

	

TOWARD GAMIFICATION IN
SOFTWARE ENGINEERING

PRACTICE

	

WEI	REN	

Supervisor:	STEPHEN	BARRETT	

	

SCHOOL	OF	COMPUTER	SCIENCE	AND	STATISTICS	

	

	

The	thesis	is	submitted	to	Trinity	College	Dublin	in	fulfilment	of	the	

requirements	for	the	degree	of	Doctor	of	Philosophy	in	computer	science	

	

March	2024	

 	

ii

Declaration	

I declare that this thesis has not been submitted as an exercise for a degree at this or any other university

and it is entirely my own work except where it explicitly acknowledges the unpublished and/or published

work of others.

I agree to deposit this thesis in the University’s open access institutional repository or allow the library to

do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use

and acknowledgement.

I consent to the examiner retaining a copy of the thesis beyond the examining period, should they so wish

(EU GDPR May 2018).

iii

iv

Publications	from	this	Doctoral	Thesis	

• Ren, W., Barrett, S. (2019, June). Toward Gamification in Software Engineering, The Irish

Conference on Game Based Learning.

• Ren, W., Barrett, S., & Das, S. (2020, January). Toward gamification to software engineering and

contribution of software engineer. In Proceedings of the 2020 4th International Conference on

Management Engineering, Software Engineering and Service Sciences (pp. 1-5).

https://doi.org/10.1145/3380625.3380628

• Ren, W., & Barrett, S. Test-driven development, engagement in activity, and maintainability: An

empirical study. IET Software. https://doi.org/10.1049/sfw2.12135

• Ren, W. (2023, December) Gamification in Test-Driven Development Practice. In Proceedings of

the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE) Workshop: Gamify. https://doi.org/10.1145/3617553.3617889

• Ren, W., Barrett, S. An Empirical Investigation on the Benefits of Gamification in Communication

within Development Teams, Computer Applications in Engineering Education.

https://doi.org/10.1002/cae.22675

 	

https://doi.org/10.1145/3380625.3380628
https://doi.org/10.1049/sfw2.12135
https://doi.org/10.1145/3617553.3617889
https://doi.org/10.1002/cae.22675

v

Table	of	Contents	

Declaration .. ii

Publications from this Doctoral Thesis .. iv

Table of Contents .. v

List of Tables ... x

List of Figures ... xii

Abstract ... xiv

Acknowledgments ... xv

Chapter 1 Introduction ... 17

1.1 Overview and Motivation ... 18

1.2 Summary of Research Questions in Bullet Points .. 23

1.3 Research Design ... 24

1.4 Key Findings .. 26

Chapter 2: State of the Art .. 27

2.1 Test-Driven Development Behaviors .. 28

2.1.1 Unit Testing .. 29

2.1.2 Fast Iteration .. 30

2.2 Engagement level in Development Activities ... 31

2.2.1 Background of Engagement ... 31

2.2.2 Measurement of Engagement ... 32

2.3 Software Quality .. 34

2.4 Gamification ... 35

vi

2.4.1 Background and Definition ... 35

2.4.2 Gamification Advantage .. 36

2.5 Hypotheses Development ... 38

Chapter 3 Gamification Framework ... 42

3.1 Introduction and Background ... 42

3.2 Gamification Methodology .. 45

3.2.1 Gamification Model .. 45

3.2.1.1 Preparation .. 47

3.2.1.2 Platform ... 47

3.2.1.3 Gamification Design .. 47

3.2.1.4 Development .. 48

3.2.1.5 Conclusion .. 48

3.2.2 Gamification Configurable Method .. 49

3.3 Conclusion .. 51

Chapter 4 Studies Setting .. 52

4.1 Setting .. 53

4.1.1 Observational Study Setting ... 53

4.1.2 Experimental Studies Setting .. 55

4.1.2.1 Group Experiment Setting .. 55

4.1.2.2 Individual Experiment Setting ... 58

4.2 Ethics Preparation ... 62

4.2.1 Participants Recruiting and Consent ... 62

4.2.2 Potential Influence on Participants .. 63

4.2.3 Data Protection .. 63

Chapter 5 Methodology ... 65

5.1 Measurement of TDD ... 66

5.1.1 Behavior proxy (1). Unit Testing Sequence .. 66

vii

5.1.2 Behavior proxy (2). Development Cycle ... 66

5.2 Measurement of Engagement Level in Development Activities ... 69

5.2.1 Background .. 69

5.2.2 The Engagement proxy .. 69

5.2.2.1 Proxy (1). Commit Number ... 70

5.2.2.2 Proxy (2). Commit Frequency ... 70

5.2.3 Limitation of Engagement Measurement .. 71

5.3 Maintainability .. 72

5.4 Control Variables ... 74

5.5 Gamification Design .. 76

5.5.1 Design Gamification in Group Setting ... 76

5.5.2 Design Gamification in Individual Setting .. 78

5.6 Measurement of Gamification ... 81

5.6.1 Measurement in Group Experiment .. 81

5.6.2 Measurement in Individual Experiment ... 81

5.7 Diagnostics .. 84

Chapter 6 Result .. 86

6.1 Result of Observational Study ... 87

6.1.1 Descriptive Statistics .. 88

6.1.2 Correlation Analysis ... 89

6.1.3 Regression Models ... 91

6.1.3.1 Association between TDD behaviors and engagement level in development activities 92

6.1.3.2 Association between the engagement level in development activities and maintainability 93

6.1.4 Additional Analysis .. 97

6.2 Result of Group Experiment ... 98

6.2.1 Gamification and Behaviors ... 98

6.2.2 Gamification and Engagement ... 100

6.2.3 Gamification and Maintainability ... 104

viii

6.3 Result of Individual Experiment .. 108

6.3.1 Gamification and TDD Practice (RQ3) ... 108

6.3.2 Comparing the Effect of Different Gamification Strategies (RQ4) ... 112

6.3.3 Examine Sustainability of Effect of Gamification .. 119

Chapter 7 Discussion ... 120

7.1 Threat to Validity .. 121

7.1.1 Internal Validity .. 121

7.1.2 External Validity ... 122

7.1.3 Construct Validity ... 123

7.1.4 Conclusion Validity .. 124

7.2 Discussion of Studies .. 125

7.2.1 Observational Study .. 125

7.2.2 Group Experiment .. 126

7.2.3 Individual Experiment ... 127

7.2.4 Engagement ... 128

7.2.5 Limits of Empirical Study .. 129

Chapter 8 Conclusion and Future Work ... 131

8.1 Contribution .. 132

8.2 Limitation .. 134

8.3 Implications for future research ... 136

References ... 137

Appendix .. 159

A. Variables Used in Studies .. 159

a. Variables Used in Observational Study: ... 159

b. Variables Used in Group Experiment: .. 159

c. Variables Used in Individual Experiment: ... 160

ix

2. Ethics Documents ... 161

a. Participate Consent ... 161

b. Data Consent ... 167

c. Participate Consent Form .. 174

d. Data Consent Form .. 177

3. Gamification Document .. 180

a. Screen Shot of Gamification Structures ... 180

b. Screen Shot of Gamification Feedback ... 180

c. Screen Shot of Github .. 181

d. Screen shot of Data Sample ... 181

4. Plot Distribution of Variables ... 183

a. Observational Study ... 183

b. Group Experiment .. 183

c. Individual Experiment ... 184

 	

x

List	of	Tables	

Table 1.1: Overview of methodology employed .. 25

Table 4.1 Experiment Structure .. 57

Table 5.1 Test-Driven Development Definition ... 66

Table 5.2. Test-Driven Development Response Variables ... 67

Table 5.3 Engagement Response Variables - Commit Number ... 70

Table 5.4 Engagement Response Variables - Frequency .. 71

Table 5.5 Maintainability ... 73

Table 5.6 Control Variables ... 75

Table 5.3 Point rules ... 78

Table 6.1 Descriptive Statistics .. 89

Table 6.2 Correlation Between TDD and Engagement ... 89

Table 6.3 Panel A. Correlation Between Engagement and Maintainability (General) 91

Table 6.3 Panel B. Correlation Between Engagement and Maintainability (Production

Code vs. Test Code) ... 91

Table 6.3 Panel C. Correlation Between Engagement and Maintainability (New Test vs.

Maintain Test) .. 91

Table 6.4 Association Between TDD and Engagement ... 93

Appendix Table 6.4-A Association Between Development Type and Engagement 93

xi

Table 6.5 Panel A. Engagement of Development Process and Maintainability 94

Table 6.5 Panel B. Engagement in Coding and Testing Phases and Maintainability 96

Table 6.5 Panel C. Engagement in New or Maintaining Test and Maintainability 97

Table 6.6 Bivariate Analysis of Sequence .. 98

Table 6.7 Descriptive Statistics .. 105

Table 6.8 Panel A Gamification and Maintainability in Short Term 106

Table 6.8 Panel B Gamification and Maintainability in Long Term 106

Table 6.9 Panel A .. 111

Table 6.10 Bivariate Analysis of Gamification Impact on TDD practice 112

Table 6.11 Bivariate Analysis on Leaderboard ... 115

Table 6.12 Bivariate Analysis on All ... 115

Table 6.13 Bivariate Analysis on Extra .. 115

Table 6.14 Bivariate Analysis on Feedback .. 116

Table 6.15 Bivariate Analysis on Random ... 116

Table 6.16 Bivariate Analysis of Sustainability of Gamification .. 119

Appendix Table A Variables Description .. 159

	

 	

xii

List	of	Figures	

Figure 1.1 Overall Introduction ... 22

Figure 3.1 Searching Gamification ... 42

Figure 3.2 Gamification Model .. 46

Figure 4.1 Example of Notification Email ... 57

Figure 4.2 Students Emailed Individually .. 57

Figure 4.3 An Example of Email Content .. 60

Figure 4.4 Students Emailed Individually .. 60

Figure 4.1 Experiment Introduction .. 61

Figure 5.1 Gamification Variables .. 82

Figure 6.1 Connection Between Statistical Methods and Hypotheses 88

Figure 6.2 Gamification and TDD Behaviors ... 100

Figure 6.3 Gamification and Engagement (NC) .. 102

Figure 6.4 Gamification and Engagement (FEQ) .. 104

Figure 6.5 Gamification Impact on Number of Development Cycle 109

Figure 6.6 Gamification Impact on Number of Test Case .. 109

Figure 6.7 Gamification Impact on TDD Practice .. 110

Figure 6.8 Compare Gamification Strategies’ Impact on TDD Practice 112

xiii

Figure 6.9 Distinguish the Impact of Different Gamification Strategies on TDD Practice

 ... 114

Figure 6.10 Sustainability of Gamification ... 119

xiv

Abstract	

This thesis seeks to expand the explanation and examine the application of gamification strategies in

software engineering practice, specifically in the education setting. I hypothesize that gamification

strategies, deployed in the situated learning experience, can help students develop and maintain

professional practice more effectively.

To verify my hypothesis, first, I identify effective strategies for applying gamification to software

engineering practice accompanied by a theoretical framework through desk analysis, and through an

empirical study to examine whether gamification is feasible for software engineering practice. Then, we

conducted a series of experiments to examine the effectiveness of gamification in software engineering

practice. This work focuses on one representative software engineering practice: test-driven development

practice (TDD), which are hard to develop and maintain for students and novice developers.

Test-driven development (TDD), which has received considerable attention in recent years, is an example

of key software development practice, and past literature suggests that TDD is strongly associated with

high-performing engineering practices. First, I conducted an observational study to show that TDD can

be applied gamification. Then, I have experimented with treatment and control groups to show that I can

improve students’ TDD practice efficiency using gamification, and distinguish the impact of different

gamification strategies. Furthermore, I have developed evidence that gamification effect retain after

intervention ceasing.

Our research argues that gamification is a valuable tool for promoting the development and maintenance

of software engineering practices among students.

xv

Acknowledgments	

I would like to express my sincere gratitude to everyone who has contributed to the completion of this

Ph.D. thesis.

First and foremost, I would like to thank my supervisor, Professor Stephen Barrett, for his guidance and

support throughout my research. Despite the challenges I faced during my research work, Professor

Barrett was always available to provide me with constructive feedback and advice, which has been

instrumental in shaping my research work. I am grateful for his continuous encouragement and patience.

I would also like to thank my confirmation committees, Professor David Gregg and Professor Stefan

Weber, and internal and external examiners, Professor Ann Devitt and Dr. Luca Longo, for their insightful

feedback, valuable suggestions, and helpful comments. Their guidance has been crucial to the

development of my research, and I am thankful for their time and effort. I would like to extend my thanks

to the faculty members and administrative staff at Trinity for their support throughout my program.

I am also grateful to my partner, Dr. Yang Zhao, for her constant support and encouragement during my

academic journey. She has been my biggest cheerleader, helping me with both academic and my life. Her

unwavering support has been invaluable, and I could not have done this without her.

Finally, I want to thank my parents for their unconditional love and support throughout my academic

career. They have always been my pillars of strength, motivating me to strive for excellence and never

giving up on my dreams.

I am honored to have had the support of so many individuals throughout my doctoral program, and I thank

you all from the bottom of my heart.

17

Chapter	1	Introduction	

This thesis aims to expand the explanation and examine the application of gamification strategies

in software engineering practice, specifically, in education settings. Gamification is a technique that

incorporates game design elements into non-gaming contexts to enhance user performance. I

propose that by using gamification strategies into learning experiences, students can develop and

maintain professional practices more effectively. In this thesis, I focus on a notable practice in the

field of software engineering: test-driven development (TDD). TDD has gained widespread

attention for its association with high-performing engineering practices, but its implementation and

maintenance can present difficulties for inexperienced developers and students. By examining the

impact of gamification on these practices, I seek to shed light on its potential as a tool for enhancing

software engineering education and professional development.

Chapter 2 provides an overview and a brief introduction to the relevant literature and hypothesis

development. Chapter 3 introduces a theoretical framework for applying gamification to software

engineering practices. Chapter 4 introduces the ethic preparation and studies setting. Chapter 5

introduces the methodology, including variables’ definition and gamification design. Chapter 6

shows the results of both observational study and experimental studies. Chapter 7 discusses of each

study and overarching threat to validity. Finally, this thesis concludes by summarizing the key

contribution and limitation in chapter 8.

 	

18

1.1	Overview	and	Motivation	

The financial and societal impact of the Irish software industry cannot be understated, with a market

research report revealing that the cost of software development activities accounted for

approximately 31% of the industry's 64.4 billion Euro revenue in 2023. 1 As a result, any

improvement in software engineering practices could lead to significant cost savings. For instance,

even a 1% increase in efficiency could yield annual savings of around 200 million Euros. Given this

context, exploring ways to improve software quality is of paramount importance, making the

investigation of gamification as one of the means a crucial area of inquiry. By leveraging

gamification, software engineering students and professionals may be better equipped to adopt and

maintain practices, leading to improved software quality and potentially substantial financial

benefits for the industry.

Software engineering practices include but not limited to test-driven development (TDD)

(Sommerville, 2015; Voas and Agresti, 2004). Prior research suggests that high-quality TDD

practice is related with improved software quality, particularly in terms of maintainability (see §2.3).

Key TDD behaviors, such as writing test sequences, iterative development, and unit testing, as well

as sustained engagement in development activities are crucial to achieving these benefits (see §2).

Despite the potential advantages of using TDD, novice developers and students may face challenges

when attempting to adopt and maintain this approach, resulting in lower TDD usage rates among

these groups (see §2.5). Therefore, I seek to examine that the relationship between gamification and

TDD behavior in this thesis.

Gamification, which involves the use of game design elements in non-gaming contexts, has been

recognized as a valuable approach to optimize activities and improve engagement in software

engineering practices (Deterding et al., 2011). While the primary benefits of gamification include

behavior change and enhanced engagement recent research has also highlighted its potential to

1 The IBISWorld Software Development in Ireland - Market Research Report, 2023 edition:

https://www.ibisworld.com/ireland/industry-statistics/software-development/3595/

https://www.ibisworld.com/ireland/industry-statistics/software-development/3595/

19

promote a positive learning experience and increase motivation. Moreover, the interest in

gamification has grown significantly since 2011, with the software engineering education

community showing particular interest (see §2.4).

