
Recommender Systems: A Study of

Cold-Start and Attack Resilience

Author: Supervisor:

Sulthana Shams Prof. Douglas Leith

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

in the

School of Computer Science and Statistics

August 2024

Dedicated to

Ummichi, Vappichi and all my Teachers

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

I, the undersigned, agree to deposit this thesis in the University’s open access insti-

tutional repository or allow the library to do so on my behalf, subject to Irish Copyright

Legislation and Trinity College Library conditions of use and acknowledgement.

I consent / do not consent to the examiner retaining a copy of the thesis beyond the

examining period, should they so wish (EU GDPR May 2018).

Sulthana Shams

April 5, 2024

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Sulthana Shams

April 5, 2024

Acknowledgments

It gives me immense joy to have worked with my PhD advisor, Prof. Douglas Leith, whose

unwavering support and guidance have been instrumental in bringing this thesis to life.

My PhD was right in the middle of the pandemic, and without your guidance, this thesis

would have been impossible. I express my sincerest gratitude to you, sir. Your brilliant

insights, comments and discussions have been a wealth of information I’m proud to carry

with me for the rest of my life.

I’m deeply indebted to Dr Prem Kumar Karumbu, my mentor, teacher and master’s

thesis advisor. My time with you has left a lasting impact on me. Your words of encour-

agement and advice to always approach my work with honesty, and sincerity and leave

the rest to God has been a great source of strength for me. Thank you, sir, for instilling

in me the joy of learning, the importance of discipline and the value of hard work and

persistence.

None of this would have been possible without my parents, Mr Shamsudeen PM and

Ms Roshna Shamsudeen. They taught me the value of education and most importantly

kindness and respect for every being. Thank you for providing me with a wonderful space

to learn and grow throughout my life. You have taught me the value of the simple act of

waiting. You have supported me in every way humanly possible and this journey is simply

unimaginable without you both. I would also like to thank my brother Dr Azad Shams for

time and again reaching out with help I never realised I needed. You made my life easier.

To my husband, Dr Ghanim Fajish, thank you very much for your company and jovial

jokes which, on the days that did not annoy me, have made me laugh and light-hearted.

To Mma, Ppa, Molu and Mithu, thank you for all the joy and support that you sent my

way.

To my best friends, Eva Rosemary Ronald and Dr. Sandhya T.P, thank you for always

being available in my life. Chechi, I’m indebted to you for your help and kind words

vi

Acknowledgments vii

whenever I needed it and Eva for telling me I can do it :). Thank you for all the ego

boosts whenever I was down.

My time in the Lab was wonderful due to the presence of my colleagues: Thank you

Daron, Pavlos, Apostoles, Jose, Erjona, Victor, Vaibhav, David, Dilina and Mohammad

for creating a wonderful environment for research, engaging conversations and games of

table tennis when the lab was getting too quiet. I wish I had more time to get to know

you guys (all due to the pandemic).

I am deeply appreciative of the support from Science Foundation Ireland, which has

funded my scholarship. I am indebted to Dublin City Libraries. My time in Dublin would

be empty without all the friends you gave me over the last 4 years.

I owe a debt of gratitude to composers Ilayaraja, AR Rahman, and Ludovico Einaudi,

whose works provided solace during many sleepless nights and luminaries Dr APJ Abdul

Kalam, Dr Stephen Hawking, and Dr Kalpana Chawla, whose works and life introduced

me to Science and always inspired me when things were tough. A Special thanks to Albus

Percival Wulfric Brian Dumbledore, whose wisdom always appeared when I needed it

most.

Finally, I express my deepest gratitude to Trinity College Dublin and IIITDM for

providing me with all that I need in my learning journey.

Sulthana Shams

University of Dublin, Trinity College

August 2024

Contents

Acknowledgments vi

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1

1.1 User Clustering and Cold Start Problem . 2

1.2 User Clustering and Data Poisoning Attacks 3

1.3 Contributions of the Thesis . 4

1.4 Publications . 6

1.4.1 Published . 6

1.4.2 Submitted . 6

1.5 Structure of the Thesis . 6

Chapter 2 Review of Recommendation Strategies 8

2.1 Standard Matrix Factorisation Recommenders 11

2.1.1 A Basic MF Model . 12

2.2 Cold Start Problem in Recommenders . 13

2.2.1 Overview of Cold Start Strategies 13

2.3 Data Poisoning Attacks in Recommenders 16

2.3.1 General Form of an Attack Profile 16

2.4 Attack Detection in Recommender Systems 18

Chapter 3 Addressing the User Cold Start Problem by Leveraging User

Clusters 20

3.1 Introduction . 20

viii

Contents ix

3.2 Related Work . 21

3.3 Fast Cold-Start for Recommender System New Users 21

3.3.1 Group Indicator Vector . 23

3.3.2 Fast Convergence . 24

3.3.3 Exploration vs Exploitation . 25

3.3.4 Algorithm . 26

3.4 Regret Analysis of Algorithm . 27

3.5 Performance Evaluation . 41

3.5.1 Evaluation Setup . 41

3.5.2 Results . 43

3.6 Conclusions . 45

Chapter 4 Evaluating Impact of User-Cluster Targeted Attacks in Matrix

Factorisation Recommenders 46

4.1 Introduction . 46

4.2 Related Work . 48

4.3 User-Cluster Targeted Poisoning Attack . 49

4.3.1 User Cluster Based Recommendation Model 49

4.3.2 Attack Model . 50

4.4 Study of Attack Effects on Feature Matrices U and V 51

4.4.1 Fix V , Update U . 52

4.4.2 Fix U , Update V . 53

4.5 Experiment Evaluation Set-up . 58

4.5.1 Datasets . 58

4.5.2 Threat Model . 60

4.5.3 Performance Metric . 61

4.5.4 Visualising Results . 62

4.6 Performance Illustration with Data . 62

4.6.1 Fix V , update U . 62

4.6.2 Fix U , update V . 64

4.6.3 Discussion . 70

4.7 Conclusion . 72

Contents x

Chapter 5 Attack Detection Using Item Vector Shift in Matrix Factorisa-

tion Recommenders 73

5.1 Introduction . 73

5.2 Related Work . 74

5.3 Item Vector Shift Based Detection Model 75

5.3.1 Utilizing Item Vectors for Improved Anomaly Detection 75

5.3.2 Proposed Item Vector Based Detection (IVD) Method 76

5.4 Experiments . 78

5.4.1 Datasets . 78

5.4.2 Evaluation Setup . 78

5.4.3 Attack Model . 78

5.4.4 Baseline Detection Approach . 79

5.4.5 Evaluation Metric . 80

5.5 Results and Discussion . 80

5.5.1 Effectiveness of Attack Size and Filler Size 83

5.5.2 Effect of Choice of Filler Items . 84

5.5.3 Effect of Target Shifting Obfuscation 86

5.5.4 Reciever Operater Characterstics . 87

5.5.5 Discussion and Limitations . 88

5.5.6 Conclusions . 89

Chapter 6 Conclusion 90

6.1 Future Directions . 91

6.1.1 Addressing the User Cold Start Problem by Leveraging User Clusters 92

6.1.2 Evaluating Impact of User-Cluster Targeted Attacks in Matrix Fac-

torisation Recommenders . 92

6.1.3 Attack Detection Using Item Vector Shift in Matrix Factorisation

Recommenders . 93

Chapter 7 Appendices 94

7.1 Appendix A . 94

7.1.1 Definitions . 94

7.1.2 Theorems and Proofs . 94

7.2 Appendix B . 99

Contents xi

7.2.1 Properties Of Positive Definite/ Semi-Definite Matrices 99

7.2.2 Sherman-Morrison Formula . 99

7.2.3 Theorems and Proofs . 100

7.2.4 Additional Experimental Results . 107

Bibliography 110

List of Tables

3.1 Mean accuracy and convergence time for Netflix, Jester and Books datasets

vs #groups. Legend: DT=decision-tree, CB=cluster-based bandit algo-

rithm, CB−=cluster-based bandit algorithm without exploration phase.

Dash − indicates CB− failed to converge within 25 items/steps. 44

4.1 Cluster-Weight Values for d = 10 features against |G| = 4 clusters for

Movielens (ML) and Goodreads (GR) datasets 58

4.2 Target cluster 2 feature vector and target item update vector
ˆ
vj

∗

k −vj
∗

k values

for Movielens and Goodreads Dataset for d = 10 features 67

5.1 Detection Rate for Different Defense Strategies and Datasets for Average

Attack over top x% filler. Attack size=5%, Filler size=10% 85

5.2 Detection Rate for Different Defense Strategies and Datasets for Random

Attack over top x% filler. Attack size=5%, Filler size=10% 85

5.3 Detection Rate for Different Defense Strategies and Datasets for Target

Attack over top x% filler. Attack size=5%, Filler size=10% 86

5.4 Results for Different Defense Strategies and Datasets under Target Rating

Obfuscation+Filler@20 Obfuscation 86

7.1 Average Hits for Movielens dataset and Goodreads dataset reported when

target cluster is t = 2 for the cluster-wise distribution of true users 250 −

250− n− 250 . 108

7.2 Average Hits for Movielens dataset and Goodreads dataset reported when

target cluster is t = 2 for the rating distribution of type 0− 0−Nt − 0. . . 109

7.3 Average Hits for Movielens dataset and Goodreads dataset reported when

target cluster is t = 2 for the rating distribution of type Nt −Nt − 0−Nt. . 109

xii

List of Figures

1.1 Thesis Structure . 7

2.1 Overview of Recommendation Strategies . 9

2.2 Memory-Based Collaborative Filtering Techniques 10

2.3 Matrix Factorization and Feature Space . 12

2.4 The General Form of an Attack Profile . 16

3.1 (a) Illustrating a movie recommender decision-tree (adapted from [Zhou

et al., 2011]), (b) Decision-tree accuracy for Netflix data (16 groups). 22

3.2 Performance measurements for Netflix dataset (16 groups). Solid lines in-

dicate mean, error bars one std deviation (estimated over 1000 new users

in each group). 43

4.1 Plot showing the percentage of fake users entering per cluster when target-

ing each cluster g for ML and GR Datasets respectively using distinguisher

filler items . 60

4.2 Plot comparing the change in predicted rating in target cluster against the

increasing ratio of true users (n) to fake users (m) in the target cluster (n
m) 64

4.3 Plot comparing the change in the predicted rating of an item in the target

cluster against correlation values between the target item and the other

items . 64

4.4 Plot comparing the change in the predicted rating of the target item across

clusters when cluster 2 is targeted . 64

4.5 Plot comparing the relative change in predicted rating in target cluster 2

against increasing ratio Nt
Nf

in the target cluster 67

xiii

List of Figures xiv

4.6 Plot comparing the relative change in predicted rating across clusters when

targeting cluster 2 with Nt
Nf

= 0.05 . 67

4.7 Plot comparing the relative change in the predicted rating in target cluster

2 against increasing ratio Nt
Nf

per non-target cluster 69

4.8 Plot comparing the relative change in predicted rating across clusters against

ratio Nt
Nf

= 0.05 per non-target cluster. 69

4.9 Plot comparing the relative change in the predicted rating in target cluster

2 against increasing target cluster size n . 70

5.1 Plot illustrating the IVD method in MovieLens 100k dataset 77

5.2 Clusters in 2D Space for Normal Users and Fake Users (Avg Attack) in

ML-100k . 82

5.3 Distribution of MPE for Genuine and Fake Rating Blocks in ML-100k . . . 82

5.4 Detection Accuracy for PCA and MPE in ML-100k 82

5.5 Effect of Attack and Filler Size IVD for ML-100k 84

5.6 Reciever Operating Characterstics for ML100k Dataset 87

5.7 Reciever Operating Characterstics for ML-1M Dataset 88

Chapter 1

Introduction

Every so often, we’re required to choose between options we haven’t personally explored

especially when there are a potentially overwhelming number of options that a service

may offer. In these scenarios, we rely on recommendations from others in our daily lives,

whether through word of mouth, movie and book reviews printed in newspapers, or general

polls. Recommender Systems (RS) support users in this decision-making process by aiding

in the discovery of relevant content and products [Resnick and Varian, 1997].

RS is utilized in diverse sectors, spanning e-commerce, entertainment, and content

platforms. Some of the popular applications are in platforms like Spotify [Pérez-Marcos

and Batista, 2018], Amazon [Smith and Linden, 2017] and Netflix [Gomez-Uribe and

Hunt, 2016] enhancing user engagement and delivering personalized recommendations.

Netflix, for instance, employs recommendation algorithms to simplify movies and TV

show discovery for users to watch. Likewise, Amazon showcases recommendations on

its homepage based on user’s previous purchases and browsing history. These systems

streamline the process of discovering movies, music and products amidst the many options.

Recommending items through the approach of interest similarity, often referred to as

Collaborative Filtering (CF) [Goldberg et al., 1992], holds great appeal in various domains

such as books, CDs, and movies. CF assumes that users with similar tastes, typically

measured by their ratings for certain items, will have similar preferences. However, this

method does not always yield accurate results. The primary challenge arises from the

inherent sparsity of data, where individuals have interacted with only a limited subset of

available items in the platform [Sarwar et al., 2000].

To address this issue effectively, a promising strategy involves categorizing users into

1

Chapter 1. Introduction 2

clusters based on shared interests. By grouping people into clusters with similar prefer-

ences, we can harness the collective behaviours and preferences of users within each clus-

ter. This approach allows for improved recommendations as users within the same cluster

tend to exhibit higher degrees of similarity compared to the broader user population.

This concept of user clustering in RS is not a new one. In [Ungar and Foster, 1998, Xue

et al., 2005, Hofmann, 2004], a range of techniques (K-means and Gibbs sampling, a

cluster-based smoothing system, and a cluster-based latent semantic model respectively)

are proposed which cluster users and items in an unsupervised manner to improve the

accuracy of prediction and scalability problems. For instance, Netflix has adopted this

strategy by segmenting its vast user base of over 93 million individuals into approximately

2,000 clusters based on taste [Gomez-Uribe, 2016, Rodriguez, 2017].

Moreover, recent research has unveiled another dimension to user clustering in RS: the

potential for enhancing user privacy [Checco et al., 2017]. Users submit ratings using group

identities. Each group contains many thousands of users so it is very hard to guess which

ratings were submitted by any specific user providing a strong ”hiding in the crowd” type

of privacy. Importantly, it also gives state-of-the-art recommendation performance i.e.

there is no trade-off between accuracy and privacy here. More recently, Google’s Privacy

Sandbox initiative aims to address privacy concerns by categorizing users into interest

groups based on their browsing behavior [Ravichandran and Vassilvitskii, 2009, Bindra,

2021]. This approach offers a privacy-preserving way for advertisers, publishers, and ad

tech providers to deliver personalized ads.

Discovering user communities based on shared preferences is a trending topic in the

realm of RS. In the following section, we discuss the RS Cold Start Problem and explore

how user clustering can offer a solution.

1.1 User Clustering and Cold Start Problem

The effectiveness of a RS is always determined by its ability to offer recommendations

that align with a user’s preferences. While existing CF approaches to recommendation

perform satisfactorily for already existing users in the system, it fails completely for new

users, because the system has no or minimal knowledge about their preference history.

This is a well-known problem called a Cold-Start Problem and is a popular research focus

[Elahi et al., 2016, Elahi et al., 2018]. One approach to mitigate the cold start problem

Chapter 1. Introduction 3

is to harvest side information about the new users from their social media preferences

and declared demographic data [Shi et al., 2014, Son, 2016]. However, side information is

not always available. Therefore we are interested in estimating the cold user’s preferences

without any side information.

User clustering emerges as a powerful tool in this context. We exploit the fact that

users can often be grouped into clusters based on the similarity of their preferences. This

allows accelerated learning of new user preferences since the task becomes one of identifying

which cluster a user belongs to. Eliciting feedback on a select sequence of items could help

the RS calibrate the preferences of new users [Rashid et al., 2002, Harpale and Yang, 2008].

We introduce an online learning approach to quickly and reliably learn the preferences of

new users by presenting carefully chosen items and receiving bandit feedback. Once the

cluster is estimated, the system recommends items liked by members of that cluster using

any CF approach.

While user clustering holds promise for RS new user recommendations, it also intro-

duces security concerns. In the following section, we discuss the implications of data

poisoning attacks within RS, particularly in the context of user clustering.

1.2 User Clustering and Data Poisoning Attacks

The vulnerability of RS to potential manipulation by malicious users was initially inves-

tigated by [O’Mahony et al., 2002, Lam and Riedl, 2004, Mobasher et al., 2005]. These

attacks involve injecting false profiles to either promote or demote specific items and are

called Data Poisoning/Shilling Attacks in RS. Push attacks elevate targeted items, while

nuke attacks seek to demote them. Such fraudulent ratings and profiles can severely

undermine the RS robustness.

In a user cluster-based RS, clusters formed around shared traits or preferences become

appealing targets for attackers. These attackers can take advantage of the cluster by

entering and controlling it to alter recommendations and target content to a sizable user

base. The study by [Mobasher et al., 2005] was among the earliest to investigate the

effects of attacks focused on a specific user segment of RS. They demonstrate that such

attacks are not spread evenly across all users; they are directed towards a specific subset

of the user base. This strategy of limiting the impact eliminates suspicion and reduces the

chance of being discovered.

Chapter 1. Introduction 4

Clustering benefits have been studied in advertising as well [Epasto et al., 2021, Xie

and Phoha, 2001, Geyik et al., 2015]. Platforms like Facebook, Instagram, and Amazon

provide targeted advertising and information-sharing services, enabling content creators

and publishers to choose user segments based on various demographic factors 1. Naturally,

RS in these commercial settings, face the risk of unethical behaviours due to strong incen-

tives. Amazon, for instance, has faced issues with fake reviews flooding its product listings

leading to their undeserved high rankings [He et al., 2021] 2. Additionally, competitors

have been known to flood negative reviews to diminish the ranking of rival products. For

instance, in Amazon, organized efforts by anti-vaccine supporters have aimed to suppress

pro-vaccine content 3. Similarly, Samsung faced penalties for hiring spammers to post

negative fake reviews about HTC smartphones 4.

Moreover, the utilization of user cluster-based advertising infrastructure can poten-

tially give rise to issues related to discriminatory targeting of specific clusters. An illustra-

tive instance of this concern lies in the exploitation of platforms like Facebook’s targeted

advertising system, which has been used to exclude individuals based on their race or

gender when delivering advertisements related to housing or employment opportunities

[Angwin and Parris Jr., 2016, Datta et al., 2014].

As a result, the advantages of clustering for privacy and advertising also raise worries

about its possible role in aiding targeted attacks. In the second and third part of our

research, we study the vulnerability of MF-based RS to targeted data poisoning attacks

and drawing insights from our research, we propose a defence strategy aimed at mitigating

the impact of data poisoning attacks on user communities.

1.3 Contributions of the Thesis

This thesis addresses two primary challenges encountered in RS: the Cold Start Problem

and Robustness to Data Poisoning Attacks. While our investigation of the Cold Start

Problem is not limited to MF, our study of data poisoning concentrates on the Standard

MF-based recommendation technique. We choose this approach due to its scalability,

capability to handle missing data, and superior prediction accuracy compared to other

standard CF methods [Koren et al., 2009]. Additionally, it serves as the foundational

1Amazon Web Services: [Katidis and christianbonzelet, 2022], Facebook: [Meta, 2023]
2[Simonetti, 2022, Dwoskin and Timberg, 2018]
3[Guarino, 2018]
4[Bates, 2013]

Chapter 1. Introduction 5

recommendation model based on latent factors upon which subsequent enhancements have

been constructed [He et al., 2017, Gao et al., 2023, Xue et al., 2017].

User preferences can be captured via either implicit (click streams, content consump-

tion duration, browsing history etc) or explicit user feedback (user ratings, like-dislike

buttons). Our research focuses on explicit user feedback, which primarily consists of

user ratings on items. This form of feedback directly reveals user preferences, including

both positive (high ratings) and negative (low ratings) feedback. While our current study

doesn’t utilize implicit feedback for gathering user preference information, it’s worth not-

ing that our work could be extended to incorporate implicit feedback in addition to explicit

feedback in the future.

To summarise, we make 3 main contributions to Recommender Systems:

• Fast Cold-Start for Recommender System New Users:

1. We propose a method of finding items called ’distinguisher items’ whose bandit

feedback provides a lot of information that helps distinguish between the groups

and converge to the correct group quickly and thereby learn the preferences of

the cold user.

2. The Cluster Bandit Algorithm that exploits distinguisher items to quickly learn

the correct group of a cold user with low regret

3. Regret analysis of the proposed algorithm

4. A performance evaluation of the proposed algorithm using real data-sets

• Evaluating Impact of User-Cluster Targeted Attacks in MF-RS

1. A systematic study of data poisoning attacks targeted at a group of users and

identify the factors contributing to the effectiveness of attacks in MF-based RS.

2. An analysis of the individual effects of attacks on latent feature matrices and

explore how they contribute to the propagation of targeted attacks in a MF-

based RS. Studies investigating the role of latent feature matrices are new to

the literature.

3. Illustrate findings with real-world datasets and show that a simple attack strat-

egy using limited knowledge of user preferences suffices to target a specific user

group precisely

Chapter 1. Introduction 6

• Attack Detection Using Item Vector Shift in MF-RS

1. A new approach for detecting shilling attacks that make use of item preference

vectors

2. The Item Vector Deviation (IVD) strategy provides an unsupervised and at-

tack model-free strategy requiring limited training data to produce favourable

outcomes.

3. Demonstrate the effectiveness of the strategy using real-world datasets.

1.4 Publications

Material contained in this thesis has been published separately as follows:

1.4.1 Published

• Shams, S., Anderson, D., and Leith, D. (2021). Cluster-Based Bandits: Fast Cold-

Start for Recommender System New Users, page 1613–1616. Association for Com-

puting Machinery, New York, NY, USA

• S. Shams and D. J. Leith, ”Improving Resistance of Matrix Factorization Recom-

menders To Data Poisoning Attacks,” (2022) Cyber Research Conference - Ireland

(Cyber-RCI), Galway, Ireland

1.4.2 Submitted

• Shams, S. and Leith, D. (2023). ”Evaluating Impact of User-Cluster Targeted At-

tacks in Matrix Factorisation Recommenders”. Association for Computing Machin-

ery, Transactions on Recommender Systems

• Shams, S. and Leith, D. (2023). ”Attack Detection Using Item Vector Shift in Matrix

Factorisation Recommenders”. Association for Computing Machinery, Transactions

on Privacy and Security

1.5 Structure of the Thesis

In Chapter 2, we present a brief overview of key concepts in Recommender Systems that

are relevant to the problems addressed in later chapters. We introduce the basic Cold

Chapter 1. Introduction 7

Start Problem and Data Poisoning Attack. We also discuss the various approaches to cold

start problem and discuss the standard attack strategies and detection methods available

in the literature.

In Chapter 3, we study the problem of cold start and cast it in the framework of user

clustering to obtain a low regret approach to quickly and reliably learn a cold user’s group

(and thereby preferences).

In Chapter 4, we study targeted attacks and their impact on MF-based recommenders.

We are interested in analysing the nature and extent of the changes the feature matrices

undergo when fake ratings are introduced into a RS.

In Chapter 5, we re-visit the robustness problem to attacks in a MF based RS. We

discuss the existing approaches to data poisoning defence available in the literature in this

chapter. Based on our conclusions from the study in Chapter 4, we propose an innovative

defence strategy aimed at mitigating the impact of attacks in a MF-based RS.

Finally, in Chapter 6, we wrap up the thesis by summarizing our contributions and

laying out potential avenues for future research in this field.

The proofs of Theorems/Lemmas/Propositions in each chapter are provided in the

Appendix at the end of the thesis.

Introduction

Review of Recommendation Strategies

Fast Cold-Start for Recommender System New Users

Evaluating Impact of User-Cluster Targeted Attacks in MF-RS

Attack Detection Using Item Vector Shift in MF-RS

Conclusion and Future Directions

References

Figure 1.1: Thesis Structure

Chapter 2

Review of Recommendation

Strategies

Two different approaches are widely adopted to design RS: Content-based Filtering and

Collaborative Filtering. A comprehensive survey of RS algorithms can be found in [Ko

et al., 2022].

The Content-Based Filtering model [Lops et al., 2011] is the most basic model within

the overall RS model and was mainly used in early recommendation models. Content-based

filtering focuses on the characteristics and attributes of items themselves. It analyzes item

features such as genre, keywords, or descriptions to identify similarities and make recom-

mendations based on a user’s preferences. For example, if a user has shown a preference for

action movies, a content-based RS will recommend similar action movies. Content-based

strategies require gathering external information that might not be available or easy to

collect.

On the other hand, Collaborative Filtering (CF) [Goldberg et al., 1992] utilizes the

behaviour and preference interactions (Explicit and Implicit) of users i.e. it looks for pat-

terns in user-item interactions, such as ratings or purchase history, to identify similarities

between users or items. A comprehensive survey of CF algorithms can be found in the

survey papers [Chen et al., 2018, Su and Khoshgoftaar, 2009].

Determining which approach is better depends on various factors. Content-based Fil-

tering is advantageous when dealing with new users or items, as it relies solely on item

characteristics and does not require historical user data. However, it may struggle to

suggest items outside a user’s known preferences. Collaborative Filtering, on the other

8

Chapter 2. Review of Recommendation Strategies 9

hand, can offer more diverse recommendations by leveraging the wisdom of the crowd,

but it may face challenges when dealing with cold-start problems or sparse data due to its

inability to address the system’s new products and users. In this aspect, content filtering

is superior.

Recommendation System Model

Content-Based Filtering Collaborative Filtering

Model-Based

Matrix Factorisation

Memory-Based

User-User Item-Item

Figure 2.1: Overview of Recommendation Strategies

Traditional CF can be divided into the two methods: memory-based and model-based

methods. Some examples of memory based are user-user and item-item approaches [Koren,

2010, Sarwar et al., 2001]. User-User CF recommends items based on the preferences of

similar users, while Item-Item CF recommends items based on the preferences of users

who have shown interest in similar items.

For example, consider Figure 2.2(a), user-user method identifies like-minded users (in

this case user 2 has also rated item 1,2) who can complement each other’s ratings. Since

user 1 has not seen item 3 but which is liked by user 2, it is recommended to user 1.

Similarly, in item-item method illustrated in Figure 2.2(b), we have item 1 well liked by a

user. To predict a user’s rating for item 3, we would look for the item 3’s nearest neighbor

that this user actually rated (in this case, item 1).

These memory based CF methods use the user rating data to calculate the similarity

between users or items and make recommendations according to those calculated simi-

larity values. This similarity function can take many forms, such as correlation between

Chapter 2. Review of Recommendation Strategies 10

ratings or measuring angle between the rating vectors. Similarity values between items

are measured pairwise by observing all the users who have rated both the items, hence

their accuracy depends on the availability of common rated items among the users. In

practice we might not have such items. One other shortcoming of this algorithm is the

scalability: It is not suitable for practical applications when dealing with large amounts

of users and items because computing similarities between all pairs of users or items is

expensive [Sarwar et al., 2000].

User 1

Item 1

Item 2

User 2

Item 2

Item 1

Item 3

Similar

Recommended

(a) User-User Collaborative Filtering

User Item 2

Item 3

Item 1

Similar

Recommended

(b) Item-Item Collaborative Filtering

Figure 2.2: Memory-Based Collaborative Filtering Techniques

To improve the prediction accuracy and overcome the limitations of memory based

CF methods, model-based CF approaches have been widely proposed [Hofmann, 2004].

Among these model-based CF methods, Matrix Factorization (MF) is state of the art

method implemented for recommendation tasks. MF is a technique that has the original

ratings matrix decomposed into two low-rank matrices. The factorisation aims to capture

underlying latent factors that influence user-item interactions. By decomposing the user-

item interaction matrix into lower-dimensional matrices, it can learn latent representations

that capture user preferences and item characteristics. This lowers the effective dimension

and cuts down on computational complexity. This allows for personalized recommenda-

tions based on similar users or similar items, enhancing the accuracy and relevance of the

recommendations.

Recently there have been a range of improvements and expansions to the fundamental

Chapter 2. Review of Recommendation Strategies 11

MF. While the inner product approach, which linearly combines latent features, has its

merits, it may not be sufficient to capture the complex structure of user interaction data.

For instance, [He et al., 2017] explores the use of deep neural networks for learning the

interaction function from data. In NCF (Neural Collaborative Filtering) user and item

feature vectors are fed into a multi-layer neural architecture to map these latent vectors to

prediction scores. Similarly [Xue et al., 2017] propose a novel matrix factorization model

with neural network architecture as a simple nonlinear generalization of MF.

Traditionally, when updating parameters for a specific user, only the items interacted

with by that user are considered. However, recent advancements incorporate Graph-

based Neural Networks (GNN) [Gao et al., 2023], which aggregate user neighborhood

embeddings, expanding beyond just first-order neighbors. GNN frameworks enhance MF

by creating higher-quality embeddings using neighborhood information. By leveraging

data from a node and its one-hop neighbors, GNNs generate context-aware representations

for each node in a graph.

These enhancements build upon the foundational technique of Matrix Factorization,

prompting a deeper exploration of MF.

2.1 Standard Matrix Factorisation Recommenders

The Netflix Prize competition brought MF-based RS into the spotlight. Netflix used MF

models to predict user ratings for movies based on historical data, enabling them to provide

personalized movie recommendations to their subscribers.

MF algorithms have gained popularity in RS due to several key reasons. Firstly,

these algorithms demonstrate excellent scalability, making them well-suited for handling

large volumes of data. This scalability is particularly valuable in scenarios where massive

datasets need to be processed efficiently.

Secondly, MF techniques are effective in handling missing values, which commonly

occur in RS. Since users typically rate only a small fraction of the available items, the

majority of the ratings are missing. MF algorithms can effectively estimate these missing

ratings, providing accurate predictions for user-item interactions. Compared to older

algorithms, MF exhibits higher prediction accuracy [Lee et al., 2012]. This enhanced

accuracy contributes to improved recommendation performance, leading to more relevant

and personalized suggestions for users.

Chapter 2. Review of Recommendation Strategies 12

2.1.1 A Basic MF Model

R ≈ UT

V

(a) Matrix Factorization

User 1

User 2

User 3

User 4

Item 1

Item 2

Item 3

Item 4
Fantasy

Drama

(b) 2-Dimensional Feature Space

Figure 2.3: Matrix Factorization and Feature Space

Given a RS with n users and m items, MF works by decomposing the original sparse

user-item interaction matrix R ∈ Rn×m into two low-rank matrices U ∈ Rd×n and V ∈

Rd×m where their row dimension d is typically much less than n and m [Koren et al.,

2009]. This allows us to uncover latent features and the association between users and

items to these latent features in the d dimensional latent space. The two low-rank matrices

U and V associate a user’s inclination towards the latent features and an item’s degree

of membership towards those latent features respectively. Their matrix product UTV

approximates R and predicts the missing entries of the original sparse matrix. We call U

the user-feature matrix and V the item-feature matrix. The standard approach to obtain

U, V given user-item ratings is to minimize the sum of squared error over the set of all

observed ratings, i.e.

min
U,V

∑
(i,j)∈O

(Ri,j − UT
i Vj)

2 + λ

∑
i

∥Ui∥2 +
∑
j

∥Vj∥2
 (2.1)

Where O is the set of (user, item) rating pairs, Ri,j is the rating of item j by user i,

Ui ∈ Rd×1 and Vj ∈ Rd×1 are the column vectors that describe the preferences associated

to user i and item j respectively; ∥.∥ is the Euclidean norm and λ is a regularisation

weight.

