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1. Introduction 

With the arrival of more powerful computers and improved algorithms in 
machine learning, the availability of computer-based Knowledge Based Systems 
(KBSs) has increased rapidly. There is a wide range of KBSs available in many 
different types of domains, including medicine, finance, industry and technical 
diagnosis (Armengol et al, 2000; Ong et al, 1997; Rowe & Wright, 1993; Mark et al, 
1996; Ye, 1995). Sales of KBS development tools are growing at a rate of about 16% 
per annum since 1988 (Durkin, 1996). For example, the French Bank “Evalog” has 
decreased its costs of processing loans by tenfold, helped minimise risks and 
increased processing capacity by using a KBS called “EvEnt” (Mao and Benbasat, 
2000). However, case studies show that, in contrast to the availability of these 
systems, many KBSs that are installed in organisations are not being used (Majchrzak 
and Gasser, 1991). 

Some possible reasons for the lack of usage of available KBSs is that the users 
do not understand the models used in the particular system (Majchrzak and Gasser, 
1991), or they might not be convinced by the prediction given by the system 
(Brézillon and Pomerol, 1996). Other possible reasons could include a fear by system 
users that the system will eventually replace the user (Berry and Hart, 1990), or a fear 
that the use of KBSs may lead to a dehumanisation of some work practices 
(Shortliffe, 1992). 

Consider one possible scenario occurring from the use of KBSs in the medical 
domain of the future. 

 
“The semiconscious patient lies in a futuristic intensive care unit, 

tubes protruding, wires emerging from under the sheets and connecting to a 
host of monitor carts or wall-mounted devices, and intravenous fluids with 
computer-controlled infusion pumps circling the bed. The beeps of the 
monitors are not interrupted by footfalls of nursing staff, for health workers 
seldom have to enter the room. Instead, intelligent devices measure every 
pertinent physiological parameter, deciding how to adjust infusion rates, 
when to alter the respirator settings, and whether to sound alarms for the 
intervention of nurses or physicians." (Shortliffe, 1992) 

 
To some people this scenario for the clinical use of computers may appear 

unrealistic, due to current limitations of automation and ethical or legal constraints 
                                                 
1 This material is based upon works supported by the Science Foundation Ireland under Grant No. 
S.F.I.-02IN.1I111. 



(Druzdzel, 1996). It creates an image that if expert systems are developed in the 
medical informatics domain, it will result in a dehumanisation of the health care 
system.  

In designing KBSs it must be remembered that verification is not enough, 
KBSs need to justify and be accountable for their predictions (Richards, 2003).  The 
inclusion of explanations with predictions helps to make them more credible. After 
all, a physician using a diagnostic system is not supposed to follow an oracle’s advice 
blindly, even if the system has shown reliable performance over time (Druzdzel, 
1996). Belief in a system can be increased not only by the quality of its output but 
more importantly by evidence of how it was derived (Swartout, 1983). 

Explanation is one of the most common methods used by humans to support 
decisions (Schank, 1986). Explanation and the ability to customise explanations are 
considered to be among some of the most important capabilities of KBSs (Stylianou 
et al., 1992). Research has shown that the use of explanations make KBS predictions 
more acceptable to the user [Ye and Johnson, 1995; Mao and Benbasat, 2000; 
Ramberg, 1996). Since MYCIN (Hayes-Roth and Jacobstein, 1994; Shortliffe, 1996) 
most KBSs provide some form of explanation.  

Without understanding a systems prediction the user might accept or reject the 
systems advice for the wrong reasons. The use of explanation helps prevent incorrect 
acceptance or rejection of a KBS output. In order to prevent dehumanisation due to 
KBSs, users must have a sense of control over KBSs, rather than feeling that the 
KBSs are in control (Shortliffe, 1992). Including explanations keeps the user in 
control of the system.  

Including explanations as part of a KBSs output does not automatically 
guarantee user acceptance for the KBS. It can be argued that bad explanations from a 
KBS could be considered worse than no explanation at all. Explanations that are very 
long and complicated can often confuse the user. Explanations can be unnecessarily 
long by including information that adds nothing to the user’s belief (Wolverton, 
1995). 

This review paper discusses the use of explanations in KBSs, in particular in 
CBR systems, and the benefits of the use of explanations. Section 2 discusses the 
principles of CBR and the usefulness of explanations in KBSs before describing some 
important aspects of a good explanation. The next section discusses how some current 
KBSs attempt to improve the quality of their explanations. Section 4 moves on to 
focus on the task of explanation in CBR. The final section (Section 5) considers 
whether users in practice, find predictions more convincing with predictions, than 
without predictions. 

 
 
2. Background 
 There are a vast number of KBSs currently in use by companies and 
organisations throughout the world. For example all of the top five Japanese 
companies have between 20 and 30 KBSs in use (Mizoguchi and Motoda, 1995). 
Many financial and insurance companies also use KBSs in their operations (Rowe & 
Wright, 1993; Meyer et al., 1992). Multinational companies such as General Electric, 
General Motors, use KBSs, allowing information to be accessible in all their 
companies worldwide. For example GE use a KBS for recommending plastic samples 
that might be useful for their customers (Cheetham, 2003). Other KBSs in use include 
DAI-DEPUR which is an environmental decision support system for the control and 



supervision of Municipal Waste Water Treatment Plants (Cortés et al., 2002) and the 
Alarm Correlation Module (MCA), a traffic monitoring and control system (Bandini, 
2002).  

However a lot of KBSs that are installed in companies are not in operation. 
According to Majchrzak and Gasser (1991), more than 50% of systems, which are 
installed in companies, are not being used. This section will take a look at possible 
reasons why KBSs are not being used and how the possible use of explanations 
supporting a systems prediction might increase a user’s acceptance of the system. As 
the main emphasis of this paper is on Case Based Reasoning (CBR) in KBSs, the first 
part of this section will provide an overview of CBR. 
 