However, gamification is no silver bullet: inappropriate gamification design can often result in

decreased gamification effectiveness, which is one of the most frequently observed negative

consequences. For example, the existing designs, such as Octalysis, CEGE, and 6D, are mostly

designed for a more general subject and not tailored to software engineering practice (see §2.5).

Due to the lack of gamification design for software engineering practice, the first research question

is put forward:

RQ1: How to apply gamification on software engineering practice?

Therefore, Chapter 3 presents a gamification framework that is specifically designed for software

engineering practice. This framework provides practical guidance for software engineers and

developers to incorporate gamification into their practices in a meaningful and effective way.

Furthermore, unclear goals of applying gamification can also have negative consequences, such as

decreased motivation and unreasonable activity levels (Moldon et al., 2021). Therefore, in order to

clarify whether gamification is feasible on TDD practice, with the goal of improving the efficiency

of software engineering practices (in this thesis, I select TDD as a representative practice), and given

that the main benefits of gamification are behavior change and increased engagement, so this thesis

examines the relationship between the key components of efficient TDD (TDD behavior,

engagement in development activities) and maintainability. The second research question raised:

RQ2: Is gamification feasible on TDD practice?

Test-driven development (TDD) is also named as test-first programming, is the practice of writing

automatic test cases before production code (Beck, 2003). Production code is a block of code used

to satisfy a specified requirement, whereas test code is used to test the corresponding production

code.

20

The adoption of TDD practice is claimed to have an impact on software quality (Bissi et al., 2016),

including both internal and external quality (B. W. Boehm et al., 1976). While scholar argue that

TDD has only a marginal positive effect on external quality (Rafique and Mišić, 2012), others have

found a significant increase in internal quality (Bissi et al., 2016), particularly the improved

maintainability (Fucci and Turhan, 2014; Munir et al., 2014; Tosun et al., 2018; Williams et al.,

2003). Maintainability is considered one of the fundamental characteristics of internal

quality(Botella et al., 2004), and it has been a topic of interest for decades. Increase maintainability

can lead to a reduction in support costs (Dhillon, 2006).

Previous studies indicate that the benefits of TDD practice stem from its unique characteristics, such

as test-first approach (Beck, 2003; Bissi et al., 2016; Tosun et al., 2018; Tosun et al., 2017). However,

recent studies point out that the positive impact of TDD might not be solely due to its test-first

attributes. Instead, it might be attributed to the increased focus on testing by putting more effort into

testing (Fucci et al., 2016; Fucci et al., 2015), and improved coding by encouraging developers to

follow fine-grained coding practices (Fucci et al., 2016). In addition, researchers have found that

developers who follow TDD are more likely to be engaged in development activities such as coding

and testing (Erdogmus et al., 2005; Tosun et al., 2017). This therefore leads to an interesting question:

RQ2a: does following TDD behaviors improve developers’ engagement in development activities,

such as coding and testing?

The term “engagement” has been defined by a psychologist Schaufeli as focus, involvement, and

passion (Wilmar B. Schaufeli, 2013b). Given that prior research suggests that engagement can

improve working efficiency and lead to better working outcomes (Markos and Sridevi, 2010), it is

natural to question:

RQ2b: whether a higher engagement level in development activities lead to superior software

quality?

When it became clear that gamification is feasible on TDD, the next step was to examine the

effectiveness of gamification on TDD through experiments. The lack of sufficient research on the

21

effectiveness of gamification in software engineering practice hinders our ability to fully

comprehend its impact on software engineering practices (Monteiro et al., 2021). Current research

on gamification in software engineering has primarily focused on project management (Machuca-

Villegas and Gasca-Hurtado, 2018) and requirements (Pedreira et al., 2015), with limited attention

given to development practices (Manal M Alhammad and Moreno, 2020).

Also, the existing research on gamification effectiveness has primarily focused on simple activities,

such as improving documentation quality or naming variables properly, while there is a lack of

understanding regarding its potential impact on more complex practices like TDD (see §2.2.3). In

addition, the recent studies call for empirical evidence on the effectiveness of gamification strategies

(Manal M. Alhammad and Moreno, 2018; Monteiro et al., 2021; Paula Porto et al., 2021).

Taken together, there is limited research on the application of gamification in complex daily

development practices, and a lack of empirical evidence. Unlike previous studies that rely on

questionnaires, my study aims to examine the relationship between gamification and TDD practices

quantitatively using statistical methods. As a result, this thesis seeks to examine the effectiveness of

gamification on TDD practice, and identify relevant gamification strategies that can help optimize

software engineering processes. And the third research question raised:

RQ3: Can gamification strategies improve TDD efficiency in both group and individual setting?

To provide a more in-depth understanding of gamification, unlike previous research that has mainly

focused on the combined effects of gamification strategies without exploring the impact of

individual strategy (§2.5), thesis thoroughly investigates and compare the impact of various

gamification strategies on software engineering practices. Based on prior research, there exist

certain challenges and limitations in the implementation of gamification strategies in software

development practices. Points, leaderboards, and feedback are commonly used gamification

techniques (Çeker and Özdaml, 2017; Koivisto and Hamari, 2019; Ren et al., 2020). However, these

strategies are often analyzed in combination, making it difficult to determine the impact of each

individual strategy (Manal M. Alhammad and Moreno, 2018; Denny et al., 2018; Seaborn and Fels,

2015).

22

RQ4: Does using gamification strategies together better than using individually?

Furthermore, research on the sustainability of gamification effects in software engineering practice

is an aspect that has not been fully explored, although other fields have examined the durability of

gamification effects after the intervention has been removed (Manal M. Alhammad and Moreno,

2018; Pedreira et al., 2015).

RQ5: Does the gamification effect on TDD persist after withdrawing the intervention?

In summary, the objective of my thesis is to expand the explanation and examine the application of

gamification in software engineering practice, specifically in educational setting. The overall

structure is shown below, which includes four works.

To achieve the objective, first of all, this thesis has done two preliminary works for preparation,

gamification framework and observational study respectively. The gamification framework is a desk

analysis, which addresses the question, how to apply gamification on SEP? The current gamification

framework is mostly for general contexts, such as education, business, management, etc. rather than

specifically for SEP. Given the framework introduced, observational study examines whether it is

feasible for SEP? In here, this work focused on test driven development practice (TDD). Then, I

conducted two experimental studies that focused on applying gamification on TDD practice in both

group setting and individual setting.

Figure 1.1 Overall Introduction

23

1.2	Summary	of	Research	Questions	in	Bullet	Points	

Research Questions
RQ1: How to apply gamification in software engineering practice?
RQ2: Is gamification feasible on TDD practice?
RQ2a: Does following TDD behaviors improve engagement in development activities?
RQ2b: Does higher engagement level lead to a better maintainability?
RQ3: Can gamification strategies improve TDD efficiency in both group and individual
setting?

RQ3a: Does gamification promote the following of TDD style?
RQ3b: Does gamification improve engagement level in development activities?
RQ3c: Does gamification improve maintainability?

RQ4: Does using gamification strategies together better than using individually?
RQ5: Does the gamification effect on TDD persist after withdrawing the intervention?

	

 	

24

1.3	Research	Design	

Following the principles of empirical software engineering research , I use observational study and

experimental approach in this thesis, which involves introducing an intervention and observing its

effects while controlling for certain factors, making it the most effective method for testing

hypotheses (Singleton et al., 1999; Wohlin et al., 2012).

To answer the RQ2, using a data-driven method, I investigated the relationship between Test-Driven

Development (TDD), engagement in development activities, and maintainability among 237 third

year undergraduate students at a university. Ordinary least squares (OLS) regressions were

employed, and the results supported my hypothesis.

To answer RQ3 to RQ5, I conducted two experiments.

The group experiment was carried out with two development teams, consisting of 6 and 20 students

respectively, enrolled in the same software development module (Software Design and

Implementation) from academic years 2020 and 2021. The teams were tasked with developing a

complex Android application, and the experimental period was 45 days. The study followed a

Pretest-Posttest Control Group Design. To assess the efficacy of gamification, an empirical analysis

was conducted using graphical representations and ordinary least squares (OLS) regression. This

was done in order to gain a deeper understanding of the impact of gamification on the development

process.

The individual experiment was conducted over the course of a month with 162 final-year

undergraduate software engineering students, with the aim of gathering empirical evidence to

address the research questions posed in this study. The experiment was conducted within the context

of a large third-year software engineering module. The students are from academic years 2021 and

2022, and the experiment lasted for 44 days per academic year.

Table 1.1 presents a brief overview of the methodology and the data analysis employed in this thesis.

Research Method Data Analysis Method Data Sources
Observational Study OLS regression; Bivariate Analysis

25

Group Experiment Graph analytics; Bivariate Analysis; OLS regression Github
Individual Experiment Graph analytics; OLS regression

Table 1.1: Overview of methodology employed

26

1.4	Key	Findings	

First, this thesis presents a comprehensive framework for the implementation of gamification design,

which makes gamification strategies actionable on software engineering practice. It also introduces

a gamification configurable method to assist researchers in selecting appropriate gamification

elements based on the intended outcome.

Second, the thesis provides empirical results that gamification is feasible on TDD practice. The two

main areas where gamification has an impact, behavior and engagement, are critically related to the

effectiveness of TDD practices. More specifically, this thesis finds that following TDD behaviors

increase engagement levels in development activities, and engagement level has significant and

positive performance consequences for software maintainability. Specifically, the positive impact

on maintainability is especially pronounced for engagement in the testing phase versus the coding

phase. Additionally, engaging in creating new test cases offers greater benefits on maintainability

compared to engaging in maintaining existing test cases. My results remain robust when controlling

for various factors such as readability, different tasks, size, and programming language.

Third, this work shows that the implementation of gamification produces favourable results for TDD

practices in both group and individual setting. Specifically, the utilization of gamification strategies

motivates team members to adhere to TDD behaviors, leading to heightened engagement in

development activities, and improving software maintainability.

Fourth, this thesis further analyzes the effects of different gamification strategies on TDD efficiency.

It finds that combining multiple gamification strategies is more effective than using them

individually. Last, the impact of gamification remains noticeable even after the intervention is

removed, indicating lasting efficacy.

Overall, the thesis highlights the potential of gamification as a valuable and practical tool in software

engineering, improving efficiency and quality of software development practice, specifically TDD.

27

Chapter	2:	State	of	the	Art	 	

The primary objective of an effective software engineering is to develop and maintain high-

performing professional practices (B. W. Boehm, 1976; Sommerville, 2015; Voas and Agresti,

2004), which requires addressing technical challenges (Lenberg et al., 2015; Matturro et al., 2019;

Weinberg, 1971). Navigating technical challenges involves overcoming the difficulty of achieving

high-quality software development, a process deeply rooted in practical activities within the field

of software engineering (Voas and Agresti, 2004). Test-driven development (TDD) as a prime

example, represents a crucial and fundamental aspect of the development process (Beck, 2000;

Nanthaamornphong and Carver, 2017; Roman and Mnich, 2021; Treude and Storey, 2010;

Velmourougan et al., 2014; Zielinski and Szmuc, 2005). Undoubtedly, the significance of TDD

cannot be overstated, given its critical role in improving software quality (Papis et al., 2020). By

exploring this fundamental aspect of engineering practices, this study seeks to contribute to the

current body of knowledge in software engineering and deepen understanding regarding the factors,

behaviors and engagement, that form the basis for the creation of high-quality software. Then, this

Chapter provides a comprehensive literature review on gamification strategies, including an

overview of gamification concepts, its advantages, and its application in software engineering. This

Chapter also discusses the existing gaps in the literature on TDD practice, and current application

of gamification strategies in the field of software engineering.

 	

28

2.1	Test-Driven	Development	Behaviors	

In the initial phases of software development, researchers endeavored to systematize the "test-design

thinking" development method by adopting various techniques and tools (Bertolino, 2007). An

illustration of this is the introduction of the iterative development method based on test-design

thinking during NASA's Mercury project in the early 1960s (B. W. Boehm, 1976). Markedly, in

2003, Beck introduced test-driven development (TDD), also known as test-first programming, as a

representative software development practice to improve software quality (Beck, 2003; C. Chen et

al., 2017; Fucci and Turhan, 2014; Tosun et al., 2018; Tosun et al., 2017).

Since its inception, TDD has gained considerable attention in both academia and software

development industry, establishing itself as one of the most widely used agile practices (Bissi et al.,

2016; A. Santos et al., 2021; Tosun et al., 2018). In Beck's seminal work, TDD is defined as "write

new product code only when a test case fails and refactor product code whenever you see fit" (Beck,

2003), visually depicted in Figure 2-1. A key characteristics of TDD is its emphasis on small and

rapid iterations, with each unit designed to be as small as possible and compiled by testable software

components (Beck, 2003). Specifically, TDD operates as a cyclic development technique, with each

cycle ideally coinciding with the implementation of a small feature (Fucci et al., 2016).

Figure 2-1 Test-driven development

The existing literature indicates a strong correlation between the adoption of the Test-Driven

Development (TDD) practice and significant improvements in software quality. Specifically, 76%

of prior studies report an enhancement in internal software quality, while 88% of them observe a

substantial increase in external software quality (Bissi et al., 2016), with a particular emphasis on

maintainability (Dogša and Batič, 2011; Khanam and Ahsan, 2017; Mäkinen and Münch, 2014;

Tosun et al., 2018). In addition, TDD’s impact on code quality surpasses that of traditional

29

development approaches, resulting in a twofold improvement, coupled with a notable reduction of

approximately 40% in code defects (Bissi et al., 2016; Williams et al., 2003). TDD practice has also

been found to promote productivity in academic environments, measured as the line of source code

per hour (Bissi et al., 2016).

The underlying mechanisms propelling the benefits of TDD practice can be traced to two key

behaviors: unit testing and fast iteration (Beck, 2003; Bissi et al., 2016; Borle et al., 2018; Crispin,

2006; Fucci et al., 2016; A. Santos et al., 2021; Tosun et al., 2018; Tosun et al., 2017),. Concurrently,

studies suggest that increasing engagement levels during development activities may further

amplify the advantages of TDD practice (Buchan et al., 2011; Fucci et al., 2016; Papis et al., 2020).

Empirical evidence indicates that TDD contributes to increased developer engagement and

motivation, fostering a greater sense of accomplishment and sustained focus throughout the

development process (Buchan et al., 2011; Fucci et al., 2016). These findings underscore the

potential for actively fostering engagement levels within TDD practices to enhance its effectiveness

in improving software quality and development outcomes. More details on the impact of

engagement level on TDD benefits are discussed in the following section.

2.1.1	Unit	Testing	

Unit testing stands as a critical component within Test-Driven Development (TDD) and the Extreme

Programming (XP) methodology. It involves testing the functional requirements and properties of

single units within the system, such as classes or methods (Runeson, 2006).

Within the expansive realm of software testing, my focus in this study is specifically on unit testing,

a practice found to be effective in workplace settings. For example, research conducted at Microsoft

revealed a 21% reduction in the number of faults discovered by software quality assurance and

customer-reported problems through the implementation of unit testing. However, it is important to

acknowledge concerns raised by researchers about the potential impact of unit testing on

productivity, as it may result in a 30% increase in development time (Shull et al., 2002; Williams et

al., 2009).

30

Despite the productivity concerns, unit testing retains its status as a critical component of TDD and

XP practices, leading to the improved software quality and reliability. One advantage of unit testing

is its ability to pinpoint issues in the codebase at an early stage, preventing them from evolving into

significant bugs in the software. This early detection not only facilitates timely issue resolution but

also leads to significant cost savings, as fixing a defect post-release is often more expensive than

resolving it during development (B. W. Boehm, 1984; Shull et al., 2002).

Moreover, unit testing is believed to increase engagement and motivation among developers. It

provides swift feedback, enhancing the sense of accomplishment and maintaining focus throughout

the development process (Buchan et al., 2011; Fucci et al., 2016; Papis et al., 2020).