Thus MF characterizes both items and users by vectors of factors inferred from item

rating patterns. Figure 2.3(b), illustrates this idea for a simplified example in two dimen-

Chapter 2. Review of Recommendation Strategies 13

sions (d = 2). Consider two hypothetical dimensions characterized as fantasy and drama.

Figure 2.3(b) shows where several movie items and a few fictitious users might fall on these

two dimensions. Items are recommended in such an MF-based RS based on the proximity

of the item vectors to the user vectors in the latent space. For example, we would expect

User 4 to love Item 1 and hate Item 2, and to rate Item 4 about average.

In the field of RS, several challenges contribute to the complexity of achieving good

recommendation performance. Among these challenges, two particularly noteworthy ones

have emerged as focal points: the cold start problem and data poisoning attacks. These

challenges pose obstacles to the accurate and secure functioning of recommenders.

2.2 Cold Start Problem in Recommenders

The cold start problem arises when new users or items enter the system, and limited or

no data is available to make personalized recommendations. This challenge hampers the

system’s ability to understand the preferences and behaviours of these new users or items,

resulting in less accurate or relevant recommendations. Addressing the cold start problem

is crucial to ensure a positive user experience and encourage user engagement from the

early stages of system interaction.

2.2.1 Overview of Cold Start Strategies

Content/Side Information Based Cold Start Recommendation

A common strategy to mitigate the cold-start problem is to gather side information of

user and items alongside the available rating data. For a survey of side information-based

approaches, see [Shi et al., 2014, Son, 2016].

These approaches [Barjasteh et al., 2016, Hawashin et al., 2018, Lam et al., 2008, Odić

et al., 2013, Park and Chu, 2009, Heidari et al., 2022] collect information such as user

declared demographic information (eg: age, gender, marital status etc) and item features

(i.e. genre, cast, manufacturer, production year etc.) to tackle cold-start problems. Such

contextual data contain abundant additional information about the user interests or item

features and provide an opportunity to improve the recommendation quality.

For example, [Choi, 2014] introduces a collaborative recommendation method that

considers user preferences for content types alongside individual item ratings. They derive

a user-content type rating matrix by averaging individual item ratings for each content

Chapter 2. Review of Recommendation Strategies 14

type. Consequently, when specific item ratings are missing but content type information

is available, user-content type rating data can be used to predict the preferences of new

users.

[Hawashin et al., 2018] groups users based on demographic factors, using hidden in-

terests within these groups for recommendations. Similarly, [Lam et al., 2008] leverages

declared demographic factors like age, gender, and occupation to model and predict ratings

for new users. More recently, [Heidari et al., 2022] use deep learning models to incorporate

side information in the framework of MF.

However all these approaches depend strongly on such contextual information which

may not always available to exploit due to privacy concerns.

Interview Based Cold Start Recommendation

Next, we will discuss works that investigate acquiring good recommendations for a cold

user without any prior side information. A line of research focuses on interview-based

methods for cold-start recommendation whereby a small number of items are selected as

questions, and a new user is required to give feedback to these questions. The feedback

can be either rating values or opinion labels (e.g., like or dislike). A key component

in this approach is how to effectively choose only a small number of questions to query

users and obtain a decent recommendation performance. Several attempts to select items

using information theory have been discussed in [Rashid et al., 2008, Rashid et al., 2002],

including entropy, popularity and coverage of the items. In a similar tone, [Harpale and

Yang, 2008] focuses on learning the cold user’s preferences without the assumption that

they can provide rating for any queried item. Instead of rating individual items, [Chang

et al., 2015] ask users to rate groups of items by providing a presentation of tag-labeled

movie clusters.

Recently decision trees [Golbandi et al., 2011, Sun et al., 2013] are also used to present

items to users for feedback. In [Golbandi et al., 2011], the recommender system repeatedly

asks new users to pick their preference from a pair of movies. Authors in [Sun et al., 2013],

focus on building a single decision tree with each node asking multiple questions instead

of a single one as in [Golbandi et al., 2011].

Chapter 2. Review of Recommendation Strategies 15

Representative Based Cold Start Recommendation

These works [Amatriain et al., 2009, Liu et al., 2011a, Shi et al., 2017a] investigate how to

predict a new user’s ratings based on a small set of user ratings. Authors in [Amatriain

et al., 2009], predict the preferences of new users using an external set of expert users

(movie critics online), whose ratings are weighted according to their similarity to the

target user. [Liu et al., 2011a] attempts to identify a set of most representative items

based on observed ratings from the existing user set rather than an independent third-

party. They cluster items into a small number k. Each user is represented using k items.

Hence they only need to ask a new user to rate k representative items to recommend other

items.

Since the set of representatives are chosen to have a good coverage ie. a good proportion

of users have rated the set of representative items, they tend to be less discriminative in

characterizing fine-grained interests of a group. Building on this work, authors in [Shi

et al., 2017a] propose two levels of interview, first level of interview to dynamically create

meaningful user groups using decision trees and second level to identify finer interests

within the group. Items are provided for the users to rate and based on the response, a

decision tree assigns the user to a group.

Bandit Algorithms in Recommender System

Recent research has explored innovative approaches to address the cold start problem

by framing it as a multi-armed bandit problem, as evident in studies such as [Li et al.,

2010, Feĺıcio et al., 2017, Nguyen et al., 2014, Hong et al., 2020, Galozy and Nowaczyk,

2023].

For instance, [Li et al., 2010] introduced the LinUCB algorithm, which recommends

articles by dynamically selecting them based on shared user and article contextual infor-

mation. In a related vein, [Nguyen et al., 2014] extended LinUCB by incorporating past

user ratings as contextual information, eliminating the need for user-side information.

In a different approach, [Feĺıcio et al., 2017, Hong et al., 2020] proposed a framework

that combines offline-learned states or clusters with traditional UCB and Thompson sam-

pling exploration techniques, enhancing online learning efficiency. These algorithms play

the best arm given context under its corresponding latent state/cluster.

However, recent research as outlined in [Galozy and Nowaczyk, 2023], akin to our

Chapter 2. Review of Recommendation Strategies 16

approach involving distinguisher items, reaffirms the importance of information-gathering

arms. These arms may offer lower immediate rewards but yield substantial long-term

benefits in terms of enhancing state discrimination capabilities within the latent bandit

problem.

2.3 Data Poisoning Attacks in Recommenders

Data poisoning attacks, involve deliberate manipulation of the recommenders by malicious

actors. These attacks aim to influence the recommendations made to users or promote

specific items for personal gain or to spread misinformation. By injecting biased or ma-

licious data into the system, attackers can distort the recommendation process, leading

to biased or deceptive outcomes. Data poisoning attacks pose a threat to the reliability,

fairness, and trustworthiness of RS. A survey on attack models are given by [Lam and

Riedl, 2004, Patel et al., 2015, Mobasher et al., 2007, Mingdan and Li, 2020, Burke et al.,

2005]

2.3.1 General Form of an Attack Profile

is1 . . . isn1 if1
. . . ifn2 iϕ1

. . . iϕn3 it

Is If Iϕ Target Item

Figure 2.4: The General Form of an Attack Profile

The attack profile is represented as an n-dimensional vector of ratings, where n represents

the total number of items within the system. This profile is divided into four distinct

parts, as illustrated in Figure 2.4.

• Null Items (Iϕ): This partition of n3 items have no ratings in the profile.

• Target Item (it): A specific item, referred to as the target item, receives a rating

deliberately chosen to manipulate its recommendations. Typically, this rating is set

to either the maximum or minimum possible value, depending on the type of attack

being executed.

Chapter 2. Review of Recommendation Strategies 17

• Selected Items (Is): Sometimes, a set of n1 items are specially selected and usually

assigned high ratings to align the profile with the preferences of users who favour

these products.

• Filler Items (If): To complete the profile, a set of n2 filler items is included. The

selection of items for If , along with the ratings assigned to them, plays a crucial role

in defining the attack model and its characteristics.

Two basic attack models, originally introduced in [Lam and Riedl, 2004] are Random

Attack and Average Attack. We extend the Average Attack to specifically target user

clusters, which we refer to as Targeted Attack. In this thesis, the focus is on item promotion

in RS, where the target item it receives high ratings in attack profiles.

• Random Attack: In Random attacks ratings to filler items (If) in each rating profile

are chosen randomly (centered around the overall average rating in the database.)

and Is is empty.

• Average Attack: Average attacks are a more sophisticated variation: the ratings for

filler items (If) in attack profiles are distributed around the mean for each item and

Is is empty.

• Targeted Attack: Another sophisticated attack is where the ratings for filler items

(If) in attack profiles are distributed around the cluster-wise mean for each item in

the user cluster and Is is empty.

We focus on these attacks, as they offer substantial impact while requiring minimal

knowledge of the RS. High-knowledge attacks, involving complete knowledge of the RS

and its parameters, are less likely to occur. Attackers seek to maximize impact while min-

imizing costs, making these standard attacks of interest. It’s worth noting that acquiring

knowledge of these standard attacks is not particularly challenging.

The Random attack is the simplest form and is essentially a zero-knowledge attack.

The Average and Target attacks assume access to mean ratings of items. However, it’s

important to highlight that we don’t need the mean rating of every single item within the

RS to execute these attacks. Ratings for items considered popular in the RS are relatively

easy to obtain and can be utilized for these attacks. The popularity of these items can

be assessed using external data sources and doesn’t necessarily rely on RS-specific data

Chapter 2. Review of Recommendation Strategies 18

[Mobasher et al., 2007]. This is because most users tend to rate only a small fraction of the

entire product space, as there’s a limit to how many movies, products, or items a person

can interact with. Hence, an attacker only needs to focus on a portion of the product

space to make their attack effective.

Similarly, for Target attacks, attackers can leverage general domain knowledge about

item features to target users who have preferences for specific types of items. For instance,

they might identify products with genres or attributes similar to those they want to pro-

mote. By identifying users who have rated these related items highly within the RS, the

attacker can locate potential targets. In the RS, it’s feasible to create fictitious profiles

closely resembling real ones by calculating the mean ratings provided by this group of

users for other items.

Popular platforms like Amazon and Goodreads publicly display user ratings and re-

views for items or books they’ve engaged with. By filtering users based on the adversary’s

knowledge of the target item, an attacker can pinpoint user clusters likely to have an

inclination towards the target item. The attacker can then emulate the choice patterns of

these target users by aggregating ratings from these selected users for other items.

Furthermore, the availability of publicly accessible rating datasets has simplified the

process of obtaining preference ratings. For instance, a complete viewing history of any

user can be reconstructed with limited adversary knowledge (requiring only 2-8 ratings

per user), which doesn’t need to be highly precise, from standard datasets like the Netflix

Dataset [Narayanan and Shmatikov, 2006]. Additionally, the existence of overlapping

sources of preference information can aid in identifying target users. For example, Amazon

might potentially re-identify users on competing websites by comparing their purchase

history with reviews posted on those sites, enabling them to tailor marketing strategies

for these customers. The concept of leveraging overlapping sources was explored and

demonstrated by [Frankowski et al., 2006] using machine learning datasets and online

forums.

2.4 Attack Detection in Recommender Systems

Different shilling detection techniques that rely primarily on obtaining the signatures of

genuine user profiles have been developed to defend by identifying and eliminating false

user profiles in RS. Numerous criteria for spotting these anomalies are investigated in

Chapter 2. Review of Recommendation Strategies 19

[Burke et al., 2006, Williams et al., 2007, Chirita et al., 2005]. But a major obstacle in

user focused detection method is that it can recognize the distinctive signature of only the

known attack model. For newer or hybrid attack models, the detection methods may fall

short. Unsupervised attack tactics were therefore required.

In one approach presented in [Mehta and Nejdl, 2009], the authors concentrate on

the collective behavior of fake user profiles rather than individual profiles. They leverage

unsupervised dimensionality reduction techniques to exploit similarity patterns within

shilling user profiles, effectively distinguishing them from genuine user profiles. While this

method proves effective for attacks demonstrating strong correlations among malicious

profiles, [Cheng and Hurley, 2009] highlights that certain attack strategies may deviate

from this pattern, making dimensionality reduction-based detection less accurate. They

propose a Neyman-Pearson (NP) statistical test to detect random, average and bandwagon

attacks. The probability that a new user is an attack profile was determined based on the

overlap of the item selections of the new user and the genuine users in the training set.

Another model-free approach involves detecting shilling attacks by identifying abnor-

malities in item rating distributions, as discussed in [Bhaumik et al., 2006, Zhang et al.,

2006, O’Mahony et al., 2006, Yang et al., 2018]. For instance, [Zhang et al., 2006] employs

item anomaly detection techniques based on sample averages and sample entropy within

time series data, albeit with a focus on dense items with a minimum of 500 ratings. In

contrast, [O’Mahony et al., 2006, Yang et al., 2018] examine deviations between actual

and predicted ratings for target items to flag abnormal ratings.

Furthermore, some studies, such as [Mehta and Nejdl, 2008, Hidano and Kiyomoto,

2020, Resnick and Sami, 2007, Christakopoulou and Banerjee, 2019, Xu et al., 2020], aim

to construct manipulation-resistant RSs designed to mitigate the impact of injected fake

ratings and protect the system from shilling attacks.

Chapter 3

Addressing the User Cold Start

Problem by Leveraging User

Clusters

3.1 Introduction

While existing CF approaches to recommendation perform quite satisfactorily for already

existing users in the system, it fails completely for new users, because the system has no

knowledge about their preference history. This is a well known problem called a cold-start

problem and is a popular research focus.

How to quickly and reliably learn the preferences of new users remains a key challenge

in the design of RS. In this chapter we introduce a new type of online learning algorithm,

cluster-based bandits, to address this challenge. This exploits the fact that users can

often be grouped into clusters based on the similarity of their preferences, and this allows

accelerated learning of new user preferences since the task becomes one of identifying

which cluster a user belongs to and typically there are far fewer clusters than there are

items to be rated. Clustering by itself is not enough however. Intra-cluster variability

between users can be thought of as adding noise to user ratings. Deterministic methods

such as decision-trees perform poorly in the presence of such noise. We identify so-called

distinguisher items that are particularly informative for deciding which cluster a new user

belongs to despite the rating noise. Using these items the cluster-based bandit algorithm

is able to efficiently adapt to user responses and rapidly learn the correct cluster to assign

20

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 21

to a new user.

Before we proceed, we will review the major research directions in solving cold start

problem.

3.2 Related Work

For a recent survey of solutions to the cold-start see [Elahi et al., 2016, Elahi et al., 2018].

Passive approaches include recommending popular items, use of item-based recommenda-

tion (once user starts rating items an item-based approach is used to recommend similar

items), transfer learning from another RS previously used by a user, and asking new users

to rate a fixed list of items. Examples of early work on active learning include IGCN

(information gain through clustered neighbors) which uses a decision tree with user clus-

ters as leaves [Rashid et al., 2008] and the ternary decision-tree approach of [Golbandi

et al., 2011]. More recently, [Amatriain et al., 2009] uses representative items i.e. after

completing the ratings matrix R, k columns of R are selected, the ratings of the other

items are represented as a linear combination of these and during cold start a new user is

asked to rate these representative items. This approach is extended to use a decision-tree

approach by [Shi et al., 2017a]. In [Zhou et al., 2011] a MF approach is proposed whereby

a decision-tree is trained to map from item ratings to the latent feature vector for a user.

Use of multi-arm bandits for cold-start has also received attention. In [Feĺıcio et al., 2017]

after completing the ratings matrix R its rows are clustered and the average ratings vector

for each cluster is used as a representative user. During cold start an MAB is used to select

the average ratings vector to use and the user is asked to rate next highest item in the

vector – this is akin to the cluster-bandit algorithm with no exploration phase. In [Cana-

mares et al., 2019] a MAB is used to select between recommender strategies, typically

recommending popular items initially for a new user and later switching to a kNN or MF

model.

3.3 Fast Cold-Start for Recommender System New Users

When a new user joins the system it initially has no knowledge of the preferences of the

user and so would like to quickly learn these1. The RS therefore initially starts in an

1The system may have some general context regarding the user, e.g. the country/city they are located
in, in which case learning is conditioned on this but the fundamental cold start task otherwise remains
unchanged.

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 22

0 5 10 15

Group

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

Figure 3.1: (a) Illustrating a movie recommender decision-tree (adapted from [Zhou et al.,
2011]), (b) Decision-tree accuracy for Netflix data (16 groups).

“exploration” phase where the first few items that it asks the new user to rate are chosen

with the aim of discovering the user’s preferences. For brevity we focus on the simplest

setup where a user explicitly rates items presented to them, e.g. on a 1-5 scale or binary

like/dislike feedback, and the aim of the recommender system is to predict other items

that the user may like.

One common approach to this new user cold-start task is to take ratings already

collected from a population of users, use these to cluster users into groups and then train

a decision-tree to learn a mapping from item ratings to the user group, see for example

Figure 3.1(a). When a new user joins the system this decision-tree is used to decide which

items the user is initially asked to rate and in this way the group to which the user belongs

is initially estimated. Once the group is estimated, the system recommends items liked

by members of that group e.g. using MF or another CF approach.

However, typically users clustered in the same group do not give identical ratings to an

item. Rather there is a spread of ratings, and this intra-cluster variability between users

can be thought of as adding noise to the ratings. Unfortunately, decision trees can easily

make mistakes in the face of such noise. For example, Figure 3.1(b) shows the measured

decision-tree accuracy for Netflix data clustered into 16 groups (see later for more details).

It can be seen that the accuracy is as low as 50-60% for a number of groups.

Multi-arm bandits (MABs), and more generally online convex learning, has been the

subject of much interest in recent years. However, naive application of standard bandit

algorithms to the cold-start task leads to poor performance. If we think of each RS item

as an arm of a MAB then we run into the difficulty that (i) there are many arms and so

learning is slow and (ii) repeated pulls of the same arm tend to be highly correlated2. One

2Measurement studies indicate that when people are repeatedly asked to rate the same item on a scale
of 1-5 then if they rate 1 or 5 they tend to consistently stick with that rating although when they rate 3 or

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 23

remedy is to associate an arm with each group rather than each item. For each group the

available items are sorted in descending order of their predicted rating by users in that

group. Pulling the arm for a group then corresponds to asking the user to rate the next

item from this sorted list, i.e. the unrated item predicted to have the highest rating for

members of the group. While this greatly reduces the number of arms in the MAB, as we

will see later the learning rate remains very slow. This is because items rated highly by

members of one group tend to also be rated highly by members of at least some of the

other groups, and so the user ratings for these items do not serve to strongly distinguish

between groups and so allow rapid learning.

In this paper we propose a novel cluster-based bandit algorithm that achieves fast

learning in cold-start, e.g. for the standard Netflix dataset < 10 items need to be rated in

order to reliably distinguish between 16 user groups and < 12 items to reliably distinguish

between 32 groups. We show that the group of a user is identified with significantly

higher accuracy than with a decision-tree without incurring higher regret i.e the learning

performance is fundamentally superior to that of a decision-tree.

3.3.1 Group Indicator Vector

What we would like to measure is an indicator vector I i.e. a vector for which as we collect

more user ratings the element I(g) tends towards 1 when a new user belongs to group g

and all other elements I(h), h ̸= g tend towards 0. We can obtain such a vector as follows.

Start by defining

Rn(g, h) =

n−1∑
i=1

αn
i (g, h)

r(vi)− µ(h, vi)

µ(g, vi)− µ(h, vi)
(3.1)

where vi, i = 1, . . . , n−1 is the sequence of items that the new user has rated upto turn n,

r(vi) is the new user’s rating of item vi, µ(g, vi) is the mean rating of item vi by users in

group g and αn
i (g, h) is a weighting such that

∑n−1
i=1 αn

i (g, h) = 1. An estimate of µ(g, vi)

is known, e.g. from ratings by existing users of the RS. Note that calculation of Rn(g, h)

only requires asking a user to rate each item once, although if the RS allows it then it is

of course possible for sequence vi, i = 1, . . . , n to contain duplicate elements i.e. for the

same item to be rated multiple times.

4 they may change their rating back and forth between 3 and 4. That is, lumping ratings of 3-4 together
in a single bucket these previous studies indicate that a user’s rating of an item tends to be consistent.

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 24

To streamline notation suppose the new user is in group 1, we can always rela-

bel the groups so that this holds3. Then Rn(1, h) =
∑n−1

i=1 αn
i (1, h)

(
r(vi)−µ(h,vi)
µ(1,vi)−µ(h,vi)

)
=∑n−1

i=1 αn
i (1, h)

(
1 + r(vi)−µ(1,v)

µ(1,vi)−µ(h,vi)

)
for h ̸= 1. Intuitively, the deviations r(vi)−µ(1, v), i =

1, . . . , n − 1 tend to fluctuate around 0, as otherwise there would be a consistent offset

between the user’s ratings and the group ratings in which case the user would better be

assigned to a different group. Therefore Rn(1, h) → 1 as n → ∞ for h ̸= 1. By the

same argument, Rn(g, 1) =
∑n−1

i=1 αn
i (g, 1)

(
r(vi)−µ(1,v)

µ(g,vi)−µ(1,vi)

)
for g ̸= 1 and the deviations

r(vi)− µ(1, v), i = 1, . . . , n− 1 tend to fluctuate around 0. Thus Rn(g, 1) → 0 as n → ∞

for g ̸= 1. Hence,

I(g) = min
h∈G\{g}

Rn(g, h)

is an indicator vector of the desired form i.e. I(1) → 1 and I(g) → 0, g ̸= 1 as n → ∞.

We then estimate the group ĝ that the new user belongs to using

ĝ ∈ argmax
g∈G

I(g)

The key to fast learning is that I(g) converges quickly to a (0, 1) vector.

3.3.2 Fast Convergence

Intuitively, an item v helps to distinguish whether a user belongs to group g rather than

group h when (i) the mean rating of v by users in group g is very different from that of

users in group h i.e. (µ(g, v) − µ(h, v))2 is large, and (ii) when the ratings tend to be

consistent/reliable i.e. the variance σ2(g, v) is small. That is, we expect that

Γg,h(v) =
(µ(g, v)− µ(h, v))2

max{σ2(g, v), σ2(h, v)}

is a measure of the ability of item v to distinguish group g from group h i.e. the larger

Γg,h(v) the better item v is at distinguishing group g from group h. For Rn(g, h) to

converge quickly we then want to choose the sequence of items vi, i = 1, . . . , n−1 that the

new user is asked to rate so that Σn(g, h) =
∑n−1

i=1 Γg,h(vi) is large.

Another way to arrive at the same conclusion is to assume that for users belonging

to group g the rating r(v) of item v is i.i.d. subgaussian with mean µ(g, v) and variance

σ2(g, v). Note that any bounded random variable is subgaussian.

3Of course we need to make sure that the learning algorithm we develop does not depend upon this
relabeling.

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 25

With this assumption using standard concentration inequalities, Lemma 5,6 tell us

that

Prob(|Rn(1, h)− 1| > ϵ) ≤ 2e−
ϵ2

2

∑n−1
j=1 Γ1,h(vj) (3.2)

Prob(|Rn(g, 1)− 0| > ϵ) ≤ 2e−
ϵ2

2

∑n−1
j=1 Γg,1(vj) (3.3)

when we select αn
i (g, h) =

Γg,h(vi)∑n−1
j=1 Γg,h(vj)

. That is, for Rn(g, h) to converge quickly we

want
∑n−1

j=1 Γg,h(vj) to be large. This suggests that selecting items with higher values

of Γg,h(v) provides more information to differentiate between groups, leading to quicker

convergence toward the correct cluster 1 i.e. indicator vector I(1) = minh̸=1 |Rn(1, h)| → 1

and the algorithm converges to the correct cluster with high probability.

3.3.3 Exploration vs Exploitation

The foregoing discussion suggests that for fast learning we want to initially ask the user

to rate those items vi for which Γg,h(vi) is largest. However, these may not be items that

receive high ratings, and so there is a cost to this accelerated learning. We therefore want

to limit the duration of the initial exploration phase and quickly switch to an exploitation

phase where we recommend items that are predicted to be rated highly by the new user i.e.

items for which µ(ĝ, v) is large where ĝ is the estimated group of the new user. We refer to

such highly-rated items as the ”best items” within a cluster. Note that learning can still

occur during the exploitation phase provided the items vi rated have non-zero Γg,h(vi),

but as we will see the learning rate can be much slower than during the exploration phase.

In addition to deciding when to switch from the initial exploration phase (selecting

high Γg,h(v) items) to the subsequent exploitation phase (selecting high µ(ĝ, v) items),

within each phase we need to balance between confirming the new estimate and exploring

the other possibilities. It may happen that a new users rating for an item is unusually

high or low for their group and so we need to ask them to rate multiple items in order

to correct for mistakes and gain confidence in the estimate ĝ of the group to which they

belong. To do this we employ a form of upper confidence bound (UCB) strategy. Namely,

at step n we select the next item v to present to the user to be the unrated item for which

learning rate Γĝ,h(v) is largest and h is the group for which Σn(ĝ, h) is lowest. Selecting

h in this way means that we will tend to explore all pairs (ĝ, h) of groups in such a way

that we gain a similar amount of information, as measured by Σn(ĝ, h), about each pair.

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 26

3.3.4 Algorithm

Pseudo-code for the exploration phase of the resulting bandit algorithm is given in Algo-

rithm 1. Upon exiting its exploration phase the cluster-based bandit algorithm enters its

exploitation phase: the algorithm is the same except that calls to Explore(ĝ) are replaced

by calls to Exploit(ĝ), which selects the unrated item for which µ(ĝ, v) is largest.

The algorithm uses the parameter C ∈ R|G|
+ to maintain a pool Mn of candidates. If

the proxies Σn(g, h) are large then (3.2) says all Rn(1, h) → 1. Hence minh |Rn(1, h)| → 1

and the correct cluster is included with high probability. For the other clusters, (3.3) says

Rn(g, 1) → 0. Hence for g ̸= 1 we have minh |Rn(g, h)| → 0 and the wrong clusters are

excluded with high probability. The parameter C gauges the confidence in the correctness

of the included clusters. When C = 0, there are no candidates, while C ≥ 1 treats all

clusters as candidates. Hence, C must be in the interval C ∈ (0, 1). From lemma 2, as C

increases, the likelihood of exiting the algorithm with the wrong cluster tends to increase

as well. Therefore, C needs to ensure that ideally, after enough pulls, only the correct

cluster remains a candidate in subsequent turns.

If there are no candidates (see the else loop) the algorithm explores the cluster with

the least confidence bound. Since large minhΣ(1, h) means the correct cluster is more

likely to be a candidate on subsequent turns, the algorithm tries to increase minhΣn(1, h)

by increasing the smallest Σn(g, h).

As the proxies Σn(g, h) increase (indicating more ratings are elicited from users), there’s

a higher likelihood that the correct cluster will be included, while the wrong clusters are

likely to be excluded. However, it is important to remember that the distinguisher items

in the exploration phase need not be items that receive high ratings. Thus, the algorithm

has to conclude the exploration phase at some point to subsequently present the user with

the best items. The parameter B limits the time allocated for exploration. The algorithm

exits the exploration phase when Σn(g) = minh̸=g Σn(g, h) ≥ B for any cluster g and

subsequently presents the user with the best items in the cluster.

When B is too small, we lack enough information to distinguish between clusters

effectively. This increases the risk of selecting the wrong cluster, especially before hitting

threshold B and moving to the exploitation phase. Conversely, if B is too large, the

algorithm pulls suboptimal distinguisher items frequently, leading to increased regret.

Therefore, choosing B requires balancing accuracy and runtime considerations. Find-

ing the ideal threshold involves considering the Γg,h(v) of each potential correct group

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 27

to ensure sufficient information is gathered for accurate group identification. However,

achieving this balance for all potential correct group choices remains challenging. Thus,

for experimentation purposes, B was determined through a process of trial and error,

choosing the one that resulted in optimum performance.

Algorithm 1: Cluster-based Bandit Algorithm

Input: Groups G, mean ratings µ(g, v) for item v and variances σ(g, v)2;

parameters B,C ∈ R+.

1 Select initial ĝ ∈ G, e.g. randomly, and Explore(ĝ)

2 for n = 1, 2, 3. . . . do

3 Define the candidates as Mn = {g ∈ G : |minh̸=g |Rn(g, h)| − 1| ≤ C)}

4 if Mn ̸= ∅ then

5 ĝ ∈ argmaxg∈Mn I(g)

6 Explore(ĝ)

7 if Σn(ĝ) ≥ B then

8 Estimate new user belongs to group ĝ

9 Exit exploration phase for ĝ

10 else

11 (ĝ, h) ∈ argming,h̸=gΣn(g, h)

12 Explore(ĝ)

Algorithm 2: Explore(ĝ)

1 Vn = {v1, . . . , vn−1} (set of items already rated by user)
2 h ∈ argminh̸=ĝ Σn(ĝ, h) =

∑n
i=1 Γĝ,h(vi)

3 Ask user to rate item vn ∈ argmaxv/∈Vn
Γĝ,h(v)

3.4 Regret Analysis of Algorithm

Notation 1. Let G be the set of all user clusters. Each user belongs to one group g ∈ G.

Let d = |G| − 1 denote the number of pair-wise distinguisher item sets for each cluster

g ∈ G and VN denote the set of all items rated by a user from turn 1, 2, · · · , N − 1. We

define the following notations and assumptions:

1. Let V (g) ⊂ VN be the set of all items that serve as distinguishers for a cluster g

i.e. given every cluster g has pairwise distinguisher items that distinguish it from

all other clusters h ̸= g, the set V (g) encompasses all such pairwise distinguishers

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 28

items that serve to distinguish cluster g from the rest.

2. Let V ∗(g) ⊂ VN be the set of all items that serve as best items i.e. items with large

µ(g, v) for a cluster g. The definition of best items in a cluster may vary among RS.

Typically, these items are predicted to have high ratings in the cluster, such as those

equal to or greater than 4 on a 5-point scale.

3. Let JN (g) be the total number of times the distinguisher items of set V (g) are selected

over turns 1, 2, · · · , N − 1.

4. Let J∗
N (g) be the total number of times the best items of set V ∗(g) are selected over

turns 1, 2, · · · , N − 1.

5. Let Γg be the lowest learning rate provided by an item from V (g) such that, Γg ≤

minh̸=g Γg,h(vi) for vi ∈ V (g).

6. Let γg be the lowest learning rate provided by an item from set V ∗(g) such that

γg ≤ minh̸=g Γg,h(vi) holds for each item vi ∈ V ∗(g).

Assumption 1. Suppose g = 1 is the correct cluster of the user.

Assumption 2. Define µ(1, v∗) = θ for all v∗ ∈ V ∗(1) and θ > 1

Assumption 3. Any selected item v ∈ VN satisfies Γg,h(v) ≥ δ where δ > 0

Assumption 4. Define V (g) ∩ V ∗(g) = ϕ.

Assumption 1 is primarily for convenience in presenting the results and conducting

the analysis. Assumption 2 indicates that all the best items in the correct cluster 1 share

a common, high predicted mean value represented by θ. Assumption 3 ensures that the

chosen items exhibit sufficient distinguishability among various clusters. In other words,

having a distinguishability measure exceeding δ suggests that these selected items provide

meaningful information for distinguishing between different user clusters. Assumption 4

implies that the set of distinguishing items V (g) is distinct from the set of best items

V ∗(g). While in practice, there might be clusters with unique preferences where their best

item choices could also act as distinguishers, we maintain Assumption 4 for the purposes

of analysis.