2.1 Case Based Reasoning 
The use of CBR predominately came from the research by Roger Schank and 

his students into cognitive science (Schank and Abelson, 1977; Schank, 1982; 
Kolodner, 1983; and Hammond, 1988). The inspiration for CBR came from a desire 
to understand how people remember information and are in turn reminded of 
information; and that subsequently it was recognised that people commonly solve 
problems by remembering how they solved similar problems in the past (Watson 
1998). Unlike other forms of reasoning such as Rule-Based Reasoning, CBR does not 
draw conclusions by chaining together generalised rules. In CBR the main source of 
knowledge is in a memory of stored cases. Solutions for problems are derived by 
retrieving the most similar cases from its memory and adapting them to fit the given 
problem. A classic definition given by Riesbeck and Schank (1989) is 

 
“A case-based reasoner solves problems by using or adapting solutions 
to old problems.” 
 

 The CBR approach is based on two observations of real world problems. The 
first is that similar problems tend to have similar solutions. The second is that the 
types of problems encountered tend to reoccur over time. When the two of these 
observations hold, it is worthwhile to remember and reuse prior reasoning. Therefore 
case based reasoning is an effective reasoning strategy (Leake, 1996). 

The general model of a CBR process is often referred to as the CBR-cycle. 
This cycle generally comprises four activities: 
 

Retrieve: Retrieve similar case(s) to the problem case. 
Reuse: Reuse the solution(s) provided by the most similar case(s). 
Revise: If necessary adapt the solution(s) to the retrieved case to better fit the 
problem. 
Retain: If necessary add the new solution to the Case-Base once it has been 
confirmed or validated. 
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Figure 1: General model of Case-Based Reasoning (Aamodt and Plaza 1994) 

 
 There are numerous different techniques available to retrieve the most similar 
case in a case-base. One approach is to form a complete problem description and use 
this to select a relevant case. Alternatively an incremental approach can be taken 
where more discriminating features are used to discriminate between cases in a case 
base (Cunningham, et al., 1998; Cunningham et al., 1995; Owens 1991).  

Possibly the most widely used technique used for retrieval in CBR are nearest 
neighbour techniques (Watson, 1997). Nearest neighbour algorithms all use a similar 
technique. The similarity between a target case, q, and a case in the case-base, x, are 
determined by calculating the similarity δ  between each feature, f, in both cases. This 
similarity may then be scaled using a weighting factor, wf. A sum of all scaled 
similarities is calculated to provide a measure of similarity between the two cases (the 
target case and the case in the case-base). This can be represented by the following 
equation: 
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Similarities are usually normalised to fall within the range [0, 1], where zero is 
dissimilar and one being an exact match. Most CBR tools that use nearest neighbour 
techniques use algorithms similar to this, for example the Wayland System (Price and 
Pegler, 1995). 
 Once the similarity between the target case and all of the stored cases has been 
calculated, the most similar cases are retrieved (i.e. the cases with the highest 
similarity value). These cases are then reused to help solve the target case. In 
generating a solution for the target case, the retrieved cases are often revised and 
adopted to suit the target case.  

Case adaptation in CBR is usually achieved by using rule-based systems on 
the retrieved cases. However an important reason for using CBR is because there is a 



lack of reliable domain knowledge. As a result, developers must acquire domain 
knowledge to implement the adaptation rules. This makes developing suitable 
adaptation techniques generally a difficult challenge in CBR (Kolodner, 1991; Leake 
1994) as a major motivation in using CBR is often a lack of domain knowledge. 

These difficulties have led many developers of CBR systems to not implement 
the adaptation stage of the cycle. These systems generally present the most similar 
cases to the human user, allowing them to perform the adaptation and evaluation on 
the presented cases. This framework is the basis for some successful CBR 
applications such as Clavier, Caber and Expert Help Desk System (Mark et al., 1996). 

The final stage of the CBR cycle, “Retain”, used to be performed by early 
CBR systems by simply storing each new case they generated. However this 
technique of retaining cases tends to make case-bases grow unnecessarily big in size, 
which generally slows down case retrieval. More modern approaches add new cases 
to the case-base when a failure occurs. This technique is known as “failure-driven 
learning” (Leake, 1996). When an inaccurate solution is provided by a CBR system, 
the failed solution can be repaired and added to the case base, preventing the same 
error happening again. In some systems information about the failure itself can be 
stored, so that it could provide warnings about possible future solutions (Bareiss, 
1989; Kolodner and Simpson, 1989). 

After examining CBR and how it works, how exactly does it compare in 
performance against other techniques in KBSs? According to Leake (1996) there are 
five main problems identified in real world KBSs that can be ameliorated by using 
CBR. These are: 

1. Knowledge Acquisition. A common problem in expert systems is how to 
provide the rules on which the system depends. In complicated domains, rules 
may be difficult to create and the number of rules required may be 
unmanageably large, with no guarantee that the rules are reliable. However 
some of these complicated domains may naturally suit a CBR procedure for 
solving problems. But in domains not naturally suited to CBR, due to 
unavailability of cases, or cases may be in a hard to use format (e.g. cases 
described with natural text) after the initial case engineering effort it is often 
simple to add new cases to the case base and to maintain the case base. 

2. Knowledge Maintenance. In most KBSs the domain is not fully understood 
when the initial knowledge base is set up. Very often in KBSs when new 
knowledge is discovered the system needs to be retrained on this new data. 
This process generally requires a knowledge engineer. Alternatively with CBR 
a user may be able to add new cases to the case-base without expert 
intervention. Also, because of the incremental learning performed by a CBR 
system, they can often be deployed with only a limited number of important 
cases or “seed” cases. New cases can be added to the case-base if and when 
the case library is insufficient in practice (Mark et al, 1996). This cannot be 
achieved with other KBSs as they should take into account all possible 
theoretical problems before deployment. 