In conclusion, despite concerns regarding its potential impact on productivity, unit testing remains

a critical component of TDD and XP practices, offering improvements in software quality and

reliability. Additionally, unit testing can also increase engagement and motivation among developers,

thereby potentially enhancing the overall benefits of TDD practice.

2.1.2	Fast	Iteration	

Test Driven Development (TDD) is a software development process that emphasizes the importance

of rapid iterations. In TDD, the process involves initially writing a failing test, followed by writing

the minimal code necessary to pass the test (Beck, 2003). This approach encourages developers to

write code in quick cycles, aiming for frequent, small improvements to the software.

The rapid iteration cycle provides several advantages. Firstly, it is instrumental in facilitating early

defect detection and ensuring code quality. Second, the ability of rapid iterations to focus on a

specific aspect of the software (such as a single method or class), combined with an increased

number of development cycles, can help developers to better understand the structure of the code

(Fucci et al., 2016; Tosun et al., 2018). This aligns with TDD's positive impact on both internal and

external software quality (Bertolino, 2007; Chávez et al., 2017; Fucci et al., 2016; Tosun et al.,

2017).

 	

31

2.2	Engagement	level	in	Development	Activities	

2.2.1	Background	of	Engagement	

Engagement is a psychological construct that refers to the extent to which individuals are fully

involved and enthusiastic about their work (Wilmar B. Schaufeli, 2013a). According to (Bakker and

Demerouti, 2008), engagement has been found to positively impact work performance, such as

creativity, productivity, and willingness to undertake additional tasks. In the software engineering

domain, engagement was initially introduced as a means of improving communication and

teamwork among software development teams (Crowston and Howison, 2005; Ehrlich and Cataldo,

2012; Shihab et al., 2009).

Previous studies have suggested that engagement plays a crucial role in enhancing work

performance and productivity (Markos and Sridevi, 2010). In the field of software engineering,

there have been a few studies that have examined the impact of engagement on team performance,

with a particular focus on communication among software development teams (Crowston and

Howison, 2005; Ehrlich and Cataldo, 2012; Shihab et al., 2009). More recently, researchers have

begun to explore engagement in other aspects of software engineering, such as team collaboration

(Akpolat and Slany, 2014), requirement documents (Tizard et al., 2022), and software architecture

(Keuler et al., 2012).

Despite previous research efforts, the role of engagement in development activities, such as coding

and testing, remains a significant gap in the literature. (J.-C. Chen and Huang, 2009; Fucci et al.,

2016; Myers et al., 2011; Rosen et al., 2015). While engagement has been found to positively impact

work performance and productivity in software engineering, there has been limited investigation

into the impact of engagement on development activities. This represents an important area for

future research, as engagement in these activities can significantly affect the quality and efficiency

of software development. Furthermore, disengagement in development activities has been shown to

have a negative impact on individual performance (Qiu et al., 2019).

32

With respect to Test-Driven Development (TDD), previous research has reported that the benefits

of TDD are not solely attributable to the rapid iteration process, but also to the increased focus on

the development activity (Fucci et al., 2016). Tosun et al. (2018) further demonstrated that the

benefits of TDD practice are driven by developers being more likely to participate and engage in

testing activities. Higher engagement in the development activity has been identified as a factor that

leads to high-performing TDD practice (Beck, 2000; Bissi et al., 2016).

2.2.2	Measurement	of	Engagement	

Measuring engagement poses a considerable challenge in this study due to its inherent lack of direct

observability. To address this issue, psychologists have proposed using a set of questionnaires,

Utrecht Work Engagement Scale (UWES), to measure engagement in working environments

(Breevaart et al., 2012; W. B. Schaufeli and Bakker, 2003).

In recent years, researchers in computer science education have attempted to quantitatively measure

engagement in the classroom from three perspectives: behavioral, cognitive, and emotional

engagement (Fredricks et al., 2004).3 Among these, behavioral engagement is considered easier to

capture, given that behavioral patterns can be defined, observed, and interpreted (Liu et al., 2014).

The measurement of engagement is crucial in educational research as behavioral engagement plays

a crucial role in students' participation in learning and leads to positive academic outcomes

(Fredricks et al., 2004; Qahri-Saremi and Turel, 2016).

Various attempts have been made to measure engagement through behavioral engagement,

including quantifying completed activities and time allocation to tasks (Riemer and Schrader, 2016,

Orji et al. 2021). Engagement metrics derived from completed activities encompass factors such as

the number of video views and bullet chats (He et al., 2022), the number of clicks on links to learning

resources (Namara et al., 2022; Orji et al., 2021) and the number of participation tasks completed.

Similarly, engagement metrics derived from time allocation include investigating code review time

3 Behavioral engagement refers to participants’ activities, cognitive engagement refers to students’ affective

reactions in the classroom, and emotional engagement refers to a desire to go beyond requirements.

33

length (Rauf et al. 2022, Lane and Harris 2015), measuring the duration of time spent at school

(Qahri-Saremi and Turel, 2016), and monitoring time spent on open-source GitHub projects (Qiu et

al., 2019). Please see section 5.2 for a discussion of the measures of engagement used in this study.

 	

34

2.3	Software	Quality	

Software quality is a critical aspect that reflects the effectiveness of Test-Driven Development (TDD)

practice. The definition of software quality has been a subject of study for several decades, with

various researchers emphasizing different aspects. For instance, B. W. Boehm et al. (1976) defined

software quality as including portability, as-is utility, and maintainability. In recent years, the

International Organization for Standardization (ISO) and International Electrotechnical

Commission (IEC) updated the definition of software quality to include functionality, reliability,

usability, efficiency, probability, and maintainability, as per ISO/IEC 25010:2011 (Estdale and

Georgiadou, 2018).

The attribute of maintainability is of utmost importance in software quality and has gained a lot of

attention in recent years. Maintainability refers to the ease with which a software system can be

modified, and it is one of the fundamental aspects of software quality (Alsolai and Roper, 2020). In

this regard, software maintainability is linked to the maintenance process, which constitutes the

majority of the cost of the software development lifecycle (Zelkowitz, 1978). Research has indicated

that highly maintainable software could reduce approximately 75% of the cost in most systems’ life

cycles (C. Chen et al., 2017). Moreover, during the development life cycle, 60% to 70% of the

consumption is for the maintenance of the software, including resources, time, money, and effort

consumption (Razina and Janzen, 2007). Consequently, it is vital to improve software

maintainability to effectively manage the cost.

Maintainability is also a key aspect that reflects the performance of TDD practice, as indicated by

several previous studies (Bissi et al., 2016; Borle et al., 2018; Buchan et al., 2011; C. Chen et al.,

2017; Razina and Janzen, 2007; A. Santos et al., 2021; Tosun et al., 2018; Williams et al., 2003).

Therefore, maintainability is used in this thesis to represent the performance of TDD practice.

35

2.4	Gamification	

Providing effective training for future software engineers is a crucial challenge in software

engineering education. To tackle this challenge, researchers have devoted their efforts towards

improving software engineering teaching methods and techniques. This improvement involves

enhancing the learning process and finding the most efficient approach for providing software

engineering students with the necessary knowledge and skills. To achieve this, the software

engineering community has examined various innovative pedagogical strategies. Of these strategies,

gamification stands out as the most representative, as indicated by the extensive research conducted

by Connolly et al. (2007); Thomas and Berkling (2013).

2.4.1	Background	and	Definition	

Gamification, initially introduced as a digital marketing strategy, emerged in the business and

marketing domain in 2008 as a means to enhance customer engagement. However, it did not gain

widespread popularity until the mid-2010s (Deterding et al., 2011). Over time, gamification has

been successfully extended and adopted in various domains, including health, business, and

education due to its efficacy in enhancing motivation and engagement (Barata et al., 2014; Kapp,

2012; Latulipe et al., 2015; Monterrat et al., 2014; Muntean, 2011).

In recent years, gamification has emerged as a highly significant and widely utilized teaching

technology in education (Johnson et al., 2014). The academic community's interest in gamification

has grown steadily, with a significant amount of literature published on the topic, providing

educational solutions for the new generation of students (Bı́ró, 2014).

Gamification has now been applied in the context of software engineering, making significant

contributions to this field. The definition of gamification, as proposed by Deterding et al. (2011), in

the area of computer science, is the use of game design elements in non-game contexts. In other

words, gamification utilizes game elements and mechanics to alter behavior and enhance people's

motivation and engagement in their tasks (Deterding et al., 2011; Garcia et al., 2017).

36

The increasing interest in gamification among the academic community has led to a wealth of

literature exploring its potential uses and benefits. In the context of software engineering,

gamification has opened up new opportunities to improve the learning experience and training of

future software engineers.

2.4.2	Gamification	Advantage	

Rodrigues et al. (2018) conducted a systematic mapping study on gamification, which concludes

that gamification is a growing topic since 2011 and that the technique is a new trend used to engage

students in software engineering education (Ouhbi and Pombo, 2020). Monteiro et al. (2021) argue

that gamification is an interesting technique to provide a positive impact on software engineering,

including changing people's behavior, improving engagement (Paula Porto et al., 2021),

collaboration (Barreto and França, 2021), and participation (Monteiro et al., 2021) in industrial

contexts.

Furthermore, the application of gamification in software engineering goes beyond motivation and

involvement. Dubois and Tamburrelli (2013) argued that gamification applied in software

development practice has several advantages due to its mechanisms. It is expected to improve the

results in software engineering tasks, both in terms of product quality and project performance

(Garcı́a et al., 2017), such as encouraging simple good programming practices (Singer and

Schneider, 2012), identification and fault removal (Fraser, 2017), and improving the performance

of processes (Dorling and McCaffery, 2012).

Recent reviews of studies in gamification show positive effects on behavioral outcomes (Ilhan et

al., 2022; Saleem et al., 2021). For example, Prause et al.'s investigation into the impact of adding

a point system to coding conventions is an early example of work in gamification and behaviors

(Prause and Jarke, 2015). They found that introducing gamification interventions can effectively

improve adherence to coding conventions for students.

More recent studies have shown that engagement in class can increase significantly following the

introduction of common game elements such as points and leaderboards (de Almeida Souza et al.,

37

2017; Hsieh and Yang, 2020; Ivanova et al., 2019). Some studies investigate the sustainability of

gamification in the education area (Xiuhan Li and Chu, 2021; Sanchez et al., 2020; Suh et al., 2017;

Tahmasbi and Fuchsberger, 2018). Therefore, in software engineering, researchers are aware of the

potential benefits of gamification, such as gamification rewards developers for their activities and

makes work more enjoyable (Garcia et al., 2017). Thus, unpleasant tasks such as writing unit tests

and performing maintenance may have a positive impact on the development team because of

gamification mechanisms.

38

2.5	Hypotheses	Development	

There is a relatively small body of literature on the use of gamification in software engineering

(Monteiro et al., 2021). Despite its growing popularity, the theoretical framework for gamification

in software engineering remains largely limited (Kasurinen and Knutas, 2018; Monteiro et al., 2021).

The previous literature review identified the lack of a sound methodological approach for the

application of gamification, which hinders the replicability of gamification proposals in different

organizations or scenarios (Garcı́a et al., 2017). The current gamification frameworks, such as

Octalysis (Chou, 2019), GOAL (Garcı́a et al., 2017), social gamification framework (Simões et al.,

2013), CEGE (Zichermann and Cunningham, 2011), 6D (Werbach and Hunter, 2020), are not

specifically designed for software development, especially for day-to-day development.

Additionally, inappropriate gamification design has been shown to result in performance loss among

software engineers (Toda et al., 2018). Therefore, the first research question is raised:

RQ1: How to apply gamification in software engineering practice?

In addition, the current state of research on is still insufficient to show that gamification is feasible

for Test-Driven Development (TDD) practice. So, the first research question is naturally proposed:

RQ2: Is gamification feasible on TDD practice?

As gamification main benefits are changing behaviors and increasing engagement level, it is

necessary to examine whether behavior and engagement are related to the efficiency of TDD. In a

recent paper, Tosun et al. (2018) reported that adhering to one of the key attributes of TDD, testing

first, leads to a higher efficiency in unit tests. However, previous work argues that this improvement

might be due to a higher level of engagement in testing and coding, rather than to the test-first

approach itself (Fucci et al., 2016; Fucci et al., 2015). Furthermore, previous study claims that

students who follow TDD exhibit better task focus (Erdogmus et al., 2005). As such, my first sub

research question is generated,

RQ2a: Does following TDD behaviors improve engagement in development activities?

39

Engagement has been shown to improve working efficiency and yield better working outcome in

general (Markos and Sridevi, 2010). However, there is limited study focuses on engagement level

in development activities such as coding and testing. I therefore ask a question:

RQ2b: Does higher engagement level lead to a better maintainability?

Next, it needs to be examined whether it is necessary to apply gamification to TDD. In recent years,

there have been some attempts to apply gamification to software engineering activities, but such

work has primarily focused on very simple and lower-order activities. For example, studies have

explored the use of gamification to encourage young students to name variables correctly (Prause

and Jarke, 2015), shorten coding time (Tsunoda and Yumoto, 2018), improve software

documentation (Sukale and Pfaff, 2014), and communication within web design (Hsieh and Yang,

2020). However, while gamification has been used to motivate complex behavior and higher-order

activities in other areas, such as business, there has been a lack of research on the application of

gamification techniques in students to develop and maintain complex professional software

engineering practices, such as TDD (Trinidad et al., 2021). Moreover, the empirical evidence of the

effectiveness of gamification in software engineering is largely limited (de Almeida Souza et al.,

2017; Monteiro et al., 2021).

Furthermore, TDD poses significant challenges to effective implementation (Hammond and

Umphress, 2012). While TDD has been successfully extended by high-level software engineers

(Tosun et al., 2018), it is difficult for students and novice developers to adopt and sustain (Choma

et al., 2018; Garousi et al., 2020; Hammond and Umphress, 2012; Muller and Tichy, 2001; Persson

and Isberg, 2019; Rocha et al., 2021). For instance, previous researchers have investigated various

agile methodologies, including TDD, in university courses and discovered that TDD was among the

most challenging practices to adopt due to students' belief that writing test cases before coding was

impractical (Muller and Tichy, 2001). Furthermore, students have difficulty adopting unit testing

(Garousi et al., 2020) and changing development behaviors to adhere to TDD (Buffardi and Edwards,

2014; Mugridge, 2003; Persson and Isberg, 2019), among other difficulties. Therefore, the next

question arises naturally:

40

RQ3: Can gamification strategies improve TDD efficiency in both group and individual setting?

The utilization of gamification has been shown to enhance the performance of individuals while

performing a specific task (Pedreira et al., 2015). Literature suggests that this improvement can be

attributed to the alteration of specific behaviors and engagement levels (Monteiro et al., 2021; Paula

Porto et al., 2021). Previous studies have also posited that the benefits (software maintainability)

derived from the practice of Test-driven Development (TDD) can be attributed to its unique

behaviors and heightened engagement in development activities, such as coding and testing (Beck,

2003; C. Chen et al., 2017; Fucci et al., 2016; Madeyski and Biela, 2007; Tosun et al., 2018).

Consequently, my objective is to encourage students to adopt and maintain TDD practices by

altering their behaviors to align with TDD's unique behaviors and increasing their engagement in

development activities. So, these sub research questions are proposed:

RQ3a: Does gamification promote the following of TDD style?

RQ3b: Does gamification improve engagement level in development activities?

RQ3c: Does gamification improve maintainability?

Several common limitations of gamification have been identified in the literature, and researchers

are recommended to avoid these issues in future work (Hamari et al., 2014; Monteiro et al., 2021;

Paula Porto et al., 2021; Seaborn and Fels, 2015). The first major theme in the literature highlights

the need for more rigorous experimental designs to evaluate the effectiveness of gamification in

software engineering. Specifically, researchers stress the importance of employing control groups

and isolating the effects of individual gamification elements. Studies such as those conducted by

Hamari et al. (2014) and Denny et al. (2018) have noted the low number of participants and short

duration of many gamification experiments. It is worth noting that gamification research in software

engineering education has often utilized quasi-experimental designs, rather than randomly selected

groups of students receiving different interventions. As such, it is important for future studies to

consider the methodological limitations of existing research and strive for more robust experimental

designs to yield more reliable results.