Under these assumptions, we define the following lemmas :

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 29

Lemma 1 (Probability Bound of Eliminating the Correct Cluster). For T ≥ 0 and C ∈

(0, 1), we define a turn M , such that

M =

min{n ∈ N : ΣM (1) > T} if M exists,

∞ otherwise.

Then we have cluster 1 not a candidate at turn M (line 3, Algorithm 1) with probability

at most

2d exp

(
−C2

2
T

)
(3.4)

Proof. For the event cluster 1 is not a candidate in line 3 to occur, |RM (1, h)| must

deviate from 1 for any h ̸= 1. Let E be the event that the first line of the definition is

true. For any h ̸= 1, we have

P (|RM (1, h)− 1| > C) = P (E and |RM (1, h)− 1| > C) + P (Ec and |RM (1, h)− 1| > C)

In case Ec occurs, then M = ∞ and by tail bounds in (3.2), P (|R∞(1, h)−1| > C) = 0

since
∑∞

i=1 Γ1,h(vi) → ∞ by assumption 3.

Hence, P (|RM (1, h)− 1| > C) = P (E and |RM (1, h)− 1| > C). Using the tail bounds

in (3.2), the probability that any RM (1, h) deviates from 1 by a factor greater than C is

at most

2 exp

(
−C2

2

M−1∑
i=1

Γ1,h(vi)

)
≤ 2 exp

(
−C2

2
ΣM (1)

)
Given value of minimum accumulated information measure by turn M as ΣM (1) > T ,

the event occurs with probability at most

2 exp

(
−C2

2
T

)
.

Finally, we take a union bound over all possible h to get the stated bound

∑
h̸=1

2 exp

(
−C2

2
T

)
= 2d exp

(
−C2

2
T

)

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 30

Lemma 2 (Probability Bound of Misidentification of Correct Cluster). Let g ̸= 1. For

T ≥ 0 and C ∈ (0, 1), we define a turn M , such that

M =

min{n ∈ N : ΣM (g) > T} if M exists,

∞ otherwise.

Then g is a candidate at turn M with probabilty at most

2 exp

(
−(1− C)2

2
T

)
(3.5)

Proof. From Equation (3.3), we know that any cluster g ̸= 1 is eliminated as a candidate

when RM (g, h) → 0 for any h ∈ argminh̸=g |RM (g, h)|. Hence, to guarantee that cluster g

is a candidate, we require the event E(h) = {||RM (g, h)| − 1| ≤ C} to occur for all h ̸= g.

In other words, we need the intersection of events ∩h̸=gE(h) to occur. Therefore, we can

say that the probability of cluster g being a candidate is at most P (E(1)) where

P (E(1)) = P (|RM (g, 1)| > 1− C and |RM (g, 1)| < 1 + C) ≤ P (|RM (g, 1)| > 1− C)

Let A be the event that the set on the first line of the definition of M is true. For any

g ̸= 1, we have

P (|RM (g, 1)| > 1− C) = P (A and |RM (g, 1)| > 1− C) + P (Ac and |RM (g, 1)| > 1− C)

In case Ac occurs, then M = ∞ and by tail bounds in (3.3), P (|R∞(g, 1)| > 1 −

C) = 0 since
∑∞

i=1 Γg,1(vi) → ∞ by assumption 3. Hence, P (|RM (g, 1)| > 1 − C) =

P (A and |RM (g, 1)| > 1− C) .

Similar to the previous lemma, using tail bounds in (3.3), we can say that |RM (g, 1)|

tends to a value ≥ 1− C with probability at most

2 exp

(
−(1− C)2

2

M−1∑
i=1

Γg,1(vi)

)
≤ 2 exp

(
−(1− C)2

2
ΣM (1)

)

For any value of ΣM (1) > T , we can write this event occurs with probability at most

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 31

2 exp

(
−(1− C)2

2
T

)
.

Suppose the algorithm runs for N > 1 turns. Using the lemma 1 and 2, we proceed to

find the expected number of times we explore distinguishers of an incorrect group g i.e.

items from set V (g) over the turns 1, 2, · · · , N − 1.

Lemma 3. For any g ̸= 1 and ΣN (g) < B, we have

E[JN (g)] ≤ 1

Γg

2

min{C2, (1− C)2}
(log (2|G|) + 2) + 1

Proof. Suppose JN (g)Γg > x and both x, JN (g) > 1. Let M < N be the last turn where

we selected an item from the set V (g). Such a turn always exists since JN (g) > 1. Thus

we have that JM (g)Γg > T = x − Γg and on turn M we ran Explore(g). We claim that

when JM (g)Γg > T , then ΣM (g) > T (we prove this later). We have two possible events

to consider at turn M given ΣM (g) > T .

Event A1) In this case, algorithm runs Explore(g) of line 6. This occurs when, at turn

M , the following two conditions are met:

• C1: g ∈ Mn represents the condition that g is a candidate

• C2: g ∈ argmaxh∈Mn I(h) represents the condition that g is the optimal candidate

choice based on the information I(g).

Consider the events E1 and E2, which correspond to the conditions C1 and C2 being

met, respectively. Thus we have,

A1 ⊂ E1 ∩ E2

Therefore, the probability of running Explore(g) on line 6 is at most P (E1), which

signifies the probability of any g ̸= 1 being considered a candidate. This probability is

bounded by equation (3.5) of lemma 2

P (A1|ΣM (g) > T) ≤ P (E1) = 2 exp

(
−(1− C)2

2
T

)
(3.6)

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 32

Event A2) In the second case, the algorithm runs Explore(g) of line 12. This occurs

when, at turn M , two conditions are satisfied: C3 and C4.

• C3: Mn = ϕ represents the condition that there are no candidates.

• C4: (g, h) ∈ argmini,j ̸=iΣM (i, j) represents the condition that (g, h) is the optimal

choice based on the information measure ΣM (g, h). i.e any cluster i ̸= g must satisfy,

min
j ̸=i

ΣM (i, j) > min
h̸=g

ΣM (g, h)

ΣM (i) > ΣM (g)

For each i ̸= g, consider the event E(i) = {ΣM (i) > ΣM (g) and Mn = ϕ} and for

i = g, event E(g) = {ΣM (g) > T and Mn = ϕ}. The intersection of events ∩i∈GE(i)

satisfies both C3 and C4 and ensures that ΣM (g) > T for all g ∈ G. Thus

A2 = ∩i∈GE(i)

Therefore, we can say that the probability of running Explore(g) at line 12 is at most

P (E(1)) where E(1) = {ΣM (1) > ΣM (g) and 1 is not considered a candidate}. The

probability of this event is bounded by equation (3.4) in lemma 1. So we have,

P (A2|ΣM (g) > T) ≤ P (E(1)) = 2d exp

(
−C2

2
T

)
(3.7)

Since events A1, A2 are mutually exclusive, we can write

P (Explore(g) at turn M,ΣM (g) > T) = P (A1,ΣM (g) > T) + P (A2,ΣM (g) > T)

(3.8)

≤ P (A1|ΣM (g) > T) + P (A2|ΣM (g) > T)

(3.9)

where the last inequality is obtained by applying P (X,Y) = P (X|Y)P (Y) ≤ P (X|Y)

since P (Y) ≤ 1.

Recall the claim that when JM (g)Γg > T , then ΣM (g) > T . We know that the

accumulated sum of information for g up to turn M is given by ΣM (g) = minh̸=g ΣM (g, h).

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 33

Thus we have

ΣM (g) =
M−1∑
i=1

Γg,h(vi) (3.10)

= Γg,h(v1) + Γg,h(v2) + · · ·+ Γg,h(vM−1) (3.11)

>

M−1∑
i=1

I(vi ∈ V (g)) · Γg = JM (g) · Γg (3.12)

Here I(vi ∈ V (g)) represents an indicator vector that is equal to 1 when an item from

set V (g) is selected at a turn i and 0 otherwise. Let F1 be the event that JM (g)Γg > T

and F2 be the event that ΣM (g) > T . Then F1 ⊂ F2 since F1 implies F2 but not vice

versa i.e. P (F1) ≤ P (F2). Thus we can write,

P (Explore(g) at step M,JM (g)Γg > T) ≤ P (Explore(g) at turn M,ΣM (g) > T)

≤ P (A1|ΣM (g) > T) + P (A2|ΣM (g) > T) Using 3.9

Also we have, JN (g) = JM (g) + 1, so E[JN (g)Γg] = E[JM (g)Γg] + Γg and

E[JM (g)Γg] =

∫ ∞

0
P (Explore(g) at step M,JM (g)Γg > T)dT (3.13)

≤
∫ ∞

0
P (A1|ΣM (g) > T) + P (A2|ΣM (g) > T)dT =

∫ ∞

0
P (T)dT (3.14)

We can bound the integral 3.14 over two segments: 0 to α and α to ∞.

E[JM (g)Γg] ≤
∫ α

0
P (T)dT +

∫ ∞

α
P (T)dT

Bounding the probability by 1 in the first segment

≤
∫ α

0
1dT +

∫ ∞

α
P (T)dT

= α+

∫ ∞

α
P (A1|ΣM (g) > T) + P (A2|ΣM (g) > T)dT

= α+

∫ ∞

α
2 exp

(
−(1− C)2

2
T

)
+ (2d) exp

(
−C2

2
T

)
dT

To bound the above let m = min{C2, (1− C)2} and α = 2
m log (2d)

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 34

E[JM (g)Γg] ≤ α+
(2)2

(1− C)2
exp

(
−(1− C)2

2
α

)
+

(2d)2

C2
exp

(
−C2

2
α

)
≤ α+

(2d)2

m
exp

(
−m

2
α
)
+

(2d)2

m
exp

(
−m

2
α
)
= α+

8d

m
exp

(
−m

2
α
)

Substituting α =
2

m
log (2d), we get

= α+
8d

m

1

2d
=

2

m
log (2d) +

4

m
=

2

min{C2, (1− C)2}
(log (2d) + 2)

<
2

min{C2, (1− C)2}
(log (2|G|) + 2)

Thus

E[JN (g)Γg] = E[JM (g)Γg] + Γg

≤ 2

min{C2, (1− C)2}
(log (2|G|) + 2) + Γg

Divide by Γg to get

E[JN (g)] ≤ 1

Γg

2

min{C2, (1− C)2}
(log (2|G|) + 2) + 1

Note, we choose N here so that JN (g) > 1 by assumption. But when there does not

exist an N such that JN (g) > 1 then we trivially have the bound that JN (g) ≤ 1.

Observe that the expected number of times distinguisher items of cluster g ̸= 1 are

selected is inversely proportional to its corresponding Γg. Thus as the information provided

by the distinguisher items of cluster g increases, the number of pulls decreases. Also,

the term log(2|G|) + 2 represents the logarithmic dependence on the total number of

user groups |G|. This means that increasing the number of groups (thus increasing the

number of pairwise distinguishers per group) will only result in a logarithmic increase in

the expected number of pulls.

After transitioning from the exploration phase, the cluster-based bandit algorithm

enters the exploitation phase: the algorithm is the same except that calls to Explore(g)

are replaced by calls to Exploit(g), which selects the unrated item for which µ(g, v) is

largest i.e. items that are predicted to be rated highly by a new user. We refer to this set

of items presented as ’best items’ of cluster g. Such items may have a reduced learning

rate compared to distinguisher items.

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 35

For N > 1, the next step involves calculating the expected number of times the algo-

rithm exploits the ’best’ items of an incorrect group g i.e. items from set V ∗(g), over the

turns 1, 2, · · · , N − 1.

Lemma 4. For any g ̸= 1 and ΣN (g) ≥ B, we have

E[J∗
N (g)] ≤ 1

γg

2

min{C2, (1− C)2}

(
log (2|G|) + 2 exp

(
−min{C2, (1− C)2}B

2

))
+ 1

Proof. Suppose J∗
N (g)γg > x and both x, J∗

N (g) > 1. Let M < N be the last turn where

we selected an item from the set V ∗(g). Such a turn always exists since J∗
N (g) > 1. Thus

we have that J∗
M (g)γg > T = x − γg and on turn M we ran Exploit(g). We claim that

when J∗
M (g)γg > T , then ΣM (g) > B + T (we prove this later).

As in the previous lemma, we have two possible events to consider at turn M given

ΣM (g) > B + T .

Event A1) In this scenario, algorithm runs Exploit(g) of line 6. This occurs when, at

turn M, the following two conditions are met:

• C1: g ∈ Mn represents the condition that g belongs to the set Mn

• C2: g ∈ argmaxh∈Mn I(h) represents the condition that g is the optimal choice based

on the information I(g).

Consider the events E1 and E2, which correspond to the conditions C1 and C2 being

met, respectively. Thus we have,

A1 ⊂ E1 ∩ E2

Therefore, the probability of running Exploit(g) on line 6 is at most P (E1), which

signifies the probability of g ̸= 1 being considered as a candidate. This probability is

bounded by equation (3.5) of lemma 2 given ΣM (g) > B + T . Thus we have,

P (A1|ΣM (g) > B + T) ≤ P (E1) = 2 exp

(
−(1− C)2

2
(B + T)

)
(3.15)

Event A2) In this second case, algorithm runs Exploit(g) of line 12. This occurs when,

at turn M , two conditions are satisfied: C3 and C4.

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 36

• C3: Mn = ϕ represents the condition that there are no candidates.

• C4: any cluster i ̸= g must satisfy the following to be able to Exploit(g),

ΣM (i) > ΣM (g)

For each i ̸= g, consider the event E(i) = {ΣM (i) > ΣM (g) and Mn = ϕ} and for

i = g, event E(g) = {ΣM (g) > B + T and Mn = ϕ}. The intersection of events ∩i∈GE(i)

satisfies both C1 and C2 and ensures ΣM (g) > B + T for all g ∈ G. Thus

E = ∩i∈GE(i)

Therefore, we can say that the probability of running Exploit(g) at line 12 is at most

P (E(1)) where E(1) = {ΣM (1) > ΣM (g) and 1 is not considered a candidate}. The

probability of this event is bounded by equation (3.4) in lemma 1 given ΣM (g) > B + T .

P (A2|ΣM (g) > B + T) ≤ P (E(1)) = 2d exp

(
−C2

2
(B + T)

)
(3.16)

As in the previous lemma, since events A1, A2 are mutually exclusive, we can write

P (Exploit(g) at turn M,ΣM (g) > B + T) = P (A1,ΣM (g) > B + T) + P (A2,ΣM (g) > B + T)

(3.17)

≤ P (A1|ΣM (g) > B + T) + P (A2|ΣM (g) > B + T)

(3.18)

where the last inequality is obtained by applying P (X,Y) = P (X|Y)P (Y) ≤ P (X|Y)

since P (Y) ≤ 1.

Recall the claim that when J∗
M (g)γg > T , then ΣM (g) > B + T . We know that the

accumulated sum of information for g up to turn M is given by ΣM (g) = minh̸=g ΣM (g, h).

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 37

Thus we have

ΣM (g) =
M−1∑
i=1

Γg,h(vi)

= Γg,h(v1) + Γg,h(v2) + · · ·+ Γg,h(vM−1)

> B +

M−1∑
i=0

I(vi ∈ V ∗(g)) · γg = B + J∗
M (g)γg

Note that the inclusion of the term B in the final inequality follows from assumption

4 that V (g) ∩ V ∗(g) = ϕ. Therefore, the algorithm selects the best items of cluster g

only when the accumulated information from distinguisher items of set V (g) crosses the

threshold of B.

Here, I(vi ∈ V ∗(g)) represents an indicator vector that is equal to 1 when an item from

set V ∗(g) is selected at a turn i and 0 otherwise. Let F1 be the event that J∗
M (g)γg > T

and F2 be the event that ΣM (g) > B+ T . Then F1 ⊂ F2 since F1 implies F2 but not vice

versa i.e. P (F1) ≤ P (F2).

P (Exploit(g) at turn M,J∗
M (g)γg > T) ≤ P (Exploit(g) called at turn M,ΣM (g) > B + T)

≤ P (A1|ΣM (g) > B + T) + P (A2|ΣM (g) > B + T)

Also we have, JN (g∗) = JM (g∗) + 1, so E[JN (g∗)γg] = E[JM (g∗)γg] + γg and

E[JM (g∗)γg] =

∫ ∞

0
P (Exploit(g) called at step M,JM (g∗)γg > T)dT (3.19)

≤
∫ ∞

0
P (A1|ΣM (g) > B + T) + P (A2|ΣM (g) > B + T)dT =

∫ ∞

0
P (T)dT

(3.20)

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 38

We can bound the integral 3.20 over two segments: 0 to α and α to ∞.

E[J∗
M (g)γg] ≤

∫ α

0
P (T)dT +

∫ ∞

α
P (T)dT

Bounding the probability by 1 in the first segment

≤
∫ α

0
1dT +

∫ ∞

α
P (T)dT

= α+

∫ ∞

α
P (A1|ΣM (g) > B + T) + P (A2|ΣM (g) > B + T)dT

= α+

∫ ∞

α
2 exp

(
−(1− C)2

2
(B + T)

)
+ (2d) exp

(
−C2

2
(B + T)

)
dT

To bound the above let m = min{C2, (1− C)2} and α = 2
m log (2d).

E[J∗
M (g)γg] ≤ α+

(2)2

(1− C)2
exp

(
−(1− C)2

2
(B + α)

)
+

(2d)2

C2
exp

(
−C2

2
(B + α)

)
≤ α+

(2d)2

m
exp

(
−m

2
(B + α)

)
+

(2d)2

m
exp

(
−m

2
(B + α)

)
= α+

8d

m
exp

(
−m

2
(B + α)

)
= α+

8d

m
exp

(
−mB

2

)
exp

(
−mα

2

)
Substituting α =

2

m
log (2d)

= α+
8d

m
exp

(
−mB

2

)
1

2d
=

2

m
log (2d) +

4

m
exp

(
−mB

2

)
≤ 2

min{C2, (1− C)2}

(
log (2|G|) + 2 exp

(
−min{C2, (1− C)2}B

2

))

Thus,

E[J∗
N (g)γg] = E[J∗

M (g)γg] + γg

≤ 2

min{C2, (1− C)2}

(
log (2|G|) + 2 exp

(
−min{C2, (1− C)2}B

2

))
+ γg

Divide by γg to get

1

γg

2

min{C2, (1− C)2}

(
log (2|G|) + 2 exp

(
−min{C2, (1− C)2}B

2

))
+ 1

Note, we choose N here so that J∗
N (g) > 1 by assumption. But when there does not

exist an N such that J∗
N (g) > 1 then we trivially have the bound that J∗

N (g) ≤ 1.

Observe that the expected number of times best items of set V ∗(g) is exploited is

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 39

inversely proportional to its corresponding γg. Thus as the information provided by the

best items of incorrect cluster g increases, the number of pulls decreases. So learning can

still occur even if an incorrect cluster moves to the exploitation phase as long as γg is

non-zero.

In the next theorem, the objective is to bound the regret accumulated up to a maximum

turn N > 1. Under assumption 1-4, we define ∆(g, w) = θ − µ(1, w) for w ∈ V (g) and

set ∆(g) = maxw∈V (g)∆(g, w). Similarly, ∆(g, w∗) = θ − µ(1, w∗) for w∗ ∈ V ∗(g) and set

∆∗(g) = maxw∗∈V (g)∆(g, w∗).

∆(g),∆∗(g) denote the maximum regret when presenting an item from the set V (g) and

V ∗(g) of each group g to the user (of unknown cluster 1). Using Definition 1 (Appendix),

we can express pseudo-regret for the algorithm up to turn N as

RN ≤
∑
g

E[JN (g)]∆(g) +
∑
g

E[J∗
N (g)]∆∗(g)

= E[JN (1)]∆(1) +
∑
g ̸=1

E[JN (g)]∆(g) +
∑
g ̸=1

E[J∗
N (g)]∆∗(g) + E[J∗

N (1)]∆∗(1)

= E[JN (1)]∆(1) +
∑
g ̸=1

E[JN (g)]∆(g) +
∑
g ̸=1

E[J∗
N (g)]∆∗(g) Since ∆∗(1) = 0 by Assumption 2

Theorem 1.Under assumption 1-4, for B > 0 and m = min{C2, (1 − C)2}, we have

pseudo-regret RN bounded by

(B + 1)
∆(1)

Γ1
+
∑
g ̸=1

(
L1(g)

Γg
+ 1

)
∆(g) +

∑
g ̸=1

(
L2(g)

γg

)
∆(g∗)

where L1(g) = 2
m (log (2|G|) + 2)+Γg and L2(g) = 2

m

(
log (2|G|) + 2 exp

(
−mB

2

))
+ γg

Proof.Given pseudo-regret RN :

E[JN (1)]∆(1) +
∑
g ̸=1

E[JN (g)]∆(g) +
∑
g ̸=1

E[J∗
N (g)]∆∗(g) (3.21)

Let’s examine the first sum. In this context, there are two separate and independent

cases to consider:

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 40

1. ΣN (1) ≥ B: This implies that there exists a turn M < N such that

M = max{n ∈ N : ΣM (1) < B}

At turn M , an item vM is selected resulting in ΣM+1(1) ≥ B, and as a result, cluster

1 concludes its exploration phase. The selected item vM at turn M could be from set

V (1) or any other subset of VN . Therefore, we can say that JM+1(1) ≤ JM (1) + 1.

Also, JM+1(1) = JN (1) because the algorithm can rate items from V (1) only until

turn M after which the exploitation phase begins for cluster 1.

To find JM (1), we have ΣM (1) < B and JM (1) is at most B
Γ1

(using equation 3.12,

JM (1)Γ1 < ΣM (1) < B). We write,

JN (1) = JM+1(1) ≤ JM (1) + 1 <
B

Γ1
+ 1

2. ΣN (1) < B: It implies J∗
N (1) = 0 because V (1) ∩ V ∗(1) = 0 and algorithm can only

call Explore(1) i.e. rate items from V (1) when ΣN (1) < B. Thus, in this case, given

ΣN (1) < B, we write,

JN (1) <
B

Γ1

Considering JN (1) < max

{
B
Γ1

+ 1, B
Γ1

}
, the first sum in equation 3.21 is bounded by(

B
Γ1

+ 1
)
∆(1).

Next, we calculate the second and third sums of equation 3.21 which deal with selecting

items from all g ̸= 1. As before, we have two distinct cases possible:

1. ΣN (g) ≥ B: It implies that there exists a turn R < N such that

R = max{n ∈ N : ΣR(g) < B}

At turn R, an item vR is selected resulting in ΣR+1(g) ≥ B, and as a result, cluster

g concludes its exploration phase. The selected item vR could be from set V (g) or

any other subset of VN . Therefore, we can say that JR+1(g) ≤ JR(g) + 1. Also,

JR+1(g) = JN (g) because the algorithm can rate items from V (g) only until turn R

after which the exploitation phase begins for cluster g.

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 41

To find JR(g), we have ΣR(g) < B and using lemma 3, JR(g) is at most L1(g)
Γg

. We

write,

JN (g) = JR+1(g) ≤ JR(g) + 1 <
L1(g)

Γg
+ 1

Given ΣN (g) ≥ B, by lemma 4, J∗
N (g) < L2(g)

γg
.

2. ΣN (g) < B: This implies J∗
N (g) = 0 because V (g) ∩ V ∗(g) = 0 and algorithm can

only call Explore(g) i.e. rate items from V (g) when ΣN (g) < B. To find JN (g), we

have ΣN (g) < B and using lemma 3, JN (g) is at most L1(g)
Γg

.

Considering JN (g) = max

{
L1(g)
Γg

+ 1, L1(g)Γg

}
and J∗

N (g) = max

{
L2(g)
γg

, 0

}
. Thus the

second sum of equation 3.21 is at most
∑

g ̸=1

(
L1(g)
Γg

+ 1
)
∆(g) and the third sum is

bounded by
∑

g ̸=1

(
L2(g)
γg

)
∆(g∗).

Finally, adding the first, second and third sums together, the regret accumulated is

at most,

(B + 1)
∆(1)

Γ1
+
∑
g ̸=1

(
L1(g)

Γg
+ 1

)
∆(g) +

∑
g ̸=1

(
L2(g)

γg

)
∆(g∗) (3.22)

We can see that the regret is independent of the number of turns N i.e. regret does not

tend to infinity as the number of turns N tends to infinity. This is because the algorithm

has prior knowledge about the cluster-wise reward distributions of items. If one has no

prior knowledge of the distributions, then asymptotically (in N) a regret of order log(N)

is unavoidable [Bubeck et al., 2013].

Further, the regret depends on the reciprocal of the information measure Γ1,Γg and γg.

As the information provided by the selected item increases, the regret decreases because

the correct group is identified faster.

3.5 Performance Evaluation

3.5.1 Evaluation Setup

Datasets. We evaluate the performance of the cluster-based bandit algorithm for cold

start on the standard Netflix dataset (480,189 people 17,770movies, 104M ratings from

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 42

1–5), the Jester dataset (73,421 people rating 100 jokes, 4.1M ratings from -10–10) and

the Goodreads10K dataset (53,424 people rating10,000 books, 5.9M ratings from 1-5).

Clustering Users. We use training data to cluster users into groups and estimate the

mean µ(g, v) and variance σ(g, v)2 of the ratings by each group g for item v. We use

the BLC matrix-factorization clustering algorithm [Checco et al., 2017] for this, although

other clustering algorithms might also be used. We vary the number of groups/clusters

from 4 to 32 and report results for each.

Baseline Algorithms. We compare the performance of the cluster-based bandit algo-

rithm against an optimised CART decision tree. This is a strong baseline, with good

performance for cold-start active learning. In addition, as a second baseline we use the

cluster-based bandit algorithm but without the initial exploration phase that selects high

Γg,h(v) items. This allows the added value of the exploration phase to be measured.

Modelling New Users. We generate the item ratings of a new user from group g by

making a single draw from the multivariate Gaussian distribution with mean µ(g, v) and

variance σ(g, v)2 for each item equal to that estimated from the training data. This

has the advantage that we can easily generate large numbers of new users in a clean,

reproducible manner. In addition, we also evaluated performance when drawing ratings

from the empirical distribution of ratings for a group (so relaxing the Gaussian assumption)

and also by generating user ratings via a water-filling approach i.e. split the data into

training and test data. The ratings from users in the training data are used to estimate

the mean µ(g, v) and variance σ(g, v)2 of the ratings by each group g for item v. To

evaluate the performance, pick a user from the test data and use their ratings. When we

need a rating for an item that the test user has not rated, pick a second test user from

the same group who has rated the item and merge the pair of user ratings. We found

the performance of these setups to be very similar to simply drawing a new user from a

Gaussian distribution.

Performance Metrics. We report the accuracy with which the group of a new user is

estimated i.e. the fraction of times the correct group is estimated and also the regret i.e.∑n
i=1 r(vi) − r(v∗i) where v∗i is the unrated item with highest rating by the new user (so

v∗1 is the highest rated item, v∗2 the next highest and so on). We measure the convergence

time as the number of items rated before the regret reaches 80% of its final value over a

test run. Statistics are calculated over 1000 new users per group.

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 43

0 5 10 15 20 25

#iteration

0

5

10

15

20

25

30
re

g
re

t
Cluster Bandit

Decision tree

Cluster Bandit (no exploration)

(a)

0 5 10 15 20 25

#iteration

0

0.2

0.4

0.6

0.8

1

1.2

a
c
c
u

ra
c
y

Cluster Bandit

Decision tree

Cluster Bandit (no exploration)

(b)

5 10 15

Group

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

Cluster Bandit

Decision tree

(c)

0 5 10 15

Group

2

4

6

8

10

12

14

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 (

s
te

p
s
)

Cluster Bandit

Decision tree

(d)

Figure 3.2: Performance measurements for Netflix dataset (16 groups). Solid lines indicate
mean, error bars one std deviation (estimated over 1000 new users in each group).

3.5.2 Results

Algorithm 1 has three design parameters B and C. We use B = 5 and C = 0.5.

Figure 3.2 shows typical (i.e. representative of the full data) detailed performance

measurements for the Netflix dataset with 16 groups. It can be seen from Figure 3.2(a)

that the regret of the cluster-based bandit and decision-tree algorithms are similar while in

Figure 3.2(b) it can be seen that the cluster-based bandit algorithm achieves a significantly

higher accuracy than the decision-tree, and from Figure 3.2(c) this holds across all 16

groups.

Figure 3.2(d) shows the convergence time across all groups. This is similar for both

algorithms, consistent with Figure 3.2(a). The fact that both algorithms have similar

regret and convergence time yet the bandit algorithm achieves higher accuracy indicates

that the cluster-based bandit algorithm uses a more efficient learning approach.

It can also be seen from Figure 3.2(a,b) that the learning performance of the cluster-

based bandit without the initial exploration phase is rather poor: the accuracy is typically

substantially worse than for the decision tree and the convergence time is slow. That is,

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 44

Dataset/Algo
Accuracy Convergence Time
#Groups #Groups

4 8 16 32 4 8 16 32
Netflix/DT 0.93 0.88 0.75 0.54 6.09 7.68 9.30 11.52
Netflix/CB− 0.83 0.79 0.65 0.53 - - - -
Netflix/CB 0.99 0.96 0.91 0.75 5.15 7.21 9.85 12.03
Jester/DT 0.71 0.55 0.46 0.34 6.22 7.90 8.66 10.15
Jester/CB− 0.84 0.75 0.60 0.52 - - - -
Jester/CB 0.91 0.83 0.73 0.68 4.61 6.46 8.92 10.48
Books/DT 0.88 0.69 0.62 0.41 7.80 9.01 9.82 7.37
Books//CB− 0.82 0.72 0.6 0.55 - - - -
Books//CB 0.96 0.87 0.84 0.67 6.05 7.02 9.20 7.32

Table 3.1: Mean accuracy and convergence time for Netflix, Jester and Books datasets vs
#groups. Legend: DT=decision-tree, CB=cluster-based bandit algorithm, CB−=cluster-
based bandit algorithm without exploration phase. Dash − indicates CB− failed to con-
verge within 25 items/steps.

it is inefficient to use only the most highly-rated items during a cold start, as might be

expected.

Table 3.1 presents summary accuracy and convergence time measurements for the

Netflix dataset and also for the Jester and Books datasets. The values shown are averages

over the groups (with 1000 new users per group, so e.g. with 16 groups the value shown is

the average over 1000× 16 users). It can be seen that the cluster-based bandit algorithm

consistently achieves substantially higher accuracy than a decision tree and the cluster-

based bandit algorithm without an exploration phase. For the standard Netflix dataset,

< 10 items need to be rated to reliably distinguish between 16 user groups. Importantly,

this improved accuracy does not come at the cost of slower convergence time. That is, the

performance of the cluster-based bandit dominates that of the other algorithms and this

data indicates that it should always be used in preference to them if higher accuracy is

desired.

Further, we note from Table 3.1 that the proposed approach demonstrates superior

performance over the decision tree, especially when the number of clusters is large. This is

presumably because increasing the number of clusters from 4 to 32, reduces the distinction

between them. This poses challenges in differentiating between ratings from two clusters

due to the intra-cluster noise. Because of this noise, an unusual rating will lead the decision

tree to follow a poor path from which it cannot recover because the decision tree itself is

fixed. Thus the offline training of decision trees constrains their ability to adapt to such

noisy feedback. Ensemble learning techniques like Random Forest are known to be less

affected by noise. However, they require repeated sampling or querying from users (to

average out the noise) which is not feasible in a RS set-up.

