfaction with the two strategies, it is necessary to deploy the overall
application and to log the user interactions with respect to the recommenda-
tion engines. By comparing usage of the recommendations, it will be possible to
say which strategy performed better than the other. In order to isolate the rec-
ommendation strategies we keep other aspects which influence user satisfaction
(interface, interaction model) the same. Using the system, the user is unaware
of the source of recommendations. The proposed methodology can be seen as a
competition between two different approaches to solving the same problem (in
this case, winning user satisfaction) in which the winner is defined by the how
the user makes use of recommendations. We will define a framework for the rules
of the competition. This framework will deal with issues such as how to define
access to the resources for making recommendations and how to define a winner.



The architecture of the framework is very similar to a standard recommender
system’s architecture. The big difference is that, instead of a recommender en-
gine, there is a wrapper component for the two recommendation engines (fig-
ure 1) that receives recommendation requests and call the relevant methods of
the respective engines. The two result sets are then presented according to the
policy of the presentation assembler component. The interface of the wrapper is
the same as that of the recommender engine, so there is no need to modify part
of the already deployed system.

Available
Resources

Presentation
Assembler

Merge
Policy

Recommendation
Engine A

Private
Resources

Recommendation
Engine B

Private
Resources

Feedback
Detector

Eval
Indexes

Log
File

Recommendation Component

APPLICATION

� Ask for recommendation

�Receive  a recommendation � User’s choice

Fig. 1. The impact on a recommender system architecture.

In order to manage a specific competition between two alternative solutions
the following elements have to be clearly specified:

– Available resources: an API defining what resources competing algorithms
can access in order to provide recommendations;

– Recommender methods: an API defining the methods a competing rec-
ommender must implement;

– Presentation policy: defines how the recommendations provided by the
two algorithms will be presented to the user;

– Evaluative feedback: defines how user actions will be considered evidence
of preference of one algorithm over the other;

– Comparing metric: defines how to analyse the evaluative feedback in order
to determine a winner.

Let us now briefly describe more in detail the elements described above.

Available resources: In making a recommender competition, the most im-
portant thing is that both algorithms run under the same conditions and have
access to the same basic resources. However, different strategies may rely on
different data. For example, collaborative filtering algorithms rely on user-rating
data while content-based approaches rely on resources with good semantic de-
scription. There are two possibilities in specifying the available resources: we
can define an API with a standard language or we can declare in advance a



source of knowledge (like IMDB (http://www.imdb.com) for movies). The lan-
guage to specify the API is free and there is a trade-off between two different
needs: minimising the impact on a deployed architecture using the specific lan-
guage in which it was developed (for example Java) or minimising the constraints
for the solution provider configuring a recommendation engine as a stand alone
component using protocols like CORBA or SOAP.

The Recommender methods element specifies the API defining the methods
(boot and recommend) a recommender must implement (i.e.: its interface) in
order to let the wrapper invoke them. The boot has usually no parameters and
serves to construct the internal model for the algorithm.

The inputs and outputs of the recommend method really depend on the
specific kind of recommender system: for example, in a book seller’s site, the
input can be the userId and the output can be an unsorted set of books. In a CD
burner application (such as CoCoA 1 [1]) the input can be a partial compilation of
songs and the output a set of past compilations made by users. In a personalised
radio system (SmartRadio [6], RadioCoCoA [2]) the input can be the userId
(with his listening history) and the past 10 listened songs and the output an
ordered list of recommended songs.

Presentation Policy defines the way the output of the recommend method
of the two competing strategies is presented to the user. An open issue related
to this is whether the user will know that he is being presented with the com-
bined output of two different recommender engines. We consider three possible
presentation policies:

– Merged Set: this is a synthesis of one single result set. It can be achieved
by simply interleaving items from each result set. Since the item presented
first in a result set is considered to have priority, access to this position is al-
ternated between each recommender engine. Duplicated items are presented
once by the presentation assembler.

– Contrasting Set: presentation of two clearly separated result sets. In this case,
the two result sets are kept clearly separated and the user knows that they
come from two different algorithms.

– Cascading Set: alternate presentation of one result set after the other. On
a request for recommendations, a result set from one recommender is pre-
sented. On the next request, a result set from the other recommender is
presented.

Of course, depending on the domain and the specific application, a partic-
ular policy may be not appropriate. For example, the merged set is not a good
solution where one recommendation strategy emphasises diversity presenting an
heterogeneous selection of items to the user. Merging the results would destroy
this effect, and any advantage this strategy would hope to gain.

The contrasting set demands more effort from the user in that he needs to be
aware that he is receiving two result sets from two different strategies. However,
1 http://cocoa.itc.it



it is suited for domains where the output is highly structured or has depen-
dencies between items. An example would be a holiday package recommender
which contains accommodation and itinerary information, or a web radio rec-
ommender where mixing two different proposed radio programmes would violate
the integrity of each.

The cascading set policy presents some other issues such as whether the user
should know that he is receiving recommendations from two different recom-
mender algorithms alternatively. The user may perceive the differences in alter-
nate rounds of recommendations and, if he is not aware of the system logic, may
begin to mistrust the stability of the overall system.