41

Furthermore, while previous studies have examined the impact of commonly used gamification

strategies, such as points, leaderboards, and feedback, in the software engineering domain, they

have largely focused on the combined effects of these strategies rather than their individual

contributions (Manal M. Alhammad and Moreno, 2018; Denny et al., 2018; Seaborn and Fels, 2015).

Thus, further research is needed to investigate the specific effects of each gamification element on

software engineering outcomes. Therefore, the fourth research question is raised:

RQ4: Does using gamification strategies together better than using individually?

Another important aspect of gamification that warrants further exploration is the sustainability of

its effects. Previous studies have analyzed whether gamification effects persist after the removal of

gamified elements in different areas, such as medical education, mobile application interaction, and

civic engagement platforms (Hassan, 2017; Law et al., 2011; Pesare et al., 2016). However, research

on the sustainability of gamification effects in software engineering practices remains limited

(Kalogiannakis et al., 2021; Xiuhan Li and Chu, 2021; Sanchez et al., 2020; Suh et al., 2017;

Tahmasbi and Fuchsberger, 2018). Further investigation in this area could help shed light on the

long-term effectiveness of gamification strategies in software engineering and inform the

development of sustainable gamification interventions. So, the fifth research question is:

RQ5: Does the gamification effect on TDD persist after withdrawing the intervention?

42

Chapter	3	Gamification	Framework	

Our objective is to integrate gamification techniques into educational software engineering curricula

in order to encourage students to cultivate and sustain professional software engineering practices

more efficiently. A significant challenge in incorporating gamification into software engineering

practice is the impracticality of implementing explicit gamification strategies that integrate with

daily processes. The responsibility of gamification researchers is to clarify the software engineering

process, streamlining its presentation to make it executable. In this study, I provide a gamification

model for the complex and contemporary software engineering process and synthesize the findings

from prior studies to identify which gamification strategies can be implemented and their associated

benefits.

3.1	Introduction	and	Background	

The integration of gamification principles into the realm of educational software engineering has

garnered significant attention in recent years as a means of improving software development

outcomes (as demonstrated in Figure 3.1). Gamification is defined as the application of game design

elements in non-gaming contexts (Deterding et al., 2011), and was first introduced in the field of

computer science in 2011. Subsequent research has confirmed its effectiveness across various

disciplines, including education, online communities, and business, leading to improved

psychological and behavioral outcomes for users (Hamari et al., 2014). Given these benefits,

0

1000

2000

3000

4000

5000

0

10000

20000

30000

40000

50000

60000

2010 2011 2012 2013 2014 2015 2016 2017 2018

Searching Gamification

Google schloar Google schloar title
Figure 1.1 Searching Gamification

43

gamification has been proposed as a cutting-edge technique for enhancing the efficiency of

professional practice in the software engineering community (Hamari et al., 2014; Pedreira et al.,

2015).

The main objectives of gamification are to bolster users' motivation, engagement, involvement in

activities, acquisition of knowledge, and adoption of new technology. The effects of gamification,

including these outcomes, have been demonstrated to lead to an improvement in activity or process

efficiency (Hamari and Koivisto, 2015; Hamari et al., 2014; Huotari and Hamari, 2017; Pedreira et

al., 2015), particularly in effecting behavior change across diverse domains such as education

(Denny, 2013; Hakulinen et al., 2013; Hamari et al., 2016; Landers, 2014) and business (Hamari,

2013). To design an effective gamification strategy that realizes these objectives, a range of

commonly employed gamification elements have been identified, including points, achievements,

rules, challenges, feedback, levels, rankings, among others (Hamari et al., 2014).

The advancement of gamification as a method has led to the development of several frameworks

that provide structure to the design and implementation process. Prominent among these are the

Mechanics-Dynamics-Aesthetics (MDA) framework, the Mechanics-Dynamics-Components

(MDC) framework, and the Octalysis framework (Chou, 2019; Hunicke et al., 2004; Sisomboon et

al., 2019). The MDA framework, which originated in the education field, is considered an early

framework for gamification, offering a systematic approach by categorizing gamification into

mechanics, dynamics, and aesthetics. It provides clear definitions for these components. The MDC

framework, specifically aimed at the business sector, defines mechanics as elements that stimulate

engagement, dynamics as elements that immerse users into the environment, and components as

more specific forms of mechanics or dynamics. The Octalysis framework, on the other hand, is a

more general framework, focusing on the use of core behavior drivers to motivate users to complete

tasks efficiently through an interactive experience.

Several researchers have proposed preliminary gamification frameworks in the field of software

engineering, including the G-SPI framework (Herranz et al., 2019), the Gamification Design

Framework (Matsubara and Da Silva, 2017), the Software Engineering Gamification Framework

(Dal Sasso et al., 2017), and GOAL (Garcia et al., 2017). Recent research in the field of software

44

engineering has synthesized the current gamification design methods and established a framework

for gamified software engineering (Morschheuser et al., 2018). This research utilized a Design

Science Research (DSR) approach, where method fragments were collected and assembled into a

comprehensive framework. The framework includes the following steps: 1) Analysis of the target

audience to determine the feasibility of gamification; 2) Identification of a suitable psychology

theory to support the effectiveness of gamification in the activities; 3) Selection of appropriate

gamification elements for the activities; 4) Selection of the necessary tools for implementation; 5)

Evaluation of results through data collected from questionnaires and expert surveys.

However, despite the progress made in the gamification framework of software engineering, there

remain some shortcomings. Firstly, the existing gamification framework is inadequate and lacks

practical applicability to the daily software development process in software engineering. Only a

limited number of studies offer concrete guidance on gamification design (Prause and Jarke, 2015).

Secondly, the correlation between gamification elements and specific impacts is yet to be fully

established. Thirdly, much of the research on gamification has focused on qualitative over

quantitative analysis, and empirical evidence is often limited (de Almeida Souza et al., 2017;

Monteiro et al., 2021). There are only a few studies that present quantitative results of gamification

mechanisms in the software engineering domain (Chow and Huang, 2017), and most gamification

frameworks or approaches have been developed without a data-driven approach. As the field of

gamification continues to expand both theoretically and practically, it is imperative to develop a

gamification model for daily development process in software engineering that can accommodate

the evolving challenges of gamification.

45

3.2	Gamification	Methodology	

In the previous sections, it has been highlighted that the integration of gamification into the software

development process presents various challenges, including the need for multidisciplinary

knowledge and a lack of a unified approach to gamification design. To address these challenges,

this study aims to synthesize the existing literature on gamification and design principles to answer

the following research questions:

RQ1: What is the process for building a gamification framework for the day-to-day software

development process?

RQ2: What is the approach for selecting gamification elements with the appropriate benefits?

The methodology proposed in this study is aimed at facilitating the implementation of gamification

within the software development process. The model provides information regarding the actors

involved, potential benefits, the implementation of game elements, and the data involved in the

gamification process.

The methodology developed in this study consists of two components: 1) a model for applying

gamification to the day-to-day software development process, which includes a method for

collecting and analyzing quality data based on users’ digital footprints, and 2) a configurable

approach for selecting gamification elements with appropriate benefits.

3.2.1	Gamification	Model	

As previously discussed, the implementation of gamification in the day-to-day software

development process necessitates a comprehensive model. This model seeks to provide a systematic

approach for the software development process, as well as furnish detailed guidance. The

gamification model is comprised of four distinct phases, including Preparation, Platform,

Gamification Design, and Development. (Refer to Figure 3.2).

46

Figure 3.2 Gamification Model

47

3.2.1.1	Preparation	

In this stage of the gamification model, there are five steps that culminate in the transition to the

platform phase. The first step involves establishing objectives such as team information, project

information, and other relevant details. The second step involves defining the gamification level,

which is based on the Capability Maturity Model (CMM) and the Game Maturity Model (Chow and

Huang, 2017). This definition of the level helps developers to identify the appropriate portions of

the development process for gamification. Subsequently, developers select the methodology that

best suits their requirements and evaluate its compatibility with gamification. For instance, the linear

nature of the waterfall model in software engineering may not be suitable for implementing

feedback strategies in gamification. In the evaluation phase, the compatibility of the selected

software engineering methodology with gamification is determined. In cases where the

methodology is not suitable, gamification can be skipped, and the original software development

process can be maintained.

3.2.1.2	Platform	

To analyze the effectiveness of gamification, I have defined two pipelines: the student/developer

pipeline and the project pipeline. The first step in the student/developer pipeline involves defining

the various roles, such as requirement analyst, function developer, or tester. The second step

involves determining the motivations behind gamification based on the role assigned. For example,

a requirement analyst might be motivated to increase their engagement in the requirement analysis

process. In the third step, a quantitative analysis of the gamification's effectiveness is conducted by

defining appropriate metrics of behavior or activities. These metrics are based on the

student/developer or project pipeline. Finally, the metrics are assigned to different roles; for example,

testers are rewarded with points for completing a test case, while function developers receive points

for developing a function (Elgrably and Oliveira, 2018).

3.2.1.3	Gamification	Design	

48

In this stage of the methodology, I aim to design a gamified environment for students by utilizing

various gamification strategies. The process is divided into four steps. The first step involves the

ideation of suitable gamification elements and mechanisms such as points, leaderboards, guides,

rewards, etc. In the second step, the researcher integrates these elements and mechanisms in a

systematic manner to create a clear and concise guide for the students. The guide is designed to

foster professional practical activities within the students. The third step involves the development

of a gamification prototype, which is then subjected to a trial phase. If the prototype performs as

intended, the process can proceed, otherwise, the researcher will need to revisit the design and make

necessary modifications.

3.2.1.4	Development	

In this stage, students are engaged in software development within a gamified framework, which

aims to enhance their professional practical skills. The first step involves the selection and

implementation of appropriate platforms and tools, along with the establishment of corresponding

metrics. The gamification elements, such as point systems for specified behaviors and activities, are

then integrated into the process. Subsequently, the researcher assesses the effectiveness of the

gamification approach through a combination of quantitative analysis and data collected from

surveys or interviews, aimed at determining the positive impact of gamification on software

engineering practices.

3.2.1.5	Conclusion	

The model begins with the identification of a research question and the development of a research

plan. The researcher must then decide on the appropriate research design, data collection methods,

and data analysis techniques to answer the research question. Once the research plan is in place, the

researcher can proceed with the actual implementation of the gamification strategy. This involves

the selection of gamification elements, such as points, badges, leaderboards, and missions, that are

best suited for the target audience and the research question. The researcher must then design and

test the gamification strategy, collecting and analyzing data from the participants. Finally, the

researcher must interpret the results of the gamification strategy and draw meaningful conclusions

49

about the effectiveness of the strategy. This may involve comparing the results to previous literature,

and making recommendations for future research.

3.2.2	Gamification	Configurable	Method	

In previous sections, the need for a configurable method to select gamification element sets with

relevant benefits was highlighted. Ten widely-utilized gamification elements have been identified,

including points, leaderboards, achievements/badges, rewards, levels, story/theme, clear goals,

feedback, progress, and challenge (Hamari et al., 2014).

Points and leaderboards are among the most widely used gamification elements, particularly when

used in conjunction. Researchers have used these elements to improve user motivation and

engagement by using points as a benchmark for performance and utilizing leaderboards to reflect

user rankings based on points (Albilali and Qureshi, 2016; Bianchini et al., 2016a, 2016b; Chow

and Huang, 2017; Dubois and Tamburrelli, 2013; Francisco-Aparicio et al., 2013; Garcia et al., 2017;

Nah et al., 2014; E. D. Santos and Oliveira, 2018; Sisomboon et al., 2019; Siutila, 2018; Unkelos-

Shpigel and Hadar, 2015). The leaderboard serves to showcase the relative position of users within

a group or team. The effectiveness of this pairing is further supported by the psychological principle

of self-determination theory (SDT) (Botte et al., 2020; Shi and Cristea, 2016).

Another effective pairing is rewards and achievements/badges, which researchers have used to

encourage user participation (Chow and Huang, 2017; Elgrably and Oliveira, 2018; Xiaozhou Li,

2018; Prause and Jarke, 2015). When users complete tasks, they are awarded badges or other

achievement milestones, which serves to keep users focused on the task at hand and increase their

engagement.

The use of challenges and feedback has been shown to increase user motivation and engagement

(Albilali and Qureshi, 2016; Chow and Huang, 2017; Nah et al., 2013; Prause and Jarke, 2015;

Sisomboon et al., 2019; Uskov and Sekar, 2014; Wongso et al., 2014). This is supported by the role-

motivation-interaction (RMI) theory (El Shoubashy et al., 2020). Clear goals, another gamification

element, have been utilized to enhance user focus (Albilali and Qureshi, 2016; Chow and Huang,

50

2017; Dubois and Tamburrelli, 2013; Elgrably and Oliveira, 2018; Garcı́a et al., 2017; Simões et al.,

2013; Sisomboon et al., 2019; Wongso et al., 2014).

In order to select appropriate gamification strategies for software engineering practice, three

gamification strategy pairs have been summarized. These include points and leaderboards, rewards

and achievements/badges, and challenges and feedback. The combination of points and

leaderboards has been shown to increase users' motivation by providing a standard for their work

and reflecting their relative position within a team or group. The pairing of rewards and

achievements/badges is effective in increasing user participation and engagement by simulating

focus on tasks. The use of challenges and feedback together helps increase users' motivation and

engagement, supported by the role-motivation-interaction theory. These gamification strategy pairs

can serve as useful reference for future software engineering practice.

51

3.3	Conclusion	

In this study, I present a comprehensive model for the daily implementation of gamification research.

The model incorporates the ability to apply quantitative analysis and provides a systematic approach

for researchers to analyze and evaluate the effectiveness of gamification strategies.

In addition to the model for the day-to-day development process, I also present a gamification

configurable method to assist researchers in their selection of gamification elements. This method

takes into consideration the intended outcome of the gamification strategy, providing a systematic

approach to gamification element selection.

In conclusion, the model and the configurable method presented in this study provide a

comprehensive and systematic approach to gamification research. These tools will enable

researchers to design, implement, and evaluate gamification strategies in a rigorous and meaningful

way, thereby advancing the field and contributing to a deeper understanding of the potential of

gamification.

52

Chapter	4	Studies	Setting	

This chapter focuses on the basic background of observational as well as experimental study,

including the backgrounds of the participating students, the observational or experimental duration,

the experimental task, the observational or experimental method, and so on. It also describes the

ethical preparations made for this experiment. For example, whether the students' understanding of

the whole experimental process and the impact of the results before the start of the experiment are

described.

53

4.1	Setting	

4.1.1	Observational	Study	Setting	

I conducted an observational study that involved 237 third-year undergraduate students from a

European university. The sample included students from different academic years (2018, 2019, and

2020), with an average of approximately 80 students per academic year. The module was delivered

face-to-face in 2018 and 2019, and virtually in 2020. To ensure that my results were not influenced

by exogenous factors, I constructed a dummy variable to distinguish between the different methods

of module delivery, and results showed that this variable did not affect my findings. Second, I

expected participants to have similar programming experiences and academic backgrounds since

they were enrolled in the same module, Software Engineering2 , within the same major and

university, and were taught by the same instructor.

I collect data from public3 git repositories belonging to undergraduate students enrolled in the

Software Engineering module. At the beginning of the module, students were introduced to using

git repositories and spent two weeks learning the principles of unit testing, how to apply it with

iteration development, and how to use it to drive TDD-style (test-first dynamic development). I

demonstrated some examples of TDD-style development processes using Python and Java. Thus,

students were equipped with basic knowledge of testing and TDD, and I did not expect them to have

any prior experience or expertise with TDD.

All students in my study were assigned the same task, with was released in week 3 and lasted for

four weeks. The task involved completing specific functions and writing test cases to test the

corresponding production codes. Students were given the flexibility to implement the function in

any programming language of their choice, such as Java, Python, C#, Go, Haskell, among others.