Chapter 3. Addressing the User Cold Start Problem by Leveraging User Clusters 45

However, we expect that a dynamic construction of a tree based on user feedback may

be more adaptable to such noise. For instance, the MCTS (Monte Carlo Tree Search)

approach in [Rajapakse and Leith, 2022] has shown superior accuracy compared to the

cluster-based bandit algorithm. MCTS dynamically selects the sequence of items presented

to a new user by building a look-ahead search tree based on feedback. In contrast, decision

trees are pre-built using training data, rendering online cluster-based bandit algorithms

and MCTS more resilient to noise.

3.6 Conclusions

In this chapter we revisit the cold-start task for new users of a RS and propose a novel

cluster-based bandit algorithm that achieves fast learning in cold-start, e.g. for the stan-

dard Netflix dataset < 10 items need to be rated in order to reliably distinguish between

16 user groups and < 12 items to reliably distinguish between 32 groups. We show that

the group of a user is identified with significantly higher accuracy than with a decision-

tree without incurring higher regret or longer learning time i.e the learning performance

is fundamentally superior to that of a decision-tree.

Chapter 4

Evaluating Impact of User-Cluster

Targeted Attacks in Matrix

Factorisation Recommenders

4.1 Introduction

In the last chapter, we looked at how users in a RS can often be grouped by their in-

terests, and indeed this observation motivates many advertising strategies [Epasto et al.,

2021, Xie and Phoha, 2001, Geyik et al., 2015]. Recent research proposes exploiting such

clustering of users in RS for their ’hiding in the crowd’ privacy benefits [Checco et al.,

2017, Ravichandran and Vassilvitskii, 2009, Bindra, 2021]. However, it is well known that

RS are susceptible to data poisoning attacks [Lam and Riedl, 2004, Patel et al., 2015].

In poisoning attacks, an adversary adds fake profiles with carefully assigned ratings

for selected items and attempts to target an item to promote/demote it by increas-

ing/decreasing the item’s rating in the system. Social media platforms have received

attention for discriminatory and predatory targeting of user communities [Angwin and

Parris Jr., 2016, Datta et al., 2014]. Further, adversaries have been known to use RS to

influence users by introducing false product reviews [He et al., 2021] to promote misinfor-

mation. RS recommends items by learning user’s preferences and contributes to shaping

and developing new opinions and interests, thus influencing user behavior. Therefore,

selective exposure to misinformation is a significant concern in RS.

This study explores the impact of data poisoning attacks targeting specific user clusters

46

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 47

in the standard MF based RS. To better understand this, recall the working mechanism of

MF-based RS as described in Section 2.1.1. We have, U the user-feature matrix and V the

item-feature matrix. When fake ratings are introduced into a RS, the feature matrices U, V

undergo changes. It is crucial to analyse the nature and extent of these changes to conduct

further research on the robustness of MF-based RS. This study aims to investigate the

impact of poisoning attacks on the feature matrices U and V , an aspect that has not been

previously investigated in the literature. In particular, we investigate attacks targeting

specific user groups and how the changes to U and V matrices enable these attacks.

The standard MF approach is to update both U and V matrices when new ratings

enter RS. To investigate how U and V are individually affected by the attacks and how

their behaviors contribute to the propagation of targeted attacks in the RS, we consider

updates to each matrix separately in response to the newly entered fake ratings [Shams and

Leith, 2022], i.e. i) Hold V constant and update U to study the changes to U after attacks,

ii) Hold U constant and update V to study the changes to V after attacks. The findings

indicate that the impact of the attack is pronounced when V is updated in response to

the introduction of fake ratings.

The effectiveness of attacks on feature matrices can be influenced by the choice of

target items. Most work in the literature [Wu et al., 2021, Fang et al., 2020, Fang et al.,

2018, Huang et al., 2021, Christakopoulou and Banerjee, 2019, Hu et al., 2019] study

the effect of attacks on randomly chosen target items or on items with a small number of

ratings. In this work, we take a broader view and consider various choices of target item to

identify the factors contributing to attack effectiveness on the U, V matrices by analyzing

how these matrices change after an attack on these target items. We conclude that certain

items are more susceptible to attacks than others. Specifically, we have found that items

with a lower number of ratings in the target cluster are particularly vulnerable. This is

because the feature vectors for these items in matrix V can be easily manipulated, making

them more susceptible to attacks. So the distribution of user and item latent features

plays a significant role in the effectiveness of attacks targeting a user group.

Many recent works approach data poisoning attacks from an optimization perspective,

requiring a high level of knowledge about the RS [Fang et al., 2020, Christakopoulou and

Banerjee, 2019, Lin et al., 2020]. For this work, we revisit more straightforward attack

strategies [Lam and Riedl, 2004, Patel et al., 2015, Mingdan and Li, 2020] involving users

rating the target item with a large rating to promote it and the rest of the items (filler

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 48

items) with scores that mimic the rating distribution of the targeted user cluster. We

show that this low-knowledge attack is enough to promote an item in a target cluster.

The main contributions are as follows:

• We provide a systematic study of data poisoning attacks targeted at a group of users

and identify the factors contributing to the effectiveness of attacks in MF-based RS.

• We analyse the individual effects of attacks on latent feature matrices U and V and

explore how they contribute to the propagation of targeted attacks in a MF-based

RS. Studies investigating the role of latent feature matrices are new to the literature.

• We illustrate the findings with real-world datasets and show that a simple attack

strategy using limited knowledge of user preferences suffices to target a specific user

group precisely.

4.2 Related Work

The benefits of clustering users in RS are discussed in [Checco et al., 2017, Shams et al.,

2021, Yanxiang et al., 2013, Mittal et al., 2010]. For example, [Checco et al., 2017]

proposes enhancing privacy by assigning the users to clusters and providing cluster-wise

recommendations rather than for each individual user and [Shams et al., 2021, Yanxiang

et al., 2013] exploits user clusters for improving cold-start recommendation.

The impact of data poisoning attacks where fake users are injected in RS with carefully

crafted user-item interaction has been studied extensively. For surveys on attack models

and the robustness of RS algorithms, see [Lam and Riedl, 2004, Patel et al., 2015, Mobasher

et al., 2007, Mingdan and Li, 2020]. Studies such as [Huang et al., 2021, Li et al., 2016, Fang

et al., 2018, Fang et al., 2020] focus on modelling attacks specific to the type of RS, e.g.

[Fang et al., 2020] studies attacks in MF-based RS by proposing to model fake users similar

to true users who are influential to the recommendations, [Huang et al., 2021, Fang et al.,

2018] propose data poisoning attacks for deep learning based RS and graph-based RS

respectively.

Very few studies explore the impact of data poisoning attacks targeting specific user

clusters in MF-based RS. Earliest work on the analysis of segment/targeted attack was

studied by [Mobasher et al., 2005]. They demonstrated that the segment/targeted attack

is effective against both user-based and item-based collaborative filtering RS and show

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 49

that such a segment-focused attack helps to shield fake profiles from suspicion because it

has a limited impact on the whole user base while having a big impact on the targeted

users who are likely to consume the item.

Other recent works exploring targeted attacks is probably [Hu et al., 2019, Chris-

takopoulou and Banerjee, 2019]. In [Christakopoulou and Banerjee, 2019], Generative

Adversarial Networks (GAN) generate fake users whose distribution is close to that of

the true users. They assume that the adversary has knowledge of the recommender’s

model and algorithm and aims at adversarial training of RS to build robust recommenda-

tion models (for other adversarial robustness studies, see [Xu et al., 2020, Deldjoo et al.,

2020]). In [Hu et al., 2019], they propose to promote an item to a group of users by inject-

ing fake ratings and social connections in a factorisation-based social RS. They assume

that fake users can quickly establish social connections with true users and model the

attack as a bi-level optimisation problem.

In the above studies, attacks are modeled as an optimisation problem. They require a

good deal of information about the RS to be carried out, i.e. a rather powerful adversary.

However, observations from these studies motivate us to revisit the more straightforward

average-attack strategy and study their effect on MF-based RS. For example, in [Fang

et al., 2018], the attacker generates fake users using a graph-based RS, and the target RS

uses MF. The differences between their attack and the existing standard attack strategies

are not very large despite the high level of knowledge assumed by the adversary. Similar

observations are made in [Lin et al., 2020], where the authors study data poisoning attacks

on deep learning RS models. They generate fake profiles by randomly sampling a sub-

matrix from real users who have rated sufficient items to generate fake users close in

distribution to the real users. They compare their attack strategy to standard attack

models such as a random attack, average attack etc, and find that the effectiveness of

the attack is only marginally increased compared to the lower knowledge and simpler

average-attack strategy.

4.3 User-Cluster Targeted Poisoning Attack

4.3.1 User Cluster Based Recommendation Model

Recall from Section 2.1.1 that a MF-based recommender factorises user-item rating matrix

R approximately as UTV , where matrices U and V have relatively small inner dimension

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 50

d. Each column in matrix U is a length d weight vector that captures a user’s preferences,

and each column in matrix V is a length d weight vector that captures the characteristics

of one item. The predicted rating matrix given by the inner product UTV gives the

individual predicted rating per user per item.

We depart from the usual setup by assuming that users belong to distinct groups.

We have a set G of user groups, and each user belongs to one group g ∈ G such that

users belonging to a group have similar preferences. In this study, we use k-means to

cluster columns of matrix U so that users with similar preferences (i.e. weight vectors)

are clustered together. However, other clustering algorithms might also be used, e.g. the

approach in [Checco et al., 2017].

Let Ũg ∈ Rd×1 for g = 1, · · · , |G| be the preference vector associated with a group of

users and gather these features to form matrix Ũ ∈ Rd×|G|. Each column in Ũ is a length

d weight vector that captures a group’s preferences. For users belonging to a group g

with weight vector Ũg and items with weight vectors in V , the predicted rating matrix is

the inner product Ũg
T
V , i.e., users belonging to the same group have the same predicted

rating value per item.

4.3.2 Attack Model

We assume that the adversary knows the cluster-wise mean rating for every item in the

system. This is a reasonable assumption since such cluster-wise information may be in-

ferred from online databases that publicly display the average user ratings of items (e.g.,

movie databases, online shopping databases, etc.).

Attackers can use general domain knowledge about the features of items in order

to target users who prefer items of a particular type. For example, they may be able

to spot products with genres that are comparable to the one they want to advertise.

They can find possible targets by locating users who highly score these related items. In

the RS, it is possible to then create fictitious profiles that closely resemble real ones by

computing the mean ratings that this set of users provided for other items. Examples of

such instances have been discussed in Section 2.3.1. Further, Facebook, Instagram and

Amazon already offer targeted advertising/information sharing services where you can

select any user segment based on preferences to the type of product you want to promote,

age, location and other demographics 1.

1Amazon Web Services: [Katidis and christianbonzelet, 2022], Facebook: [Meta, 2023]

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 51

For the type of attacks that we focus on, there is a target item that the attacker is

interested in promoting in a target cluster and a set of filler items that are rated to ensure

that the fake users preferences share some similarity to that of the true users in the target

cluster. The target item is given the maximum rating to try to promote it in the system

and the filler items ensure that fake users can correctly enter the targeted group.

4.4 Study of Attack Effects on Feature Matrices U and V

In Section 2.1.1, we introduced the standard method for deriving matrices U and V from

user-item ratings which involve minimizing the sum of squared errors for all observed

ratings, expressed as

min
U,V

∑
(i,j)∈O

(Ri,j − UT
i Vj)

2 + λ

∑
i

∥Ui∥2 +
∑
j

∥Vj∥2
 (4.1)

After obtaining the preference vectors Ui and Vj for user i and item j respectively, we

proceed to cluster these Ui values to obtain matrix Ũ of group vectors, as discussed in

Section 4.3.1.

When fake users arrive and start rating items, we study changes in U, V by updating

only one of the feature matrices in response to newly entered ratings and keeping the other

constant. In particular, we have the following approaches to incorporate the new ratings:

1. Fix V , update U : RS holds V constant and updates U for all users after the attack.

Keeping V constant, the cost function in equation 4.1, becomes for every user i, a

convex function of V . The solution to this least squares problem is

Ui =

 ∑
j∈V(i)

VjV
T
j + λI

−1 ∑
j∈V(i)

VjRi,j (4.2)

where V(i) = {j : (i, j) ∈ O} is the set of items rated by user i. Then re-cluster the

Ui values to obtain an updated matrix Ũ of group vectors.

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 52

2. Fix U , update V : RS holds U constant and updates V after the attack.

Vj =

 ∑
i∈U(j)

UiU
T
i + λI

−1 ∑
i∈U(j)

UiRi,j (4.3)

where U(j) = {i : (i, j) ∈ O} is the set of users rating item j.

4.4.1 Fix V , Update U

It can be seen from equation 4.2 that user vector Ui depends on the item vector Vj and

rating value Ri,j of all items j ∈ V(i) rated by user i. For any existing true user i in RS,

the addition of fake users neither changes the set V(i) of items rated nor Ri,j and Vj of

items in V(i). So the weight vector Ui is unchanged after an update provided V is kept

constant.

Let Uf be the feature vector of a fake user f entering the RS. Uf is generated based

on the set of items V(f) rated by the fake user and the ratings given to these. After

generating Ui values for all users (now includes fake users as well), the cluster-feature

weights Ũ are updated using k-means. We also warm start the k-means clustering with

the initial centers before the attack instead of using a random cluster center initialization.

This allows us to focus on regrouping due to adding fake users and avoid spurious group

membership changes due to randomness in the initial conditions.

Impact of Attack on Target Cluster Weight Vector Ũt

The new cluster center is the arithmetic mean of all user weights in the cluster. When

fake users successfully enter the target cluster t by generating feature vectors Uf that are

close to Ũt, we update the cluster center to reflect the presence of these new users. The

updated Ũt is the mean of the feature vectors of the existing true users and the newly added

fake users. Therefore the predicted rating of target item j∗ in the target cluster given by

ŨT
t Vj∗ changes. Thus, the effect of the attack on item j∗, in this case, is determined by the

changes to the cluster center Ũt resulting from the inclusion of fake user weights. Based

on this understanding, we expect the relative number of true users (n) and fake users (m)

in the target cluster to play an essential role in the effectiveness of the attack. If n >> m,

then the impact of fake users on the arithmetic mean Ũt is small.

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 53

Impact of Attack on Non-Target Items and Non-Target Clusters

The inner product Ũt
T
V gives the predicted rating for all items in the target cluster.

Specifically, we expect that, in the target cluster, items similar to j∗ (i.e: item feature vec-

tors Vj and Vj∗ have high correlation) will show a more significant change in the predicted

ratings. In contrast, other items will show a lower change in the predicted ratings.

Recall that any true user’s feature vector remains unchanged after injecting fake users

in RS. So we expect non-target cluster center Ũg for g ∈ G \ {t} to be unchanged if all

fake users correctly enter target cluster t. Thus, keeping V constant will isolate the attack

effects on the target cluster alone if all fake users enter the target cluster.

Surprisingly, the analysis shows us that the injection of fake ratings has no effect on

the user vector Ui of all true users i in the RS (when V is kept constant). Also, the number

of true users in target cluster t relative to the number of fake users determines the attack’s

effect on Ũt.

It is Vj∗ that changes in response to injected fake ratings. Further, the post-attack

changes are influenced by the number of true ratings to item j∗ from the target cluster

rather than the total number of true users in the target cluster. We will study this in

detail in the next section.

4.4.2 Fix U , Update V

It can be seen from equation 4.3 that a target item vector Vj∗ depends on user vector Ui

and rating Ri,j∗ of all users i in set U(j∗) who provide rating to the item j∗. Vj∗ remains

unaffected by the number of users in a cluster unless they also provide a rating to item j∗.

Let a fake user f enter RS targeting item j∗. This implies that the set U(j∗) of users

now also contains the fake users. Following this, fake user feature vector Uf and rating

Rf,j∗ are also used to determine Vj∗ . Therefore, target item vector Vj∗ will show significant

changes after the attack when many fake users enter RS.

Impact of Attack on Target Item Vector Vj∗

Let V̂j∗ be the updated Vj∗ after attack. Given the kth item-feature of Vj∗ represented

by vj
∗

k and kth user-feature of Ũt represented by utk, the change in target item predicted

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 54

rating in the target cluster after the attack, for this setup, is

Ũt
T
V̂j∗ − Ũt

T
Vj∗ =

d∑
k=1

utk(v̂
j∗

k − vj
∗

k)

The change in predicted rating will increase when v̂j
∗

k −vj
∗

k = γutk for a positive constant

γ. This is because, the inner product will then become
∑d

k=1 u
t
k(v̂

j∗

k −vj
∗

k) =
∑d

k=1 γ(u
t
k)

2.

We can see that, as γ increases, product terms in the inner product become larger and

positive, increasing the change in the predicted rating of the target item. Specifically, we

define the following setup to study the transformation of Vj∗ .

We noted from equation 4.3 that updating Vj∗ after the attack requires the Ui values

corresponding to all users who have provided ratings, i.e., true users and newly added m

fake users. Since users in a group have similar preferences, we set the Ui values of true

users to their corresponding cluster weight vector for this study. Given vector Uf ∈ Rd×1

associated with fake user f capturing the fake user’s preferences, we gather these vectors

together to form matrix X ∈ Rd×m. To improve the predicted rating of the target item

in the target cluster t, columns in the X matrix must be closer to Ũt than to other

cluster feature vectors. To study the maximum changes to Vj∗ , which corresponds to the

maximum change in the predicted rating of the target item, we set Uf equal to Ũt in the

analysis.

We re-write equation 4.3 such that after adding a block of m fake users, we can

formulate updates to Vj∗ recursively.

Theorem 2 (Proof in Appendix B, Section 7.2.3).Given V̂j∗ is the updated Vj∗ after

attack. Let a block of m fake users with feature vectors in X ∈ Rd×m and target item fake

ratings vector y ∈ Rm×1 enter RS. Given A−1 =
(∑

i∈U(j∗) UiU
T
i + λI

)−1
for set of all

true users U(j∗) rating item j∗ and K =
(
I +XTA−1X

)−1 (
y −XTVj∗

)
, we can write,

V̂j∗ − Vj∗ = m×K ×
(
A−1Ũt

)
(4.4)

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 55

Analysis of Vector Vj∗ Update Mechanism

Using equation 4.4, for any kth item-feature of Vj∗ given by vj
∗

k and kth user-feature of Ũt

given by utk, we can write the updated kth item-feature v̂j
∗

k of V̂j∗ as

v̂j
∗

k − vj
∗

k = m×K

akku
t
k +

d∑
i=1,i ̸=k

akiu
t
i

 (4.5)

where akk represents the diagonal and aki for {i | i ̸= k and i ∈ 1, 2, · · · , d} represents

non-diagonal elements in the kth row of matrix A−1. We can clearly observe from equation

4.5 that v̂j
∗

k −vj
∗

k is not a simple scaling of utk due to the presence of the second summation

term. Therefore the transformation to any feature vk depends on the matrix A−1 and

target cluster-feature vector Ũt.

We know that A−1 is a Positive Definite (PD) matrix. 2 Thus all diagonal elements

akk are positive.3 From this we can say that the term akku
t
k always has the sign of utk

or in other words scales utk. Equation 4.5 reduces to a simple scaling of utk only when

A−1 is a positive diagonal matrix causing the non-diagonal terms in any row of A−1

to be zero i.e. the summation term
∑d

i=1,i ̸=k akiu
t
i in equation 4.5 becomes zero giving

v̂j
∗

k − vj
∗

k = m×K × akk × utk.

Let’s take a closer look at the possible behaviors of equation 4.5 for any kth feature

in item vector Vj . We know that m, K are positive constants 4. So the overall sign and

magnitude of the update is determined by the behaviour of term akku
t
k +

∑d
i=1,i ̸=k akiu

t
i.

We noted how akku
t
k is a term always having the sign of utk, effectively acting as a scaling

of utk. Depending on the sign and magnitude of the term
∑d

i=1,i ̸=k akiu
t
i relative to akku

t
k,

we can have the following behaviours:

• case 1: if sgn(akku
t
k) = sgn(

∑d
i=1,i ̸=k akiu

t
i): then the update factor in equation 4.5

is similar to scaling utk. i.e we could say v̂k−vk = γutk where γ is a positive constant.

• case 2: if sgn(akku
t
k) ̸= sgn(

∑d
i=1,i ̸=k akiu

t
i): then,

– case 2a): |akkutk| > |
∑d

i=1,i ̸=k akiu
t
i| then here too the update factor in equation

4.5 is similar to scaling of utk. i.e. we could say v̂k − vk = γutk where γ is a

positive constant.

2See Lemma 9 in Appendix B
3See Lemma 10 in Appendix B
4See Lemma 15 in Appendix B

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 56

– case 2b): |akkutk| < |
∑d

i=1,i ̸=k akiu
t
i|, then here the update factor is such that

it shifts opposite to sgn(utk).

– case 2c): |akkutk| = |
∑d

i=1,i ̸=k akiu
t
i|, then v̂k − vk = m ×K × 0 = 0 implying

v̂j
∗

k = vj
∗

k , thus no change in the feature k after attack.

In particular, when target item true rating distribution possess certain structures,

we have the following key observations regarding the relative signs and magnitudes of

akku
t
k and

∑d
i=1,i ̸=k akiu

t
i. Further we show that equation 4.5 is convergent under certain

conditions.

1) |akkutk| reduces as the number of true ratings to target item increases:

If we look at the term A−1 = (
∑

i∈U(j∗) UiU
T
i + λI)−1, we can write using Sherman-

Morrison-Woodbury identity 5 that for every new true user î with feature vector Uî pro-

viding ratings to item j∗, the inverse is updated such that

Â−1 = (A+ UîU
T
î
)−1 = A−1 −

A−1UîU
T
î
A−1

1 + UîA
−1UT

î

From lemma 11 6, the diagonal elements of updated inverse Â−1 is always less than or equal

to the diagonal elements of A−1. This implies that as more true user provides ratings,

diagonal values of A−1 decrease. i.e., term |akkutk| reduces as the number of true ratings

to the target item increases.

2) sgn(akiu
t
i) relative to sgn(akku

t
k):

By lemma 17 7, we have that if true ratings to item j∗ come exclusively from target cluster

users, each term akiu
t
i in the summation has a sign opposite to sgn(akku

t
k). Conversely, if

the source of true ratings is not exclusive to the target cluster, then the sign of each term

akiu
t
i in the summation does not depend exclusively on sgn(akku

t
k) and may not all be the

same.

5See Definition 5 in Appendix B
6See Lemma 11 in Appendix B
7See Lemma 17 in Appendix B

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 57

3) Convergence of A−1Ũt

Suppose item j∗ received a large number of true ratings from true users in RS. Will Vj∗

prove difficult to change after the attack? From case 2c, we can see that magnitude of

updates to the item vector after an attack is reduced only if A−1Ũt approaches zero vector.

In particular, we have

Theorem 3 (Proof in Appendix B).Given A−1, let N true ratings be received by target

item such that A−1 updates to Â−1. Then column vector Â−1Ũt is guaranteed to converge to

zero vector as N approaches infinity only if the N ratings come from the target cluster. For

increasing true ratings from any non-target cluster, convergence to zero is not guaranteed.

Thus if fewer users from the target cluster provide ratings to item j∗, then irrespective

of the number of ratings from non-target clusters, Vj∗ changes to increase rating in target

cluster. So we expect the effectiveness of the attack to depend on the number and cluster-

wise distribution of true ratings to the target item. Vj∗ is guaranteed to not shift the rating

of item j∗ in the target cluster only when the target cluster provides a large number of

true ratings to the item j∗.

Impact of Attack on Non-Target Clusters and Non-Target Items:

From the analysis of equation 4.3, we expect that non-target items in a cluster will not be

affected after an attack. This is because the target item’s Vj∗ is updated independent of

Vj for all items j ̸= j∗, thus changes to Vj∗ after the attack does not affect any Vj . Attack

effects leak to non-target item vectors only via changes to Ũt as discussed in Section 4.4.1.

But, since Ũ is kept constant, post-attack changes are only isolated to the target item.

The predicted rating of target item j∗ across all clusters is calculated by ŨTVj∗ . Thus

item vector Vj∗ is common to all the cluster weight vectors in Ũ . This implies that changes

to the item vector affect all clusters. For example, suppose true users have U = [1,−1]

or U = [−1, 1]. i.e. the first set of users like items with V = [1, 0] and dislike items with

V = [0, 1], but the second set of users are the opposite. Then an attack against the first set

of true users keeping U = [1,−1] constant to increase the rating of an item with V = [0, 1]

may be performed by shifting V = [0, 1] to V [1, 0]. Then such a shift, while it increases

the rating in users with U = [1,−1], would decrease the rating in group U = [−1, 1].

But based on observations from real-world datasets in Section 4.6, cluster weight vec-

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 58

tors are rarely so simple and opposite in preference values. In fact, with higher d dimen-

sional feature space, the cluster preference vectors enjoy correlation. For example, in Table

4.1a, features k = 0, 3, 4, 5, 6, 7 have the same sign across all clusters. Similar observations

can be made for the Goodreads dataset in Table 4.1b for features k = 0, 2, 4, 6, 8, 9. Thus

these features of clusters are positively correlated. In Table 4.1b, feature k = 1 has a

negative sign in cluster 2 but is positive in all non-target clusters. Thus this feature is

negatively correlated with corresponding features of clusters g = 0, 1, 3. Similarly, many

such features exist in both datasets, with opposite signs between clusters.

g/k 0 1 2 3 4 5 6 7 8 9

0 0.54 0.06 0.03 0.06 0.63 -0.43 0.29 -0.25 0.45 -0.01

1 0.45 -0.16 0.25 0.29 0.88 -0.09 0.29 -0.21 -0.22 -0.11

2 0.71 0.61 -0.13 0.08 0.63 -0.04 0.18 -0.01 -0.12 -0.13

3 0.30 -0.08 -0.46 0.20 0.81 -0.36 0.60 -0.04 -0.17 -0.34

(a) ML

g/k 0 1 2 3 4 5 6 7 8 9

0 -0.14 0.28 -0.18 0.26 -0.53 -0.17 -0.35 0.03 -0.15 -0.63

1 -0.24 0.47 -0.14 0.29 -0.08 -0.09 -0.48 0.04 -0.57 -0.26

2 -0.11 -0.22 -0.47 0.42 -0.53 -0.19 -0.47 0.26 -0.30 -0.10

3 -0.06 0.21 -0.16 -0.16 -0.61 0.11 -0.67 -0.10 -0.19 -0.14

(b) GR

Table 4.1: Cluster-Weight Values for d = 10 features against |G| = 4 clusters for Movielens
(ML) and Goodreads (GR) datasets

We expect that in such correlated clusters, after attack, the effect leaks to non-target

clusters as well. While the relative change in rating increases in the target cluster, for

non-target clusters, the relative change in rating may increase or decrease after attack

depending on their weight vector Ũg and correlation with updated target item vector V̂j∗ .

4.5 Experiment Evaluation Set-up

To illustrate the findings discussed in previous sections, we describe the experimental

set-up and report the results in Section 4.6.

4.5.1 Datasets

We evaluate the effectiveness of the attack on the MovieLens dataset (943 users rating

1682 movies, contains 100000 ratings from 1-5), widely used in literature for evaluating

RS under attack, and the Goodreads 10K dataset (53,424 people rating 10,000 books,

5.9M ratings from 1-5). We take a dense subset of the Goodreads dataset (since MF is

computationally expensive for large datasets), obtained by selecting the top 1000 users

who have provided the most ratings and the top 1682 items rated by these users. This

provides us with 1000 users and 1682 items.

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 59

Synthetic User Generation

We evaluate by generating synthetic users using Movielens and Goodreads as a baseline

where, by construction, the setup considered in this section is intentionally tightly con-

trolled so that we can vary one aspect at a time and study its impact.

From the original R matrix of the two datasets considered, calculate U, V , and cluster

U using k-means to get group membership of all users. For users in each group, calculate

the empirical distribution of the ratings for each item. Using this mean and variance of

the item ratings for a group g, generate the required number of users per group by drawing

a vector of random ratings for items, i.e., for item j generate a random variable with the

probability of each rating being given by the empirical distribution previously calculated

for group g, item j. Notably, we generate ratings so that the proportion of ratings from

group g for each item j matches that in the original Movielens and Goodreads dataset.

For example, if an item j received ratings from 10% of the users from cluster g in the

original dataset and if we generated 1000 users per cluster, then we ensure that the item

j also receives ratings from 10% of users from cluster g (= 100 ratings) in this generated

dataset. For a target item, the number and distribution of ratings per group are completely

controlled while leaving the distribution of ratings for other items much the same as before.

This also has the advantage that we can easily generate large numbers of new users cleanly

and reproducibly.

For the study, we generate 4 clusters (results are similar for any number of clusters

chosen, but a cluster size of 4 gives a larger sample set of target items with required

empirical mean in a target cluster) with latent feature space of dimension d = 10 and a

number of items of 1682 for both datasets. Note that there must be at least 250 users

per cluster. This is because too few users cause fewer ratings to be generated per cluster

according to the set-up described. Lack of sufficient ratings per cluster causes the centers of

the generated clusters to shift from the original centers. This may cause the membership of

generated users to change. So unless mentioned otherwise, for all the simulation studies,

we fix the cluster-wise population to be 250 per cluster. The results reported are the

average of over 50 such datasets generated randomly as described using Movielens and

Goodreads as the baseline.

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 60

4.5.2 Threat Model

Target Item

The target item is given the maximum rating to try to promote it in the system. Specifi-

cally, in the experiments, we randomly sample an item from a set of items with an empirical

mean rating ≤ 3 and treat it as the target item. The number and distribution of ratings

per cluster are completely controlled for the chosen target item, as detailed in Section

4.5.1. We thus evaluate the results for different target items based on the number of true

ratings it has.

Filler Items

(a) g=0 (b) g=1 (c) g=2 (d) g=3

(e) g=0 (f) g=1 (g) g=2 (h) g=3

Figure 4.1: Plot showing the percentage of fake users entering per cluster when targeting
each cluster g for ML and GR Datasets respectively using distinguisher filler items

The filler items are chosen to aid fake users in correctly entering the target cluster. We

rate filler items such that the columns in the U matrix corresponding to the fake users are

closer to those of users in the target cluster than those in others. Randomly choosing items

may risk the fake user falling into a non-target cluster. So we choose those that are likely

to be favored by the users of the target group. Thus we choose so-called distinguisher items

[Shams et al., 2021] as filler items. Specifically, we choose distinguisher items identified

in a cluster with i) mean rating very different and higher from other clusters and ii) the

ratings tend to be consistent/reliable, i.e., the variance is small. These ’popular’ items in

the target cluster can make fake user profiles more realistic and representative of the target

cluster user’s preferences. Also, too low a number of filler items makes it difficult for fake

users to enter the target cluster correctly. So, we fix the number of filler items to be the

minimum number of items rated by true users in the generated data set. The ratings for

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 61

these filler items are sampled from the Gaussian distribution using the cluster-wise mean

rating and a small standard deviation.

In Figure 4.1 we see the percentage of fake users entering the target cluster for the

choice of distinguisher filler items. We can observe >= 90% of fake users correctly entering

the target cluster. Thus the fake users simulate the preferences of target cluster users

accurately.

