
The Epoch Interpretation of Learning

John G. Carney and Pádraig Cunningham
Department of Computer Science

University of Dublin
Trinity College

Ireland
John.Carney,Padraig.Cunningham@cs.tcd.ie

Abstract

In this paper we propose a simple, alternative interpretation of back-
propagation learning. We call this the “epoch interpretation of learn-
ing” and show how it can be used to improve the performance of early-
stopping based techniques used for improving generalization perfor-
mance in neural networks. Experiments performed on noisy, non-linear
foreign exchange rate data demonstrate that networks built using an
early-stopping technique that uses the epoch interpretation of learning on
average out-perform networks built using a conventional early-stopping
technique by 11%.

1 Introduction

The ultimate goal of the neural network researcher is to build networks that provide opti-
mal generalization performance. Once a network is trained, we wish it to perform well on
examples that are not included in the training set. There are a large variety of techniques
described in the literature that attempt to do this. One of the most popular is early-stopping.
The basic idea of early-stopping is to terminate training when some estimate of generaliza-
tion error begins to increase. If training is not stopped early and continues to convergence
then there is a danger that the network will over-fit its training data and will not generalizise
well to new, unseen examples.

In this paper we build upon the principles of early-stopping to develop an alternative in-
terpretation of learning. We show how this “epoch interpretation of learning” can be used
to develop techniques that improve generalization performance more effectively than con-
ventional early-stopping approaches. Experiments performed on highly non-linear, noisy
foreign exchange rate data provide empirical evidence that using the epoch interpretation
of learning can significantly improve the generalization performance of neural networks.



2 The Epoch Interpretation of Learning

The epoch in back-propagation learning is one weight update or training iteration (see fig-
ure 2 overleaf). For each epoch, the back-propagation learning algorithm builds a different
model (i.e.) a network with a different set of weights. If a neural network is trained to 1000
epochs, the learning algorithm investigates or moves through 1000 different models. Neu-
ral network learning then, can be viewed as a search through a large number of models, for
a model that has the set of weights that will provide the best generalization performance.
The number of hidden units a network has also influences the generalization performance
of a neural network and can be easily incorporated into this view of learning.

To provide a more rigorous expression of these ideas, let us assume we have a training
set T and that we use this training set in conjunction with the back-propagation learning
algorithm to estimate the weights �� of a network that has a fixed number of hidden units.
Let us denote this network as:

��T � ��� (1)

Using the terminology of [3], a specific �� can be thought of as a point in an abstract
space of all possible ��’s called weight-space. During learning a large number of ��’s are
investigated by the learning algorithm. The ��’s that we choose should be those that provide
the best generalization performance. To do this however we must first “index” each position
the learning algorithm follows through weight-space during training1. We need to do this
because, once a network’s training is converged and overfitting is observed, we will need
to re-train it, terminating training at the point where the ��’s correspond to the position
in weight-space that provides estimated optimal generalization performance for a training
session2. We propose that the epoch should be used to index weight-space in this way. We
represent then, the evolution of neural network models during back-propagation learning
as the set:

� � f��T � ��e�g
E
e�� (2)

where e is the current epoch and E is the maximum number of epochs specified by the
user3. Using the epoch in this way is powerful because it allows us to connect the abstract
concept of a neural network’s journey through weight-space during training to something
we can use and relate to in practice. It takes advantage of the fact that there is a direct
mapping between the epoch and neural model parameters and their values.

Equation (2) above, however, ignores the number of hidden units a network has. To incor-
porate the number of hidden units into this framework, we extend equation (2) to a set of
sets

� � ff��T � ���gEe��g
H
h�� (3)

where H is the maximum number of hidden units specified by the user4. For each h in
equation (3), the algorithm follows a path through a different weight-space. The goal of
the modeler should be to find the values for e and h that provide the best generalization
performance. In the next section we show how a variation of cross-validation [4] can be
used to do this.

1In theory, there are an infinite number of paths through weight-space. We only attempt to index
a single path (i.e.) for a specific training session. The route this path follows through weight-space
and position from which it starts depends on the initial values of the ��’s, the training set T and other
user defined parameters such as learning and momentum rate.

2A more efficient solution would be to save in memory or on disk each “best” set of weights ((i.e.)
the weights that correspond to minimums in generalization error) during training.

3A large enough value of E should be chosen to ensure training error converges and overfitting is
observed.

4A large enough value of H should be chosen to ensure all dynamics of the system under study
can be modeled by the network.



feed forward training patterns

update weights

compute differences

propagate errors backwards

calculate errors

Figure 1: The back-propagation neural network epoch.

3 Optimizing Generalization Performance

In this section we describe and compare two variations of early-stopping. The first is a
simple “straw man” version of early-stopping (i.e.) training is terminated as soon as an
estimate for generalization error begins to increase for the first time. The second utilizes
the epoch interpretation of learning (i.e.) an estimate of generalization error is calculated
for every combination of values of e and h. A network is then re-trained, using the combi-
nation of values of e and h that provide the best estimated generalization performance, to
determine when training should be stopped and how many hidden units should be used. In
both cases, the simplest variety of cross-validation, which we call “hold-out validation”, is
used to estimate generalization error.