2 Software Engineering is a module of final year bachelor’s degree, and provides students with a solid grounding in

various aspects of software engineering process related to building large software systems.

3 Public git repository allows anyone to view, copy, use, and analyze the contents of the repository, so there are no

ethic issues associated with the use of the public repository in this study.

54

Specifically, the task required them to compute the lowest common ancestor (LCA) in a graph

structured as a binomial tree and implement the LCA in directed acyclic graphs (DAG) (Bender et

al., 2005). The instructor directed the students to accomplish the task on GitHub and encouraged

them to leave a digital footprint in the form of commits. However, the instructor did not impose any

mandatory requirements concerning the frequency or contents of the commits.

The source codes and commits of the students were manually collected from their git repositories.

Python was used to conduct quantitative analyses on the codes, which generated code quality

metrics such as Cyclomatic Complexity (CC), Halstead metrics, line of code (LOC), and

Maintainability Index (MI). I then construct proxies for TDD behaviors and engagement level in

development activity by evaluating their digital footprint through the commits gathered from git

repositories. Detailed variable construction is reported in chapter 5.

55

4.1.2	Experimental	Studies	Setting	

This part describes the setup of two separate experiments. The first experiment aims to validate the

effectiveness of gamification in TDD practice in group setting and the second experiment focuses

on individual setting.

4.1.2.1	Group	Experiment	Setting	

The objective of this experiment is to examine whether the gamification method helps students to

establish and uphold professional software engineering practices in group setting, such as adhering

to TDD behaviors and improving engagement levels, which will afterward benefit maintainability.

The experiment is conducted in the Software Design and Implementation module of an Irish

university; the participants of this study are the students in their final semester of the Bachelor's

degree, who possess basic programming skills and are ready to enter the job market. Hence, the

results and observations of this experiment can be assumed to be representative of both academic

and entry-level engineers of industrial circumstances.

The module's assignment necessitates the teams to produce a complex application for the Android

platform. Our trial period is 45 days. Prior to the experiment, we educate the students in the

fundamentals of unit testing and its application via an iterative development approach for two weeks.

They are also instructed in test-first dynamic development (writing unit test first and then coding)

with TDD-style, thereby attaining fundamental knowledge about using GitHub and TDD, albeit not

expected to be experts. The students have selected Java as their major programming language for

the development of the application.

Participation in the experiment is voluntary, with no grading rewards associated, thus allowing

students the autonomy to choose whether or not to participate in the experiment. This is in

accordance with the recommendations of Callan et al. (2015) that, when utilizing gamification in

educational settings, students should be given the option to volunteer.

The experiment was conducted across two development teams. The treatment group comprised six

third-year undergraduate students from the 2020-2021 academic year, and the control group

56

comprised twenty third-year undergraduate students from the 2021-2022 academic year. Both

groups were from the same module, receiving the same content and teaching form (online), just

from different academic years. The number of participants in the treatment group was limited, as

students had to be entirely voluntary and demonstrate no hesitation in receiving the gamification

treatment. To better demonstrate the effectiveness of gamification, a control group was also

established, which did not receive any gamification treatment during the experiment period. The

details of the treatment are reported in chapter 5, gamification strategy part.

The experiment design follows the Pretest-Posttest Control Group Design. On the first day, students

in the treatment group were introduced to gamification strategies and how to 'play'. In order to

compare the performance with and without gamification, the experiment was divided into two stages.

From day 1 to day 22, the treatment group (O1) did not receive any gamification treatment, whereas

from day 23 to day 45, the treatment group (O2) received a gamification treatment every 7 days on

days 23, 30, and 37. The gamification treatment consisted of scores, leaderboard ranking, and

feedback. This information is communicated via emails. The email content includes their points,

their position on the leaderboard, and advice on how to earn more points. An explanation of the

point calculation method is also provided at beginning. Figure 4.1 shows an example of notification

email and Figure 4.2 shows that the students were emailed individually.

57

Figure 4.1 Example of Notification Email

Figure 4.2 Students Emailed Individually

Midway into the experiment, the gamification intervention is introduced with the purpose of

monitoring shifts in the performance of the student cohort both before and after the intervention.

This methodology seeks a more lucid comprehension of how gamification impacts their

performance. Employing the identical group of students throughout the entire process is anticipated

to yield more substantial and compelling outcomes.

A more detailed description of the gamification methods can be found in chapter 5. The students in

the control group did not receive any information regarding gamification during the duration of the

experiment, as represented by O3 and O4 in Table 5.1. Meanwhile, all students in both groups were

provided with a clear understanding of the task and its deadline. Data was collected one week prior

to the deadline to eliminate any confounding effects (Costello, 1984).

Treatment Group O1 X (gamification treatment) O2
Control Group O3 O4

Table 4.1 Experiment Structure

 	

58

4.1.2.2	Individual	Experiment	Setting	

Prior studies have been criticized for their inadequate experimental design in gamification research,

including a limited number of participants and short experiment duration (Denny et al., 2018;

Hamari et al., 2014; Seaborn and Fels, 2015). In order to address these limitations, a controlled

experiment was conducted with 162 third-year undergraduate students from a European university,

spanning a period of 44 days. The participants were comprised of 73 students from the academic

year 2021 and 89 students from the academic year 2022. The study was conducted on an individual

basis, and due to the Covid-19 pandemic, the module was delivered online in both academic years.

To ensure consistency and control for extraneous variables, the teaching materials, methods of

delivering lectures, and tasks were identical in both academic years. Additionally, the participants

shared similar programming experiences and academic backgrounds as they were all enrolled in the

same module (Software Engineering) at the same university and major, and taught by the same

instructor.

The data was collected from the students' git repositories. At the start of the module, the students

were familiarized with the usage of git repositories. In preparation for the task, the principles of unit

testing, along with its application in iteration development and TDD-style (test-driven development)

were imparted to the students. Demonstrative examples of TDD-style development processes were

provided using both Python and Java programming languages to ensure that the students possess a

basic understanding of testing and TDD, although it was not expected for them to be experts in the

field.

The assignment task, which was released in week 7, was administered to all students over a period

of approximately six weeks (44 days). To eliminate the potential impact of the task deadline on the

experiment results, the experiment ended one week prior to the task deadline (Costello, 1984). The

assignment required students to develop specific functions and accompanying test cases for the

corresponding production codes. The students were allowed to choose their preferred programming

language, including Java, Python, C#, Go, Haskell, and others. They were then tasked with utilizing

the GitHub API to retrieve and display data related to the logged-in developer, followed by the

construction of a data visualization that sheds light on an aspect of the software engineering process,

59

such as a social graph of developers and projects, or an illustration of individual or team

performance.

The source code and commits of the students were collected from their Git repositories. I conducted

a quantitative analysis of the code using Python, and generated code quality metrics such as

Cyclomatic Complexity and Maintainability Index. Subsequently, I evaluated the students' digital

footprint through the analysis of their commits in the Git repositories, and constructed proxies for

their TDD behaviors and level of engagement in development activities. The method for variable

construction is detailed in chapter 5.

In accordance with the recommendations by (Callan et al., 2015), the participation of the students

in the experiment was completely voluntary and no grades were associated with the experiment.

This approach allowed the students to have autonomy over their participation and removed any

potential coercion to participate in the experiment.

In this study, gamification strategies, such as rewards, points, leaderboards, and feedback, are

employed. To test my hypotheses, the experiment is conducted in three parts. Part 1 consists of two

groups: the treatment group, comprising 89 students from academic year 2022, who receive the

gamification strategies, and the control group, comprising 73 students from academic year 2021,

who do not receive the strategies. On the first day, the treatment group students are introduced to

the gamification strategies and instructed on how to ‘play'. They receive 11 gamification

interventions at four-day intervals, from day 4 to day 44, communicated via emails. The email

content includes their points, their position on the leaderboard, and advice on how to earn more

points. The email also includes accumulated gamification score and next time intervention. An

explanation of the point calculation method is also provided. Figure 4.3 and 4.4 shows the contents

of email and how it was sent individually.

60

Figure 4.3 An Example of Email Content

Figure 4.4 Students Emailed Individually

To test the second hypothesis, a second part of the experiment was conducted to distinguish the

impacts of different gamification strategies on TDD practice, and compare the impact of a

combination of these strategies and their individual effects. As previously stated, gamification

strategies included points, leaderboards and feedback. To test Hypothesis 2, a basic strategy 'reward'

was implemented across the treatment group, and this group was further divided into three

subgroups (1, 2 and 3). Group 1 received only points, group 2 received both points and leaderboards,

and group 3 received all gamification strategies, including points, leaderboards and feedback.

Students were able to select their preferred subgroup voluntarily, and a number of students (n = 29,

30, 30) were randomly selected to balance the size of each subgroup.

61

To evaluate the persistence of the gamification effect, I randomly assigned half of the participants

in each subgroup (Group 1, 2, and 3) of the second part of the experiment to a control group, ceasing

to receive gamification strategies after 8 applications. The remaining participants in each subgroup

continued to receive the strategies until the end of the experiment (see Figure 4.1). This allowed us

to test the third hypothesis, concerning the endurance of the gamification effect after withdrawal.

Figure 4.1 Experiment Introduction

62

4.2	Ethics	Preparation	

I previously implemented gamification as part of our software engineering teaching strategy,

specifically focusing on Test-driven development (TDD) in the modules CSU33012 (Software

Engineering) and CSU33D06 (Software Design and Implementation). I conducted an ex post facto

study on the performance of students in these modules for potential publication.

4.2.1	Participants	Recruiting	and	Consent	

Three consent processes were established for corresponding studies: observational study, group

experiment, and individual experiment.

The observational study reviewed the performance of students in the modules CSU33012 from

academic year 2018 to 2020, where TDD was an essential part of teaching. Students who had

participated in these teaching activities were recruited, and their consent was obtained for inclusion

in the study after the module's completion. The data collected was utilized for analysis and potential

publication. This study solely sought students' consent for the use of their data.

The group experiment evaluated the performance of students in the CSU33D06 modules in the

academic year 2021, while the individual experiment examined the performance of students in the

CSU33012 modules from the academic years 2021 to 2022, where both TDD and gamification were

employed as teaching mechanisms. Students who had already participated in these teaching

activities were recruited, and their consent was obtained for inclusion in the study after the module's

conclusion. The data collected was utilized for analysis and potential publication.

These two experiments only requested students' consent for the use of their data. The

implementation of teaching activities and gamification strategies preceded this study. Participation

in the gamification was optional and extended to all students without any reference to the study.

Students were not asked to sign up for the study to avoid any conflict of interest. Separate permission

was sought after the activities were completed from students willing to participate in the study

regarding the gamification learning experience. No students were disadvantaged based on their

63

agreement to participate in the study. Also, there was no further action required of them as they had

already voluntarily engaged in the teaching activities with appropriate permission.

Only students who signed up for participant consent were engaged in the teaching activity

(gamification process). Notification of the teaching activity introduction was sent to all students in

the modules. Student participation was entirely voluntary, and they were informed that participation

might enhance their engagement in the project, such as through leaderboard rankings reflecting their

engagement level.

The data generated during the teaching activity was used to identify measurable differences in

performance attributable to the application of gamification strategies.

All participants gave their informed consent to be involved in the study and the detail about

consent form can be seen in Appendix 2-a and 2-c.

4.2.2	Potential	Influence	on	Participants	

The potential harm lay in the mishandling of individual students' performance data, which could

expose them to risks regarding data privacy. However, the potential intangible benefit was that

students received feedback on their performance, which could be advantageous for future endeavors

such as job interviews where they could demonstrate their experience with TDD and gamification.

Regarding conflicts of interest, this study was designed as an ex post facto study specifically to

avoid such conflicts in the teaching of the module. Participation was entirely voluntary and had no

impact on the teaching process.

4.2.3	Data	Protection	

To enhance data protection, a thorough anonymization process was employed. Personal data was

completely deleted from files, and placeholders such as '*' was used to represent individuals'

personal information, including Github IDs and email addresses. Additionally, a new file without

any personal data tags was created, with data obscured through altered values. For example, commit

64

details were transformed into total numbers of commits. All data was used solely for research

purposes, including research papers, and was stored only as long as necessary for the study.

All personal data was fully anonymized and deleted after the study concludes. While it may have

still been possible for interested parties to identify the cohort, the study was designed to prevent

individual identities from being discerned by interested parties.

The detail of data consent can be seen in Appendix 2-b and 2-d.

 	

65

Chapter	5	Methodology	

In this chapter, I introduced variables definition in observational study and two experimental studies,

including variables that measure TDD, variables that measure engagement, and variables that

measure maintainability. At the same time, the gamification methods used in two experimental

studies and the variables used to measure gamification are also introduced.

In observational study, I examine two relationships: TDD behaviors and engagement level in

development activity; engagement and software maintainability. To investigate the first relationship,

I treat TDD as independent variables and engagement level as the dependent variable. Similarly, in

order to explore the potential positive relationship between engagement level and maintainability, I

use engagement response variables as independent variables and maintainability response variables

as dependent variables in my regression analysis.

The experiments examine whether gamification motivates students to develop and maintain TDD

practice. More precisely, I examine the gamification effectiveness on whether students follow TDD

behaviors, increase the engagement level in development activity, and have a positive impact on

maintainability, by using statistical and graphic analysis. I adopted an indicator variable to act as a

proxy for whether students received gamification treatment, which serves as the independent

variable. TDD behaviors, engagement level, and software maintainability were used as the

dependent variables. I collect digital footprints (commits) from GitHub repositories and use the data

extracted from the codebase to compute maintainability at different points in the repository's

timeline.

66

5.1	Measurement	of	TDD	

Test-driven Development (TDD) is a cyclic development technique that involves two fundamental

behaviors: test-first and iteration development. The test-first behavior requires developers to write

a test before writing any production code, while iteration development involves making small

incremental changes to the codebase until the desired functionality is achieved. An optimal TDD

cycle is typically short in duration (Fucci et al., 2016; Jeffries and Melnik, 2007). In this thesis, I

construct the response variables for TDD from two aspects: writing unit testing sequence (SEQ),

and the number of development cycles generated (Cycle).

5.1.1	Behavior	proxy	(1).	Unit	Testing	Sequence	

The first response variable TDD behavior, referred to as sequence (SEQ), involves creating a failure

test case before writing production code and ensuring that the test passes after the production code

has been created. To facilitate the analysis of coding activity, I divided it into discrete episodes and

assigned SEQ to each episode. The delineation of episodes was determined based on the completion

of a development cycle. SEQ is a binary variable, with a value of 1 indicating that students wrote a

test case before writing production codes, and 0 indicating the opposite order. Table 1 provides a

detailed description of the test-first procedure. In order to accurately identify the SEQ values, I

manually analyzed the commits, examining the description of each commit and the corresponding

code changes to determine whether the development cycle followed a test-first approach. None of

the observed students adopted a mix method, meaning that they either wrote test cases first or wrote

them later, but not both, during the completion of the tasks. The SEQ equation is shown below:

𝑆𝐸𝑄 =	 &1	𝑡𝑦𝑝𝑒(𝑖) = 𝑡𝑒𝑠𝑡 − 𝑓𝑖𝑟𝑠𝑡
0														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒										

Test creation -> Test compilation error -> Function code editing -> Test failure -> Code editing -> Test pass
Test creation -> Test compilation error -> Function code editing -> Test pass

Test creation -> Function code editing -> Test failure -> Code editing -> Test pass
Test creation -> Function code editing -> Test pass

Table 5.1 Test-Driven Development Definition

5.1.2	Behavior	proxy	(2).	Development	Cycle	

67

In addition to Sequence, iteration development is another important characteristic of TDD, and it is

reflected by the cycles generated (Cycle). Hence, I utilize Cycle as another TDD response variable.

This measure captures the cyclic nature of the development process employed. The use of Cycle to

represent iteration development is attributable to the constant task and time constraints. A higher

Cycle value indicates more adherence to the TDD style, which is characterized by incremental code

changes.