4.5.3 Performance Metric

We use the change in the rating of the target item relative to the maximum deviation

possible as the evaluation metric.

Relative Change in Ratingg =
µf (g, i)− µo(g, i)

|5− µo(g, i)|
(4.6)

Where µf (u, i) is the predicted rating of target item i of a user in cluster g after the attack,

µo(g, i) is the predicted rating of the target item i of a user in cluster g before the attack

and 5 is the maximum rating that can be given to the target item in the datasets that we

consider.

We note that it is common in the literature to measure the effectiveness of an attack

using either Hit-Rate (HR@N), i.e., the fraction of normal users whose top-N recommen-

dation lists contain the target item, or Prediction Shift (PS), i.e., the difference in the

rating of the item before and after the attack indicating by how much the rating has

increased after the attack. While the PS metric illustrates whether an attack has the

intended effect of increasing rating, it does not measure the attack’s power. Thus many

studies use HR@N to measure the effectiveness of the attack.

However, in a cluster-based RS, the top N list is common to all users in a cluster.

Further, the items in the top N list are RS dependent varying over many factors, such

as the threshold rating considered above which it may be put in a recommended list, and

the percentage of users who already interacted with that item in the cluster. Since the

study considers different target items based on the number of true ratings they received,

the standard Hit-Ratio is not an ideal evaluation method for us 8.

8However, we report results for a slightly modified hit-rate definition as additional results in Appendix
B

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 62

Equation 4.6 gives the shift in predicted rating relative to the maximum deviation

possible after an attack. It therefore directly measures the power of attack on clusters.

4.5.4 Visualising Results

In each study, we average the results over 50 generated datasets and attack each of these

to allow us to study variability in the effectiveness of the attack. We then use the mean

and standard deviation to visualize the relative change in the rating of the target item

after the attack. We show the results when the adversary targets cluster 2. Results when

targeting other clusters are similar and so not reported separately.

4.6 Performance Illustration with Data

Recalculate U, V for the generated user-item ratings in each iteration. This becomes the

baseline U, V against which we measure the changes after the attack. Inject fake users and

perform update approaches 1 and 2 respectively as discussed in Section 4.4. Recall we use

a warm start approach when performing updates to U, V and for k-means clustering.

4.6.1 Fix V , update U

Before we proceed to show the results illustrating our findings, let us briefly recall our key

observations of approach 1 from Section 4.4.1:

• Relative number of true and fake users plays a role in the effectiveness of the attack.

Increasing the number of true users in the target cluster reduces changes to Ũt and

subsequently the effect of targeted attacks.

• The effect of the attack is isolated to the target cluster when all fake users correctly

enter the target cluster. Also, changes to Ũt result in ’leakage’ of attack to non-

target items. The effect of the attack is expected to be pronounced in items highly

correlated to the target item.

We first illustrate the attack’s impact when the target cluster’s true user size is in-

creased relative to the fake user size. We then proceed to illustrate the leakage effect of

attack to non-target items and clusters.

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 63

Varying Ratio of True Users (n) to Fake Users (m) in Target Cluster:

In this experiment, we compare the relative change in target item predicted rating in the

target cluster for varying values of ratio n
m . We fix the number of target-item true ratings

per cluster throughout the experiment to focus only on changes to Ũt due to cluster true

user population size. This ensures that any noise due to rating distribution is avoided.

To illustrate, we fix a cluster-wise true user population of 250 − 250 − n − 250 (i.e.

250 users per non-target cluster and n users in target cluster), and a target item rating

distribution of 5 − 5 − 5 − 5 (i.e. 5 ratings per cluster). Then, we vary the ratio of the

number of true users to fake users (n
m) in the target cluster. We increase the values from

n
m = 0.5 to 2.5 for both datasets. Figure 4.2 reports the mean and standard deviation

of change in the target item’s predicted rating when cluster 2 is targeted against the

increasing ratio of n
m . As expected, it shows decreasing relative change in predicted rating

as the ratio increase from 0.5 to 2.5 for both Movielens and Goodreads dataset. This is

because when n
m < 1, the presence of a higher number of fake user weights compared to

true user weights makes it easier for fake users to shift the cluster weight Ũt. Thus, we

conclude that as the number of true users in the target cluster increases relative to the

number of fake users, it becomes harder to attack the item.

Effect of Attack on Non-Target Items and Non-Target Clusters

Figure 4.3, gives the correlation of each item with the target item v/s the change in

the predicted rating of that item in the target cluster. We can see a linear relationship

indicating that the effect of the attack on non-target items in the target cluster depends

on the correlation between non-target item vector Vj and target item vector Vj∗ .

The effect of the attack is not expected to be visible in non-target clusters since almost

all fake users enter target cluster t. In Figure 4.4, we take the case of n
m = 0.5 and cluster-

wise user distribution 250− 250− n− 250 which gave the maximum change in predicted

rating for the target item in Figure 4.2 and show the cluster wise change in the target

item predicted rating when cluster 2 is targeted. As predicted, we can see that non-target

clusters 0, 1, 3 show negligible change in predicted rating after the attack for both datasets.

The results are similar for any attack size or cluster population size. Keeping V constant

results in the attack effects being isolated to the target cluster alone (when all fake users

enter the target cluster).

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 64

(a) Movielens (b) Goodreads

Figure 4.2: Plot comparing the change in predicted rating in target cluster against the
increasing ratio of true users (n) to fake users (m) in the target cluster (n

m)

(a) Movielens (b) Goodreads

Figure 4.3: Plot comparing the change in the predicted rating of an item in the target
cluster against correlation values between the target item and the other items

(a) Movielens (b) Goodreads

Figure 4.4: Plot comparing the change in the predicted rating of the target item across
clusters when cluster 2 is targeted

4.6.2 Fix U , update V

Before we go ahead and show the results illustrating our findings, let us briefly recall our

key observations of approach 2.

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 65

1. Increasing true ratings to target items from the target cluster guarantees a reduction

of the effect of the attack in the target cluster while increasing true ratings from non-

target clusters offers no guaranteed protection from attack.

2. Attacks against users in a target cluster may ’leak’ and affect users in other clusters.

The attack may increase or decrease change in predicted rating in other clusters

depending on their correlation with the target item feature vector after the attack.

This shows that the V vector propagates the effect of the attack to all non-target

clusters. This contrasts the case when V is kept constant, causing the attack to be

isolated to the cluster where the fake users are present.

3. Simply increasing the true user population (n) relative to the fake user population

(m) does not reduce the change in the target item predicted rating in the target clus-

ter after the attack. This is in contrast to when we update U (keeping V constant),

where increasing n relative to m reduces the effect of the attack.

First, we show that increasing true ratings from the target cluster reduce the attack’s

impact as predicted. Then, we study the attack when the target item is rated by no

users in the target cluster but by users in other clusters. For both experiments, we also

illustrate the mechanism of how akku
t
k and

∑d
i=1,i ̸=k akiu

t
i of equation 4.5 work to result

in the observed output. Finally, we show that increasing the number of true users in the

target cluster does not reduce the impact of the attack on Vj∗ .

Varying Ratio of True Ratings (Nt) to Fake Ratings (Nf) in Target Cluster

We consider attacks when the target item has received true ratings in the target cluster but

no ratings in the non-targeted clusters. As discussed in previous sections, we expect that

increasing true ratings from the target cluster will reduce the attack’s impact. Particularly,

we study the effect of attack with increasing true ratings Nt from the target cluster given

Nf fake ratings. To illustrate, we increase values for Nt
Nf

from 0.05 to 2.5 for Nf = 100

fake ratings and treat it as the target item. We note that the results presented show a

similar trend for any choice of increasing ratio.

Results:

Figure 4.5 reports mean and standard deviation plots comparing the change in the pre-

dicted rating of the target item in target cluster 2 after the attack versus the ratio Nt
Nf

. It

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 66

can be seen from both Figures 4.5(a) and 4.5(b) that an item with Nt
Nf

= 0.05 shows the

largest mean shift in predicted rating after the attack compared to an item with Nt
Nf

= 2.5

in the target cluster. i.e., it is harder to change the predicted rating of the target item

after the attack as the number of true ratings Nt received by the target item increases in

the target cluster.

Illustration of Update Mechanism:

Let us walk through the update mechanism here. Specifically, in this particular case,

since all true ratings come exclusively from the target cluster, as discussed in Section

4.4.2, lemma 17 case (1) predicts equation 4.5 to be such that each term in
∑d

i=1,i ̸=k akiu
t
i

always has a sign opposite to sgn(akku
t
k). Also, recall that as the true ratings Nt increase,

diagonal term akk decreases.

For Nt
Nf

= 0.05 i.e. when number of true ratings Nt is least, diagonal values akk are

higher such that all features follow mechanism of case 2a : |akkutk| > |
∑d

i=1,i ̸=k akiu
t
i|,

thus updates to feature vk is similar to scaling of utk. Table 4.2a reports v̂k − vk update

values for each feature k of the target item vector for both datasets. Let us focus on

|v̂k − vk| corresponding to large |utk| in both datasets 9. From the Table, we can see that

|v̂k − vk| corresponding to k = 0, 1, 4 in ML and k = 2, 3, 4, 6 in GR result in large values

contributing more to the inner product ŨT
t V̂j∗ resulting in the higher relative change in

rating values for Nt
Nf

= 0.05.

As the true ratings Nt increases when ratio Nt
Nf

increases from 0.05 to 2.5, diagonal

term akk decreases, bringing down |akkutk| causing the gap between the two terms |akkutk|

and |
∑d

i=1,i ̸=k akiu
t
i| to reduce. Thus |v̂k − vk| will tend to smaller values. From table

4.2a, we note all feature’s |v̂k − vk| decreasing to smaller values for Nt
Nf

= 2.5. A similar

reduction in magnitude can be observed for the Goodreads dataset. This translates as the

effect of attack decreasing for increasing ratio as illustrated by Figure 4.5.

Leakage of Attack to Non-Target Clusters:

To see the effect of attack leakage to non-target clusters, Figure 4.6 further breaks down

the change in rating by the user clusters when cluster 2 is targeted in Movielens and

9Recall with Ũt constant, change in rating after attack is given by Ũt
T
V̂j∗−Ũt

T
Vj∗ =

∑d
k=1 u

t
k(v̂

j∗

k −vj
∗

k).

Note v̂j
∗

k − vj
∗

k corresponding to a large |ut
k| will contribute more to change in rating than v̂j

∗

k − vj
∗

k

corresponding to a lower |ut
k| since such low |ut

k| will down-weight v̂j
∗

k − vj
∗

k values.

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 67

Nt
Nf

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

ML : Ũ2 0.71 0.61 -0.13 0.08 0.63 -0.04 0.18 -0.01 -0.12 -0.13

0.05 1.15 0.99 -0.23 0.15 1.03 -0.07 0.29 -0.02 -0.20 -0.20

2.5 0.28 0.23 -0.05 0.04 0.28 -0.05 0.07 -0.03 -0.05 -0.06

GR : Ũ2 -0.11 -0.22 -0.47 0.42 -0.53 -0.19 -0.47 0.26 -0.30 -0.10

0.05 -0.21 -0.43 -0.90 0.81 -1.04 -0.37 -0.90 0.51 -0.60 -0.22

2.5 -0.05 -0.10 -0.22 0.20 -0.28 -0.07 -0.21 0.15 -0.13 -0.009

(a) True rating distribution 0− 0−Nt − 0

Nt
Nf

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

ML : Ũ2 0.71 0.61 -0.13 0.08 0.63 -0.04 0.18 -0.01 -0.12 -0.13

0.05 1.43 2.45 -0.35 -0.16 0.23 0.72 -0.47 0.45 -0.64 -0.11

2.5 1.34 2.45 -0.35 -0.16 0.12 0.80 -0.47 0.49 -0.71 -0.10

GR : Ũ2 -0.11 -0.22 -0.47 0.42 -0.53 -0.19 -0.47 0.26 -0.30 -0.10

0.05 -0.02 -1.84 -1.40 1.26 -0.75 -0.55 -0.45 1.08 -0.44 0.83

2.5 -0.01 -1.90 -1.37 1.21 -0.56 -0.49 -0.40 1.09 -0.47 1.06

(b) True rating distribution Nt −Nt − 0−Nt

Table 4.2: Target cluster 2 feature vector and target item update vector
ˆ
vj

∗

k − vj
∗

k values
for Movielens and Goodreads Dataset for d = 10 features

Goodreads dataset. It can be seen from Figure 4.6 that the non-target clusters also show

a positive change in the predicted rating 10. The attack, therefore, effectively fails to be

focused on the target cluster.

(a) Movielens (b) Goodreads

Figure 4.5: Plot comparing the relative change in predicted rating in target cluster 2
against increasing ratio Nt

Nf
in the target cluster

(a) Movielens (b) Goodreads

Figure 4.6: Plot comparing the relative change in predicted rating across clusters when
targeting cluster 2 with Nt

Nf
= 0.05

10We note that there may be target items that, after transformation, result in leakage such that non-
target clusters show a negative relative change in rating. But we do not find an item that may illustrate
such behavior here. This is because, for our experiments, we choose randomly from a set of target items
that has a reliable empirical mean ≤ 3. Such behavior may be found for a larger set of representative
target items or in other datasets.

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 68

Varying Ratio of True Ratings (Nt) to Fake Ratings (Nf) in Non-Target Clus-

ters

We now consider attacks when the target item has received true ratings in non-target

clusters but no ratings in the targeted cluster. Particularly, we study the effect of attack

with increasing true ratings Nt from each non-target cluster given Nf fake ratings. To

illustrate, we increase values of Nt
Nf

per non-target cluster from 0.05 to 2.5 given Nf = 100

fake ratings. Since no true ratings come from the target cluster, by theorem 3, increasing

total true ratings may not reduce the attack’s impact in the target cluster.

Results:

Figure 4.7 reports the measured mean change in the target item’s predicted rating in the

targeted cluster against increasing Nt
Nf

. It can be seen that the decreasing trend is much

slower (almost negligible) compared to what was reported in Figure 4.5, signifying that

even with a larger absolute number of true ratings compared to the previous case, the

attack is effective in the target cluster. i.e., the large overall number of true ratings fails

to protect users in the targeted cluster as presumed.

Illustration of Update Mechanism:

Let us look at the update mechanism here. Since true ratings are not exclusively from the

target cluster, as predicted by lemma 17 case (2), equation 4.5 is such that terms akiu
t
i

in summation do not have the same signs. This reduces the overall magnitude of term∑d
i=1,i ̸=k akiu

t
i compared to last section where all the terms in the summation had the same

sign. Thus even though diagonal terms akk show a decreasing trend with increasing Nt, the

behavior of summation terms may cause |akkutk| > |
∑d

i=1,i ̸=k akiu
t
i| even at higher ratios

for some features, resulting in the reported greater relative change in predicted rating at

these ratios. For example, note in Table 4.2b how feature vj
∗

k especially corresponding to

larger magnitude utk (k = 0, 1, 4 in ML and k = 2, 3, 4, 6 in GR), result in large magnitude

of v̂j
∗

k despite increasing ratio. This contrasts our observation from Table 4.2a.

Leakage of Attack to Non-Target Clusters:

Similar to in Figure 4.6, we expect to see leakage effect in non-target clusters. This is

illustrated by Figure 4.8 which breaks down the change in rating by clusters when cluster

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 69

2 is targeted in Movielens and Goodreads datasets. You can see that the attack’s impact on

non-targeted clusters is lower here than suggested by Figure 4.6. This is because compared

to the last section where all positively correlated features across clusters underwent case

2a mechanism, due to properties of A−1 here,
ˆ
vj

∗

k − vj
∗

k corresponding to many positively

correlated cluster features (e.g.: k = 3, 5, 6, 7 in ML and k = 9 in GR) undergo case 2b

mechanism causing a shift in directions dissimilar to not only utk but all corresponding kth

features across non-target clusters g ∈ G \ t.

Thus in these two datasets, the properties of U, V values are such that unless true

ratings also come from the target cluster, it is tough to reduce the effect of attack within

the target cluster.

(a) Movielens (b) Goodreads

Figure 4.7: Plot comparing the relative change in the predicted rating in target cluster 2
against increasing ratio Nt

Nf
per non-target cluster

(a) Movielens (b) Goodreads

Figure 4.8: Plot comparing the relative change in predicted rating across clusters against
ratio Nt

Nf
= 0.05 per non-target cluster.

Varying Ratio of True Users (n) to Fake Users (m) in Target Cluster

In this section, we investigate the impact of the target cluster’s true user size (n) relative

to the fake user size (m) on the effectiveness of the attack.

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 70

For this experiment, we fix the distribution of ratings as Nt
Nf

= 0.05 and Nf = m = 100

since it resulted in the maximum change in relative rating in Figure 4.5. Then we increase

the ratio of n
m from 2.5 to 10. Figure 4.9 reports the mean and standard deviation of

change in the target item’s predicted rating when cluster 2 is targeted against increasing

values of n
m . We can see how the increasing target cluster size does not affect the attack’s

impact. The relative change in predicted rating after the attack remains almost the same

as expected.

(a) (b)

Figure 4.9: Plot comparing the relative change in the predicted rating in target cluster 2
against increasing target cluster size n

4.6.3 Discussion

The objective of the targeted attack study on MF-based RS is to gain a better understand-

ing of how attacks propagate and how the individual behaviors of feature matrices U and

V contribute to this propagation. By holding one feature matrix constant and updating

the other, we isolated the effects of attacks on each matrix and observed how these effects

translate to the targeted promotion of items in RS. We can use the observations outlined

to make updates to RS more robust.

We concluded that Ui values corresponding to all true users i in a RS are unaffected

by the injection of fake ratings when only matrix U is updated to incorporate the new

ratings, keeping V constant. The group feature vector Ũt of the target group t is affected

due to the presence of fake users in the target group after the attack. This effect on Ũt

decreases when the number of true users in the target cluster increases. Based on these

observations, one possible defence mechanism to reduce the changes to a cluster centre

might be introducing dummy users into any low populated cluster g with their Ui vectors

set close to cluster centre Ũg. This may help reduce the impact of an attack by making it

harder for injected fake users to shift Ũg while not affecting the predicted ratings of the

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 71

cluster. However, adding such users may lead to a higher computational cost. Therefore,

assigning weights to existing users based on their reliability could be a more efficient

solution. Studies of this nature that introduce a weighing factor of trust, reputation, or

reliability of users in RS have been explored in [O’Donovan and Smyth, 2005, Resnick and

Sami, 2007].

Further, we noted a reduction in the impact of attacks when V remains constant. It is

the target item vector Vj∗ that is more sensitive to the injection of fake ratings and serves

to leak attack effects to all the clusters in RS when updated. Consequently, updates to

latent feature matrices need not be performed frequently together. By updating matrix V

less frequently and updating only the U matrix when new users enter, we can decelerate

the propagation of attack effects across user clusters and allow monitoring for suspicious

trends in item’s ratings or feature vectors over time.

Another way to protect the columns of V matrix from possible attacks is by increasing

the true ratings to items i.e. providing dummy ratings to items rated less frequently in a

cluster might provide immunity against malicious alterations to their item vectors. Ratings

for such items may also be sourced from trusted user communities, such as professional

critics, trusted user representatives [Liu et al., 2011b, Shi et al., 2017b], or filter bots

[Good et al., 1999].

Alternatively, prioritising strategies that detect outlier data and subsequently remove

them from feature matrix re-training, or adopting robust matrix factorization methods

that are insensitive to outliers can also potentially enhance the resilience of the feature

vectors against attacks. For example, it is well known that the L2 norm minimization in

equation 4.1 is sensitive to outliers in the data. In statistics, there are different strategies

to make estimators more robust to outliers (and hence attacks). For instance, the con-

ventional L2 norm in regularisation can be substituted with the L1 norm, in which the

errors are not squared, so the impact of large errors is reduced. This was first suggested

by [Croux and Filzmoser, 1998]. Further study of robust MF under L1 norm can be found

in [Ke and Kanade, 2005, Eriksson and Hengel, 2010, Zheng et al., 2012, Wu et al., 2020].

Alternatively, [Xiong et al., 2011] proposes a constrained optimisation problem that ex-

cludes the outliers from the effort of low-rank approximation, subject to the assumption

that the number of outliers is constrained. Similarly, [Mehta et al., 2007] study robust

statistical methods, in particular M-estimators, to generate stable recommendations in

the presence of noise and spam. Thus, a potential defence mechanism could be exploring

Chapter 4. Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation
Recommenders 72

robust MF similar to the aforementioned methods.

For our analysis, we examined a single update step for either the U or V matrix when

new users join the system. We anticipate that the analysis can be extended during the

model’s alternating updates until convergence.

As we discussed in Section 4.4.1, Ui relies on the item vector Vj and the rating value

Ri,j of all items j ∈ V(i) rated by user i. In the scenario of a single update, the Ui values

for genuine users remain constant since V is fixed. However, when we continue alternating

updates until convergence, subsequent updates to Ui involve the most recently updated V ,

potentially leading to changes in Ui for users. These changes are expected to be modest

given that Ui depends on all items rated by user i, and since the target item j∗ is just one

item in the set, the alterations may not be substantial.

However, the update of Vj∗ for a target item j∗ can result in significant alterations

in response to fake ratings because Vj∗ relies on all the ratings received by item j∗ as

discussed in Section 4.4.2. Consequently, after convergence, both Ui and Vj∗ are expected

to undergo modification, with Vj∗ experiencing the most notable changes comparatively.

4.7 Conclusion

This work studied the effect of user-cluster targeted data poisoning attacks on an MF-

based RS by evaluating the changes after the attack on user and item feature matrices

U, V . We analysed the mechanism of how U and V matrices change after the injection of

fake ratings and how these changes help propagate targeted attacks. We also illustrated

our findings using two real-world datasets. We further showed that the effectiveness of an

attack on a target item’s feature vector is influenced by the distribution of the number of

ratings received by the target item. We find that items with fewer ratings in the target

cluster are more susceptible to attack.

We conclude that a simple attack with limited knowledge of user preferences suffices

to target a specific user cluster precisely. In the next chapter, we use these observations

to research defensive approaches in MF-based RS that are simple yet effective and can be

easily used in existing systems.

Chapter 5

Attack Detection Using Item

Vector Shift in Matrix

Factorisation Recommenders

5.1 Introduction

In the previous chapter, we examined the susceptibility of MF-based RS to targeted data

poisoning attacks. Building upon the insights gained from the analysis, in this chapter,

we investigate strategies for enhancing MF’s resistance to such poisoning attacks.

Recall that in data poisoning attacks, an adversary creates fake profiles with carefully

crafted ratings for items and attempts to target an item to increase/decrease the item’s

rating, thus making the item more/less likely to be recommended by the system [Lam

and Riedl, 2004]. We assume that the attacker can only inject a limited number of fake

users. Each fake user rates a limited number of items (including the target item and

other non-target items called filler items) to evade suspicion. To detect these attacks,

various approaches have been explored over the years. For example, exploiting features

of attack profiles to distinguish “attack” profiles from “regular” profiles [Williams et al.,

2007, Chirita et al., 2005], assigning reputation scores to users in RS [Resnick and Sami,

2007] and analysing rating distributions of items in time [Gao et al., 2015, Zhang et al.,

2006] are some of the approaches explored to make RS robust.

Recall that in the typical paradigm of MF in RS, items are recommended based on the

proximity of the item vectors to the user vectors in the latent space. The findings from

73

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 74

previous chapter indicates that when a targeted attack, such as a push attack, is launched

on a particular item, it will cause a shift of the item vector in the low-dimensional space,

impacting the item’s recommendation. Success of the attack depends on how much it can

shift the item vector distribution significantly. Based on this observation, we propose a

detection approach that examines the shift in item vectors.

We know that the effect of fake ratings is largest in groups, while individual fake ratings

have negligible effects, especially in small numbers [Mehta and Nejdl, 2009]. As a result,

eliminating clusters of fake ratings rather than individual ones makes sense. If the feature

vector of an item changes significantly after a block of ratings enters the RS, we can suspect

that the ratings are fake and avoid using them to train the U, V matrices. In addition,

many literary works assume that the target attack rating is always the highest value on

a scale. An attacker can avoid detection based on such assumptions by simply providing

a rating value one step lower [Williams et al., 2006]. The proposed detection method

significantly improves the identification of these obscured attack tactics highlighting the

importance of considering rating variability in shilling detection methods.

In this chapter, we present a novel detection method that is based on the deviation

in the item vector and takes into account an item’s overall preference information. With

only 20−25 true ratings per user cluster required during training, the experimental results

achieve a superior detection precision over existing state of the art detection strategies.

5.2 Related Work

Various shilling detection methods have been proposed that defend by detecting and re-

moving fake profiles in RS, focusing mainly on extracting the signatures of authentic

user profiles. The generated profiles will deviate statistically from those of authentic

users and several attributes for detecting these anomalies are examined in [Burke et al.,

2006, Williams et al., 2007, Chirita et al., 2005]. But a major obstacle in user focussed

detection method is that it can recognize the distinctive signature of only the known at-

tack model. For newer or hybrid attack models, the detection methods may fall short. In

[Mehta and Nejdl, 2009], authors exploit the similarity structure in shilling user profiles

to separate them from normal user profiles using unsupervised dimensionality reduction

methods. While the approach works well for attacks that show a good correlation among

attack profiles, [Cheng and Hurley, 2009] discusses effective attack strategies dropping

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 75

the assumption of high similarities among malicious attack profiles. They demonstrate

that dimensionality reduction-based detection methods cannot detect such low-diversity

attacks accurately. Detecting shilling attacks in a model-free approach involves identi-

fying abnormalities in the rating distribution of items as discussed in [Bhaumik et al.,

2006, Zhang et al., 2006, O’Mahony et al., 2006, Yang et al., 2018]. For example, [Zhang

et al., 2006] uses item anomaly detection based on sample average and sample entropy in a

time series and only tested their method on dense items with at least 500 ratings. Authors

in [O’Mahony et al., 2006, Yang et al., 2018] look at the deviation of target item ratings

from predicted ratings to identify abnormal ratings. Other works such as [Mehta and

Nejdl, 2008, Hidano and Kiyomoto, 2020, Resnick and Sami, 2007, Deldjoo et al., 2021]

aim to build manipulation-resistant RS to limit the damage from injected fake ratings.

To the best of our knowledge, no previous work has investigated leveraging item pref-

erence vectors to detect attacks in MF-based RS. This detection approach provides the

next step by performing well against obfuscated and unobfuscated attacks while requiring

a little amount of training data.

5.3 Item Vector Shift Based Detection Model

5.3.1 Utilizing Item Vectors for Improved Anomaly Detection

Given a target item j∗ and its item vector Vj∗ based on initial rating information, we can

recursively compute updates to Vj∗ as we discussed in the previous chapter 1. i.e. let V̂j∗

be the updated Vj∗ after receiving a block of m new ratings, i.e. let a block of m users

with feature vectors in X ∈ Rd×m and target item ratings in vector y ∈ Rm×1 enter RS.

Given A−1 =
(∑

i∈U(j∗) UiU
T
i + λI

)−1
where U(j∗) is the set of all true users who initially

rated item j∗, we have,

V̂j∗ − Vj∗ = A−1X
(
I +XTA−1X

)−1 (
y −XTVj∗

)
(7.5 revisited)

The updated position of the item vector in the latent space given by equation 7.5

depends on three factors: the initial user preference vectors of users who gave ratings

(represented by matrix A), the feature values of users who provide the new ratings (rep-

resented by X), and the deviation factor (represented by y −XTVj∗).

1Proof of Theorem 2 in Appendix B, Section 7.2.3

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 76

The term y−XTVj∗ measures how much of the new rating vector (y) for the target item

can be explained by the predicted rating (XTVj∗), which helps to distinguish between fake

and real ratings. If XTVj∗ can already explain y, then the term is zero and V̂j∗ is equal to

Vj∗ . However, a significant deviation is anticipated when compared to ratings from actual

users because fake ratings are typically set to the maximum or nearly maximum value on

the rating scale. If there is no significant deviation, the target item already has a high

rating and is not worth further attacking. In addition to the deviation factor, the shift

also depends on matrix X. The knowledge that the attacker has access to determines the

feature vector values of attack profiles (X). Thus the shift to the item vector also depends

on the information available to the attacker.

To illustrate how attacks may shift the target item vector, suppose true users have

U = [1,−1] or U = [−1, 1]. i.e. the first set of users like items with V = [1, 0] and

dislike items with V = [0, 1], but the second set of users are the opposite. Then an attack

against the first set of true users keeping U = [1,−1] constant to increase the rating of

an item with V = [0, 1] may be performed by shifting V = [0, 1] to V [1, 0]. Then such a

shift, while it increases the rating in users with U = [1,−1], would decrease the rating in

group U = [−1, 1]. So the attack effects leaks to all clusters due to the changes to item

vector Vj∗ . The approach that is adopted in this work is to consider the consistency of

the preference of user clusters to the target item vector.

Utilising item feature vectors for anomaly detection provides a distinct advantage over

existing methods. Unlike other methods that rely solely on attack profile signatures or

analysing item rating distributions, the item feature vectors capture the effect of both of

these factors, promising a more robust and effective approach to detecting shilling attacks

in RS.

5.3.2 Proposed Item Vector Based Detection (IVD) Method

Consider that the target item j∗ initially received no ratings in the RS. Then, at random,

we select a group and a user from that group to offer a rating. The iterative change in

distance (mean and standard deviation) between the updated V̂j∗ and the last updated Vj∗

after each block of 5 true ratings is depicted in Figure 5.1(a). We see that the item vector

shifts less from its previous value in response to new ratings after roughly 100 in total true

ratings, indicating that the item’s preference has been established and that additional true

ratings contribute little new preference information.

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 77

(a) Effect of Increasing True Ratings on Vj∗ (b) Vj∗ Deviation from True, Fake Ratings

Figure 5.1: Plot illustrating the IVD method in MovieLens 100k dataset

Given a target item j∗, we randomly select a cluster g as a reference in the d-

dimensional vector space. We hypothesize that further real ratings will not significantly

push the vector Vj∗ away from cluster g, because true ratings rarely generate large changes

in current preferences, as previously demonstrated. We suspect that the ratings are fraud-

ulent if any block of new ratings leads the item vector to deviate significantly from reference

cluster g. Significant deviations from the reference cluster may indicate that the new rat-

ings are attempting to manipulate the recommendations by shifting the item vector into

a different region of the vector space.

To demonstrate this concept, Figure 5.1(b) computes the distance (Dg,ĵ∗) between V̂j∗

to cluster g and compares it to the distance (Dg,j∗) between initial Vj∗ and cluster g for

each false (indicated by red plot) and true rating blocks 2 (indicated by blue plot). As we

can see, each block of fake rating results in a larger shift away from the initial distanceDg,j∗

(reference preference information: green line), indicating a shift in preferences, whereas

each block of real rating results in shifts relatively close to the reference preference Dg,j∗ .

This observation allows us to recognise and eliminate fake ratings from the RS. Note

that the model can continue to recommend to suspected or flagged users. Thus, only

suspected ratings are removed before the RS retrains the U, V to generate an updated

prediction matrix.

2We select a block of 20 new ratings because attack sizes less than 1% do not lead to significant changes
in the item vector, as we will elaborate later in Section 5.5.1.