Hold-out validation simply consists of using N � Nc of the available training samples
assembled in Ttrain for estimating the network weights ��N�Nc

, and the remaining Nc

samples assembled in Tcross for calculating the generalization error estimate. This hold-
out validation generalization error estimate can be expressed in terms of the neural network
cost function as:

Ghov �
�

Nc

NX

n�N�Nc��

�yn � ��xn�TN�Nc
� ��N�Nc

��� (4)

which can be more elegantly expressed as

Ghov �
�

Nc

NX

n�N�Nc��

E�yn�xn� ��N�Nc
� (5)

For conventional early-stopping, Ghov is measured at regular intervals during training.
When it begins to increase, training is terminated.

This estimate of when training should be stopped, however, will not work when generaliza-
tion fluctuates as illustrated in figure 1. Also, no provision is made for how many hidden
units should be used. To address these issues we use the epoch interpretation of learning to
extend equation (5) to the following:

Ghov�e� h� �
�

Nc

NX

n�N�Nc��

E�yn�xn� ��N�Nc
�e� h�� (6)

Here, Ghov�e� h� is the hold-out validation generalization error estimate of a network with
h hidden units, trained to epoch e. Values for Ghov�e� h� are found for e � �� ��� E and



HV EIL-HV % Decrease
chf/jpy 1.125 0.969 14%

gbp/dem 0.048 0.042 13%
usd/dem 0.014 0.012 7%
usd/jpy 1.314 1.212 8%

Table 1: The root mean squared error test set performance of neural networks trained using
conventional hold-out validation (HV) compared to the performance of networks trained
using a variation of hold-out validation that uses the epoch interpretation of learning (EIL-
HV). On average, the percentage decrease in error yielded by the epoch interpretation of
learning is 11%.

h � �� ��� H . The user then chooses the values for e and h that provide the best estimated
generalization performance:

OPT �e� h� �
argmin

h� e �Ghov�e� h�� (7)

The network is then re-trained using OPT �e� h� to estimate when training should be
stopped and how many hidden units the network should have. Equivalently, the network
saved on disk corresponding to these values for e and h is chosen as the optimal network.

4 Experiments

In this section, we present the results of 40 experiments that compare the performance of
networks built using conventional early-stopping estimates (equation (5)) to estimates that
use the epoch interpretation of learning (equations (6) and (7)).

The 4 data-sets chosen for the experiments described in this section are typical noisy for-
eign exchange rate data-sets. Each contains 1200 daily cross-rates from 17/6/92 to 12/3/97
and is combined with daily volatility and interest rate market information to create training
vectors that encode a simple 5-day lag-space. These are arranged into pools of 1200 train-
ing samples for each data-set. Each of these training samples contains a vector of 7 inputs
(5 foreign exchange cross-rates, a volatility and an interest rate differential input) and 1
output (cross-rate 5 days ahead).

For each data-set and technique compared, experiments were performed on 5 different
random re-samples of training, validation and test set (i.e.) each entry in table 1 above
corresponds to an average of errors across 5 experiments. The validation and test sets were
formed by sampling at random without replacement 600 samples from each data-set pool,
using 500 of these for validation, and 100 for testing. The remaining 500 samples were
used for training. This random re-sampling of test sets is not normally done in time series
prediction experiments – one usually trains on the past and tests on the future. However,
given a limited amount of useful time-series data this technique suffices as a method to
increase the statistical significance of results.

Results are summarized in table 1, overleaf.

5 Conclusion

In this paper we introduced a simple, alternative interpretation of neural network learning
and showed how it can be used to improve the performance of an early-stopping technique
based on hold-out validation. We argued that this performance improvement is most no-
ticeable when noisy non-linear training data is used.



The aim of this paper is to provide a simple introduction to the epoch interpretation of
learning. It should be clear that the ideas presented here can be extended so that the epoch
interpretation of learning can be used to improve the performance of other early-stopping
approaches such as those based on k-fold cross-validation for example. In [2], we show
how the epoch interpretation of learning can be used to improve the performance of an
early stopping based technique for optimizing bagged neural network performance.

The epoch interpretation of learning allows one to estimate the best set of weights for a
specific training session (i.e.) for a single path through weight-space. It will not necessarily
find the absolute best set of weights among the complete set in weight-space. However,
assuming reasonable parameters such as learning and momentum rate are chosen, and not
too many deep local minima exist, the back-propagation algorithm, should come close to
these “best” set of weights during its journey through weight-space. Assuming a technique
that can accurately estimate generalization error is used, estimating the best set of weights
for a specific training session, in the manner in which the epoch interpretaion of learning
attempts to do it, will be useful.

References

[1] S. Amari, N. Murata, K.-R. Muller, M. Finke and H. Yang. Statistical theory of over-
training - is cross-validation asymptotically effective? In M. Mozer, M. Jordan and
T. Peskes, editors, Advances in Neural Information Processing Systems 8, Cambridge,
1996. MIT Press.

[2] J. Carney and P. Cunningham. The NeuralBAG algorithm: Optimizing generalization
performance in bagged neural networks. University of Dublin, Trinity College techni-
cal report, TCD-CS-1998-23.

[3] J. Hertz, A. Krogh and R. Palmer. Introduction to the Theory of Neural Computation.
Addison-Wesley Publishing Company, California, 1991.

[4] M. Stone. Cross-validatory choice and assesment of statistical predictors. J. R. Statis-
tical Society. B36, 111-147.