I defined the development cycle by manually analyzing the commits and code changing, which is

the process of creating a new function and passing all existing tests. A test compilation error will

render a cycle incomplete, thereby implying that a cycle can only be considered valid when the test

compilation is successful. The level of commit granularity generally provides a sufficient basis for

observing the correct order. However, in cases where the commit granularity is insufficient, an

alternative approach would involve manually reviewing the code to determine the number of

development cycles. If the students generate test cases before production code, it is classified as

test-first.

I have further classified Cycle into two types based on the criterion of whether to add a test case

first: TDD_Cycle (TC) and General_Cycle (GC), which are recognized by GitHub commits. TC is

determined by Cycle following the test first approach, whereas GC is determined by test last style.

It is worth noting that regardless of whether the iterative speed is slow or fast, both TC and GC are

indicative of TDD characteristics.

I also constructed the number of test cases (Test) to represent the essential elements of good TDD

behaviors. The Test variable is defined as the sum of all processes of creating a new test case and it

being passed by the corresponding function over the experiment period. The response variables for

TDD are shown in Table 5.2.

Type Variables Data Type
Unit Testing Sequence SEQ Dummy

Development Cycle Cycle Continuous
Development Cycle TC (Cycle following TDD style) Continuous
Development Cycle GC (Cycle following other styles) Continuous

Number of Test Cases Test Continuous
Table 5.2. Test-Driven Development Response Variables

68

Despite being an essential aspect of TDD, refactoring is not addressed in this study due to the

students' limited exposure to small-scale projects, which restricts their opportunities for engaging

in refactoring activities. Additionally, the complexity of learning refactoring techniques poses a

challenge for students, as it is a skill that is better suited for experienced developers. Consequently,

this study does not consider motivating refactoring.

69

5.2	Measurement	of	Engagement	Level	in	Development	Activities	

5.2.1	Background	

In this thesis, I focused on the measurement of engagement in software development activities. One

method that offers insights into development efforts is through analysis git commits (Chávez et al.,

2017; Dyer et al., 2015; Wen et al., 2016). Commits are snapshots of the entire git repository at

specific times, providing essential information for understanding software development activity

(Chávez et al., 2017; Hal et al., 2019; Kolassa et al., 2013; Wen et al., 2016). Commit numbers have

been used to reflect various aspects of software development, such as continuous integration process

(Baltes et al., 2018), maintenance activities (Levin and Yehudai, 2017; Mariano et al., 2019), and

bugginess (Eyolfson et al., 2011).

Utilizing git for code submission enables the measurement of an individual's engagement in

development process. Factors such as frequency, numeric, and quality of commits serve as

indicators of engagement level in development activities. For instance, a high volume of

submissions may denote higher engagement level, whereas sporadic or minimal commits may imply

lower levels of engagement.

Therefore, Git commits provide an objective means to quantify behavioral engagement in software

development activities. By measuring the frequency and number of commits, this thesis can gain

insight into the level of engagement of individual developers and teams in various software

development tasks. The use of Git commits as a measure of engagement is important to gain a better

understanding of the impact of engagement on software development.

5.2.2	The	Engagement	proxy	

The engagement response variables is commit-based, including number of commits (NC) and

commit frequency (FEQ). The NC measure represents the total number of commits made by

developers during the development process, while the FEQ measure reflects the frequency of

commits. A higher number of commits and a higher frequency value suggest more development

70

activity (Kolassa et al., 2013) , and a higher engagement level. To ensure the validity of my results,

I exclude duplicate changes and comments for codes. In this study, I focus on three types of

engagement, for example, overall engagement, engagement in coding and engagement in testing,

engagement in different types of testing.

5.2.2.1	Proxy	(1).	Commit	Number	

To examine whether there are any differences in maintainability between the engagement in coding

and testing, this study decomposes the total number of commits (NUMBER_COMMITS) into two

distinct categories: commits related to production codes (PROD_COMMITS) and commits related

to test codes (TEST_COMMITS).4 If a commit contains both test and production code, it will be

counted in both TEST_COMMITS and PROD_COMMITS, but only once in NUMBER_COMMITS.

Furthermore, to explore potential impacts on maintainability based on the different types of testing

activities engaged in, TEST_COMMITS is further divided into two types: creating new test cases

(NEW_TEST_COMMITS) and maintaining existing test cases (MAINTAIN_TEST_COMMITS).5

Type Variables Data Type
Overall NUMBER_COMMITS Continuous

Commits Related to Production Code PROD_COMMITS Continuous
Commits Related to Test Code TEST_COMMITS Continuous

Commits Related to Creating New Test Case NEW_TEST_COMMITS Continuous
Commits Related to Maintenance New Test Case MAIN_TEST_COMMITS Continuous

Table 5.3 Engagement Response Variables - Commit Number

5.2.2.2	Proxy	(2).	Commit	Frequency	

FEQ refers to the frequency of updating repositories in a certain period. The calculation of FEQ is

shown below, where the denominator is the number of working days (excluding weekends and bank

holidays), between the first and last commits. Although all students were assigned the same tasks,

their working periods varied widely, ranging from 2 to 21 days. Similar with the number of commits

(NUMBER_COMMITS), I also divide FEQ into two categories: the frequency of updating

4 NTC refers to the total number of commits for updating test cases, such as creating or modifying test codes. NPC

is defined as the total number of commits for updating production codes.

5 If a commit contains the record of both, this commit will be counted to NNTC and NMTC separately.

71

production code (PROD_FEQ) and the frequency of updating test code (TEST_FEQ). And then

TEST_FEQ is further divided into two categories: the frequency of updating new test cases

(NEW_TEST_FEQ) and the frequency of maintaining existing test cases (MAINTAIN_TEST_FEQ).

𝐹𝐸𝑄 =	NUMBER_COMMITS
!"#$%&	()	*+,-

𝑃𝑅𝑂𝐷_𝐹𝐸𝑄 =	 PROD_COMMITS
!"#$%&	()	*+,-

 𝑇𝐸𝑆𝑇_𝐹𝐸𝑄	 = 	 TEST_COMMITS
!"#$%&	()	*+,-

 𝑁𝐸𝑊_𝑇𝐸𝑆𝑇_𝐹𝐸𝑄 =	𝑁𝐸𝑊_𝑇𝐸𝑆𝑇_𝐶𝑂𝑀𝑀𝐼𝑇𝑆
!"#$%&	()	*+,-

									𝑀𝐴𝐼𝑁𝑇𝐴𝐼𝑁_𝑇𝐸𝑆𝑇_𝐹𝐸𝑄 =	𝑀𝐴𝐼𝑁𝑇𝐴𝐼𝑁_𝑇𝐸𝑆𝑇_𝐶𝑂𝑀𝑀𝐼𝑇𝑆
!"#$%&	()	*+,-

Type Variables Data Type
Overall FEQ Continuous

Frequency of Updating Production Code PROD_FEQ Continuous
Frequency of Updating Test Code TEST_FEQ Continuous

Frequency of Creating New Test Code NEW_TEST_FEQ Continuous
Frequency of Maintenance Test Code MAINTAIN_TEST_FEQ Continuous

Table 5.4 Engagement Response Variables - Frequency

5.2.3	Limitation	of	Engagement	Measurement	

However, it's essential to acknowledge the limitations of using git commits as a single measure of

engagement in development activities. Firstly, not all development activities can be reflected in

commits, especially if developers are working on debugging without committing changes (Just et

al., 2016). Second, the quality of commits can fluctuate, as some may consist of minor code

refactoring or adjustments, predominantly serving to maintain legacy code rather than constituting

significant contributions. (Kim et al., 2020). So, commit-based engagement metrics may offer more

reliable insights for initiating new projects rather than maintaining legacy codebases. Furthermore,

commit-based metrics of engagement may not be suitable for maintaining or developing highly

complex, extensive systems due to the inherent limitations of git commit data in capturing the

intricacies of such endeavors (Perez De Rosso and Jackson, 2016). Moreover, factors such as

collaboration and problem-solving skills may not be adequately captured through commit analysis

alone (Martinez and Monperrus, 2019).

Considering these constraints, one alternative approach is conducting questionnaires to gather

developers' subjective opinions, providing valuable insights into their levels of engagement

72

(Breevaart et al., 2012). Additionally, emerging techniques like the utilization of biological data

hold promise in offering a more precise measure of engagement, potentially tapping into

physiological indicators such as heart rate variability or electrodermal activity (Diaz and Yudin,

2017). Furthermore, advancements in artificial intelligence present possibilities, with AI agents

capable of analyzing various facets of developer behavior and interaction to infer levels of

engagement (Han et al., 2023). These alternative methods offer different ways to enhance our

understanding and measurement of engagement in development activities.

However, given the focus on measuring engagement in development activities for students working

on developing a new project that is neither huge nor very complex, commit-based engagement

metrics may be suitable. In this context, where the projects are smaller and less intricate, git commit

data could provide valuable insights into student engagement levels. It allows for objective

assessment and can help track progress and involvement in project development.

In conclusion, choosing git commits as a metric for gauging engagement in development activities

is favored for its objectivity over subjectivity. Despite its limitations, relying on git commits offers

a straightforward and impartial approach to assessing involvement in the development process.

However, it's essential to acknowledge its constraints and explore ways to enhance its effectiveness

in providing insights into team performance and individual contributions in software development

projects.

5.3	Maintainability	

Previous studies have examined maintainability from various perspectives: including process,

architecture, and code level (Dhillon, 2006). To measure maintainability, researchers commonly use

metrics such as mean time to repair (MTTR), mean preventive maintenance time (MPMT), mean

corrective maintenance time (MCMT), and maximum corrective maintenance time (MaCMT).

Apart from those, metrics like Halstead software science, McCabe’s Cyclomatic Complexity

73

(Alsolai and Roper, 2020) , and Maintainability index (Ardito et al., 2020) have been used. For my

study, I focus on overall maintainability and analyze codes generated by the latest commit.

Consistent with prior research, I use Cyclomatic Complexity (CC) as a measure of maintainability.

CC counts the total number of linearly independent paths through a program’s source code, with

higher CC indicating lower maintainability. Another metric I use is the maintainability index (MI),

which was introduced by the Software Engineering Institute, Carnegie Mellon University (SEI) (D.

Coleman et al., 1994). A higher MI indicates better software maintainability. Recently, Microsoft

Visual Studio proposed a new calculation method for MI (Reddy and Ojha, 2019) , as shown in

equation below:

𝑀𝐼 = 𝑀𝐴𝑋&0,)171 − 5.2 × 𝑙𝑛𝑉 − 0.23 × 𝐺 −
16.2 × 𝑙𝑛𝐿𝑂𝐶 × 100

171 :;

Here, V represents Halsted Volume, G represents McCabe’s Cyclomatic Complexity, and LOC is

the total count of code lines. I use CC and MI as response variables of maintainability in my study,

and focus on the latest commit to analyze the final maintainability of the tasks.

Type Variables Data Type
Cyclomatic Complexity CC Continuous
Maintainability Index MI Continuous

Table 5.5 Maintainability

To calculate MI and CC more directly and quickly, I used the official python library Multimetric4,

which aims to calculate code metrics (e.g. Line of code, Maintainability index, Cyclomatic

complexity, Halstead science metrics, etc.) in various languages (e.g. C, C++, C#, Haskell, Go, Java,

Python, Ruby, etc.). Python library is a collection of modules that contain functions and classes that

can be used by other programs to perform various tasks. The library uses standard methods to

calculate the corresponding metrics, and it has passed python's dependency verification. Therefore,

we use this Multimetric to obtain maintainability related data.

4 https://pypi.org/project/multimetric/#description

74

In order to obtain more suitable maintainability data in different experimental environments, I

adopted different calculation methods for maintainability in different experiments. To elucidate the

effect of gamification on group performance (Experiment I), I construct multiple maintainability

indicators, including CC_mean, CC_o, MI_mean, and MI_o. CC_mean reflects the mean value of

CC over the course of the entire experiment, while CC_o reflects the CC value upon completion of

the project, thereby providing an overall view of the influence of gamification. Similarly, MI_mean

and MI_o are used to evaluate the effects of gamification from a global perspective. I employ the

fixed effects model (FEM) to explore the correlation between gamification and software

maintainability (Hedges, 1994), taking gamification as independent variables, and CC, CC_mean,

CC_o, MI, MI_mean, and MI_o as dependent variables.

In Experiment II (individual setting), I chose the maintainability of the code at the time of the last

commit, however there may be some risks associated with using MI and CC alone. For example,

although the calculation of MI is considered the size of software (LOC), but it is varied due to

different programming languages. To better interpret the maintainability, I consider using the

number of functions (Function) to process maintainability metrics (MI and CC). Function is defined

as a block of organized code that is used to perform a single task, such as showing data with a chart

bar, account information, etc. Although, all students must fulfil the same fundamental requirements

for the work, but some may go above and beyond. As I have the Function variable, so I manipulate

MI and CC with the Function variable to generate another two variables: FM and FC. FM means at

the same number of functions higher FM has better maintainability. Similarly, FC means at the same

level of functions higher FC has better maintainability due to lower CC. The formula is shown

following:

𝐹𝑀 = 𝑀𝐼 × 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐹𝐶 =
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐶𝐶

5.4	Control	Variables	

75

In order to control for potential alternative explanations, I examine other factors that may influence

engagement in software development activities and maintainability. Gender is a factor that has been

linked to engagement (Qiu et al., 2019), and thus, a dummy variable Gender is constructed, with a

value of 1 for male students and 0 for female students. Readability, as represented by Halsted

Difficulty (HD) and Comment Ratio (CR), is another factor that is believed to have an impact on

maintainability (Aggarwal et al., 2002; Alawad et al., 2019; R. Coleman and Boldt, 2018). In

addition, I construct a dummy variable Lan_OO, which takes the value of 1 if students use object-

oriented languages such as Java, Python, or C++, and 0 otherwise. Project size (LOC) is also taken

into consideration. User experience has been identified as a factor related to maintainability (Banker

and Datar, 1989), and is thus included as a control variable. As the students in my sample are

undergraduates who are unfamiliar with Github, I measure their programming ability through the

variable use_exp, which is a proxy for how long they have been signed up for Github. In

observational study, I control for the difficulty of tasks (LCA_DAG), which takes the value of 1 if

students do LCA, and 0 otherwise. By including these variables in my analysis, I aim to ensure that

any observed effects on maintainability can be confidently attributed to the variables of interest.

Type Variables Data Type
Readability - Halstead Difficulty HD Continuous

Readability – Comment Ratio CR Continuous
Object-Oriented Language Lan_OO Dummy

Project Size LOC Continuous
Different Task LCA_DAG Dummy

Table 5.6 Control Variables

76

5.5	Gamification	Design	

In this section, I introduced gamification design in Experiment I and Experiment II respectively.

5.5.1	Design	Gamification	in	Group	Setting	

In the field of software engineering, the objective of gamification is not to entertain engineers, but

rather as a mechanism to alter their behaviors (Deterding et al., 2011). I aim to examine whether

gamification strategies change students’ development behaviors to those that can improve software

maintainability5, and improve engagement levels in development activity6. The central aspect of

gamification design is the selection of appropriate strategies (Prause et al., 2012). Previous literature

suggests that incorporating points, leaderboards, and rewards simultaneously can modify user

behavior (Manal M. Alhammad and Moreno, 2018). This can be explained by the fact that students

are more likely to conform to the behaviors that are encouraged by researchers, in pursuit of higher

scores, positions, or financial rewards. Such desired behavior in this paper refers to TDD style.

However, it is worth noting that using scores and ranking in conjunction may lead to demotivation

among those at the bottom of the ranking (Manal M. Alhammad and Moreno, 2018). Nonetheless,

the small sample size of six students in the gamification group eliminates this possibility.

Additionally, continuous feedback can encourage users to remain engaged in the project, further

enhancing their level of engagement (Ren et al., 2020). Thus, the design of gamification strategies

in this study incorporates points, leaderboards, rewards, and feedback as the primary components.

Points and Leaderboard - The gamification rules are crafted to provide users with points, which

enable them to advance their position on the leaderboard and, eventually, receive rewards. Points

are assigned based on whether students adopt Test-Driven Development (TDD) behaviors and are

5 TDD behaviors, including fast iterative development and writing unit testing, can improve software

maintainability

6 Higher engagement level in development activity is positively related to software maintainability

77

more engaged in development activities. These assessments are obtained through manual analysis

of the commits. The provisions of the gamification rules are presented as follows:

1. Generating a failing unit test before the function code, the participant will get 1 point when the

unit test passes after finishing the function code.