3. Increasing Problem-Solving Efficiency. Reusing prior retained solutions helps 
a CBR System to increase its problem solving efficiency. This is achieved by 
saving failed solutions as well as successful solutions, to warn of future 
potential problems. 

4. Increasing Quality of Solutions. In a complicated domain where the theory is 
not well understood, it is difficult to build rules and the rules developed may 
be imperfect. However cases are real world solutions to problems, so they 



generally have a higher quality solution. Also due to the ability of CBR 
systems to expand its case-base, over time solutions will become more 
accurate. 

5. User Acceptance. As already mentioned a big problem with KBSs is for user 
acceptance. There is no benefit of having an elaborate KBS if users will not 
use it. This is a big problem with other systems: neural network systems 
generally cannot provide explanations to support their decisions, and rule-
based systems must explain their decisions by using rules that the user may 
not fully understand or accept (Riesbeck, 1988). However with a CBR system 
an explanation can be given by simply presenting an actual prior case to the 
user as support of the systems prediction. 

 

2.2 Explanation in Expert Systems 
 As already mentioned, there is a significant number of KBSs installed in 
companies but not being used. There are numerous arguments put forward that try to 
explain the lack of use of KBSs. One simple reason for the lack of usage could be a 
fear by the end user of their personal job security. That if the system is successful, the 
company would not need as many workers. However most KBSs are intended as 
assistants to professional people and not at human replacing (Berry and Hart, 1990). 
 The introduction of a new KBS into an organisation generally results in 
modification of work practices, which is generally met with resistance from the 
workers. There are often also problems with interaction of the KBS with classical 
software in the organisation itself and also that KBSs are often imposed on the people 
who know little about the technology (Majchrzak and Gasser, 1991). To help reduce 
these problems it is important to involve the end user in the entire design process of 
the KBS. Not only does this result in a system that works to the liking of the end user 
and should integrate more smoothly with existing software and work procedures, but 
it should also create a sense of owning for the end user hopefully reducing anxiety 
about their job security. 
 It is also important in a KBS that the user understands the models that are used 
by the system and is confident in the system outputs (Brézillon and Pomerol, 1996). A 
common approach to attempt to increase confidence in a system’s output is to include 
an explanation of the result in the system’s output (Moore and Swartout, 1988). 
Explanations have been noted as an important feature of KBSs that are often not 
offered with other types of computer systems (Richards, 2003). They help to justify 
predictions in complicated domains where the domain is not fully understood or 
complicated heuristics are used (Lee and Compton, 1995; Swartout and Moore, 1993).  
 However many initial KBSs that used explanations were not very efficient at 
convincing users. Explanations were often only from the system to the user, without 
the user intervening in the building of the explanation (Karsenty and Brézillon, 1995; 
Cawsey, 1993; McSherry, 2001) and very often explanations were rejected as the user 
could not understand the explanation. 
 Producing more understandable explanations is a more difficult task than it 
may appear. The main complication is that different people understand different types 
of explanations better than others. One common technique for simplifying the type of 
explanation to give different people is by creating one type of explanation for experts 
and another for novices. Some research has shown that experts tend to prefer low- 
level explanations, while novices prefer a combination of higher-level explanations, 
background information and low level explanations (Ramberg, 1996; Wolverton, 



1995). Research has also soon that novice users, due to their lack of domain 
knowledge, have a greater need for explanations to understand KBS outputs than 
experts, they generally use explanations for understanding and prefer a justification 
(why) style of explanation. Alternatively, domain experts tend to use explanations in 
anomalous situations, as they are more likely to recognise anomalies than novice 
users. Expert users tend to use a reasoning-trace (how) style of explanation more than 
novice users (Mao and Benbasat, 2000). 

The development of user models for customised explanations can be a time- 
consuming process. Swartout and Moore (1993) describe an approach using 
stereotypes. Using stereotypes the level of detail is customised to each stereotype. 
Rules have different levels associated with them and are fired if the user belongs to 
that level. Although this system is easier to implement than user models, there is a 
problem that if the user does not fit the stereotype the explanation will be 
unsatisfactory. 

Studies have shown that the use of explanations generally improves a user’s 
acceptance of a KBS (Ye, 1995). However Cawsey (1993) makes the point that 
explanations wrongly tailored for different users are probably worse than providing 
no explanation. But what makes a good explanation? The next subsection discusses 
some aspects of a good explanation. 
 

2.3 Improving Explanations 
In order to improve the quality of explanations given by a KBS, the properties 

of good explanations must be considered. Stephan Toulmin, a philosopher developed 
a generic approach to providing an argument. His six-element argument structure 
(Figure 2) can be used in a broad range of situations. (Toulmin, 1958; Toulmin et al., 
1984; Ehninger and Brockriede, 1978). The six elements of Toulmin’s argument 
structure as given by Shanker (1999) is: 

1. Data: The particular facts about a situation on which a claim is made. 
2. Warrant: The knowledge that justifies a claim made using the data. 
3. Backing: The general body of information or experience that validate the 

warrant. 
4. Qualifier: The phrase that shows the confidence with which the claim is 

supported to be true. 
5. Rebuttal: The anomaly that shows the claim not to be true. 
6. Claim: The assertion or conclusion put forward for general acceptance. 
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Figure 2: Toulmin’s Argument Structure (Ehninger and Brockriede, 1960) 

Toulmin’s model of argument is significant in that it highlights the discrete response 
steps that a KBS explanation should follow, in order to answer user queries in a 
convincing way. Wick (1992) points out how research in explanation has, without 
stated intent, evolved to engulf Toulmin’s argument structure. 
 Although Toulmin’s model provides a method for generating good arguments, 
other factors need to be considered when developing explanations in a KBS. Swartout 
and Moore (1993) discuss five aspects of a good explanation in a KBS  
 

1. Fidelity – how accurate is the representation? Fidelity is aided by a simple 
inference engine. 

2. Understandability – are the content and context understandable? The 
components to be considered are terminology, user sensitivity, abstraction into 
different levels, summarization (the amount of detail offered in an 
explanation), the possible system perspectives, linguistic competence and 
feedback. 