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 78

Algorithm 3: Item Vector Based Detection Algorithm

Input: Vj∗ , Cluster g, Reference Euclidean Distance Dg,j∗(Ũg, Vj∗), Threshold

=th

1 for block index n = 1, 2, 3. . . . do

2 Find updated item vector V̂j∗ from eqn 7.5

3 Calculate Dg,ĵ∗ between V̂j∗ and Ũg;

4 if Dg, ĵ∗ > Dg,j∗ + th then

5 Remove the new block of ratings from the RS training process

6 else

7 Keep the new block of ratings for RS training process

5.4 Experiments

5.4.1 Datasets

We evaluate the effectiveness of the attack on the MovieLens dataset (943 users rating

1682 movies, contains 100000 ratings from 1-5) which is widely used across literature

for evaluating recommender systems under attack. Additionally, we use larger Movielens

dataset (6040 users, 3706 movies, contains 1 milion ratings from 1-5) and a Netflix dataset.

We take a dense subset of the Netflix dataset by selecting the top 1000 items and the top

10000 users who rated these items.

5.4.2 Evaluation Setup

We assume that the datasets considered have no existing fake profiles, thus the attack

profiles we add are the only fake profiles present. To a trained MF-RS, fake users are added

which all target the same item which is selected at random. Fake users are generated using

the well studied Average, Random and Target attack models. These new ratings were not

part of the initial training data, and detection algorithms aim to identify and remove the

fake ratings, (and sometimes the fake profiles themselves), to prevent their inclusion in

the subsequent training update.

5.4.3 Attack Model

The attackers give high ratings to the target item to make it more visible, and a set of

items are rated to create a fake user profile that mimics actual user behaviour. The rating

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 79

distribution of these filler items determines the type of attack. We report results for two

standard attack profiles mentioned in the literature: Random Attack and Average Attack

[Lam and Riedl, 2004]. From the discussion in Section 2.3.1, the Random Attack is a

zero-knowledge attack where ratings to filler items in each rating profile are distributed

around the overall mean of items and the Average Attack distributes the ratings for filler

items in attack profiles around the mean for each item.

Additionally, we look at the sophisticated Target-Cluster Attack [Shams and Leith,

2022], where attackers target a specific user cluster 3 by sampling filler ratings from a

Gaussian distribution using the mean rating of items in the RS. This is a reasonable

assumption since such aggregate user preference information can often be obtained from

publicly available sites as we discussed earlier in Section 4.3.2.

Target Item Ratings

We consider items with ground truth average empirical rating < 3.5 in all user clusters and

with atleast 20 − 25 true ratings per user cluster, and attack profiles assign a maximum

rating value to promote it in the RS. To make the detection harder, we also report results

when using the target-shifting obfuscation technique [Williams et al., 2006], which involves

shifting the rating given to the target item from the maximum rating to a rating one step

lower.

Additionally, we also evaluate the effect of the choice of filler items. Choosing filler

items appropriately makes the generated profiles similar to the genuine profiles making it

harder to spot fake users.

5.4.4 Baseline Detection Approach

In a series of experiments, the presented method’s detection performance is compared with

the following baselines. Here is a brief description of the methods used:

• PCA-based: This method involves transforming the user-item matrix into a lower-

dimensional space using Principal Component Analysis (PCA). Each user profile

is then represented by three principal components. By analyzing the proximity

of profiles to the new space’s origin, potential attackers can be identified as users

exhibiting suspicious behavior. We fix the r = 10% i.e. the top 10% of the users

given by PCA is suspected as fake users. [Mehta and Nejdl, 2009].

3We randomly choose g = 2 to target. Results are similar for any chosen g

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 80

• MPE-based: This method utilizes the mean prediction error (MPE) for individual

items. It calculates the deviation between predicted ratings and actual ratings to

identify anomalous rating behavior. If the item has significant MPE values, potential

anomalies in the user ratings to the item can be detected [Yang et al., 2018]. We fix

the threshold as 1.5

In Section 5.3.1, we discussed how IVD captures both the signatures of attack profiles

and the deviation in item ratings, offering a more holistic approach to attack detection in

RS. Several existing approaches discussed in Section 5.2 concentrate solely on one of these

factors. They either utilize user profile features to discern fake profiles or concentrate

solely on changes in item ratings. Among these, we omit comparisons against supervised

approaches for fairness. Instead, we focus on unsupervised methods and select two base-

lines known for their high detection accuracy and stability against various filler and attack

sizes. The baselines selected, each focus on factors corresponding to either user profiles

or item deviation, to compare against IVD’s performance. For instance, PCA assesses

the overall user profiles, while MPE examines the deviation in target item ratings. This

comparison allows us to understand how IVD overcomes the limitations of relying solely

on a single detection factor and bridges the gap in these approaches.

5.4.5 Evaluation Metric

We evaluate detection performance using two metrics: detection rate and false alarm rate.

The detection rate is calculated by dividing the number of times of detected attack ratings

by the total number of times fake rating blocks were inserted. The false alarm rate, on

the other hand, is determined by the number of true rating blocks predicted as anomalies

divided by the total number of true rating blocks inserted. The reported results are an

average over 50 randomly chosen target item from the set of potential target items. We

set the threshold to th = 0.07 for IVD

5.5 Results and Discussion

In this section, we compare the performance of IVD against two state of the art detection

strategies that reports a high detection rate and very low false alarm rate, namely PCA

method [Mehta and Nejdl, 2009] and MPE method [Yang et al., 2018]. Both methods are

stable against attack and filler sizes with > 90% detection rates as we will see later.

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 81

But both approaches have their limitations. For example, PCA works by observing

that the profiles of shillers are very similar. They interpret users as variables (i.e. the

dimensions of the data are the users, and the observations are the item ratings), then

we have data where a number of dimensions are very similar and PCA can find a set of

variables (users) which are highly correlated. Thus an attack profile that is undetectable

by the PCA detector must reduce the differences from genuine profiles. The key factor here

is in filler selection. Choosing filler items appropriately can bring down the correlation

among fake users making them similar to other true users in the RS. When filler items are

selected randomly, they are likely to have smaller pairwise overlaps compared to genuine

users. Genuine users are more likely to rate certain items more frequently than others.

Based on this observation, study by [Cheng and Hurley, 2009] has shown that an attacker

should choose filler items according to their overall popularity among the genuine user

base. A simple and effective strategy to obfuscate attacks is to choose filler items with

equal probability from the top x% of most popular items, rather than from the entire

catalogue of items, to make detection harder.

In Figure 5.2, we plot the users in RS in the PC space. The coordinates here are the

coefficients of each user in the 1st and 2nd principal component. Figure 5.2(a) shows how,

due to their low PC scores, the fake users are focused around the origin in the PC space.

To identify fake users, PCA method assumes the two coefficents of each user represent

a point in space and sort the points in order of their distance from origin. The top r%

eliminated users will contain fake users with more than 90% accuracy. The PC scores

are difficult to distinguish when smaller subsets of popular item are used as filler items

as can be observed from Figure 5.2(b) and thus fails to identify fake users. Figure 5.4(a)

shows how the detection rate of PCA against standard average attack. The detection rate

decreases as the selection of most popular items is reduced to smaller subsets, with 0%

detection for x ≤ 20. Although not demonstrated separately, we note that PCA shows no

perceivable drop in detection accuracy in the face of target rating obfuscation as discussed

in [Mehta and Nejdl, 2009]. This is because these are linear transformations, which are

not very effective when linear dimensionality reduction is performed.

MPE, on the other hand, is more concerned with deviations in item predicted ratings

than with user profiles. It is relatively resistant to filler selection strategies and produced

good results in the studies. The capacity of MPE to identify tiny changes in item predicted

rating deviation made it a desirable tool for attack detection.

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 82

(a) PC Space under Random Filler Choice (b) PC Space Under top 20% Filler Choice

Figure 5.2: Clusters in 2D Space for Normal Users and Fake Users (Avg Attack) in ML-
100k

(a) Target Item Rating: Maximum (b) Target Item Rating: Obfuscated

Figure 5.3: Distribution of MPE for Genuine and Fake Rating Blocks in ML-100k

(a) PCA Performance Against Filler Choice
Obfuscation

(b) MPE performance against Target Rating
Obfuscation

Figure 5.4: Detection Accuracy for PCA and MPE in ML-100k

The assumption is that attackers just focus on the target item and rate it with the

maximum or lowest rating many times in order to promote or demote the item to the

recommendation list. The simple approach of obfuscating the target item rating from a

maximum value to a value one step lower, on the other hand, leads the prediction error

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 83

to be similar to that of the genuine user base and fails to detect the fake activity.

The MPE for average attack with and without target rating obfuscation approach is

plotted in the Figure 5.3. Figure 5.3(a) depicts how the fake ratings form a cluster away

from true users due to their significant deviations. However, when target rating obfuscation

is used, the MPE of false users becomes difficult to discern from that of legitimate users as

is demonstrated in Figure 5.3(b). Figure 5.4(b) compares the performance of MPE against

standard attack model and when target rating is obfuscated for a fixed filler choice of top

20%. We can see that the detection rate decreases when compared to 100% detection

in un-obfuscated attacks. Thus, the choice of filler items has no effect on MPE, but the

target rating obfuscation does since without obfuscation, MPE results in perfect detection

for the x = 20% filler choice.

In the further sections, we compare how IVD performs under these obfuscation schemes

to PCA and MPE approaches, and we give findings for three different datasets. We demon-

strate that IVD performs more effectively than both techniques under these obfuscation

strategies.

5.5.1 Effectiveness of Attack Size and Filler Size

In this experiment, we simulate an attack by introducing fake profiles alongside the regular

user profiles in the recommender system. We examine how the performance of the IVD

method is affected by varying attack and filler sizes using the ML-100k dataset. The

findings from this experimentation hold true for larger datasets such as Movielens 1M and

Netflix. The focus on the 100k ML dataset allows for direct comparison with previously

reported results, as this dataset has been widely used to evaluate prior shilling detection

methods.

We consider diverse attack sizes (0.5%, 1%, 3%, 5%, 10%, 20%) and select the filler

items randomly from the top 60% of most popular items in the RS. We fix the number of

filler items to 10% of the total item count. In Figure 5.5(a), we observe that for attack

size < 1%, IVD fails to detect the presence of fake ratings. Detecting an attack’s impact is

challenging when attack sizes are small. This is because such low attack sizes are unable

to alter the item vector sufficiently to enhance the target item’s rating. As a result, the

attack’s effect on the target item is insignificant. Because IVD directly gauges attack

power, small and weak attacks are difficult to detect.

In Figure 5.5(b), we consdider various filler sizes (1%, 3%, 5%, 10%, 25%, 40%) for

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 84

a fixed attack size of 5%. We can see that altering filler size has little effect on IVD

performance.

Although we don’t report separately, the PCA and MPE methods demonstrate almost

flawless detection across diverse attack and filler sizes, corroborated by both the datasets

and findings in [Mehta and Nejdl, 2009, Yang et al., 2018]. It’s noteworthy that their

detection accuracy is influenced by filler selection and rating obfuscation respectively, as

elucidated in earlier sections.

Based on these findings, for the experiments, we fixed an attack size of 5% and a filler

size of 10% for the rest of the analysis. Attack sizes below 1% result in considerably

insignificant changes, rendering them uninteresting from the perspective of attack effects

on targeted item.

(a) Detection Rate for varying attack sizes.
Filler size=10%

(b) Detection Rate for varying filler sizes.
Attack size=5%

Figure 5.5: Effect of Attack and Filler Size IVD for ML-100k

5.5.2 Effect of Choice of Filler Items

Recall the discussion that the PCA defense strategy relies on the assumption that attackers

are more similar to each other than to the genuine user base. We choose filler items with

equal probability from the top x% of the most popular items. We report the detection rate

for the three methods against reducing the value of x from the top 60% to the top 10% of

the most popular items and compare the performance. Table 5.1, 5.2 and 5.3 report the

results for Average, Random and Target Attack respectively.

As expected, the PCA accuracy decreased significantly with increasing x% due to the

increase in similarity among attack profiles and genuine profiles. As demonstrated earlier,

detection becomes hopeless for x values less than 20% for all datasets. When filler items

are selected from the popular items, their preferences become more diverse and closer to

other genuine users who also rated these popular items and thus are less likely to form

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 85

a well-defined cluster. This leads to a reduced accuracy of PCA as it fails to effectively

distinguish attackers from genuine users.

However, both the IVD and MPE strategies still demonstrate high accuracy in com-

parison to PCA as discussed previously. This is because these detection methods are not

reliant on the correlation between fake profiles. Specifically, MPE focuses on the deviation

from the point of view of item predicted ratings rather than user profiles. As a result, it

is not significantly impacted by the choice of filler items, making it more robust against

variations in filler selection. Similarly IVD focuses on the deviation of the item feature

vector to new ratings. Fake user profiles have no direct impact on the item vector devia-

tion calculation 4.4.2. Rather than working with the profiles directly, IVD employs user

vector U of users who provide ratings to compute the updated item vector.

Defense Strategy/Dataset
Filler

filler@60 filler@40 filler@20 filler@10

IVD/ML-100k 1 1 1 1

MPE/ML-100k 1 1 1 1

PCA/ML-100k 1 0.58 0.0 0.0

IVD/ML-1M 1 1 1 1

MPE/ML-1M 0.96 0.97 0.95 0.94

PCA/ML-1M 0.96 0.31 0.0 0.0

IVD/Netflix 1 1 1 1

MPE/Netflix 1 1 1 1

PCA/Netflix 1 0.98 0.25 0.0

Table 5.1: Detection Rate for Different Defense Strategies and Datasets for Average
Attack over top x% filler. Attack size=5%, Filler size=10%

Defense Strategy/Dataset
Filler

filler@60 filler@40 filler@20 filler@10

IVD/ML-100k 0.84 0.85 0.97 1

MPE/ML-100k 1 1 1 1

PCA/ML-100k 1 0.83 0.0 0.0

IVD/ML-1M 0.87 1 1 1

MPE/ML-1M 1 1 1 1

PCA/ML-1M 1 0.63 0.0 0.0

IVD/Netflix 1 1 1 1

MPE/Netflix 1 1 1 1

PCA/Netflix 1 1 0.43 0.0

Table 5.2: Detection Rate for Different Defense Strategies and Datasets for Random
Attack over top x% filler. Attack size=5%, Filler size=10%

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 86

Defense Strategy/Dataset
Filler

filler@60 filler@40 filler@20 filler@10

IVD/ML-100k 1 1 1 1

MPE/ML-100k 1 1 1 1

PCA/ML-100k 0.93 0.58 0.0 0.0

IVD/ML-1M 1 1 1 1

MPE/ML-1M 0.80 0.89 0.83 0.88

PCA/ML-1M 0.94 0.25 0.0 0.0

IVD/Netflix 1 1 1 1

MPE/Netflix 1 1 1 1

PCA/Netflix 1 1 0.25 0.0

Table 5.3: Detection Rate for Different Defense Strategies and Datasets for Target At-
tack over top x% filler. Attack size=5%, Filler size=10%

5.5.3 Effect of Target Shifting Obfuscation

In this section, we will look at the effects of using target-shifting obfuscation in attack

techniques. For the experiment, we fix the filler selection to the top 20% of the items in

the datasets. The detection rates are shown in Table 5.4.

In terms of shilling detection rate, the IVD technique surpasses both MPE and PCA.

As previously noted in the previous sections, the reduced performance of PCA is primarily

attributable to the selection of filler items. In contrast, MPE performance suffers because,

when fraudulent users use target rating obfuscation, their MPE values may closely mir-

ror those of real users, making differentiation difficult as demonstrated in Section 5.5.

However, because IVD takes into account both the user vector of raters and the rating

deviation, it is more sensitive to changes from attacks even after target-rating obfuscation.

Defense Strategy/Dataset
Attack Type

Average Random Target

IVD/ML-100k 0.86 0.65 0.90

MPE/ML-100k 0.51 0.19 0.67

PCA/ML-100k 0.0 0.0 0.0

IVD/ML-1M 0.86 0.60 0.83

MPE/ML-1M 0.55 0.29 0.42

PCA/ML-1M 0.0 0.0 0.0

IVD/Netflix 1 0.93 1

MPE/Netflix 0.40 0.03 0.84

PCA/Netflix 0.22 0.40 0.25

Table 5.4: Results for Different Defense Strategies and Datasets under Target Rating
Obfuscation+Filler@20 Obfuscation

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 87

5.5.4 Reciever Operater Characterstics

The Receiver Operator Characteristic for the IVD method applied to two standard attack

strategies: Average and Random is depicted in Figure 5.7. We simulate genuine ratings

by drawing ratings from the empirical distribution of ratings for a group. When we need

a rating for the target item that the user has not rated, pick a second user from the same

group who has rated the item and merge the pair of user ratings.

IVD technique is applied to attack scenarios with fixed parameters: the top 20%

popular items as filler options, a filler size of 10%, and an attack size of 5%. For each

Average and Random attack case, we examine the ROC curve for the 1) maximum target

item rating model and 2) target rating obfuscated model.

For the un-obfuscated Average and Random attacks, we can see that IVD obtains a

100% detection rate with a false-alarm rate of less than 10% for both datasets.

When we apply rating obfuscation to these attack strategies, we find that detection is

achieved at 80% for the average attack and at 60% for the random attack for the same

false alarm rate of less than 10%. For the obfuscated attacks in both datasets, a near

perfect detection rate happens with a cost of approximately 35% false alarm rate. We

can see that IVD performs better at detecting Obfuscated Average attacks than Random

attacks. This is to be expected given that IVD directly gauges attack power. Obfuscated

Random attacks are more difficult to detect since they are simpler and less effective at

shifting the item vector.

(a) ML 100k: Average Attack (b) ML 100k: Random Attack

Figure 5.6: Reciever Operating Characterstics for ML100k Dataset

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 88

(a) ML 1M: Average Attack (b) ML 1M: Random Attack

Figure 5.7: Reciever Operating Characterstics for ML-1M Dataset

5.5.5 Discussion and Limitations

In the real-world deployment of RS, it’s not always wise to delete user profiles suspected of

being fake, as genuine users with specific interests may also be among them. IVD addresses

this by excluding ratings from suspected profiles during training while still recommending

items to them, ensuring user satisfaction without compromising system functionality.

In a large RS with numerous items, monitoring all items using IVD can be compu-

tationally expensive and unnecessary. Instead, vulnerable items (e.g., those with sudden

spikes in rating activity, a high number of extreme rating values, new items, or items

with few ratings in the RS) can be identified and given additional protection through

IVD. Monitoring can cease for sets of vulnerable items once they’ve received many true

ratings because it’s difficult and costly for an attacker to change ratings for items with

a substantial number of ratings, as seen in the previous chapter. Therefore, IVD can be

used alongside time series analysis methods or other rating behaviour monitoring methods

to reduce the detection scope. The following are the major limitations of the proposed

method:

• Cold Items: The proposed method assumes that initial ratings for new items can

be obtained in the RS. This is a reasonable assumption since, ratings for such items

may be obtained from trusted sources, such as professional critics, reliable user

representatives [Liu et al., 2011b, Shi et al., 2017b], or filter bots [Good et al.,

1999]. We could also randomly elicit ratings from users in the system to reduce the

risk of sampling fake ratings from false users already existing in RS. For instance,

Chapter 5. Attack Detection Using Item Vector Shift in Matrix Factorisation
Recommenders 89

Goodreads 4 and ’Voracious readers only’ 5 give away free copies of new books to

readers in exchange for honest ratings. At the same time, movie RS offer rewards for

watching new movies and tv series 6. We further assume that the randomly selected

users are real and that the likelihood of all initial users and ratings being fake is

low. We note that the RS does not have to wait for 20− 25 ratings per group before

recommending the new item to existing system users. We simply propose that the

RS avoid using unprompted ratings for the new item in the training process until it

receives ratings from reliable sources upto the threshold.

• A reasonable choice of reference and threshold are crucial in determining the perfor-

mance of the proposed approach. We demonstrated the detection in both a dense

dataset and two complete datasets. IVD results in reasonable performance in all

the cases. In practice, utilizing a single reference cluster as a broad assumption

may yield insights and preliminary findings. However, in order to create a viable

fake ratings detection mechanism, additional techniques such as dynamic references,

weighted references, or models that learn references adaptively over time can be

explored as part of future work. These methods may better capture the intricacies

of user preferences, deal with potential changes, and accommodate a wide range of

scenarios, resulting in increased detection accuracy.

5.5.6 Conclusions

We present a new approach for detecting shilling attacks that makes use of item preference

vectors. The Item Vector Deviation (IVD) technique provides an unsupervised and attack

model-free strategy that can be deployed directly to any target item, provided the RS has

sufficient rating information about the item in question to compute its initial preference

vector. Remarkably, as low as 20 − 25 ratings per user cluster were sufficient to produce

favorable outcomes across all examined datasets. The experiments confirm the sustained

effectiveness of the proposed strategy, achieving high detection accuracy with low false

alarms and even performs reasonably well against various obfuscated attack strategies.

4https://help.goodreads.com/s/announcements/a031H00000RKE8VQAX/

giveaways-for-authors-frequently-asked-questions?ref=kdpnl
5https://voraciousreadersonly.com/
6https://www.amazon.in/b/ref=as_li_ss_tl?node=15697217031&ref_=dvm_crs_merch_in_ai_

slashpv_P_watch&wint2_header&pf_rd_m=A1K21FY43GMZF8&pf_rd_s=merchandised-search-2&pf_rd_

r=4N0T0PVXWA9S566NFGQV&pf_rd_t=101&pf_rd_p=51f6c505-5ad6-4b9c-b9b6-91450c336884&pf_rd_

i=10882806031&linkCode=sl2&tag=thinkerviewsc-21&linkId=eb862e43198dfa2f8e5a415bb4db6f26&

language=en_IN

https://help.goodreads.com/s/announcements/a031H00000RKE8VQAX/giveaways-for-authors-frequently-asked-questions?ref=kdpnl
https://help.goodreads.com/s/announcements/a031H00000RKE8VQAX/giveaways-for-authors-frequently-asked-questions?ref=kdpnl
https://voraciousreadersonly.com/
https://www.amazon.in/b/ref=as_li_ss_tl?node=15697217031&ref_=dvm_crs_merch_in_ai_slashpv_P_watch&wint2_header&pf_rd_m=A1K21FY43GMZF8&pf_rd_s=merchandised-search-2&pf_rd_r=4N0T0PVXWA9S566NFGQV&pf_rd_t=101&pf_rd_p=51f6c505-5ad6-4b9c-b9b6-91450c336884&pf_rd_i=10882806031&linkCode=sl2&tag=thinkerviewsc-21&linkId=eb862e43198dfa2f8e5a415bb4db6f26&language=en_IN
https://www.amazon.in/b/ref=as_li_ss_tl?node=15697217031&ref_=dvm_crs_merch_in_ai_slashpv_P_watch&wint2_header&pf_rd_m=A1K21FY43GMZF8&pf_rd_s=merchandised-search-2&pf_rd_r=4N0T0PVXWA9S566NFGQV&pf_rd_t=101&pf_rd_p=51f6c505-5ad6-4b9c-b9b6-91450c336884&pf_rd_i=10882806031&linkCode=sl2&tag=thinkerviewsc-21&linkId=eb862e43198dfa2f8e5a415bb4db6f26&language=en_IN
https://www.amazon.in/b/ref=as_li_ss_tl?node=15697217031&ref_=dvm_crs_merch_in_ai_slashpv_P_watch&wint2_header&pf_rd_m=A1K21FY43GMZF8&pf_rd_s=merchandised-search-2&pf_rd_r=4N0T0PVXWA9S566NFGQV&pf_rd_t=101&pf_rd_p=51f6c505-5ad6-4b9c-b9b6-91450c336884&pf_rd_i=10882806031&linkCode=sl2&tag=thinkerviewsc-21&linkId=eb862e43198dfa2f8e5a415bb4db6f26&language=en_IN
https://www.amazon.in/b/ref=as_li_ss_tl?node=15697217031&ref_=dvm_crs_merch_in_ai_slashpv_P_watch&wint2_header&pf_rd_m=A1K21FY43GMZF8&pf_rd_s=merchandised-search-2&pf_rd_r=4N0T0PVXWA9S566NFGQV&pf_rd_t=101&pf_rd_p=51f6c505-5ad6-4b9c-b9b6-91450c336884&pf_rd_i=10882806031&linkCode=sl2&tag=thinkerviewsc-21&linkId=eb862e43198dfa2f8e5a415bb4db6f26&language=en_IN
https://www.amazon.in/b/ref=as_li_ss_tl?node=15697217031&ref_=dvm_crs_merch_in_ai_slashpv_P_watch&wint2_header&pf_rd_m=A1K21FY43GMZF8&pf_rd_s=merchandised-search-2&pf_rd_r=4N0T0PVXWA9S566NFGQV&pf_rd_t=101&pf_rd_p=51f6c505-5ad6-4b9c-b9b6-91450c336884&pf_rd_i=10882806031&linkCode=sl2&tag=thinkerviewsc-21&linkId=eb862e43198dfa2f8e5a415bb4db6f26&language=en_IN

Chapter 6

Conclusion

Our research focused on two key challenges in RS: the Cold Start Problem and Data Poi-

soning attacks within the user-clustering framework. We explored utilizing user clustering

to address the Cold Start Problem, analyzed its impact on data poisoning attacks, and

devised a detection method for robust recommendation systems.

By addressing the Cold Start issue in Chapter 3, we revisited the challenge of making

recommendations for new users due to the absence of any historical preference data. We

proposed a novel Cluster-based Bandit (CB) algorithm that achieves fast learning in cold-

start users. CB suggests that for fast learning we want to initially ask the user to rate

those items for which the information to distinguish between a group pair is the largest.

Identifying such items called distinguisher items can quickly identify the correct cluster

a user belongs to. Once the correct cluster is identified, smart recommendations for new

users can be utilized by the collective wisdom of comparable users within the cluster.

Our experimental results demonstrated that for the standard Netflix dataset, < 10

items need to be rated in order to reliably distinguish between 16 user groups and <

12 items to reliably distinguish between 32 groups. We demonstrate that the learning

performance is fundamentally superior to that of the state-of-the-art decision-tree and

that the group of a user is identified with much higher accuracy than with decision-tree

without incurring higher regret or longer learning time. Thus even without extensive user

data, our method improves the first user experience and offers good recommendations.

In Chapter 4, we examined the security ramifications of user clustering with regard to

data poisoning threats. In order to modify recommendations and affect user behaviour,

these malicious attacks entail the injection of skewed or false preference data. Our analysis

90

Chapter 6. Conclusion 91

showed that MF could be vulnerable to targeted data poisoning attacks where attackers

concentrate on particular user clusters. We specifically examined the process underlying

how the user and item feature matrices U, V resulting fromMF, alter following the injection

of fake ratings. We demonstrated how these modifications aid in expanding the reach of

targeted attacks by assessing the changes in these user and item feature matrices following

the attack. Our findings lead us to the conclusion that the true user vectors in the U matrix

of a RS remain unaffected by the introduction of fake ratings. On the other hand, the

target item vector in the V matrix plays a pivotal role in propagating attacks throughout

clusters, even in cases where those clusters are not the intended targets. Moreover, it is

the target item vector that significantly contributes to altering the rating of the targeted

item.

Hence, to mitigate the impact of attacks, it becomes crucial to explore methods that

limit the modifications to the item vector after an attack. By focusing on strategies to

contain changes in the item vector, we can effectively reduce the reach and influence of

attacks.

Finally in Chapter 5, we re-visit the robusteness to attacks problem in a MF-based

RS. Based on the conclusions from the last chapter, we presented an effective detection

method for safeguarding user clusters in recommenders against data poisoning attacks.

We presented a novel Item Vector Deviation (IVD) based detection method that is based

on the deviation in the item feature vector following injection of set of new ratings. It

monitors any user cluster’s variation in preference to the targeted item vector that results

from the shift in the target item vector following malicious ratings. IVD resulted in

superior performance against Filler choice and Target rating-based Obfuscation techniques

that brought down the performance of state-of-the-art PCA and MPE attack detection

strategies. The proposed algorithm demonstrated promising results (> 90% accuracy with

low false alarm rate for standard attack strategies) in detecting and mitigating attacks with

just 20-25 true ratings needed per cluster to train the item vector to the preferences of

these user segments.

6.1 Future Directions

The following are a number of problems that extend from the work done in this thesis:

Chapter 6. Conclusion 92

6.1.1 Addressing the User Cold Start Problem by Leveraging User Clus-

ters

In Chapter 3, our focus is on cold start problem specifically from explicit user rating

interactions. Online systems also gather data from many sources to produce personalised

content. Direct identification techniques, such as IP tracing or browser finger-printing are

outside the scope of our current analysis. Implicit profiling effects due to Geo-location, for

example, also affect personalised content. Thus investigating how explicit, implicit and

other data collection techniques interact is another area for future research.

Further, extending the research to cold start item is challenging. This is because, when

the set-up is reversed, we cluster items based on the ratings received by these items. When

clustering the users, the earlier algorithm estimates the variance and the mean ratings of

each item by the users in their respective clusters. The inverted configuration, however,

introduces a difficulty. In most circumstances, an item may receive several ratings from the

RS, but an ordinary user may only evaluate a few items in the RS. Due to the low amount

of user evaluations for each item, mean and variance estimations for an item cluster may

be imprecise and depends on the number of items in a cluster. A dense ratings matrix

may be needed to increase confidence in results. Therefore, exploring of clustering items

based on explicit ratings, along with its associated challenges and limitations, presents an

interesting avenue for further investigation.

6.1.2 Evaluating Impact of User-Cluster Targeted Attacks in Matrix

Factorisation Recommenders

In Chapter 4, the scope of our target attack impact study was specifically centered around

the standard Matrix Factorization (MF) technique. The landscape of RS has changed

over time, giving rise to a range of improvements and expansions to the fundamental MF

approach. To enhance recommendation quality, these developments frequently combine

Neural Networks [He et al., 2017, Huang et al., 2021] and Graph based Networks [Fang

et al., 2018].

In particular, analyzing how these extensions of MF behave under targeted data poi-

soning attacks may offer insightful information about their weaknesses and advantages.

It would be fascinating to determine whether these approaches display distinct patterns

of susceptibility when compared to conventional MF and how attacks influence their em-

Chapter 6. Conclusion 93

beddings. Additionally, understanding whether the modifications induced by attacks can

be effectively mitigated or neutralized in these expanded techniques is a crucial aspect to

explore.

6.1.3 Attack Detection Using Item Vector Shift in Matrix Factorisation

Recommenders

In Chapter 5, we discussed a new detection method based on Item Vector Deviation (IVD)

to make RS more robust. It is also worth noting that the IVD approach has a constraint.

The strategy, in particular, may not be useful for new or cold items in the RS. This is

because IVD relies on baseline preference data to measure variations and find anomalies.

New items, by definition, lack historical preference data, which makes the IVD technique

difficult to implement. Addressing this restriction and improving the IVD approach to

successfully manage cold items is an appealing direction for future research. This approach

would necessitate the techniques for addressing Item Cold Start to incorporate initial

preference data for new items and provide a reliable baseline for deviation comparisons.

Undoubtedly, another intriguing extension of the current study may involve investi-

gating the application of attack detection systems based on item embeddings to various

Matrix Factorization methodologies discussed previously. The proposed detection method,

which takes into account deviations in item vectors and overall preference information, has

demonstrated promising results in protecting user clustering-based RS from data poison-

ing attacks. Extending this approach to advanced MF techniques like Neural Matrix

Factorization, Graph based Neural Network frameworks and others would be a promising

direction for future research.

