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Abstract

This paper addresses Wrapper-like approaches to feature subset selection and the
production of classifier ensembles based on members with different feature
subsets. The paper starts with the observation that if an insufficient amount of data
is used to guide the Wrapper search then the feature selection will overfit the data.
If the objective of the feature selection exercise is to build a better predictor,
rather than identify important features for data mining reasons, then ensembles
offers a solution. Overfitting may be used to provide diversity in ensembles
provided the overfitted members have variety. The paper concludes with an
assessment of entropy as a measure of diversity in classifier ensembles. A
tentative conclusion is that diversity is not such a problem where a large number
of features is involved but needs to be monitored for problems with smaller
numbers of features – say less than 25.

1. Introduction

Recent research supports the view that the Wrapper approach to feature subset selection
produces better results than alternative approaches (Aha & Bankert, 1994; Kohavi &
John, 1998). In the Wrapper approach the induction algorithm for which the feature subset
is required is itself the evaluation mechanism in the feature selection process – the
induction algorithm is wrapped in the search process. This has the obvious advantage that
the inductive bias of the selection process is the same as that of the target induction
process. This advantage comes at a considerable computational cost since the induction
mechanism must be built and tested at each step in the search process.

In advocating that this approach to feature selection Kohavi and John (1998) introduce the
caveat the Wrapper approach may overfit the data used in the evaluation mechanism.
They say that this is less likely to be a problem when there is plenty of data available for
use in evaluation. This may be a considerable problem in practice since in many real-
world scenarios there will not be enough data available to avoid overfitting. This issue is
discussed in more detail in section 2.

The consequence of overfitting is that individual models will overfit their training data
and not generalise well to other data. Thus, small changes in training data can have
significant influence on the outcome of the learning exercise and models will have high
variance. Now, in machine learning ensembles high variance is a requirement in order to
derive benefit from the aggregating exercise. So ensembles of classifiers differentiated by
different feature subsets should produce good performance. This has already been shown
in the research of Ho (1998a, 1998b), Guerra-Salcedo & Whitley (1999a, 1999b) and
Cunningham & Carney (2000).
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In a recent paper we have proposed that entropy is a good measure of diversity in
classification ensembles (Cunningham & Carney, 2000). In this paper we present a
comparative evaluation of that measure of diversity in two medical domains and show
how it can be used to monitor the trade-off between accuracy and diversity in constructing
ensembles. The underlying classifiers are Nearest Neighbour based. We also show that
there is a significant problem with overfitting in these medical domains when the Wrapper
approach is used for feature subset selection. To a great extent the ensemble removes this
overfitting problem in building a good prediction system. However, it does not result in a
single feature subset that describes the problem under consideration.

In the next section we present a brief discussion on overfitting in the context of the
amount of training data available. Then we review the Entropy measure of diversity
already introduced in Cunningham & Carney (2000). In section 4 we assess the insight
this diversity measure provides in two medical classification domains. In this evaluation
two methods for producing ensemble members are used, one selects feature subsets at
random (after Ho, 1998), the other uses a search approach. This evaluation concludes with
an assessment of the overfitting that is occurring in the Wrapper-like feature selection
process.

2. Overfitting

If small changes in training data can have significant influence on the outcome of a
machine learning exercise then models will have high variance. There is a risk that
individual models will overfit their training data and not generalise well to other data.
This is a recognised problem in machine learning and several solutions exist that are
appropriate for the different types of learning exercise. Most techniques involve the use of
a validation set and performance on that set is used as a proxy for generalisation error. In
decision tree induction this set can be used to guide pruning to improve generalisation
performance. In neural networks the validation set can be used for early stopping where
training is stopped when accuracy on the validation data starts to drop; an example of this
is shown in Figure 1. This example clearly illustrates the overfitting problem where good
generalisation performance is at odds with good performance on the training data.
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Figure 1. This graph shows overfitting where error on unseen test data rises after 200 training epochs while
training error continues to fall (this graph is taken from (Cunningham, Carney & Jacob, 1999)).
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The very name ‘overfitting’ indicates that the problem stems from the learning
mechanism fitting to peculiarities in the training data at the cost of generalisation
performance. This implies that the training data does not adequately represent the problem
domain. The graph in Figure 2 shows a classic learning curve showing how accuracy
increases strongly with training data until an adequate amount of training data has been
observed and the improvement tails off.