3. Sufficiency - is there enough knowledge to provide explanation in different 
contexts? This will require knowledge to be stored that allows explanation 
about the system's behaviour, justification, preferences, domain explanations 
and terminology definitions. 

4. Low construction overhead – how time consuming and difficult is it to build 
explanations? 

5. Efficiency - what will the system's response time be like? Will it take a long 
time to generate an explanation? 

 
 
3. Explanation in existing expert systems 
 There are numerous existing KBSs that use explanations to help increase 
credibility in their predictions. This section examines some approaches to help 
improve the explanations given by KBSs. The first approach is viewpoints (Finch, 
1999). Viewpoints help to change the type of explanation given to different users. The 
next approach is the use of Satisficing Conclusion-Substantiating Explanation 
(Wolverton, 1995), which builds up explanations so that they are as detailed as 
possible, but still understandable by both novice and expert users. Some expert 
systems based on neural networks or simulations can prove extremely difficult for 
creating explanations. The final approach in this section looks at adding explanations 



to KBSs that use simulation as their method of making predictions (Greer et al., 
1995). 
 

3.1 Viewpoints 
 As discussed by Finch (1993), a viewpoint is a way of looking at an 
underlying concept, allowing it to be presented differently for different users. This 
allows one expert system to be created, which can provide explanation for different 
classes of user, by using different viewpoints on the knowledge base. This is an 
important feature as it gets over the problem discussed in Section 2, where different 
users prefer different types of explanations and varying levels of detail in 
explanations. A simplistic approach to viewpoints is to consider them as a filter that 
can be passed over the knowledge, only allowing certain facts and concepts to be seen 
through it and holding back the facts and concepts that the user may not understand or 
are “insignificant” in explaining the conclusion that is found. Perhaps the simplest 
way to describe viewpoints is with an example taken from Finch (1999). 
 This example uses a rule-based system called IMVEX that is coded as a suite 
of Perl modules, and uses a backward-chaining inference engine to achieve goals 
based on facts which the user (or some other external agent) provides and a rule base. 
The rules are expressed in the following form: 
 

<label>: <conjunction of conditions> => <consequences>. 
 

For example, the following rule (label is ‘4’) states that any man, under the age of 65, 
who is healthy, is not entitled to parish relief: 
 

4: age < 65 & man & healthy => relief’ no. 
 
Imvex also allows text to be associated with symbols and their values. This is used 
when the rule is displayed to the user, for example, the above rule could become: 
 
 Rule 4 states that: 
  
  [1] If you are under the age of 65 
  [2]  AND you are a man 
  [3] AND you are healthy 
  [4] THEN you will not be granted parish aid. 
 

Now consider two participants in an application for parish relief, the claimant 
and the claim adjudicator. The claimant makes an application for parish relief and the 
adjudicator decides whether the claim is valid. Viewpoints allow both participants to 
use the same rule base, but to interact with it and get information in a way suited to 
their needs. 
 The simplest way that IMVEX displays the information according to the 
viewpoint used, is the presentation of the information. For example a result from 
firing a rule that has a conclusion “relief = yes”, then this might be presented to the 
claimant as: “You will receive parish relief”. While the adjudicator would see: “The 
claimant will receive parish relief”. 

Although this is a useful facility, it is only a minor aspect of the viewpoints 
mechanism, affecting only the superficial presentation of information. The major 



advantage of the viewpoints mechanism is the ability to associate viewpoints with 
parts of the rule base, allowing alternative chains of reasoning to be formed, 
depending on the user. Consider the following rule, which states that someone who is 
unhealthy should be granted parish relief: 

 
9: healthy’ no => relief. 

 
For the claimant, this is sufficient. They will be asked whether they are healthy. If 
they say ‘no’, they will be told they deserve parish relief. Alternatively the adjudicator 
would need some proof of the claimant’s ill health. Possible proof could be 
production of a valid doctor’s certificate. Therefore the above rule would be sufficient 
for the claimant, but the adjudicator’s viewpoint will have to be able to incorporate 
the need for a doctor’s certificate. So rule 9 would become for the two viewpoints: 
 

9/claimant: healthy’ no => relief 
9/adjudicator: healthy’ no & doctor_cert => relief 
 

So when the adjudicator is using the system, he will be asked about the patient’s 
health and also about the production of a valid certificate. The claimant on the other 
hand will only be questioned about his health. Thus, by using viewpoints, a single rule 
base can be used by both a benefit claimant and the claim adjudicator. This has 
obvious advantages in the maintenance and development of the rule base, since there 
is only one rule base to maintain. 
 

3.2 Satisficing Conclusion-Substantiating Explanation 
 Wolverton (1995) presents the notion of Satisficing Conclusion-Substantiating 
(SCS) Explanations, which aims to have explanations as understandable as possible, 
but maintaining a high level of belief. This is achieved by keeping the explanations 
free of: 

1. Any portion of an explanation that the user cannot understand, as this is 
presumed not to add to their level of belief in the conclusion, and could 
possibly reduce the users level of belief. 