Chapter 7

Appendices

7.1 Appendix A

7.1.1 Definitions

Definition 1.Given a Multi-Armed Bandit (MAB) problem of T time steps and n arms.

At each time step, an arm i with expected reward µi is selected to play by a policy A. The

performance of the policy A is measured by its (cumulative) pseudo-regret at time T that

is given by,

RT =
n∑

i=1

E[IT (i)]∆i (7.1)

where µ∗ = maxi µi is the best arm with maximal mean reward over all arms, ∆i = µ∗−µi

the gap between arm i and the best arm and IT (i) denotes the number of times arm i was

selected up to time T .

Definition 2.The random variable X ∈ R is called σ2-subgaussian if E[X] = 0 and there

exists a σ > 0 such that its moment generating function satisfies E[ecX] ≤ ec
2σ2/2 for every

c ∈ R.

7.1.2 Theorems and Proofs

The goal is to use concentration inequalities to control sums of the form Z1 + . . . + Zn

where each Zn is a random variable related to the rating of some item at turn n.

Assumption 5. We have the following data

94

Chapter 7. Appendices 95

1. Families Z = {Z1(v1), Z2(v2), . . . Zn(vn)} of real-valued random variables for i =

1, 2, . . . , n,∞.

2. Real numbers σ2
1, σ

2
2, . . . , σ

2
n such that each σ2

n is bounded.

such that

(a) For any n < ñ the random variables Zn(vn) and Zñ(vñ) are independent.

(b) Each Zi(vi) is σ2
i -subgaussian with expectation zero.

(c) For any turn n ≤ ñ the event that we rate an item vn on turn n given by {τ(n) = vn}

is independent of Zñ(vñ).

The above captures the idea of a sequence of items and rewards. i.e. at each turn i,

we receive an instance of Zi(vi), the reward related to some item, and vi is the index of

that item. Property (a) says that the cost vector Zi(vi) are independent. Property (c)

corresponds to how on any turn n we choose which item to present without seeing their

rewards for that turn. For ease of notation, we write Zi(vi) as Zi in our discussions below.

Theorem 4. For any ε > 0 and γ1, γ2, . . . , γN ≥ 0, we have

P

(
N∑
i=1

γiZi ≥ ε

)
< exp

(
−ε2

2
∑N

i=1 γ
2
i σ

2
i

)

P

(
N∑
i=1

γiZi ≤ −ε

)
< exp

(
−ε2

2
∑N

i=1 γ
2
i σ

2
i

)

Proof.Take exponentials and use the Markov inequality to get

P

(
N∑
i=1

γiZi ≥ ε

)
= P

(
exp

(
λ

N∑
i=1

γiZi

)
≥ eλε

)
≤

E
[
exp

(
λ
∑N

i=1 γiZi

)]
eλε

(7.2)

Now take expectations to put the numerator of (7.2) in the form

E

[
exp

(
λγNZN

)N−1∏
i=1

exp
(
λγiZi

)]
(7.3)

Chapter 7. Appendices 96

To distribute the expectation over exp
(
λγNZN

)
we must show it is independent of the

other factors. Assumption 5(a) says each Zi is independent of ZN and so exp
(
λγNZN

)
is independent of exp

(
λγiZi

)
. We conclude (7.3) equals

E
[
exp

(
λγNZN

)]
E

[
N−1∏
i=1

exp
(
λγiZi

)]
(7.4)

Assumption 5(b) says ZN is σ2
N -subgaussian. Hence E

[
exp

(
λγNZN

)]
≤ exp

(
λ2

2 γ2Nσ2
N

)
.

Repeating the argument N − 1 more times and applying the definition 2, equation (7.4)

is at most

≤
N∏
i=1

exp

(
λ2

2
γ2i σ

2
i

)
= exp

(
λ2

2

N∑
i=1

γ2i σ
2
i

)

Going back to equation (7.2), we get

P

(
N∑
i=1

γiZi ≥ ε

)
≤

exp
(
λ2

2

∑N
i=1 γ

2
i σ

2
i

)
eλε

= exp

(
λ

(
λ

2

N∑
i=1

γ2i σ
2
i − ε

))
= exp

(
λ(aλ− ε)

)

where a = 1
2

∑N
i=1 γ

2
i σ

2
i .

Optimising the bound over λ, we get λ = ε/2a and get the exponent as λ(aλ − ε) =

−ε2/4a. Hence, we get

P

(
N∑
i=1

γiZi) ≥ ε

)
≤ exp

(
− ε2/4a

)
= exp

(
−ε2

2
∑N

i=1 γ
2
i σ

2
i

)
.

The proof for the second inequality is similar.

To apply Theorem 4 to Algorithm we must define the objects in Assumption 5.

Definition 3.We assume g = 1 is the correct cluster. We write Xi(1, vi) as the cost

associated with rating the item vi at turn i. For ease of notation, we write Xi(1, vi) as Xi.

1. Xi(1, vi) is iid with mean µ(1, vi) and variance σ(1, vi)
2

2. Set Zi(vi) = Xi(1, vi)− µ(1, vi)

Chapter 7. Appendices 97

3. Set σ2
i = σ(1, vi)

2.

4. Define Γg,h ̸=g(vi) =
(µ(g,vi)−µ(h,vi))

2

max{σ2(g,vi),σ2(h,vi)}

Under Definition 3, Rn(1, h), Rn(g, 1) from equation (3.1) are

Rn(g, 1) =
n−1∑
i=1

αn
i (1, h)

µ(g, vi)− µ(1, vi)
Zi

Rn(1, h) =

n−1∑
i=1

αn
i (1, h)

(
1 +

Zi

µ(1, vi)− µ(h, vi)

)

Claim 1. The provided definition of Zi satisfies conditions (a-c) outlined in Assumption

5.

Proof.Condition (a) follows from the independence assumption on the cost vectors

X1, X2, · · · , XN . To prove (b), we have Zi = Xi(1, vi) − µ(1, vi) which is σ2
i = σ(1, vi)

2

-subgaussian with expectation zero by definition. To prove (c), note the decision to pull

vn on turn n depends on X1, · · · , Xn−1. Hence the event that we pull vn on turn n is

independent of Xn, Xn+1, · · · and in particular of Xñ.

Lemma 5. For any t > 0, g ̸= 1 and n ∈ N, the weights αn
i (g, 1) =

Γg,1(vi)∑n−1
j=1 Γg,1(vj)

give the

probability bounds

P (Rn(g, 1) ≥ t) ≤ exp

− t2

2

n−1∑
j=1

Γg,1(vj)

P (Rn(g, 1) ≤ −t) ≤ exp

− t2

2

n−1∑
j=1

Γg,1(vj)

Proof.By definition, we have Rn(g, 1) =
∑n−1

i=1
αn
i (g,1)

µ(g,vi)−µ(1,vi)
Zi =

∑n−1
i=1 γiZi for γi =

αn
i (g,1)

µ(g,vi)−µ(1,vi)
. Hence Theorem 4 says the event

∑n−1
i=1 γiZi ≥ t occurs with probability at

most exp
(

−t2

2
∑n−1

i=1 γ2
i σ

2
i

)
. The denominator simplifies to

Chapter 7. Appendices 98

n−1∑
i=1

αn
i (g, 1)

2σ(1, vi)
2

(µ(g, vi)− µ(1, vi))
2 ≤

n−1∑
i=1

αn
i (g, 1)

2max{σ(1, vi)2, σ(g, vi)2}
(µ(g, vi)− µ(1, vi))

2

=

n−1∑
i=1

αn
i (g, 1)

2

Γg,1(vi)
=

n−1∑
i=1

(
Γg,1(vi)∑n−1
j=1Γg,1(vj)

)2
1

Γg,1(vi)

=
1∑n−1

j=1 Γg,1(vj)

So we can write the bound as

P (Rn(g, 1) ≥ t) ≤ exp

− t2

2

n−1∑
j=1

Γg,1(vj)

This completes the proof. The proof of the second inequality is similar.

Lemma 6. For t > 0, g = 1 and n ∈ N, the weights αn
i (1, h) =

Γ1,h(vi)∑n−1
j=1 Γ1,h(vj)

give the

probability bounds

P (Rn(1, h)− 1 ≥ t) ≤ exp

− t2

2

n−1∑
j=1

Γ1,h(vj)

P (Rn(1, h)− 1 ≤ −t) ≤ exp

− t2

2

n−1∑
j=1

Γ1,h(vj)

Proof.By defintion, we haveRn(1, h) =
∑n−1

i=1 αn
i (1, h)

(
1 + Zi

µ(g,vi)−µ(1,vi)

)
= 1+

∑n−1
i=1 γiZi

for γi =
αn
i (g,1)

µ(1,vi)−µ(h,vi)
. i.e we have Rn(1, h) − 1 =

∑n−1
i=1 γiZi. Hence Theorem 4 says

Rn(1, h) − 1 =
∑n−1

i=1 γiZi ≥ t occurs with probability at most exp
(

−t2

2
∑n−1

i=1 γ2
i σ

2
i

)
. The

denominator simplifies to

Chapter 7. Appendices 99

n−1∑
i=1

αn
i (1, h)

2σ(1, vi)
2

(µ(1, vi)− µ(h, vi))
2 ≤

n−1∑
i=1

αn
i (1, h)

2max{σ(1, vi)2, σ(h, vi)2}
(µ(1, vi)− µ(h, vi))

2

=

n−1∑
i=1

αn
i (1, h)

2

Γ1,h(vi)
=

n−1∑
i=1

(
Γ1,h(vi)∑n−1
j=1Γ1,h(vj)

)2
1

Γ1,h(vi)

=

n−1∑
i=1

Γ1,h(vi)(∑n
j=1 Γ1,h(vj)

)2 =
1∑n−1

j=1 Γ1,h(vj)

So we can write the bound as

P (Rn(1, h)− 1 ≥ t) ≤ exp

− t2

2

n−1∑
j=1

Γ1,h(vj)

This completes the proof. The proof of the second inequality is similar.

7.2 Appendix B

7.2.1 Properties Of Positive Definite/ Semi-Definite Matrices

Definition 4.A matrix M is called Positive Semi-Definite (PSD) if it is symmetric and

its eigen values are non-negative. If the eigen values are positive, they are called Positive

Definite (PD) Matrices. Equivalently, we can say that if the matrix M is symmetric and

satisfies xTMx >= 0 for a non-zero vector x, then M is PSD and if M is symmetric and

satisfies xTMx > 0 for a non-zero vector x, then M is PD.

Lemma 7.Any n× n matrix of the form M = BBT is PSD for any n×m matrix B.

Lemma 8. Let A be a PSD matrix, and B be a PD matrix. Then their sum A + B is a

PD Matrix.

Lemma 9. Let M be a PSD matrix, then its inverse M−1 is also a PSD.

Lemma 10. If the matrix M is PD, then all diagonal elements of M are positive.

7.2.2 Sherman-Morrison Formula

Given M is a square n × n matrix whose inverse matrix we know, for the simple case of

a rank-1 perturbation to M , Sherman–Morrison formula provides a method to find the

updated rank-1 change to the inverse.

Chapter 7. Appendices 100

Definition 5.Given M is a square n × n matrix whose inverse matrix we know, u and

v are n× 1 column vectors defining the perturbation to matrix M such that uiv
T
j is added

to Mi,j, then we can find the inverse of the modified M by Sherman-Morrison formula

(M + uvT)−1 = M−1 − M−1uvTM−1

1 + vTM−1u

For a generalised rank-k perturbation to M , the updated inverse is given by the following

formula.

Definition 6.Given M is a square n×n matrix whose inverse matrix we know, U and V

are n× k matrices defining rank k perturbation to matrix M , then we can find the inverse

of the modified M

(M + UV T)−1 = M−1 −M−1U(Ik + V TM−1U)−1V TM−1

Lemma 11. if M−1 is a PSD matrix and M̂ = M + uuT for non-zero u ∈ Rn×1, then

diagonal elements of M̂−1 is less than or equal to the diagonal elements of matrix M−1.

7.2.3 Theorems and Proofs

Deriving Recursive Updates to Vj

Proof of Theorem 2

Proof. For simplicity, let Λ gather together the feature vectors Ui of all users i who rated

target item j∗ such that ΛΛT =
∑

i∈U(j∗) UiU
T
i and let r be a column vector of ratings

received by the target item from these true users. We can write equation 4.3 as,

Vj∗ = (ΛΛT + λI)−1Λr = A−1Λr

where A = ΛΛT + λI. After the block of fake users enter, we write Û = [Λ, X] and

Û ÛT = ΛΛT +XXT . Also r̂ =

r
y

 and Â−1 = (Û ÛT + λI)−1 = (A+XXT)−1. We now

calculate the updated V̂j∗ . We know that,

Chapter 7. Appendices 101

V̂j∗ = Â−1Û r̂ = Â−1 (Λr +Xy) =
(
A+XXT

)−1
(Λr +Xy)

Applying Sherman Morrison/Woodbury formula to the inverse (see Definition 5)

=
(
A−1 −A−1X

(
I +XTA−1X

)−1
XTA−1

)
(Λr +Xy)

= A−1Λr −A−1X
(
I +XTA−1X

)−1
XTA−1Λr +A−1Xy −A−1X

(
I +XTA−1X

)−1
XTA−1Xy

We have, Vj∗ = A−1Λr. Substituting for A−1Λr and rearranging, we get,

= Vj∗ −A−1X
(
I +XTA−1X

)−1
XTVj∗ +A−1X

(
I −

(
I +XTA−1X

)−1
XTA−1X

)
y

Substituting I = (I +XTA−1X)−1(I +XTA−1X) inside third term, we get,

= Vj∗ −A−1X
(
I +XTA−1X

)−1
XTVj∗+

A−1X
((

I +XTA−1X
)−1 (

I +XTA−1X
)
−
(
I +XTA−1X

)−1
XTA−1X

)
y

= Vj∗ −A−1X
(
I +XTA−1X

)−1
XTVj∗ +A−1X

((
I +XTA−1X

)−1 (
I +XTA−1X −XTA−1X

))
y

= Vj∗ −A−1X
(
I +XTA−1X

)−1
XTVj∗ +A−1X

(
I +XTA−1X

)−1
y

= Vj∗ +A−1X
(
I +XTA−1X

)−1 (
y −XTVj∗

)

Finally, we have,

V̂j∗ − Vj∗ = A−1X
(
I +XTA−1X

)−1 (
y −XTVj∗

)
(7.5)

Here we have three terms a = A−1X, b =
(
I +XTA−1X

)−1
and c =

(
y −XTVj∗

)
. Using

Lemma 6, 7, 8, 9, 10 (next section) we re-write equation 7.5 as

V̂j∗ − Vj∗ = m×K ×
(
A−1Ũt

)
where K = bc and m,K are positive constants.

Re-writing Equation 7.5

If we look at the term A−1 = (ΛΛT+λI)−1 in equation 7.5, since ΛΛT is a multiplication of

a matrix with its transpose, it is positive semi-definite (PSD) matrix, and λI is a positive

Chapter 7. Appendices 102

definite (PD) matrix. 1 Then (ΛΛT + λI) is a PD matrix 2. Since the inverse of a PD

matrix is also PD, A−1 is a PD matrix. 3 Because A−1 is a PD matrix and since columns

of X are identical to Ũt, by lemma 12 we can say that term XTA−1X in b results in an

Rn×n matrix with identical values for all the elements.

Lemma 12. Let M = XTA−1X and xi, xj ∈ Rd×1 be the ith and jth column in X. Given

xi = xj = Ũt and A−1 is a PD matrix, then (m)ij = xTi A
−1xj is a positive constant.

Proof.

(m)ij = xTi A
−1xj = ŨT

t A
−1Ũt

We know by Definition 4 that pre-multiplying and post-multiplying a PD matrix by the

same vector takes a quadratic form and always results in a positive number provided the

multiplying vector is non-zero.

So XTA−1X results in a matrix with all elements having identical values. By lemma 13

the inverse of I+XTA−1X results in a matrix with all diagonal elements having identical

values and the non-diagonal elements having identical values.

Lemma 13. For any matrix M ∈ Rn×n with identical elements, the inverse of I + M

results in a matrix with all diagonal elements having identical values and the non-diagonal

elements having identical values.

Proof. For any M ∈ Rn×n with identical elements, we can write (I +M)−1 =
(
I + ecT

)
,

for M = ecT where e = [1, 1, 1, · · · , 1]T and c is a column of M . Applying Sherman-

Morrison formula, we get

(I +M)−1 = I − M

1 + cT e

Note that the denominator is a positive constant. So we can say that the resulting matrix

will have all diagonal elements the same and all non-diagonal values the same.

Now we have term b. Next, we proceed to evaluate the term c. Term c = y −XTVj∗

says how much of target item fake rating vector y with all its value equal to the highest

rating 5 can be explained by the existing weight vector Vj∗ . If Vj∗ before the attack can

explain the vector y then term c will be a zero vector and equation 7.5 results in V̂j∗ = Vj∗

1See Definition 4 and Lemma 7 in Appendix 7.2.1
2See Lemma 8 in Appendix 7.2.1
3See Lemma 9 in Appendix 7.2.1

Chapter 7. Appendices 103

as is to be expected i.e. there is no point in attacking an item that already has the

maximum rating in the target cluster. By lemma 14, term c results in a column vector

containing identical values in each row. In particular, we have,

Lemma 14.Given a column vector y ∈ Rm×1 with constant values, all rows of column

vector c result in an identical positive constant.

Proof.We know that any ith column in X can be written as xi = Ũt. Then we can write

for any ith row of term c = y −XTVj∗

yi − xTi Vj∗ = yi − ŨT
t Vj∗

ŨT
t Vj∗ is the predicted rating of item j∗ in cluster t before attack and is a constant for all

users belonging to cluster t. Also yi = 5 in our set-up, thus rows of y −XTVj∗ will result

in the same non-zero positive value.

Now that we have terms b, c, we proceed to find the values of the column vector

resulting from the product of terms b and c.

Lemma 15.Given m×m matrix b = (I +XTA−1X)−1 and m× 1 matrix c = y−XTVj∗,

the m× 1 column vector resulting from their product has same value for all rows.

Proof.We can write bc as

bc = b(y −XTVj∗) = by − b(XTVj∗) = by − b
(
[Ũt, Ũt, · · · , Ũt]

TVj∗

)
We have [Ũt, Ũt, · · · , Ũt]

TVj∗ = [ŨT
t Vj∗ , Ũ

T
t Vj∗ , · · · , ŨT

t Vj∗]
T So we can write

bc = by − b[ŨT
t Vj∗ , Ũ

T
t Vj∗ , · · · , ŨT

t Vj∗]
T

Using lemma 12, b is a matrix with all diagonal values identical and all non-diagonal

values identical and we know ŨT
t Vj∗ is a constant.

bc = [K,K, · · · ,K]T for positive constant K

Now we have V̂j∗ − Vj∗ = A−1X(bc) where bc = [K,K, · · · ,K]T for positive constant

K. From lemma 16, computing the product X(bc) results in a Rd×1 vector with values as

m×K × Ũt.

Chapter 7. Appendices 104

Lemma 16.Given X ∈ Rd×m with ith column vector xi as Ũt and bc = [K,K, · · · ,K]T ,

we can write X(bc) = m×K × Ũt.

Proof.

We can write X(bc) as,

X(bc) = [x1, x2, · · · , xm][K,K, · · · ,K]T

Using xi = Ũt where Ũt = [ut1, u
t
2, · · · , utd]T

=

ut1 ut1 · · · , ut1

ut2 ut2 · · · , ut2
...

utd utd · · · , utd

K

K
...

K

 =

ut1K + ut1K + · · ·+ ut1K

ut2K + ut2K + · · ·+ ut2K
...

utdK + utdK + · · ·+ utdK

= [mKut1,mKut2, · · · ,mKutd]

T = m×K × Ũt

Equation 7.5 can now be written as V̂j∗ − Vj∗ = m×K ×
(
A−1Ũt

)
Proof of Lemma 17

Definition 7.Any matrix M ∈ Rd×n with identical columns will satisfy MMT = nmmT

where m is a column of M . Similarly we can write
∑

i∈U(j) UiU
T
i = nŨgŨ

T
g if the set of n

users in U(j) belong to same cluster g with weight vector Ũg

Lemma 17.Given a target item j∗ such that A−1 =
(∑

i∈U(j∗) UiU
T
i + λI

)−1
where U(j∗)

is the set of n users who rated item j∗. Let a block of fake users with feature vectors

in X ∈ Rd×m enter to increase the predicted rating of item j∗ in a cluster t with X =

[Ũt, Ũt, · · · , Ũt] where Ũt = [ut1, u
t
2, · · · , utd]T , then

1) If the n users belong to target cluster t, all terms akiu
t
i of any row k of matrix A−1Ũt

(equation 4.5) will have the same sign and the sign will be opposite to sgn(akku
t
k).

2) If the n users are not exclusive to the target cluster, all terms akiu
t
i of any row k of the

matrix A−1Ũt (equation 4.5) need not have the same sign and the sign does not depend

exclusively on sgn(akku
t
k).

Proof. Let target item be rated by all users belonging to target cluster. By Definition 7,

Chapter 7. Appendices 105

we have,

A−1 =

 ∑
i∈U(j∗)

UiU
T
i + λI

−1

= (λI + nŨtŨ
T
t)

−1 =
1

n

(
λ

n
I + ŨtŨ

T
t

)−1

To find A−1, we apply Sherman-Morrison formula (see Definition 5) to the inverse term

(
λ

n
I + ŨtŨ

T
t

)−1

=
n

λ
I −

n
λIŨtŨ

T
t

n
λI

1 + ŨT
t

n
λIŨt

=
n

λ
I −

(
n
λ

)2
ŨtŨ

T
t

1 + n
λ Ũ

T
t Ũt

=
n

λ
I −

n
λ ŨtŨ

T
t

λ
n + ŨT

t Ũt

=
n

λ
I −

n
λ ŨtŨ

T
t

C
where denominator C =

λ

n
+ ŨT

t Ũt is a positive constant

Then we can write A−1 as

A−1 =
1

n

(
λ

n
I + ŨtŨ

T
t

)−1

=
1

λ

(
I − ŨtŨ

T
t

C

)

Case 1: Now that we have matrix A−1 for the case when true users come exclusively from

the target cluster, we calculate A−1Ũt,

A−1Ũt =
1

λ

1− (ut

1)
2

C −ut
1u

t
2

C · · · −ut
1u

t
d

C

−ut
2u

t
1

C 1− (ut
2)

2

C · · · −ut
2u

t
d

C
...

−ut
du

t
1

C −ut
du

t
2

C · · · 1− (ut
d)

2

C

ut1

ut2
...

utd

 =
1

λ

ut1

(
1− (ut

1)
2

C

)
+
∑d

i=1,i ̸=1−ut1
(ut

i)
2

C

ut2

(
1− (ut

2)
2

C

)
+
∑d

i=1,i ̸=2−ut2
(ut

i)
2

C

...

utd

(
1− (ut

d)
2

C

)
+
∑d

i=1,i ̸=d−utd
(ut

i)
2

C

Recall equation 4.5 that gives the kth row ofA−1Ũt. Here the k

th row akku
t
k+
∑d

i=1,i ̸=k akiu
t
i =

utk

(
1− (ut

k)
2

C

)
+
∑d

i=1,i ̸=k −utk
(ut

k)
2

C . Note that the first term utk

(
1− (ut

k)
2

C

)
has the sign of

utk since
(ut

k)
2

C < 1. Consider the terms in the summation i.e. akiu
t
i = −utk

(ut
i)

2

C . Here
(ut

i)
2

C

is positive because the numerator is a square and the denominator is a positive constant.

So each term −utk
(ut

i)
2

C has sign −sgn(utk) or in other words opposite to the sign of the first

term. Therefore, for case 1, all terms akiu
t
i of any row k of the matrix A−1Ũt (equation

4.5) has the same sign and the sign is opposite to sgn(akku
t
k).

Case 2: Following similar steps, A−1Ũt when true ratings come exclusively from any

Chapter 7. Appendices 106

cluster g ̸= t and for C = λ
n + ŨT

g Ũg is given by.

Â−1Ũt =
1

λ

1− (ug

1)
2

C −ug
1u

g
2

C · · · −ug
1u

g
d

C

−ug
2u

g
1

C 1− (ug
2)

2

C · · · −ug
2u

g
d

C
...

−ug
du

g
1

C −ug
du

g
2

C · · · 1− (ug
d)

2

C

ut1

ut2
...

utd

 =
1

λ

ut1

(
1− (ug

1)
2

C

)
+
∑d

i=1,i ̸=1−uti
ug
1u

g
i

C

ut2

(
1− (ug

2)
2

C

)
+
∑d

i=1,i ̸=2−uti
ug
2u

g
i

C

...

utd

(
1− (ug

d)
2

C

)
+
∑d

i=1,i ̸=d−uti
ug
2u

g
i

C

Similar to previous case, first term in kth row of A−1Ũt has the sign of utk. The terms in

summation akiu
g
i = −uti

ug
ku

g
i

C , has its sign depend on sgn(utiu
g
ku

g
i). So unlike case 1, term

akiu
g
i may have any sign.

When true ratings come from a combination of clusters:

Consider a simple extension where n1 users of target cluster t and n2 users of cluster g

provide ratings. Given n1 + n2 = n, we have,

A−1 = (λI + n1ŨtŨ
T
t + n2ŨgŨ

T
g)

−1 = (M + n2ŨgŨ
T
g)

−1

= M−1 −
M−1ŨgŨ

T
g M

−1

1
n2

+ ŨT
g M

−1Ũg

where M−1 =
(
λI + n1ŨtŨ

T
t

)−1
(given in case 1)

Caclulating A−1Ũt

A−1Ũt = M−1Ũt −
M−1ŨgŨ

T
g M

−1Ũt

1
n2

+ ŨT
g M

−1Ũg

= M−1(Ũt − βŨg) where constant β =
ŨT
g M

−1Ũt

1
n2

+ ŨT
g M

−1Ũg

=
1

λ

(ut1 − βug1)
(
1− (ut

1)
2

C

)
+
∑d

i=1,i ̸=1−
−ut

1u
t
i

C (uti − βugi)

(ut2 − βug2)
(
1− (ut

2)
2

C

)
+
∑d

i=1,i ̸=2−
−ut

2u
t
i

C (uti − βugi)

...

(utd − βugd)
(
1− (ut

d)
2

C

)
+
∑d

i=1,i ̸=d−
−ut

du
t
i

C (uti − βugi)

For any row k in the resultant matrix, while the first term will have sgn(utk − βugk), each

term in the summation given by
−ut

ku
t
i

C (uti − βugi) has its sign depending on many factors.

Similarly, we can extend the analysis to true ratings coming from any combination of

clusters by finding the inverse recursively per cluster rating block using the Sherman-

Morrison update.

Thus with the exception of case 1, for any combination of cluster-wise distribution of

true ratings, all terms akiu
t
i of any row k of the matrix A−1Ũt (equation 4.5) need not

Chapter 7. Appendices 107

have the same sign and the sign does not depend exclusively on sgn(akku
t
k).

Proof of Theorem 3

Proof.Given A−1, let N users from target cluster provide ratings. Then for ϵ > 0 and

N ≥ 1
ϵ , we update the inverse by Sherman-Morrison formula (Definition 5)

Â−1 = (A+NŨtŨ
T
t)

−1 = A−1 − A−1ŨtŨ
T
t A

−1

1
N + ŨT

t A
−1Ũt

= A−1 − NA−1ŨtŨ
T
t A

−1

1 +NŨT
t A

−1Ũt

Now that we have Â−1, we calculate Â−1Ũt of equation 4.4.

Â−1Ũt =

(
A−1 − NA−1ŨtŨ

T
t A

−1

1 +NŨT
t A

−1Ũt

)
Ũt =

(
A−1Ũt

1 +NŨT
t A

−1Ũt

)

We see that as ϵ → 0, N → ∞, causing Â−1Ũt to converge to zero vector.

Now suppose, instead of the target cluster, users from any non-target cluster g provide

the N ratings; then we have

Â−1Ũt ≤

(
A−1 −

A−1ŨgŨ
T
g A

−1

ϵ+ ŨT
g A

−1Ũg

)
Ũt =

(
A−1Ũt −

A−1Ũg(Ũ
T
g A

−1Ũt)

ϵ+ ŨT
g A

−1Ũg

)
=
(
ϵA−1Ũt + C1A

−1Ũt − C2A
−1Ũg

)
where constants C1 =

ŨT
g A−1Ũg

ϵ+ŨT
g A−1Ũg

and C2 =
ŨT
g A−1Ũt

ϵ+ŨT
g A−1Ũg

. As C1, C2 are non-zero constants

with sgn(C1) as positive and sgn(C2) depending on sgn(ŨT
g A

−1Ũt), Â−1Ũt might not

converge to a zero vector.

7.2.4 Additional Experimental Results

We look at a slightly modified hit-rate definition, defining an item to belong to the recom-

mended list if it has a predicted rating >= 4. If the target item after the attack satisfies

this condition, we consider it a ’Hit.’ i.e, it may be more likely for the target item to

be now recommended to users of the target cluster. We measure the Average Hits after

the attack for the target item and show the results when the adversary targets cluster 2.

Results when targeting other clusters are similar and so are not reported separately.

Chapter 7. Appendices 108

Fix V , Update U

From table 7.1, Average-Hits over all the target items calculated is 0 for both datasets

for increasing ratios of n
m , indicating that the attack is not able to push the rating high

enough to be included in the recommended list of items. i.e, the results of the attack here,

do not increase the predicted rating to ≥ 4. This supports our results in the main paper

(figure 4.2), where the maximum mean relative change in rating observed for n
m = 0.5

was < 0.30 i.e. for both datasets, predicted rating increases only up to 30% of maximum

deviation possible.

n
m/Avg Hits Before After

0.5 0 0

1.2 0 0

2.0 0 0

(a) Movielens

n
m/Avg Hits Before After

0.5 0 0

1.2 0 0

2.0 0 0

(b) Goodreads

Table 7.1: Average Hits for Movielens dataset and Goodreads dataset reported when
target cluster is t = 2 for the cluster-wise distribution of true users 250− 250− n− 250

Fix U , Update V

Varying Ratio of Target Item True Ratings (Nt) to Fake Ratings (Nf) in Target

Cluster

Table 7.2 reports the average hits for the target item for increasing Nt from the target

cluster givenNf fake ratings. We can see how the average hit is highest for Nt
Nf

= 0.05, 0.5, 1

and drops to zero afterward. This is in agreement with the observations from Figure 4.5,

where Nt
Nf

= 0.05, 0.5, 1 showed a significant mean shift in the predicted rating >= 0.5

after the attack compared to the mean shift in the predicted rating < 0.4 for Nt
Nf

> 1.

Therefore, the attack increases the predicted rating to ≥ 4, raising the chances of being

recommended to users of the target cluster, for decreasing Nt
Nf

.

Chapter 7. Appendices 109

Nt
Nf

/Avg Hits Before After

0.05 0 1

0.5 0 1

1 0 1

1.75 0 0

2.5 0 0

(a) Movielens

Nt
Nf

/Avg Hits Before After

0.05 0 1

0.5 0 1

1 0 1

1.75 0 0

2.5 0 0

(b) Goodreads

Table 7.2: Average Hits for Movielens dataset and Goodreads dataset reported when
target cluster is t = 2 for the rating distribution of type 0− 0−Nt − 0.