Evaluation feedback is an important issue. This framework depends on being
able to derive, from user actions, a preference for one algorithm over another. The
simplest situation occurs where the user clicks on preferred recommendations and
it is therefore possible to infer which recommender strategy is better. However,
as we discussed in section 3, the user is often not able to express an opinion
on new items because he does not know them. A partial solution might be to
provide a preview of the items in the recommendations, something Swearingen
and Sinha found was appealing to users of recommendation systems. Ultimately
the user is only able to evaluate the item after he has experienced it (listened to
a song, read an article, watched a movie . . . ).

There are other means of inferring feedback. For example, measuring time
reading a web page or listening to a song. Adding an item to a shopping cart
could certainly be considered positive feedback. It should be recognised however
that inferring preferences in this way will always be noisier than receiving explicit
information from the user. In every case, we extract from the user’s actions a
judgement of relative user satisfaction with respect to the two strategies.

Comparison metric defines how to combine user’s evaluative feedback in order
to say “and the winner is . . . ”.

The simplest way is just to count the number of rounds won by the competing
systems. However, certain algorithms, such as collaborative filtering, may only
start to perform well after sufficient data has been collected. Therefore, we need
to analyse the performance curve of each system rather than a cumulative score.

5 Discussion

It is clear that we will need to deploy a real application in order to have a
deeper evaluation of the proposed framework. In the meanwhile we introduce
some critical factors that only an empirical analysis will make clearer.

First of all, the main advantage introduced by pairwise comparision is that
the evaluation does not suffer due to changes in the user community or due to
changing conditions (such as the number of items to recommend, the number of
new items, ...). At the same time we aren’t required to explicitly detect which
factors potentially affect the notion of context. This is especially true when
the temporal dimension plays a key role in the recommendation process. While



date-time information is recorded in datasets like Eachmovie our earlier example
demonstrated that it is not straightforward to make use of this information in
an off-line evaluation. This is not a question of data storage but of a lack of
evaluation methodology.

One of the drawbacks of our framework is that we need a fully realised system
with users. Whether we employ real users or volunteers depends on the state of
deployment of our application. If we have an already running system we can use
our registered users. If we have yet to deploy a system we have no choice but
to use volunteer users. Both approaches have problems. With a ‘real’ system we
have to be careful not to alienate our users by significantly lowering the level of
service they already enjoy. A badly performing algorithm may impact upon the
trust of users in the overall system. One approach might be to employ a form of
reinforcement learning such as the ‘n-armed bandit’ technique to privilege the
recommendations of the better performing algorithm. However, this approach
assumes that both ‘bandit’ algorithms have constant performance over time.
This is not the case for algorithms such as collaborative filtering which only
begin to perform well after sufficient data is collected. This bootstrap problem
is obviously pertinent where we are initialising a ‘beta’ system using volunteer
users. At the beginning there will be very little preference data in the system,
and many recommendation algorithms will perform badly as a result. We should
also acknowledge that there may be a difference in mentality between either type
of user. The ‘real’ user may be less tolerant of recommender error. The ultimate
test is whether the real user stays with the service being provided. Volunteer
users are likely to be more conscious of their roles as testers and thus use the
system during the trial period.

One aspect of the framework which has been neglected concerns the recom-
mendation process. A tacit assumption underlying our proposal is that the rec-
ommendation step can be accomplished by a one-shot operation. However, the
process of receiving recommendations may have also have a seperate require-
ments elicitation process. When evaluating two competing strategies we need to
ensure that both use similar types of interaction models. i.e. ‘One shot’ recom-
menders need to be compared with ‘one shot’ recommenders, and conversational
recommenders compared with conversational recommenders (sharing the same
API). In the latter case, systems with shorter dialogue are judged to be better
in standard off-line evaluation. However, it is entirely possible that a strategy
with a longer dialogue achieves greater user satisfaction in an on-line evaluation.
Perhaps its success may be due to ordering the questions more intuitively, or
giving brief explanations at each step.

Finally, we introduce the possibility of extending our framework so as to
provide an API for the integration of third party recommender systems. While
we easily envisage the deployment and evaluation of two competing algorithms
developed ‘in-house’, the integration and testing of third party software raises
some difficult technological issues.



6 Conclusions and future directions

In this paper we argued that generalisation error is very often not a represen-
tative measure of user satisfaction with a recommender system. We propose an
on-line methodology of pairwise comparison to complement the off-line analysis.
We have defined an evaluation framework taking into account advantages and
possible drawbacks. We have drawn attention to the relationship with existing
approaches in order to highlight the motivations underlying this work.

Our next step is to test the proposed framework and to show with an exam-
ple how the method works in practice. The short term goal is to collect some
empirical evidence that enables a direct comparison between an off-line and an
on-line evaluation. A further goal is concerned with the definition and manage-
ment of a call for competition for prototype recommendation systems, such as
SmartRadio or CoCoA. The objective is to assess how sustainable the proposed
framework is at a technological level.
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