2. Portions of an explanation that add very little to the user’s belief in the 
conclusion, provided they are not required to push the user’s belief in the 
conclusion over the user’s belief threshold. 

This approach requires the system to have a user model. A definition of SCS 
Explanations is given in Definition 1. 
 

Definition 1: Satisficing Conclusion-Substantiating Explanation (Wolverton, 1995) 

Given a system S, some conclusion produced by that system CS, and a user U 
with domain theory τU, an SCS explanation of Cs to U with belief threshold p, 
E (CS, U, p), is the minimal set of knowledge elements such that either  
1) Prob [CS|τU ∪ E (CS, U, p)] > p, or if no explanation meeting this 

criterion exist, 
2) There is no other explanation E’ (Cs|τU) such that 

Prob [CS|τU ∪ E’ (CS, U, p)] > Prob [CS|τU ∪ E’ (CS, U, p)] 
 



Here, Prob need not represent a strict Bayesian probability, but can also correspond to 
any numeric method of representing likelihood or degree of belief. 
 This definition says that a SCS explanation is the shortest sequence of facts 
that can convince the user that the conclusion is true. Or if no sequence of facts can 
give the user a confidence greater than p, then the set of facts that will give the user 
the greatest confidence in CS is used as an explanation. 
 We will now examine an example of explanations from a SCS explanation 
system, taken from Wolverton (1995). Figure 3 shows the reasoning sequence of the 
system for a diagnosis of a problem with a digital signal processing system.  

C0

C1 C2

C3

T1 T2

T3

C0: Signal output of system is faulty
T1: Verify values stored in hardware registers
C1: No problem in initialization software
T2: Oscilloscope signal level check of gain boards
C2: Analogue gain board faulty
T3: Observe time response of T&C signals
C3: Timing component should be replaced
Prob (C3|T1 ^ T2 ^ T 3) = .95
Prob (C3|T2 ^ T 3) = .92
Prob (C3|T3) = .75
Prob (C3|T1 ^ T 2) = .7
Prob (C3|T2) = .5

 
Figure 3: Example reasoning of digital signal processing expert system (Wolverton, 1995) 

 
In this example, the system is attempting to diagnose the problem (C0) that the 

observed output signal of the system is too weak. The system firsts tests the 
hypothesis that the problem is caused by a fault in the initialization software by 
verifying the values stored in the hardware registers (T1). This test indicates that the 
software is initializing the registers correctly (C1), so the system can give up on this 
branch of the hierarchy. Next, the system tests the hypothesis that there is a hardware 
fault by performing an oscilloscope signal level check of the two (analogue and 
digital) gain boards (T2). This test reveals that the analogue gain board is faulty, while 
the digital gain board is fine (C2). Finally, the system attempts to refine its current 
diagnosis by observing the time response of the analogue gain board's timing and 
control signals (T3). This test reveals that the board's timing component is faulty (C3), 
and this is returned as the expert system's diagnosis.  

Outputting the system's entire line of reasoning as an explanation for the 
conclusion C3, without using a SCS Explanation, might produce the following 
explanation:  
 

I verified the values stored in the hardware registers. The result 
was that all hardware register values were correct. This test indicated 
that the hardware initialization software is working correctly.  

Next, I did an oscilloscope signal level check of the gain 
components of the hardware. The result was that the signal level on the 
analogue gain stage was too weak, and the signal level on the digital 
gain stage was fine. This test indicated that the analogue gain board is 
faulty, and the digital gain board is fine.  

Next, I observed the time response of on-board timing and 
control signals of the analogue gain board. The result was that the 
rising edge of the START timing signal occurs after the raw signal event 



of interest. This test indicated that the hardware-timing component of 
the analogue gain board is faulty and should be replaced.  
 
This explanation is an accurate representation of the tests that were carried out 

on the system and the conclusions reached in the process of producing the final 
diagnosis, but it also is probably unnecessarily long and detailed for most users. And 
this is only a simple example of a small portion of a fault hierarchy; explanations of 
realistic complex diagnoses can quickly grow to be completely unmanageable.  

Now let's examine two different SCS explanations of the same diagnosis. The 
first explanation will be generated for an expert user, he is assumed to know about all 
the concepts and all the tests that the system knows about, and therefore this user’s 
model is identical to the system's knowledge base. Assume that the belief threshold 
for an explanation is set to 0.9. For this user and this belief threshold, the results of 
test T1 constitute insignificant information. Knowing the results of tests T2 and T3 
already support a .92 level of belief in conclusion C3, and additionally knowing the 
result of test T1 raises that value only a very small amount to .95. It was necessary to 
perform that test during the diagnosis in order to eliminate software as the potential 
source of the problem and to focus on the hardware, but in retrospect, the result of that 
test adds very little to the expert user's belief in the truth of C3. So an SCS 
explanation for this user would remove the first paragraph of the previous 
explanation.  

Now consider a user with less expertise. This user has an understanding of the 
higher-level components of the system, but doesn't understand the detailed workings 
of those components. In particular, he does not know about the timing and control 
components of the gain boards. Thus, his user model includes tests T1 and T2, but 
does not include T3. Therefore, the SCS explanation method will not present the 
detailed description and results of test T3. It will present the results of T1 and T2, 
rather than T2 alone, because (1) both tests taken together give more confidence in the 
conclusion than T2 by itself, and (2) since the confidence level for T1 and T2 (.75) is 
less than the belief threshold (.9), the method wants to find the explanation that 
maximizes confidence. So the explanation produced is the same as the first one 
presented in this section, except with a simplified final paragraph, stating the findings 
of T3 but not the actual test itself: 

I verified the values stored in the hardware registers. The result 
was that all hardware register values were correct. This test indicated 
that the hardware initialization software is working correctly.  