Varying Ratio of Target Item True Ratings (Nt) to Fake Ratings (Nf) in

Non-Target Clusters

Table 7.3 reports the average hits for target item for each dataset. We can see how

the average hit remains high for increasing Nt
Nf

. This agrees with the observations from

Figure 4.7, where increasing Nt
Nf

showed larger mean shift in predicted rating of > 0.95

after the attack increasing the predicted rating to ≥ 4, thus raising the chances of being

recommended to users of target cluster.

Nt
Nf

/Avg Hits Before After

0.05 0 1

0.5 0 1

1 0 1

1.75 0 1

2.5 0 1

(a) Movielens

Nt
Nf

/Avg Hits Before After

0.05 0 1

0.5 0 1

1 0 1

1.75 0 1

2.5 0 1

(b) Goodreads

Table 7.3: Average Hits for Movielens dataset and Goodreads dataset reported when
target cluster is t = 2 for the rating distribution of type Nt −Nt − 0−Nt.

Bibliography

[Amatriain et al., 2009] Amatriain, X., Lathia, N., Pujol, J., Kwak, H., and Oliver, N.

(2009). The wisdom of the few a collaborative filtering approach based on expert opin-

ions from the web. In Proceedings of the 32nd International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR ’09, pages 532–539.

[Angwin and Parris Jr., 2016] Angwin, J. and Parris Jr., T. (2016). Facebook lets adver-

tisers exclude users by race. In ProPublica.

[Barjasteh et al., 2016] Barjasteh, I., Forsati, R., Ross, D., Esfahanian, A.-H., and Radha,

H. (2016). Cold-start recommendation with provable guarantees: A decoupled approach.

In IEEE Transactions on Knowledge and Data Engineering, volume 28, pages 1–1.

[Bates, 2013] Bates, D. (2013). Samsung ordered to pay 340,000 dollars after it paid

people to write negative online reviews about htc phones. In Daily Mail.

[Bhaumik et al., 2006] Bhaumik, R., Williams, C., Mobasher, B., and Burke, R. (2006).

Securing collaborative filtering against malicious attacks through anomaly detection. In

AAAI Conference on Artificial Intelligence.

[Bindra, 2021] Bindra, C. (2021). Building a privacy-first future for web advertising. In

Google Ads.

[Bubeck et al., 2013] Bubeck, S., Perchet, V., and Rigollet, P. (2013). Bounded regret in

stochastic multi-armed bandits. In Journal of Machine Learning Research, volume 30.

[Burke et al., 2006] Burke, R., Mobasher, B., Williams, C., and Bhaumik, R. (2006). De-

tecting profile injection attacks in collaborative recommender systems. In The 8th IEEE

International Conference on E-Commerce Technology and The 3rd IEEE International

Conference on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE’06),

volume 2006, pages 23–23.

110

Bibliography 111

[Burke et al., 2005] Burke, R., Mobasher, B., Zabicki, R., and Bhaumik, R. (2005). Iden-

tifying attack models for secure recommendation. In Beyond Personalization, volume

2005.

[Canamares et al., 2019] Canamares, R., Redondo, M., and Castells, P. (2019). Multi-

armed recommender system bandit ensembles. In Proceedings of the 13th ACM Con-

ference on Recommender Systems, RecSys ’19.

[Chang et al., 2015] Chang, S., Harper, F. M., and Terveen, L. (2015). Using groups of

items for preference elicitation in recommender systems. In Proceedings of the 18th ACM

Conference on Computer Supported Cooperative Work and Social Computing, CSCW,

New York, NY, USA. Association for Computing Machinery.

[Checco et al., 2017] Checco, A., Bianchi, G., and Leith, D. J. (2017). Blc: Private matrix

factorization recommenders via automatic group learning. In ACM Trans. Priv. Secur.,

New York, NY, USA. Association for Computing Machinery.

[Chen et al., 2018] Chen, R., Hua, Q., Chang, Y., Wang, B., Zhang, L., and Kong, X.

(2018). A survey of collaborative filtering-based recommender systems: From traditional

methods to hybrid methods based on social networks. In IEEE Access, volume 6, pages

64301–64320.

[Cheng and Hurley, 2009] Cheng, Z. and Hurley, N. (2009). Effective diverse and obfus-

cated attacks on model-based recommender systems. In Proceedings of the third ACM

conference on Recommender systems, pages 141–148.

[Chirita et al., 2005] Chirita, P.-A., Nejdl, W., and Zamfir, C. (2005). Preventing shilling

attacks in online recommender systems. In Proceedings of the 7th Annual ACM Interna-

tional Workshop on Web Information and Data Management, WIDM ’05, page 67–74,

New York, NY, USA. Association for Computing Machinery.

[Choi, 2014] Choi, Y. S. (2014). Content type based adaptation in collaborative rec-

ommendation. In Proceedings of the 2014 Conference on Research in Adaptive and

Convergent Systems, New York, NY, USA. Association for Computing Machinery.

[Christakopoulou and Banerjee, 2019] Christakopoulou, K. and Banerjee, A. (2019). Ad-

versarial attacks on an oblivious recommender. In Proceedings of the 13th ACM Con-

Bibliography 112

ference on Recommender Systems, RecSys ’19, page 322–330, New York, NY, USA.

Association for Computing Machinery.

[Croux and Filzmoser, 1998] Croux, C. and Filzmoser, P. (1998). Robust factorization

of a data matrix. In Payne, R. and Green, P., editors, COMPSTAT, pages 245–250,

Heidelberg. Physica-Verlag HD.

[Datta et al., 2014] Datta, A., Tschantz, M. C., and Datta, A. (2014). Automated exper-

iments on ad privacy settings: A tale of opacity, choice, and discrimination. In arXiv

preprint arXiv:1408.6491.

[Deldjoo et al., 2020] Deldjoo, Y., Di Noia, T., and Merra, F. A. (2020). Adversarial

Machine Learning in Recommender Systems (AML-RecSys), page 869–872. Association

for Computing Machinery, New York, NY, USA.

[Deldjoo et al., 2021] Deldjoo, Y., Noia, T. D., and Merra, F. A. (2021). A survey on

adversarial recommender systems: from attack/defense strategies to generative adver-

sarial networks. In ACM Computing Surveys (CSUR), pages 1–38. ACM New York,

NY, USA.

[Dwoskin and Timberg, 2018] Dwoskin, E. and Timberg, C. (2018). How merchants use

facebook to flood amazon with fake reviews. In The Washington Post.

[Elahi et al., 2018] Elahi, M., Braunhofer, M., Gurbanov, T., and Ricci, F. (2018). User

preference elicitation, rating sparsity and cold start. In Collaborative Recommendations,

pages 253–294.

[Elahi et al., 2016] Elahi, M., Ricci, F., and Rubens, N. (2016). A survey of active learning

in collaborative filtering recommender systems. In Computer Science Review, volume 20,

pages 29–50.

[Epasto et al., 2021] Epasto, A., Muñoz Medina, A., Avery, S., Bai, Y., Busa-Fekete, R.,

Carey, C., Gao, Y., Guthrie, D., Ghosh, S., Ioannidis, J., Jiao, J., Lacki, J., Lee, J.,

Mauser, A., Milch, B., Mirrokni, V., Ravichandran, D., Shi, W., Spero, M., Sun, Y.,

Syed, U., Vassilvitskii, S., and Wang, S. (2021). Clustering for private interest-based

advertising. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Dis-

covery and Data Mining, KDD ’21, page 2802–2810, New York, NY, USA. Association

for Computing Machinery.

Bibliography 113

[Eriksson and Hengel, 2010] Eriksson, A. and Hengel, A. (2010). Efficient computation

of robust low-rank matrix approximations in the presence of missing data using the l1

norm. pages 771 – 778.

[Fang et al., 2020] Fang, M., Gong, N. Z., and Liu, J. (2020). Influence Function Based

Data Poisoning Attacks to Top-N Recommender Systems, page 3019–3025. Association

for Computing Machinery, New York, NY, USA.

[Fang et al., 2018] Fang, M., Yang, G., Gong, N. Z., and Liu, J. (2018). Poisoning attacks

to graph-based recommender systems. In Proceedings of the 34th Annual Computer

Security Applications Conference. ACM.

[Feĺıcio et al., 2017] Feĺıcio, C. Z., Paixão, K. V., Barcelos, C. A., and Preux, P. (2017). A

multi-armed bandit model selection for cold-start user recommendation. In Proceedings

of the 25th Conference on User Modeling, Adaptation and Personalization, UMAP, New

York, NY, USA. Association for Computing Machinery.

[Frankowski et al., 2006] Frankowski, D., Cosley, D., Sen, S., Terveen, L., and Riedl, J.

(2006). You are what you say: Privacy risks of public mentions. In Proceedings of

the 29th annual international ACM SIGIR conference on Research and development in

information retrieval, pages 565–572.

[Galozy and Nowaczyk, 2023] Galozy, A. and Nowaczyk, S. (2023). Information-gathering

in latent bandits. In Know.-Based Syst., NLD. Elsevier Science Publishers B. V.

[Gao et al., 2023] Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y., Chang, J.,

Jin, D., He, X., and Li, Y. (2023). A survey of graph neural networks for recommender

systems: Challenges, methods, and directions. In ACM Trans. Recomm. Syst., New

York, NY, USA. Association for Computing Machinery.

[Gao et al., 2015] Gao, M., Tian, R., Wen, J., Xiong, Q., Ling, B., and Yang, L. (2015).

Item anomaly detection based on dynamic partition for time series in recommender

systems. In PLOS ONE, pages 1–22. Public Library of Science.

[Geyik et al., 2015] Geyik, S. C., Dasdan, A., and Lee, K.-C. (2015). User clustering in

online advertising via topic models. In arXiv preprint arXiv:1501.06595.

[Golbandi et al., 2011] Golbandi, N., Koren, Y., and Lempel, R. (2011). Adaptive boot-

strapping of recommender systems using decision trees. In Proceedings of the Fourth

Bibliography 114

ACM International Conference on Web Search and Data Mining, WSDM, New York,

NY, USA. Association for Computing Machinery.

[Goldberg et al., 1992] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using

collaborative filtering to weave an information tapestry. In Commun. ACM, page 61–70,

New York, NY, USA. Association for Computing Machinery.

[Gomez-Uribe, 2016] Gomez-Uribe, C. (2016). A global approach to recommendations. In

Netflix News.

[Gomez-Uribe and Hunt, 2016] Gomez-Uribe, C. A. and Hunt, N. (2016). The netflix

recommender system: Algorithms, business value, and innovation. In ACM Trans.

Manage. Inf. Syst., New York, NY, USA. Association for Computing Machinery.

[Good et al., 1999] Good, N., Schafer, B., Konstan, J., Borchers, A., Sarwar, B., Her-

locker, J., and Riedl, J. (1999). Combining collaborative filtering with personal agents

for better recommendations. In Proceedings of the Sixteenth National Conference on

Artificial Intelligence and the Eleventh Innovative Applications of Artificial Intelligence

Conference Innovative Applications of Artificial Intelligence, AAAI ’99/IAAI ’99, pages

439–446.

[Guarino, 2018] Guarino, B. (2018). Anti vaccine reviewers target childrens books on

amazon. In The Washington Post.

[Harpale and Yang, 2008] Harpale, A. S. and Yang, Y. (2008). Personalized active learning

for collaborative filtering. In Proceedings of the 31st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR, New York,

NY, USA. Association for Computing Machinery.

[Hawashin et al., 2018] Hawashin, B., Mansour, A., Kanan, T., and Fotouhi, F. (2018).

An efficient cold start solution based on group interests for recommender systems. In

Proceedings of the First International Conference on Data Science, E-Learning and

Information Systems, New York, NY, USA. Association for Computing Machinery.

[He et al., 2021] He, S., Hollenbeck, B., and Proserpio, D. (2021). The market for fake

reviews. In Proceedings of the 22nd ACM Conference on Economics and Computation,

EC ’21, page 588.

Bibliography 115

[He et al., 2017] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017).

Neural collaborative filtering. In Proceedings of the 26th International Conference on

World Wide Web, WWW ’17, page 173–182.

[Heidari et al., 2022] Heidari, N., Moradi, P., and Koochari, A. (2022). An attention-

based deep learning method for solving the cold-start and sparsity issues of recommender

systems. In Knowledge-Based Systems, volume 256.

[Hidano and Kiyomoto, 2020] Hidano, S. and Kiyomoto, S. (2020). Recommender systems

robust to data poisoning using trim learning. In ICISSP, pages 721–724.

[Hofmann, 2004] Hofmann, T. (2004). Hofmann, t.: Latent semantic models for collab-

orative filtering. acm trans. inf. syst. (tois) 22(1), 89-115. In ACM Trans. Inf. Syst.,

volume 22, pages 89–115.

[Hong et al., 2020] Hong, J., Kveton, B., Zaheer, M., Chow, Y., Ahmed, A., and Boutilier,

C. (2020). Latent bandits revisited. In Larochelle, H., Ranzato, M., Hadsell, R., Bal-

can, M., and Lin, H., editors, Advances in Neural Information Processing Systems,

volume 33, pages 13423–13433. Curran Associates, Inc.

[Hu et al., 2019] Hu, R., Guo, Y., Pan, M., and Gong, Y. (2019). Targeted poisoning

attacks on social recommender systems. In 2019 IEEE Global Communications Con-

ference (GLOBECOM), pages 1–6.

[Huang et al., 2021] Huang, H., Mu, J., Gong, N. Z., Li, Q., Liu, B., and Xu, M. (2021).

Data poisoning attacks to deep learning based recommender systems. In Proceedings

2021 Network and Distributed System Security Symposium. Internet Society.

[Katidis and christianbonzelet, 2022] Katidis, P. I. and christianbonzelet (2022). Use ma-

chine learning to target your customers based on their interest in a product or product

attribute. In Amazon Web Services (AWS).

[Ke and Kanade, 2005] Ke, Q. and Kanade, T. (2005). Robust l1 norm factorization in

the presence of outliers and missing data by alternative convex programming. volume 1,

pages 739 – 746 vol. 1.

[Ko et al., 2022] Ko, H., Lee, S., Park, Y., and Choi, A. (2022). A survey of recom-

mendation systems: Recommendation models, techniques, and application fields. In

Electronics.

Bibliography 116

[Koren, 2010] Koren, Y. (2010). Factor in the neighbors: Scalable and accurate collabo-

rative filtering. In ACM Trans. Knowl. Discov. Data, New York, NY, USA. Association

for Computing Machinery.

[Koren et al., 2009] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization

techniques for recommender systems. In Computer, volume 42, pages 30–37.

[Lam and Riedl, 2004] Lam, S. K. and Riedl, J. (2004). Shilling recommender systems for

fun and profit. In Proceedings of the 13th International Conference on World Wide Web,

WWW ’04, page 393–402, New York, NY, USA. Association for Computing Machinery.

[Lam et al., 2008] Lam, X. N., Vu, T., Le, T. D., and Duong, A. D. (2008). Address-

ing cold-start problem in recommendation systems. In Proceedings of the 2nd In-

ternational Conference on Ubiquitous Information Management and Communication,

ICUIMC, New York, NY, USA. Association for Computing Machinery.

[Lee et al., 2012] Lee, J., Sun, M., and Lebanon, G. (2012). A comparative study of

collaborative filtering algorithms. In arXiv preprint arXiv:1205.3193.

[Li et al., 2016] Li, B., Wang, Y., Singh, A., and Vorobeychik, Y. (2016). Data poisoning

attacks on factorization-based collaborative filtering. In Proceedings of the 30th Interna-

tional Conference on Neural Information Processing Systems, NIPS’16, page 1893–1901,

Red Hook, NY, USA. Curran Associates Inc.

[Li et al., 2010] Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-

bandit approach to personalized news inproceedings recommendation. In Proceedings of

the 19th International Conference on World Wide Web, WWW 2010, New York, NY,

USA. Association for Computing Machinery.

[Lin et al., 2020] Lin, C., Chen, S., Li, H., Xiao, Y., Li, L., and Yang, Q. (2020). Attacking

recommender systems with augmented user profiles. In Proceedings of the 29th ACM

International Conference on Information & Knowledge Management, pages 855–864.

[Liu et al., 2011a] Liu, N. N., Meng, X., Liu, C., and Yang, Q. (2011a). Wisdom of the

better few: Cold start recommendation via representative based rating elicitation. In

Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys, pages

37–44, New York, NY, USA. Association for Computing Machinery.

Bibliography 117

[Liu et al., 2011b] Liu, N. N., Meng, X., Liu, C., and Yang, Q. (2011b). Wisdom of the

better few: Cold start recommendation via representative based rating elicitation. In

Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, page

37–44, New York, NY, USA. Association for Computing Machinery.

[Lops et al., 2011] Lops, P., de Gemmis, M., and Semeraro, G. (2011). Content-based

Recommender Systems: State of the Art and Trends, pages 73–105.

[Mehta et al., 2007] Mehta, B., Hofmann, T., and Nejdl, W. (2007). Robust collaborative

filtering. pages 49–56.

[Mehta and Nejdl, 2008] Mehta, B. and Nejdl, W. (2008). Attack resistant collaborative

filtering. In The 31st Annual International ACM SIGIR Conference (SIGIR).

[Mehta and Nejdl, 2009] Mehta, B. and Nejdl, W. (2009). Unsupervised strategies for

shilling detection and robust collaborative filtering. In User Model. User-Adapt. Inter-

act., volume 19, pages 65–97.

[Meta, 2023] Meta (2023). Ad targeting: How to find people most likely to respond to

your ad. In Meta Ads.

[Mingdan and Li, 2020] Mingdan, S. and Li, Q. (2020). Shilling attacks against collabo-

rative recommender systems: a review. In Artificial Intelligence Review, volume 53.

[Mittal et al., 2010] Mittal, N., Nayak, R., Govil, M., and Jain, K. (2010). Recommender

system framework using clustering and collaborative filtering. In 2010 3rd International

Conference on Emerging Trends in Engineering and Technology, pages 555–558.

[Mobasher et al., 2007] Mobasher, B., Burke, R., Bhaumik, R., and Williams, C. (2007).

Toward trustworthy recommender systems. In ACM Transactions on Internet Technol-

ogy, volume 7, pages 23–es.

[Mobasher et al., 2005] Mobasher, B., Burke, R., Williams, C., and Bhaumik, R. (2005).

Analysis and detection of segment-focused attacks against collaborative recommenda-

tion. In Proceedings of the 7th International Conference on Knowledge Discovery on the

Web: Advances in Web Mining and Web Usage Analysis, volume 4198 of WebKDD’05,

page 96–118.

Bibliography 118

[Narayanan and Shmatikov, 2006] Narayanan, A. and Shmatikov, V. (2006). How to

break anonymity of the netflix prize dataset. In arXiv preprint cs/0610105.

[Nguyen et al., 2014] Nguyen, H. T., Mary, J., and Preux, P. (2014). Cold-start prob-

lems in recommendation systems via contextual-bandit algorithms. In arXiv preprint

arXiv:1405.7544.

[Odić et al., 2013] Odić, A., Tkalčič, M., Tasič, J. F., and Košir, A. (2013). Predicting

and detecting the relevant contextual information in a movie-recommender system. In

Interacting with Computers, pages 74–90.

[O’Donovan and Smyth, 2005] O’Donovan, J. and Smyth, B. (2005). Trust no one: Eval-

uating trust-based filtering for recommenders. pages 1663–1665.

[O’Mahony et al., 2006] O’Mahony, M. P., Hurley, N. J., and Silvestre, G. C. (2006). De-

tecting noise in recommender system databases. In Proceedings of the 11th International

Conference on Intelligent User Interfaces, IUI ’06, page 109–115, New York, NY, USA.

Association for Computing Machinery.

[O’Mahony et al., 2002] O’Mahony, M., Hurley, N., and Silvestre, G. (2002). Promot-

ing recommendations: An attack on collaborative filtering. In Database and Expert

Systems Applications: 13th International Conference, DEXA 2002 Aix-en-Provence,

France, September 2–6, 2002 Proceedings 13, pages 494–503. Springer.

[Park and Chu, 2009] Park, S.-T. and Chu, W. (2009). Pairwise preference regression

for cold-start recommendation. In Proceedings of the Third ACM Conference on Rec-

ommender Systems, RecSys 2009, New York, NY, USA. Association for Computing

Machinery.

[Patel et al., 2015] Patel, K., AmitThakkar, Shah, C., and Makvana, K. (2015). A state

of art survey on shilling attack in collaborative filtering based recommendation system.

In Proceedings of First International Conference on Information and Communication

Technology for Intelligent Systems: Volume 1, pages 377–385. Springer.

[Pérez-Marcos and Batista, 2018] Pérez-Marcos, J. and Batista, V. (2018). Recommender

system based on collaborative filtering for spotify’s users. In Trends in Cyber-Physical

Multi-Agent Systems. The PAAMS Collection-15th International Conference, PAAMS

2017 15, pages 214–220. Springer.

Bibliography 119

[Rajapakse and Leith, 2022] Rajapakse, D. C. and Leith, D. (2022). Fast and accurate

user cold-start learning using monte carlo tree search. In Proceedings of the 16th ACM

Conference on Recommender Systems, RecSys ’22, page 350–359, New York, NY, USA.

Association for Computing Machinery.

[Rashid et al., 2002] Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M.,

Konstan, J. A., and Riedl, J. (2002). Getting to know you: Learning new user prefer-

ences in recommender systems. In Proceedings of the 7th International Conference on

Intelligent User Interfaces, New York, NY, USA. Association for Computing Machinery.

[Rashid et al., 2008] Rashid, A. M., Karypis, G., and Riedl, J. (2008). Learning prefer-

ences of new users in recommender systems: An information theoretic approach. In

SIGKDD Explor. Newsl., volume 10, New York, NY, USA. Association for Computing

Machinery.

[Ravichandran and Vassilvitskii, 2009] Ravichandran, D. and Vassilvitskii, S. (2009).

Evaluation of cohort algorithms for the floc api. In Google Research and Ads.

[Resnick and Sami, 2007] Resnick, P. and Sami, R. (2007). The influence limiter: Provably

manipulation-resistant recommender systems. In RecSys’07: Proceedings of the 2007

ACM Conference on Recommender Systems, pages 25–32.

[Resnick and Varian, 1997] Resnick, P. and Varian, H. R. (1997). Recommender systems.

In Commun. ACM, volume 40, page 56–58, New York, NY, USA. Association for Com-

puting Machinery.

[Rodriguez, 2017] Rodriguez, A. (2017). Netflix divides its 93 million users around the

world into 1,300 “taste communities”. In Quartz.

[Sarwar et al., 2000] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2000). Analysis

of recommendation algorithms for e-commerce. In Proceedings of the 2nd ACM Confer-

ence on Electronic Commerce, EC ’00, page 158–167, New York, NY, USA. Association

for Computing Machinery.

[Sarwar et al., 2001] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-

based collaborative filtering recommendation algorithms. In Proceedings of the 10th

International Conference on World Wide Web, WWW, New York, NY, USA. Associa-

tion for Computing Machinery.

Bibliography 120

[Shams et al., 2021] Shams, S., Anderson, D., and Leith, D. (2021). Cluster-Based Ban-

dits: Fast Cold-Start for Recommender System New Users, page 1613–1616. Association

for Computing Machinery, New York, NY, USA.

[Shams and Leith, 2022] Shams, S. and Leith, D. J. (2022). Improving resistance of ma-

trix factorization recommenders to data poisoning attacks. In 2022 Cyber Research

Conference - Ireland (Cyber-RCI), pages 1–4.

[Shi et al., 2017a] Shi, L., Zhao, W. X., and Shen, Y.-D. (2017a). Local representative-

based matrix factorization for cold-start recommendation. In ACM Trans. Inf. Syst.,

New York, NY, USA. Association for Computing Machinery.

[Shi et al., 2017b] Shi, L., Zhao, W. X., and Shen, Y.-D. (2017b). Local representative-

based matrix factorization for cold-start recommendation. In ACM Trans. Inf. Syst.,

volume 36, New York, NY, USA. Association for Computing Machinery.

[Shi et al., 2014] Shi, Y., Larson, M., and Hanjalic, A. (2014). Collaborative filtering

beyond the user-item matrix: A survey of the state of the art and future challenges.

In ACM Comput. Surv., volume 47, New York, NY, USA. Association for Computing

Machinery.

[Simonetti, 2022] Simonetti, I. (2022). Amazon fake reviews lawsuit. In The New York

Times.

[Smith and Linden, 2017] Smith, B. and Linden, G. (2017). Two decades of recommender

systems at amazon.com. In IEEE Internet Computing.

[Son, 2016] Son, L. H. (2016). Dealing with the new user cold-start problem in recom-

mender systems: A comparative review. In Inf. Syst., volume 58, pages 87–104.

[Su and Khoshgoftaar, 2009] Su, X. and Khoshgoftaar, T. (2009). A survey of collabora-

tive filtering techniques. In Adv. Artificial Intellegence, volume 2009.

[Sun et al., 2013] Sun, M., Li, F., Lee, J., Zhou, K., Lebanon, G., and Zha, H. (2013).

Learning multiple-question decision trees for cold-start recommendation. In Proceedings

of the Sixth ACM International Conference on Web Search and Data Mining, WSDM,

New York, NY, USA. Association for Computing Machinery.

Bibliography 121

[Ungar and Foster, 1998] Ungar, L. H. and Foster, D. P. (1998). Clustering methods for

collaborative filtering. In AAAI Conference on Artificial Intelligence.

[Williams et al., 2007] Williams, C., Mobasher, B., and Burke, R. (2007). Defending rec-

ommender systems: Detection of profile injection attacks. In Service Oriented Comput-

ing and Applications, volume 1, pages 157–170.

[Williams et al., 2006] Williams, C., Mobasher, B., Burke, R., Sandvig, J. J., and Bhau-

mik, R. (2006). Detection of obfuscated attacks in collaborative recommender systems.

In Proceedings of the ECAI, volume 6.

[Wu et al., 2021] Wu, C., Lian, D., Ge, Y., Zhu, Z., Chen, E., and Yuan, S. (2021).

Fight Fire with Fire: Towards Robust Recommender Systems via Adversarial Poisoning

Training, page 1074–1083. Association for Computing Machinery, New York, NY, USA.

[Wu et al., 2020] Wu, D., Lu, G., and Xu, Z. (2020). Robust and accurate representation

learning for high-dimensional and sparse matrices in recommender systems. In 2020

IEEE International Conference on Knowledge Graph (ICKG), pages 489–496.

[Xie and Phoha, 2001] Xie, Y. and Phoha, V. V. (2001). Web user clustering from ac-

cess log using belief function. In Proceedings of the 1st International Conference on

Knowledge Capture, K-CAP ’01, page 202–208, New York, NY, USA. Association for

Computing Machinery.

[Xiong et al., 2011] Xiong, L., Chen, X., and Schneider, J. (2011). Direct robust matrix

factorization for anomaly detection. In 2011 IEEE 11th International Conference on

Data Mining, pages 844–853.

[Xu et al., 2020] Xu, Y., Chen, L., Xie, F., Hu, W., Zhu, J., Chen, C., and Zheng, Z.

(2020). Directional adversarial training for recommender systems. In ECAI, pages

553–560.

[Xue et al., 2005] Xue, G.-R., Lin, C., Yang, Q., Xi, W., Zeng, H.-J., Yu, Y., and Chen,

Z. (2005). Scalable collaborative filtering using cluster-based smoothing. In Proceedings

of the 28th annual international ACM SIGIR conference on Research and development

in information retrieval, pages 114–121.

[Xue et al., 2017] Xue, H.-J., Dai, X.-Y., Zhang, J., Huang, S., and Chen, J. (2017).

Deep matrix factorization models for recommender systems. In Proceedings of the 26th

Bibliography 122

International Joint Conference on Artificial Intelligence, IJCAI’17, page 3203–3209.

AAAI Press.

[Yang et al., 2018] Yang, Z., Sun, Q., and Zhang, B. (2018). Evaluating prediction error

for anomaly detection by exploiting matrix factorization in rating systems. In IEEE

Access, volume 6, pages 50014–50029.

[Yanxiang et al., 2013] Yanxiang, L., Deke, G., Fei, C., and Honghui, C. (2013). User-

based clustering with top-n recommendation on cold-start problem. In 2013 Third

International Conference on Intelligent System Design and Engineering Applications,

pages 1585–1589.

[Zhang et al., 2006] Zhang, S., Chakrabarti, A., Ford, J., and Makedon, F. (2006). Attack

detection in time series for recommender systems. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 809–

814.

[Zheng et al., 2012] Zheng, Y., Liu, G., Sugimoto, S., Yan, S., and Okutomi, M. (2012).

Practical low-rank matrix approximation under robust l1-norm. In 2012 IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 1410–1417.

[Zhou et al., 2011] Zhou, K., Yang, S.-H., and Zha, H. (2011). Functional matrix factor-

izations for cold-start recommendation. In Proceedings of the 34th International ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011,

New York, NY, USA. Association for Computing Machinery.

	Acknowledgments
	List of Tables
	List of Figures
	Chapter Introduction
	User Clustering and Cold Start Problem
	User Clustering and Data Poisoning Attacks
	Contributions of the Thesis
	Publications
	Published
	Submitted

	Structure of the Thesis

	Chapter Review of Recommendation Strategies
	Standard Matrix Factorisation Recommenders
	A Basic MF Model

	Cold Start Problem in Recommenders
	Overview of Cold Start Strategies

	Data Poisoning Attacks in Recommenders
	General Form of an Attack Profile

	Attack Detection in Recommender Systems

	Chapter Addressing the User Cold Start Problem by Leveraging User Clusters
	Introduction
	Related Work
	Fast Cold-Start for Recommender System New Users
	Group Indicator Vector
	Fast Convergence
	Exploration vs Exploitation
	Algorithm

	Regret Analysis of Algorithm
	Performance Evaluation
	Evaluation Setup
	Results

	Conclusions

	Chapter Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation Recommenders
	Introduction
	Related Work
	User-Cluster Targeted Poisoning Attack
	User Cluster Based Recommendation Model
	Attack Model

	Study of Attack Effects on Feature Matrices U and V
	Fix V, Update U
	Fix U, Update V

	Experiment Evaluation Set-up
	Datasets
	Threat Model
	Performance Metric
	Visualising Results

	Performance Illustration with Data
	Fix V, update U
	Fix U, update V
	Discussion

	Conclusion

	Chapter Attack Detection Using Item Vector Shift in Matrix Factorisation Recommenders
	Introduction
	Related Work
	Item Vector Shift Based Detection Model
	Utilizing Item Vectors for Improved Anomaly Detection
	Proposed Item Vector Based Detection (IVD) Method

	Experiments
	Datasets
	Evaluation Setup
	Attack Model
	Baseline Detection Approach
	Evaluation Metric

	Results and Discussion
	Effectiveness of Attack Size and Filler Size
	Effect of Choice of Filler Items
	Effect of Target Shifting Obfuscation
	Reciever Operater Characterstics
	Discussion and Limitations
	Conclusions

	Chapter Conclusion
	Future Directions
	Addressing the User Cold Start Problem by Leveraging User Clusters
	Evaluating Impact of User-Cluster Targeted Attacks in Matrix Factorisation Recommenders
	Attack Detection Using Item Vector Shift in Matrix Factorisation Recommenders

	Chapter Appendices
	Appendix A
	Definitions
	Theorems and Proofs

	Appendix B
	Properties Of Positive Definite/ Semi-Definite Matrices
	Sherman-Morrison Formula
	Theorems and Proofs
	Additional Experimental Results

	Bibliography