2. Finishing a development cycle (creating new function code and related test cases), the student

will get 2 points.

3. One commit of updating production code, the student will get an extra 1 point.

4. One commit of updating testing code, the student will get an extra 1 point.

As students earn these scores, it is important to ensure that the new changes do not affect existing

codes. If the new code causes a bug, then the student will not receive points for knowing that the

issue is resolved. Additionally, the testing phase constitutes a crucial aspect of the study. While it is

acknowledged that individual test cases may not pass, the commendable effort put forth by the

students in conducting these tests is still duly recognized and rewarded. This approach is intended

to foster a positive reinforcement mechanism, motivating students to actively engage in further test

case execution.

However, the students' contribution to project administration is also factored into the evaluation.

Effective project management entails comprehensive documentation and administration (Stellman

and Greene, 2005). This study prioritizes Test-Driven Development (TDD) behaviors and

engagement levels in development activities, thus assigning fewer points for work in documentation

and administration compared to code production. The second segment of the gamification rules is

outlined below:

5. Update one commit about documentation (e.g., XML file), the student will get 0.5 points.

6. Update one commit about administration (e.g., merge), the student will get 0.5 points.

78

In order to support students’ self-coordination, they are notified of their position on the leaderboard,

and they receive additional leaderboard bonus points based on their position. The rule for getting

the bonus is as below:

7. The highest ranking will earn 6 points, and the second highest will get 5 points, etc. The ranking

will be refreshed every week, and the points will be accumulated.

The details of getting points are presented in table 5.3.

Behavior Score
Generating a failing unit test before function code 1

Finishing a development cycle (a unit test and function code) 2
One commit related to documentation 0.5
One commit related to administration 0.5

Score by ranking [1, 6]
Table 5.3 Point rules

Rewards - At the end of the experiment, students get real-world rewards (shopping vouchers) to

motivate their engagement in development activities.

Feedback - The feedback is a suggestion about how to get more points based on students’ most

recent activity, which is distributed together with points and leaderboards.

5.5.2	Design	Gamification	in	Individual	Setting	

I aim to examine whether gamification strategies can motivate students to do TDD practice by

change students’ development behaviors7, and increase engagement levels in development activity8,

to improve software maintainability. The central aspect of gamification design is the selection of

appropriate gamification strategies to formulate the rules (Hamari et al., 2014). My gamification

design involves the creation of structured rules and the selection of suitable gamification strategies.

The rules, integrated into a real-world scenario, facilitate behavior change and heightened

7 TDD behaviors, including fast iterative development and writing unit testing, can improve software quality

8 Higher engagement level in development activity is positively related to software quality

79

engagement by clearly defining the desired behaviors, activities, etc. and guiding participants

towards achieving these goals through the implementation of various gamification strategies.

Previous research indicates that points, leaderboards, feedback, and rewards are the most frequently

utilized gamification strategies. The simultaneous adoption of points, leaderboards, and rewards can

alter an individual's behavior. This can be attributed to the desire to attain a higher score, position,

or financial reward, which incentivizes individuals to engage in behaviors that are encouraged by

researchers. In this case, the encouraged behavior refers to TDD practices. Furthermore, providing

feedback has been shown to sustain engagement levels and enhance participation in the project (Ren

et al., 2020). Hence, in constructing the gamification strategies, I have selected points, leaderboards,

rewards, and feedback.

Points and Leaderboard: The gamification rules are designed to give users points, which help them

to improve their position on the leaderboard and, ultimately, get rewards. In this study, the

calculation of points depends on how well students adhere to TDD behaviors9 and increase their

level of engagement in development activities 10 . The detail about the TDD behaviors and

engagement is shown in the following. The leaderboard is a way to support self-coordination.

Students are notified of their position on the leaderboard, and they receive additional leaderboard

bonus points based on their position. Each time the point is released, the leaderboard is reranked

according to the most recent point and the final position on the leaderboard is based on accumulated

points. Here are the relevant gamification rules:

1. Generating a development cycle (product code and related unit cases), earn 2 points.

2. Creating a new test case, earn 2 points.

9 The TDD behaviors include writing more test cases and fast iteration, which means generating more development

cycles. The development cycle is defined as a process of creating and testing a function, and it is manually recognized

by the commits recording in code repositories (GitHub).

10 Higher engagement in development activities is positively related to code quality.

80

3. Writing one commit related to the test case, earning 1 point, and writing one commit related to

the production case, earning 0.5 points.

4. The highest ranking each time will earn extra 15 points, and the second highest will get extra 14

points, etc., and only the top 15 students can get these extra points.

Feedback: The feedback mechanism in this study offers targeted recommendations to students based

on their recent performance and development activities. For example, a feedback message might

state, "In order to enhance your gamification score, it is advisable to incorporate unit testing into

your functions."

Reward: At the end of the experiments, the top five students in the leaderboard get real-world

rewards (gift cards), which are notified at the beginning of the experiments.

81

5.6	Measurement	of	Gamification	

In this study, the measurement of gamification treatment is a crucial aspect of the research design.

I presented the measurements in experiments I and II, respectively.

5.6.1	Measurement	in	Group	Experiment	

Assessing the efficacy of gamification is a central component of my research design. I consider

gamification intervention as a 'shock' during the experiment. I have set up three effect-windows: 1

day, 3 days, and 5 days post-gamification treatment, and accordingly created three dummy variables:

gamification_1 (1 day), gamification_2 (3 days), and gamification_3 (5 days). For instance, if on

day 0 students receive gamification treatment, gamification_1 is equal to 1 on day 1, and 0 otherwise;

gamification_2 is equal to 1 on days 1 and 3, and 0 otherwise; and gamification_3 is equal to 1 on

days 1, 3, and 5, and 0 otherwise. As the treatment interval is every 7 days, so I observe its impact

by the fifth day. I start from day 1 rather than day 0 to better examine the changes in maintainability

after introducing gamification and allow one day for students to react. Similarly, I construct

variables on a one-day basis rather than a daily basis, since the effect on maintainability is not

immediate.

The rationale behind establishing three distinct observation periods was to facilitate a more

comprehensive examination of the impacts of gamified stimuli on students at various junctures,

encompassing both immediate and prolonged effects of gamification.

5.6.2	Measurement	in	Individual	Experiment	

In this study, the measurement of gamification treatment is a crucial aspect of the research design.

The gamification treatment is treated as a "shock" treatment during the experiment. Six independent

variables, in the form of dummy variables, are constructed to reflect the impact of different

gamification strategies on various hypotheses.

To test RQ3a in individually setting, an independent variable named "Gamification" is constructed.

Gamification is assigned a value of 1 if the group received gamification treatment and the students

82

were from the academic year 2021-2022. Conversely, a value of 0 is assigned if the students from

the academic year 2020-2021 did not receive gamification treatment.

To test RQ3b, four independent variables are constructed, namely "Leaderboard," "All," "Extra,"

and "Feedback." These variables are used to compare the effect of a combination of gamification

strategies with the effect of using them individually. The variable "Leaderboard" is used to

determine the effectiveness of the gamification strategy of leaderboard, by comparing the

subgroup's performance between receiving only points (Group 1) and receiving both points and

leaderboard (Group 2). The value of "Leaderboard" is 0 if students only receive points as a

gamification strategy, and 1 if they receive both points and leaderboard. The variable "All" is used

to compare the impact of all gamification strategies (Group 3) with that of only receiving points

(Group 1). "All" is 0 if students only receive points, and 1 if they receive all gamification strategies.

The variable "Extra" further compares the performance of Group 1, which only received points,

with Groups 2 and 3, which received multiple gamification strategies. "Extra" is 0 if students only

receive points, and 1 if they receive any extra gamification strategies. The variable "Feedback"

distinguishes the impact of the gamification strategy of feedback, with a value of 0 if students

receive both points and leaderboard (Group 2), and 1 if students receive all gamification strategies

(Group 3). Figure 5.1 illustrates the groups being compared, as well as the gamification strategies

each group consists of.

Figure 5.1 Gamification Variables

83

The students who made up the groups either voluntarily selected them or were chosen at random by

the researcher. A dummy variable "Random" was created to test if this confounding factor would

affect the results. "Random" is 0 if students voluntarily selected the groups (either Group 1, 2, or 3),

and 1 if they were assigned to the groups by the researchers. By comparing the students'

performance, it was possible to determine whether the formation strategy of the groups had an

impact on the outcomes.

To answer RQ3c, an independent variable named "Continue" is constructed to reflect whether

students continuously received the gamification treatment. "Continue" is 0 if the students stopped

receiving the gamification treatment and 1 if they continued receiving it.

84

5.7	Diagnostics	

In order to address issues related to skewed distributions and outliers, I employed various data

transformations. Specifically, I log-transformed the highly skewed-distributed variables, like CC

(Landman et al., 2016), and other skewed-distributed variables to normalized variables to ensure

analysis is sound. Additionally, I winsorized the continuous variables at the 1% and 99% levels to

eliminate the impact of outliers and extreme values (Blaine, 2018). To deal with the

heteroscedasticity problem, robust standard errors were included in all models (Krishnamoorthy,

2016).

To address potential problems of multicollinearity, which can affect the accuracy of coefficients

estimates and p-values (Farrar and Glauber, 1967), I use post-estimation diagnostics such as the

Variance Inflation Factor (VIF). It is reckoned as a multicollinearity issue if the mean VIF is over

4.0 (Jobson, 2012). Results from the untabulated data indicate that all models utilized do not exhibit

multicollinearity problems, with mean VIF values ranging from 1.3 to 2.

To address the possibility of endogeneity problems arising from omitted confounding variables that

could potentially bias my findings, I conducted an Impact Threshold of a Confounding Variable

(ITCV) test, which is an index created by Frank (2000). This test determines the magnitude of the

endogeneity error required to invalidate the OLS inference. If the ITCV value is larger than the

impacts caused by the endogeneity error, then the OLS inference is less likely to be invalidated. In

other words, the larger the ITCV value, the more robust the regression results are to potential

endogeneity problems arising from unobserved confounding variables.

The Regression Equation Specification Error Test (RESET) was also applied to detect whether

omitted variables are causing model miss specification, as originally proposed by Ramsey (Ramsey,

1969). A RESET p-value below 0.05 implies the existence of an omitted variable bias. The results

from the statistical analysis indicated that all RESET values were greater than 0.05, thereby

suggesting that the regression models were free from endogeneity problems caused by unobserved

variables.

85

86

Chapter	6	Result	

In this chapter, we present the results of observational study and two experimental studies. In

observational study, regression results are mainly used. The results of the two experimental studies

are presented in the form of graph and regression results.

87

6.1	Result	of	Observational	Study	

To answer my research questions (RQ2), I employ ordinary least squares (OLS) regressions. OLS

regression is a widely adopted statistical method for estimating the coefficients of linear regression

equations and exploring the relationships between one or more independent variables and a

dependent variable. It is particularly suitable for continuous (or dummy) predictors and continuous

response variables, which is the case for my study variables. Therefore, OLS regression is an

appropriate analytical method in this study.

In order to investigate whether TDD behaviors affect engagement level in development activities

(RQ2a), I employed two response variables: the sequence of writing test case and the number of

development cycle. These variables were used to determine whether students were following the

TDD method. Additionally, I measured the level of engagement using the number of commits and

commits frequency. To answer my second research question (RQ2b), which posits that engagement

level is positively related to maintainability, I examined three types of engagement: overall

engagement, engagement in coding and engagement in testing. I also examined engagement in

different types of testing. The relationship between statistical methods adopted and hypotheses is

illustrated in Figure 6.1.

88

Figure 6.1 Connection Between Statistical Methods and Hypotheses

6.1.1	Descriptive	Statistics	

The descriptive statistics for the entire sample are shown in Table 6.1. The mean value of SEQ

(0.321) implies that 76 students in my sample employ TDD behaviors, and the remaining 161

students use non-TDD behaviors. The mean value of the Cycle is 2.422 and the standard deviation

is nearly 2, which means students perform similarly in terms of the development cycle.

From the perspective of commit frequency, PROD_FEQ and TEST_FEQ have similar mean values

and standard deviations, which means that participants have similar commit frequency on testing

codes and production codes. The mean value of NEW_TEST_COMMITS is higher than

MAINTAIN_TEST_COMMITS, suggesting that students have higher commit numbers on

maintaining existing testing codes.

The mean value of CC is 1.886, indicating the simplicity of the tasks. In terms of control variables,

the mean value of lan_OO is 0.886, indicating that 210 students selected an object-oriented

programming language. However, the minimum to maximum value for LOC is hugely volatile,

which is consistent with the associated standard deviation (55.592), suggesting that their

89

performance might be influenced by programming skills. Each student in my study chose to either

employ only TDD behaviors or non TDD behaviors throughout the development process of

completing the task. As a result, each student had only one CC and cycle value, which were

determined by the latest commit.

Variable Obs Mean Std. Dev. Min Max Skewness Kurtosis
SEQ 237 0.321 0.468 0 1 0 0
Cycle 237 2.422 2.081 0 15 0 0

TC 237 1.181 2.368 0 15 0 0
GC 237 1.241 1.224 0 6 0 0.002

NUMBER_COMMITS 237 2.146 0.664 0 4.111 0.152 0.295
PROD_COMMITS 237 1.483 0.704 0 3.135 0.094 0.598
TEST_COMMITS 235 1.333 0.765 0 3.689 0.882 0.327

NEW_TEST_COMMITS 237 2.422 2.081 0 15 0 0
MAINTAIN_TEST_COMMITS 237 2.591 3.325 -1 30 0 0

N_M 237 0.658 0.475 0 1 0 .
FEQ 237 0.646 0.82 -1.846 2.996 0.402 0.851

PROD_FEQ 237 -0.017 0.845 -2.251 2.442 0.664 0.756
TEST_FEQ 235 -0.177 0.934 -2.944 2.14 0.252 0.571

NEW_TEST_FEQ 237 0.626 0.631 0 4 0 0
MAINTAIN_TEST_FEQ 237 0.621 0.838 -0.125 5.5 0 0

CC 210 1.886 0.778 0 3.807 0 0.67
MI 237 4.011 0.282 3.072 4.69 0.029 0.876
HD 237 61.841 33.81 2 220.143 0 0

lan_OO 237 0.886 0.318 0 1 0 0
LCA_DAG 237 0.392 0.489 0 1 0.006 .

LOC 237 99.684 55.592 5 303 0 0.099
Table 6.1 Descriptive Statistics

6.1.2	Correlation	Analysis	

In this section, I use the Pearson correlation matrix, a statistical tool that gauges the linear correlation

between two variables (Benesty et al., 2009), to examine if the associations and the corresponding

directions are consistent with my expectations. Table 6.2 presents a summary of the pairwise

correlations for my key variables of interest, TDD behaviors, engagement level in development

activity, and maintainability.

Variables (1) (2) (3) (4) (5) (6) (7) (8)
SEQ 1
Cycle 0.426* 1

NUMBER_COMMITS 0.236* 0.638* 1
PROD_COMMITS 0.157* 0.559* 0.888* 1
TEST_COMMITS 0.300* 0.614* 0.877* 0.584* 1

FEQ 0.294* 0.399* 0.567* 0.478* 0.530* 1
PROD_FEQ 0.231* 0.352* 0.504* 0.600* 0.327* 0.924* 1
TEST_FEQ 0.343* 0.412* 0.525* 0.279* 0.679* 0.920* 0.721* 1

*** p<0.01, ** p<0.05, * p<0.1
Table 6.2 Correlation Between TDD and Engagement

90

Table 6.2 shows a positive association between the writing test sequence (SEQ) and various

measures of engagement in development activity, such as NUMBER_COMMITS,

PROD_COMMITS, and TEST_COMMITS. Moreover, significant positive relationships are also

observed between SEQ and FEQ, TEST_FEQ and PROD_FEQ at the 1% significance level. The

results suggest that using TDD behaviors is positively related with engagement in development

activity, proxied by commit number and commit frequency. These results suggest that using Test-

Driven Development (TDD) practices is associated with increased engagement in software

development activities.