Next, I did an oscilloscope signal level check of the gain 
components of the hardware. The result was that the signal level on the 
analogue gain stage was too weak, and the signal level on the digital 
gain stage was fine. This test indicated that the analogue gain board is 
faulty, and the digital gain board is fine. 

A more detailed test of the analogue gain board indicated that 
the hardware-timing component of the analogue gain board is faulty and 
should be replaced.  

3.3 Simulation Explanation 
 With some KBSs, such as simulations and neural networks, it is often very 
difficult to produce explanations to support predictions. This is due to many of these 
systems being treated as “black boxes” (Beck et al, 1989; Bernatzki, 1996), with 
outputs being produced without any explanation of how the output was derived. Greer 



et al (1993) examine the use of simulation models in the agricultural sector for 
making decisions for farmers. In the agricultural community there exists a general 
distrust in KBSs. In order to overcome initial distrust, a system must give plausible 
explanations for any decisions it makes, and must use terminology and logic 
understood and trusted by the user. Greer et al. (1995) approach the “black box” 
problem of simulations, by developing a system that creates explanations that are 
suitable for the agricultural community. 

The architecture of the system (which is referred to as EXPLAIN) consists of 
a User Interface, a Simulation Model, an Explanation Model and a User Model as 
shown in Figure 4. The User interface has three responsibilities: querying the user for 
suitable inputs to the simulation, acquiring knowledge about the current user, and 
outputting the results and explanation of the simulation to the User. The Simulation 
Model carries out the simulation on the users input, and outputs the results to the 
Explanation Module. Using the input from the Simulation Model along with the input 
from the User Model, which contains information about the user, the Explanation 
Module creates an individualised explanation of the Simulation. This explanation is 
then passed back to the user via the Interface.  

The Explanation Module creates this individualised explanation by first 
creating an internal representation of the simulation. Then using the user model it 
personalises the representation, which is then passed through a Natural Language 
Generator before returning the result to the User. 

Using the Natural Language Generator and the User Model to create the 
explanation of the simulation creates an explanation that is both in an easy to read 
language, and at a standard that is understood by the user. This should lead to an 
overall increase in the level of belief in the prediction for the user. 
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Figure 4: Architecture of the Explain System (Greer et al. 1995) 

 
 
 

4 Explanation in Case-Based Reasoning 
CBR systems offer a very different approach to constructing explanations than 

in other types of expert systems. The input data to a case-based system are not 
converted to rules as in a rule based system, or into a complicated interconnected 
network of perceptrons as in neural networks, but they are kept in their original form, 
just as they were entered. The benefit of maintaining the cases in their original form 



(as pointed out by Riesbeck (1988)) is that “a solution to a new problem can be 
explained simply by presenting the case that was adapted to create the solution”. 
Unless the adaptation process is complicated, the differences between the solution and 
the problem case should be minimal, so the user can easily judge the validity of the 
solution. 
 Research work on Case-Based Explanation (CBE) can generally be 
categorised into knowledge-light and knowledge-intensive approaches (Cunningham 
et al, 2003). A knowledge-intensive approach to CBE will incorporate mechanisms 
such as rule-based or model-based inference that can be used to generate 
explanations. Amongst the earliest examples of this approach is the work of SWALE 
(Kass and Leake, 1988) and its descendents; more recently is Model-based Case 
Adaptation System (MoCAS) (Pews and Wess, 1993), the Plan Abstraction and 
Refinement in an Integrated System (PARIS-System) (Bergmann et al., 1993), and 
finally DIRAS system for assessing the long-term risks of Diabetes (Armengol et al., 
2000).  

On the other hand the knowledge-light approach is usually used in retrieval 
only systems or interactive adaptation. A good example of the knowledge-light 
approach to CBE is the CARES system for predicting recurrence of colorectal cancer 
(Ong et al., 1997). CBR has been used successfully in developing diagnosis systems 
based on a feature-value representation. In CBR systems that use a simple feature-
value based representation, the retrieved cases can be used in explanation as follows 
(Cunningham, et al. 2003): 

  “The system predicts that the outcome will be X because that was the 
outcome in case C1 that differed from the current case only in the value of 
feature F which was f2 instead of f1. 

In addition the outcome in C2 was also X …” 
Explanation in these terms (i.e. expressed in the vocabulary of the case features) will 
not always be adequate but in some situations, such as in medical decision support, it 
can be quite useful.  

4.1 MoCAS  
MoCAS (Pews and Wess, 1993) uses explanation-based similarity for case 

retrieval and adaptation. In explanation-based similarity, the similarity of two cases is 
based on the similarity of their explanations. To achieve this, the domain knowledge 
is modelled on several layers of abstraction. This modelling must be able to switch 
between different levels by transforming representational terms from one level to 
another. An explanation on a lower level of abstraction is more detailed and contains 
more rules than an explanation on a higher level of abstraction. Therefore the 
explanations of two cases can differ very much on a low level of abstraction, but may 
be identical on a higher level of abstraction. The lower the level of abstraction on 
which two explanations are identical, the higher the assessment of their similarity.  
 

4.1.a Single-level explanations 
 An explanation on an isolated level of abstraction can be represented in a 
graph structure with two different kinds of labelled nodes: rule-nodes and fact-nodes 
as in Figure 5. Two single-level explanations are called identical if the graphs are 
identical except for the labelling of the fact-nodes, which can vary, however the 
labelling of the rule nodes must be the same, but the instantiations of the rules can be 
different.  