A reasonable conjecture would be that overfitting might be expected to be a problem to
the left of the knee point in the graph. Whereas the amount of data available to the right of
the knee point provides adequate problem coverage and a good fit to the training data is
also a good fit in general. The location of this knee point will vary from problem to
problem. For problems with little complexity or variety a few hundred examples may
provide good domain coverage. Whereas more complex problems may require thousands
of examples – the IVF data evaluated here appears to be in the latter category. In the
context of the Wrapper approach to feature selection, Kohavi & John (1998) appear to
endorse this conjecture – they say that overfitting is not a problem when training data is
readily available. However, this issue has two serious implications for the Wrapper
approach. The first is that in real feature selection problems an adequate amount of data is
often not available – the two medical data-sets described here are in this category. The
second is that, in order to avoid overfitting, large data sets will be needed in the Wrapper
evaluation process and may prove computationally prohibitive.

Accuracy

Training Data

Knee point

Figure 2. A typical learning curve plotting accuracy against data – the ‘knee point’ indicates
where improvements in accuracy with increases in data starts to tail off (taken from (Smyth &
Cunningham, 1996).

In the evaluation in section 4 the extent of the overfitting in a Wrapper-like feature
selection process for the IVF and Hepatitis data-sets is illustrated. First we provide some
detail on how diversity is actually an advantage in ensembles of classifiers.

3. Diversity

Krogh and Vedelsby (1995) have shown that the variance in the outputs of the predictors
is the appropriate measure of ambiguity in regression ensembles. They present the
important result that this measure of ambiguity directly predicts the reduction in error due
to the ensemble. In Cunningham & Carney (2000) we propose entropy as the appropriate
measure of ambiguity for classification ensembles and show how this measure predicts
the error reduction (improvement in classification accuracy) on a medical classification
problem in In-Vitro Fertilisation (IVF). We further show that if the error is measured as
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conditional entropy of predictions on a test set then the ambiguity even better predicts the
improvement in accuracy due to the ensemble. This is not surprising since these metrics
are used in a similar way by statisticians in bootstrapping. Tibshirani (1996) suggests that
entropy is a good measure of dispersion in bootstrap estimation in classification.

For convenience we will present these metrics again here. For a test set containing M
cases in a classification problem where there are K categories the entropy measure of
ambiguity is:
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where x
kP  is the frequency of the kth class for sample x – the more dispersion or

randomness in the predictions the more ambiguity. Associated with this entropy-based
measure of diversity is a Conditional Entropy-based measure of error (loss function).
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where )(ˆ xc is predicted category for sample x and c(x) is the correct category.

In the evaluation in the next section the entropy measure of ambiguity is used but not the
conditional entropy measure of error. Instead a simple count of correct classifications on
the test set is used since this is a more meaningful measure of accuracy from an
application perspective. The correlation between error count and conditional entropy at
over 0.97 is very strong for the Hepatitis data evaluated here. It is less strong for the IVF
data as reported in Cunningham & Carney (2000) – typically 0.85.

This difference reflects the non-linear relationship between the conditional entropy (CE)
measure of error and the count of correct classifications. The CE measure assesses how
well the classifier organises the test data. Some examples of CE values for a simple binary
classification problem are shown in Table 1. In this example the test data has 60 positive
cases and 40 negative. In Table 1 (b) the predictions are poor with 60 of 100 correct
(35+25) and the CE is 0.97. The highest CE value occurs when there are as many
incorrect classifications as correct ones and the CE value will be 1. It can be seen in Table
1 (c) where there are more errors than correct classifications that the CE value is again
less than 1. In fact the CE measure will be 0 for 100% correct classifications and also for
100% misclassifications (for binary data).

Table 1. Some sample Conditional Entropy measures for a simple binary classification problem

(a)     CE=0.61           Actual (b)     CE=0.97           Actual  (c)    CE=0.93           Actual
(+) (-) (+) (-) (+) (-)
60 40 60 40 60 40

(+) 55 50 5 (+) 55 35 15 (+) 55 20 25

Pr
ed

ic
te

d

(-) 45 10 35 Pr
ed
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d

(-) 45 25 25 Pr
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te

d

(-) 45 40 15

The IVF data produces CE values in the same region as that in Table 1 (b) and the
Hepatitis data has values in the region of Table 1 (a). The correlation with count of correct
classifications in better for the higher accuracies.
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4. Evaluation

In this section we evaluate two techniques for producing feature subsets on two different
data-sets. The IVF data is introduced in (Cunningham, Carney & Jacob, 1999). It consists
of 1355 cases 290 of which have positive outcomes. In the representation used here the
cases are described by 53 numeric features. The Hepatitis data is taken from the UCI
Machine Learning Repository1; there are 155 cases with 32 in the minority class. The data
is described by 19 numeric features. The underlying classifiers are k-Nearest Neighbour
with k set to 3. The evaluation shows, as might be expected, that this difference in the
number of features in the data-sets seems to have implications for diversity in the
production of ensembles.