 

Facta1 Facta2Rulea1

 
Figure 5: Single-level Explanations (Pews 1993) 

 

4.1.b Multi-level explanations 
 On two adjacent levels, the explanations are linked by two different kinds of 
abstraction mappings. The fact abstraction relates several level-n fact nodes on level 
n+1 (Figure 6). It is assumed that the available domain knowledge includes 
information about the different possibilities for fact abstraction. Rule abstraction 
occurs when a sub graph containing several rule- and fact-nodes can be mapped onto 
a single more abstract rule-node on the next higher level of abstraction.  
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Figure 6: Multi-level Abstractions (Pews and Wess, 1993) 

 

4.1.c Similarity between a complete case and a problem 
 

To compare the similarity between a complete case and a problem case an 
attempt is made to match the explanations of the two cases at the highest level of 
abstraction. If this matching is successful, the process moves to the next lower level of 
abstraction and attempts to match the explanations again. The lowest level of 
abstraction at which the explanations can be mapped, indicates the degree of 
similarity between the case and the current problem. 

4.1.d Example case 
Consider a simple example of a diagnosis task from a technical domain as 

shown in Figure 7. In Case1 a generator G1 supplies a light bulb L1 via Wire18 and 
Relay7 with a voltage. Suppose Wire18 is broken, therefore the lamp stays dark even if 



the generator provides a voltage and the relay is closed. Then in Case2 instead of a 
light bulb there is a motor M1. In this case assuming that Wire65 is broken the motor 
will not turn even if the relay is closed and G2 is providing a current. The problem in 
this case is the broken wire. Therefore the explanation would be a diagnosis of the 
unintended behaviour, here it would be the rule for the broken wire.  
 G1 G2 Wire18 Wire65

Relay9 Relay7 L1 M1 

Case1 Case2  
Figure 7: Two cases from a technical diagnostic domain (Pews and Wess, 1993) 

 
For these two cases, the modelling leads to explanation graphs as shown in 
. The explanations of Case1 and Case2 are not identical on the lowest level of 

abstraction, because different rules describe the behaviour of the motor and the bulb. 
But at a higher level of abstraction (level 2), the behaviour of the two different 
components can be abstracted into the rule that reflects ”doesn’t operate” behaviour. 
On this level of abstraction the two cases are identical. 

Figure 8

Figure 8: Explanation structures for two diagnostic cases (Pews and Wess, 1993) 
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The next step is to refine these abstract solutions towards a full solution to the 
original problem at the required level of detail. A mapping of Case1 to the problem of 
Case2 (generator works, relay closed, but the bulb is still dark) a mapping of the faulty 
component Wire18 from Case1 to the related component in Case2, Wire65, indicates 
that Wire65 is faulty. 

However, in general, a mapped abstract solution needs to be refined towards a 
single abstract rule. This refinement can be achieved by standard hierarchical search- 
based methods, which can employ exactly the same knowledge that was already 
utilised during similarity assessment. The abstract solution that is already available 
imposes strong constraints on the search space, so that only a small amount of sub-
problems have to be solved. However if the degree of similarity between the two 
cases is too low, the search space can become so large, that it is not possible to 
achieve a solution in a reasonable amount of time. This could be a strong indication 
that the new case has to be added to the case base. 
 For example, consider a new case, similar to Case1 only that instead of a wire, 
there is a more complex component. For example this component could be an 
infrared-sender and receiver including several amplifiers. An explanation mapping 
will now come up with the mapping of the wire to the compound component. 
However, no decision can be made as to what part of the component is faulty. But the 
required refinement search can now be focused on the respective sub-components. 
Model-based diagnosis techniques using the model knowledge of the relevant 
components and their interaction can be used to determine a potential refined 
diagnosis. 

4.2 DIRAS 
 Diabetes is one of the most common diseases in the world. At present it affects 
approximately 3% of the European population. Although diabetes is manageable if 
certain lifestyle changes are made, a bad management of the disease will produce 
microcomplications (blindness, renal failure or polyneuropathy), and 
macrocomplications (gangrene and amputation, aggravated coronary heart disease or 
stroke). The aim of DIRAS is the prediction of individualised risk assessment for a 
patient with diabetes of developing one of these complications (Armengol et al., 
2000). 
 DIRAS uses Lazy Induction of Descriptions (LID) (Armengol and Plaza, 
2001) to infer the risk relating to each particular type of complication. LID works by 
selecting the most discriminatory feature (using the López de Mántaras (RLM) 
distance). This feature value is added to the description. From this point only cases 
with the same feature value are used. The system checks to see if all the remaining 
cases have the same risk level for the complication being investigated. If not - the next 
most discriminatory feature of the remaining cases is selected. This process continues 
until the set of remaining cases have the same risk level. The description used for 
explaining the classification contains all the most discriminatory features used during 
the process and there values (Armengol and Plaza, 2001). 
 DIRAS also produces a report that can be useful for non-expert physicians to 
be able to manage diabetic patients. This report is made up of 4 sections: 

1. Personal data (e.g. age, diabetes type, year of diabetes diagnostic). 
2. Assessments about the measures (e.g. cholesterol level). 
3. Information about macrocomplications. 
4. Information about microcomplications. 

An example output of the risk of macrocomplications is given in Figure 9. 



 
Figure 9: Sample report showing the possible risk of macrocomplications for a patient 
using DIRAS (Armengol et al., 2000) 
 

4.3 CARES 
MOCAS and DIRAS are both examples of knowledge-intensive systems. 

However some people argue that “knowledge intensive CBR is missing the point of 
CBR, which is the potential CBR has to finesse knowledge engineering effort by 
manipulating cases that are compiled chunks of knowledge” (Cunningham et al., 
2003). The National University of Singapore in conjunction with Singapore General 
Hospital developed the CARES system, to be able to predict the risk of recurrence of 
colorectal cancer, and suggest an appropriate follow up regime for the patient. 
Without this prediction, a patient may be encountering unnecessary, painful and 
expensive check ups. An accurate prediction system would reduce these. 