4.1 Producing feature subsets

In the evaluation process we consider two alternatives for producing feature subsets. For a
classification task with p possible input features there are p2  possible subsets of this
feature set and each subset can be represented as a feature mask of 1s and 0s. Masks of
this type representing different feature subsets can easily be produced using a random
number generator. These masks should score high on diversity because there has been no
attempt to learn good quality feature sets. However, because of this, they cannot be
expected to have very good scores for E , the average error. Ho (1998b) has shown that
ensembles of masks of this type can produce very good results – presumably because the
lack of quality in the ensemble members is compensated for by the diversity.

We also evaluate better quality feature subsets (masks) produced by hill-climbing search.
A mask is produced randomly as above and evaluated on a test set. Then each feature in
the mask in turn is flipped (on or off) to see if the resulting mask produces better
performance on the test set – if it does that change is kept. This process is continued until
no further improvements are possible. The search usually terminates after three or four
passes through the feature set. This mask is a local maximum in the feature subset space –
there are no adjacent masks (one feature flip away) that has better performance on the test
data. This algorithm is described in detail in Cunningham & Carney (2000) and is similar
in spirit if not in sophistication to the genetic algorithm approach to finding good feature
subsets described by Guerra-Salcedo & Whitley (1999a, 1999b). We will show in section
4.3 that when the test set is small these feature subsets produced using search seriously
overfit the training data used to guide the search.

In the next section we show how the Entropy measure of diversity predicts the
improvements due to the ensemble.

4.2 Entropy and Diversity

In the evaluation of the Entropy measure of diversity reported in (Cunningham & Carney,
2000) We showed that the entropy in the outcomes of the ensemble members predicted
the improvements in accuracy due to the ensemble. We also found that two different
approaches described above for producing masks did not significantly affect the entropy
of the ensemble (see Figure 3 (top right)). A reasonable conjecture is that this is due to the
large number of features and consequent huge feature subset space. Therefore the
approach that produced the best feature subsets (highest average accuracy) produced the

                                                
1 http://www.ics.uci.edu/~mlearn/MLRepository.html
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best ensembles. The search approach produces average accuracies of almost 1% better
than the random approach and since there is no appreciable loss of diversity it produces
the best ensembles.

By contrast the search process on the Hepatitis data-set appears to produce some
convergence and the resulting ensembles have less diversity that those based on random
feature subsets. Again it seems reasonable to suppose that this is due to the relatively
small number of features and the smaller search space (approx. half a million). The
advantage in individual accuracy that the search based ensemble members have is not
maintained in the resulting ensembles because of the loss of diversity. The search-based
masks still produce the best ensembles but the lesson is that performance might be
improved by focusing on maximising diversity in these good quality ensemble members.
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Figure 3. Measures of accuracy and ambiguity for classification ensembles on the IVF and Hepatitis data.

4.3 Overfitting in the feature selection search

This section looks at the startling amount of overfitting in the feature selection search
process. Using 100 data points from the Hepatitis data-set 100 feature masks have been
produced using the search process described above. The different feature masks are
evaluated using Leave-One-Out testing on the 100 data-points. Different feature masks
result from different random starting points. The accuracies of these masks on the 100 test
points are ranked and plotted in Figure 4. For comparison the accuracies on the complete
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set of 155 points is also shown. It is clear that the accuracy on the larger data set is not
predicted well by the accuracy on the set used to guide the search process – this is due to
overfitting. The correlation between the two sets of figures is 0.55.
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Figure 4.  Measures of accuracy on data-sets of size 100 and 155 of masks produced using search for the
Hepatitis data.

The situation is even worse that appears from the graph in Figure 4. If the same figures
are produced for the random feature subsets (see Figure 5) the correlation is better at 0.61,
presumably because there has been no overfitting. More important that that is fact that it is
clear that the average accuracy with Leave-One-Out testing should be higher for the larger
data-set because more training data is available. This happens with the random masks but
not with the search based ones – presumably because overfitting on the smaller dataset is
hurting performance on the larger one.
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Figure 5.  Measures of accuracy on data-sets of size 100 and 155 of random for the Hepatitis data.

5. Conclusions

The main message from this evaluation is that Wrapper-like approaches to feature
selection face serious problems of overfitting if the training data-set is not sufficiently
large to provide good coverage of the problem domain.

If the object of the feature selection is to build a better classifier, rather that provide
insight into the relative importance of features in the domain then a ensemble a classifiers
offers a solution. The performance of this ensemble can be maximised by ensuring that
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the ensemble members are diverse and entropy is an excellent measure of this diversity
for ensembles of classifiers.

If the feature set is large then managing diversity will not be such a problem because of
the huge search space. It will be more of an issue with smaller feature sets, e.g. the 19
features in the Hepatitis data.

In the future we plan to evaluate these metrics on other data-sets. There is also a need to
address this overfitting problem in Wrapper-like systems.
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