CARES uses a matching process known as nearest-neighbour matching. On 
entry of a new case the system looks at all the existing cases and retrieves the most 
similar cases. Given a new case x and a retrieved case q, for each feature f, the system 
computes a degree of match between the feature values using a similarity function. An 
example of a similarity function is given in (1). 
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This is then repeated for all the features (F), which the user has selected to use. Each 
feature has an associated weight, which represents the overall importance of that 
particular feature in calculating the similarity between the two cases. The overall 
similarity between the two cases is calculated using (2). 
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During the retrieval process the system maintains a list of the ten most similar cases in 
the case base. These cases are then displayed to the doctor for browsing. From these 
most similar cases, the system also produces its prediction and a follow-up regimen 
and explains its decisions using the retrieved case as a basis.  
 It should also be noted that the doctors could select and adjust which feature’s 
to include when doing the similarity check and also what weight to give the feature. 
This allows the system to base its decisions on similar criteria as the doctor, 
producing more useable findings for the doctor. In the CARES system all 10 retrieved 
cases need not have the same outcome as the conclusion presented by the system. 
More than likely they won’t, however by being able to browse the retrieved cases the 
doctor is able to consider any anomalies that are present in the 10 cases. 
 
5. Usefulness of Explanations 
 The previous sections have discussed the use of explanations in KBSs. But 
how useful are these explanations? Are users just as convinced with only a 
prediction? Do they really need an explanation? And if they do, what type of 
explanations do they like best? Do they prefer Case Based Explanations (CBEs), due 
to its consistency with much that psychologists have observed in the natural problem 
solving that people do, as expressed in (Kolodner, 1991) or is a Rule- Based 
Explanation (RBE) more acceptable? 
 In (Cunningham et al., 2003) we investigate the usefulness of explanations in 
both CBR and Rule Based Reasoning (RBR). Our paper uses the domain of Blood 
Alcohol Levels (BAL) where a system was set up which could predict a persons BAL 
by using such features as amount drank, duration of drinking, amount to eat, gender 
and weight. In the experiment 37 subjects were presented with eight unique problem 
cases. Each of the problem cases was presented three times, once with prediction and 
case-based explanation, once with prediction and rule-based explanation and once 
with predictions only with no explanation. The rule-based and case-based 
explanations were presented together but the order was varied to avoid any bias due to 
familiarity. The subjects were asked to score how convinced they were by the 
explanations on a 5-point scale (No, Maybe No, Maybe, Maybe Yes, Yes). In the 
evaluation of the results these scores were interpreted as numeric values 1-5.  
 An incorrect prediction coupled with a poor explanation was included in each 
category to help assess the attention paid by the subjects to the evaluation. The 
average rating for these poor predictions was 1.5 while the average for the other 
predictions was 3.9 (on a scale of 1-5). The ratings for these poor predictions were not 
considered further in the evaluation. F  shows the averages of the remaining 
ratings. 

igure 10

 Two things to note are the strong performance of the CBE and the fact that the 
predictions without explanation were still found to be quite convincing. Statistical 
tests were run on the data and a paired t-test showed that the CBE was better than the 
RBE (P value = 0.0005) and better than “No Explanation” (P value = 0.005). 



Counting the wins and draws between the rule-based and case-based alternatives 
showed that CBE wins 105 times, RBE wins 48 times, and there are 106 draws. 
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Figure 10:  The average ratings of three alternative prediction and explanation systems 

Even though the evaluation favoured the case-based approach, that does not 
mean that this approach will always be the best. It must be remembered that although 
case based explanation did best, it was still only slightly better than rule-based 
explanations, which itself was only marginally better than no explanation. As stated in 
Cunningham et al, (2003) it must be noted that: 

• Because of the inherit instability of decision tree building algorithms there are 
alternative decision trees that would have produced different rules that might 
have scored better. 

• Case- Based Explanation may inherently suit the task because it considers all 
features in the decision making process. The Rule-Based Explanation only 
considers a subset of features and this may be more acceptable in other 
domains. 

• The comparatively simple case representation may favour CBE. It might fare 
less well with more complex cases (i.e. more features) 

• Results may be different in domains where the subjects have more insight or 
less insight into underlying mechanisms. 

 
6. Conclusions 
 In this review paper, we have shown that although it is often difficult to 
generate good explanations that by including them as part of a KBSs output, it can 
help improve users credibility in the system. Benefits of using CBR as KBSs that 
produce explanations have been examined. Such benefits of CBR include easier 
knowledge maintenance, easier knowledge acquisition and easier acceptance of 
CBE’s, as their explanations are made up of actual real life cases.  
 The generation of explanations in some CBR systems is discussed. As not all 
domains are naturally suited to CBR, techniques for improving explanations in other 
types of KBSs are analysed. Users preference of case based explanations compared to 
rule based explanations is also considered in the paper. Attention has also been given 
to the fact that different classes of users prefer different types of explanations.  
 Although it has been shown that use of explanations help increase users 
confidence in a KBS, a lot of work still needs to be done in the area of generating 



valuable explanations. More research needs to be carried out in the type of 
explanations different classes of users prefer, for example the level of detail provided 
by the KBS and the type of explanation provided. Possible work could focus on trying 
to make the generation of explanations more interactive with the user. Such 
interactivity could include the ability for users to easily switch between different types 
or levels of detail of explanations or systems that allow users to control features that 
they themselves feel are more discriminating. Another area for further work could 
include how making it easier for users to revise their inputs for certain features might 
increase their acceptance of the KBS as they can see the actual effects particular 
features have on a KBSs prediction.  
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