I noticed that PROD_COMMITS, TEST_COMMITS, and NUMBER_COMMITS are strongly

correlated with each other (0.888) at the 1% significance level, which indicates that they are highly

correlated, but this is not an issue since they are not in the same model. I also noticed that

TEST_COMMITS and NEW_TEST_COMMITS or MAINTAIN_TEST_COMMITS are strongly

related to each, but not surprisingly, as NEW_TEST_COMMITS and MAINTAIN_TEST_COMMITS

are part of TEST_COMMITS.

Similarly, it is the same case for TEST_FEQ, NEW_TEST_FEQ, and MAINTAIN_TEST_FEQ.

However, this does not affect my forthcoming analysis, as I separately regress the variables to

alleviate any potential multicollinearity issues. Table 6.2 corresponds to the Table 6.4.

Table 6.3 panel A, B and C report the correlations between engagement in development activity and

maintainability. I find a positive relationship between NUMBER_COMMITS, PROD_COMMITS,

and TEST_COMMITS with MI, and negatively correlated to CC. In panel B, I find that FEQ,

PROD_FEQ, and TEST_FEQ are negatively correlated with CC, which initially confirms my

expectation that the engagement is positively associated with maintainability. In panel C, I find that

maintainability is correlated with creating new test cases (NEW_TEST_COMMITS and

NEW_TEST_FEQ), which means the generation of novel test cases yields a more favorable outcome

in terms of code maintainability when compared to the persistent upkeep and modification of extant

test code. Overall, the correlation results initially confirm my proposition. The three panels of Table

6.3 correspond to the three panels of Table 6.5.

91

Variables (1) (2) (3) (4)
NUMBER_COMMITS 1

FEQ 0.567* 1
CC -0.316* -0.197* 1
MI 0.287* 0.081 -0.650* 1

*** p<0.01, ** p<0.05, * p<0.1
Table 6.3 Panel A. Correlation Between Engagement and Maintainability (General)

Variables (1) (2) (3) (4) (5) (6)
PROD_COMMITS 1
TEST_COMMITS 0.584* 1

PROD_FEQ 0.600* 0.327* 1
TEST_FEQ 0.279* 0.679* 0.721* 1

CC -0.295* -0.279* -0.189* -0.187* 1
MI 0.234* 0.283* 0.048 0.107 -0.650* 1

*** p<0.01, ** p<0.05, * p<0.1
Table 6.3 Panel B. Correlation Between Engagement and Maintainability (Production Code vs. Test

Code)

Variables (1) (2) (3) (4) (5) (6) (7) (8)
PROD_COMMITS 1

NEW_TEST_COMMITS 0.559* 1
MAIN_TEST_COMMITS 0.365* 0.294* 1

PROD_FEQ 0.600* 0.352* 0.208* 1
NEW_TEST_FEQ 0.271* 0.579* 0.108 0.680* 1

MAINTAIN_TEST_FEQ 0.259* 0.198* 0.737* 0.444* 0.421* 1
CC -0.295* -0.385* -0.1 -0.189* -0.274* -0.097 1
MI 0.234* 0.359* 0.108 0.048 0.186* 0.052 -0.650* 1

*** p<0.01, ** p<0.05, * p<0.1
Table 6.3 Panel C. Correlation Between Engagement and Maintainability (New Test vs. Maintain Test)

I also report the correlation between response variables in this study because I am also intrigued by

the potential correlation between the dependent variables. However, it is crucial to note that the

presence or absence of such correlation will not affect the regression analysis, given that each

dependent variable is constructed from distinct regressions.

6.1.3	Regression	Models	

Our main results are presented in Table 6.4 and Table 6.5. The p-values, enclosed in square brackets

underneath the coefficients, and the effect in these tables are beta values. I adopt the ordinary least

square (OLS) model to examine the relationships between the TDD behaviors, engagement level in

development activities and maintainability respectively. I show the standard error in brace and p-

92

value in brackets, which is applied Bonferroni correction of False Discovery Rate to avoid type-I

errors.

6.1.3.1	Association	between	TDD	behaviors	and	engagement	level	in	

development	activities	

Table 6.4 shows the OLS regression results that whether TDD behaviors affect engagement level.

As shown in Model 1, Cycle has a significantly positive correlation with NUMBER_COMMITS,

which means that students following the iterative development style generate more commits, which

indicates are more likely to get involved. As shown in Models 2 and 3, Cycle has a strongly

significant positive correlation with PROD_COMMITS and TEST_COMMITS. SEQ is negatively

related to PROD_COMMITS, but only significant at the 10% level and the coefficient is -0.15 which

is not economically significant.

Model 4 shows that SEQ and Cycle are all positively and statistically significant with FEQ and

TEST_FEQ at the 1% level, which indicates that students following the test first order and the

iterative development style have higher update commit frequency and commit frequency related to

testing, which means that they are more involved. Prior theoretical work proposes that TDD

behaviors promote developers to focus on the unit testing activities, and my empirical result

provides some evidence. Unexpectedly, I do not find a significant relationship between SEQ and

PROD_FEQ. But PROD_FEQ is positively significant at the 1% level with Cycle, implying that

iterative development style is positively related to commit frequency.

Table 6.4 indicates a negative correlation between SEQ and PROD_COMMITS, albeit the

correlation is economically negligible. Conversely, cycle exhibits a positive correlation with all

response variables, while SEQ displays a positive correlation with FEQ and TEST_FEQ. Thus, table

6.4 supports my hypothesis (H1) that following TDD behaviors is positively related to engagement

level in development activities.

𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 	𝛼 + 𝛽! ∗ 𝑆𝐸𝑄 +	𝛽" ∗ 𝐶𝑦𝑐𝑙𝑒 +	𝛽# ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 𝜀

 (1) (2) (3) (4) (5) (6)
 NUMBER_COM PROD_COM TEST_COM FEQ PROD_FEQ TEST_FEQ

93

Cycle 0.210*** 0.203*** 0.219*** 0.132*** 0.126*** 0.146***
 {0.026} {0.026} {0.028} {0.028} {0.028} {0.032}
 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

SEQ -0.063 -0.150* 0.079 0.264** 0.178 0.411***
 {0.077} {0.081} {0.091} {0.129} {0.130} {0.140}
 [0.416] [0.067] [0.383] [0.042] [0.175] [0.004]

Constant 1.659*** 1.039*** 0.773*** 0.241*** -0.379*** -0.667***
 {0.066} {0.071} {0.074} {0.074} {0.079} {0.086}
 [0.000] [0.000] [0.000] [0.001] [0.000] [0.000]

VIF 1.22 1.22 1.22 1.22 1.22 1.22
Observations 237 237 235 237 237 235

R-squared 0.409 0.320 0.379 0.178 0.132 0.204
Robust standard errors in braces

Robust p-val in brackets
*** p<0.01, ** p<0.05, * p<0.1

Table 6.4 Association Between TDD and Engagement

The reason that I separately regress the TC and GC, as well as Cycle, is due to the severe

multicollinearity issue for these variables that are observed from the correlation matrix (VIF value

is 5.99). However, this result is reasonable since Cycle is the sum of GC and TC. My result shows

TC, GC, and SEQ are all positively related to engagement level in development activities. These

results also jointly suggest that using test-first approach is positively related to engagement level.

The detail can be seen below.

 1 2 3 4 5 6
Variables NC NPC NTC FEQ FP FT

SEQ 0.382*** 0.227 0.613*** 0.603*** 0.448** 0.885***
 [0.005] [0.111] [0.000] [0.003] [0.030] [0.000]

GC 0.360*** 0.331*** 0.400*** 0.247*** 0.218*** 0.308***
 [0.000] [0.000] [0.000] [0.000] [0.001] [0.000]

TC 0.162*** 0.163*** 0.163*** 0.096*** 0.097*** 0.097***
 [0.000] [0.000] [0.000] [0.000] [0.000] [0.001]

Constant 1.386*** 0.807*** 0.439*** 0.033 -0.546*** -0.964***
 [0.000] [0.000] [0.000] [0.786] [0.000] [0.000]

Observations 237 237 235 237 237 235
R-squared 0.462 0.354 0.435 0.198 0.144 0.234

Robust pval in brackets
*** p<0.01, ** p<0.05, * p<0.1

Appendix Table 6.4-A Association Between Development Type and Engagement

6.1.3.2	Association	between	the	engagement	level	in	development	activities	and	

maintainability	

94

In Model 1 of Table 6.5 Panel A, I first examine the correlation between overall engagement in

development and maintainability. In this Panel, NC is negatively significant at the 1% level with CC

(with a p-value of 0.000), and NC is positively significant with MI (with a p-value of 0.000) in

Model 2, indicating a positive relationship with maintainability. However, I do not find statistical

significance between FEQ, and CC or MI. This might be caused by different development style;

some students prefer update in a longer period, and some prefer to finish the task in a short period.

This can give us some sense that the students who left more commits and engaging in a long-term

stability development style has positive relationship with software maintainability. Table 6.5 Panel

A answers my research question (RQ2b) that engagement in development activity is positively

related to maintainability.

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= 	𝛼 + 𝛽! ∗ 𝑁𝑈𝑁𝑀𝐵𝐸𝑅	𝐶𝑂𝑀𝑀𝐼𝑇𝑆 +	𝛽" ∗ 𝐹𝐸𝑄 +	𝛽# ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

+ 𝜀

 (1) (2)
VARIABLES CC MI

NUMBER_COMMITS -0.388*** 0.172***
 {0.084} {0.034}
 [0.000] [0.000]

FEQ -0.057 -0.034
 {0.072} {0.022}
 [0.428] [0.129]

HD 0.001 -0.001
 {0.002} {0.001}
 [0.623] [0.279]

lan_OO 0.005 -0.013
 {0.153} {0.036}
 [0.972] [0.708]

DAG -0.063 0.060**
 {0.104} {0.027}
 [0.544] [0.030]

loc 0.006*** -0.003***
 {0.001} {0.000}
 [0.000] [0.000]

Constant 2.121*** 4.014***
 {0.000} {0.000}
 [0.000] [0.000]

VIF 1.68 1.72
Observations 210 237

R-squared 0.274 0.538
Robust standard errors in braces

Robust p-val in brackets
*** p<0.01, ** p<0.05, * p<0.1

Table 6.5 Panel A. Engagement of Development Process and Maintainability

95

In Table 6.5 Panel B, I further examine the correlation between different phases of engagement

(coding and testing) and maintainability. Models 3 to 6 examine whether engagement level in either

coding phase (PROD_COMMITS, PROD_FEQ) or testing phase (TEST_COMMITS, TEST_FEQ)

can affect maintainability. I find a strongly negative significance between testing codes

(TEST_COMMITS, TEST_FEQ) and CC, and a strongly positive relationship with MI. These results

indicate that engaging in testing phase (generating more commits related to testing and higher

updating commits frequency) is positively related to maintainability. Furthermore,

PROD_COMMITS is significantly positive with MI at the 5% level, and with CC at the 1% level in

Models 3 and 4. Interestingly, unlike the positive association of the effort put in PROD_COMMITS,

I do not find the statistical significance between PROD_FEQ and maintainability, which suggests

that the effort put in the commit frequency of the coding phase does not influence the maintainability.

Table 7 Panel B verifies my hypothesis (H2) that the engagement in coding and testing activity is

positively related to maintainability but engaging in testing activities is more worth trying.

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= 	𝛼 + 𝛽! ∗ 𝑃𝑅𝑂𝐷	𝐶𝑂𝑀𝑀𝐼𝑇𝑆 +	𝛽" ∗ 𝑇𝐸𝑆𝑇	𝐶𝑂𝑀𝑀𝐼𝑇𝑆 +	𝛽# ∗ 𝑃𝑅𝑂𝐷	𝐹𝐸𝑄

+ 𝛽$ ∗ 𝑇𝐸𝑆𝑇	𝐹𝐸𝑄 + 𝛽% ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 𝜀

 (3) (4) (5) (6)
VARIABLES CC MI CC MI

PROD_COMMITS -0.215*** 0.040**
 {0.073} {0.019}
 [0.003] [0.032]

TEST_COMMITS -0.246*** 0.114***
 {0.067} {0.022}
 [0.000] [0.000]

PROD_FEQ -0.104 -0.022
 {0.075} {0.021}
 [0.170] [0.292]

TEST_FEQ -0.141** 0.067***
 {0.069} {0.020}
 [0.043] [0.001]

HD 0.002 -0.001* 0.003 -0.001**
 {0.002} {0.000} {0.002} {0.000}
 [0.253] [0.061] [0.191] [0.035]

lan_OO -0.041 -0.014 0.051 -0.034
 {0.152} {0.034} {0.158} {0.034}
 [0.789] [0.676] [0.747] [0.314]

LCA_DAG -0.062 0.049* 0.008 0.023
 {0.100} {0.025} {0.103} {0.027}
 [0.538] [0.056] [0.939] [0.396]

LOC 0.005*** -0.003*** 0.004*** -0.003***
 {0.001} {0.000} {0.001} {0.000}

96

 [0.000] [0.000] [0.002] [0.000]
Constant 1.900*** 4.164*** 1.184*** 4.396***

 {0.182} {0.056} {0.158} {0.035}
VIF 1.72 1.75 1.91 1.94

Observations 208 235 208 235
R-squared 0.285 0.550 0.208 0.445

Robust standard errors in braces
Robust p-val in brackets

*** p<0.01, ** p<0.05, * p<0.1

Table 6.5 Panel B. Engagement in Coding and Testing Phases and Maintainability

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 	𝛼 + 𝛽! ∗ 𝑁𝑇𝐶 +	𝛽" ∗ 𝑁𝑃𝐶 +	𝛽# ∗ 𝐹𝑒𝑞 + 𝜀

In Table 6.5 Panel C, I examine the correlation between engagement in different types of testing and

maintainability. Models 7 to 10 show the relationship with maintainability between engaging in

creating new test cases and maintaining existing test case. Panel C indicates that creating a new test

case (NEW_TEST_COMMITS, NEW_TEST_FEQ) is negatively significant with CC, and is

positively related to MI. Only MAINTAIN_TEST_FEQ (one proxy for maintaining an existing test

case) is negatively related to CC. Interestingly, I find that engaging in creating new test cases and

maintaining existing test case activities contributes unequally to maintainability. I suggest that

engaging in creating new test cases can bring greater benefits on maintainability.

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= 	𝛼 + 𝛽! ∗ 𝑃𝑅𝑂𝐷	𝐶𝑂𝑀𝑀𝐼𝑇𝑆 +	𝛽" ∗ 𝑁𝐸𝑊	𝑇𝐸𝑆𝑇	𝐶𝑂𝑀𝑀𝐼𝑇𝑆

+	𝛽# ∗ 𝑀𝐴𝐼𝑁𝑇𝐴𝐼𝑁	𝑇𝐸𝑆𝑇	𝐶𝑂𝑀𝑀𝐼𝑇𝑆 + 𝛽$ ∗ 𝑃𝑅𝑂𝐷	𝐹𝐸𝑄 + 𝛽%

∗ 𝑁𝐸𝑊	𝑇𝐸𝑆𝑇	𝐹𝐸𝑄 + 𝛽& ∗ 𝑀𝐴𝐼𝑁𝑇𝐴𝐼𝑁	𝑇𝐸𝑆𝑇	𝐹𝐸𝑄 + 𝛽' ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

+ 𝜀

 (7) (8) (9) (10)
VARIABLES CC MI CC MI

PROD_COMMITS -0.175** 0.044*
 {0.076} {0.022}
 [0.022] [0.051]

NEW_TEST_COMMITS -0.093** 0.033***
 {0.044} {0.010}
 [0.034] [0.001]

MAINTAIN_TEST_COMMITS -0.047* 0.006
 {0.026} {0.004}
 [0.073] [0.103]

PROD_FEQ -0.064 -0.025
 {0.078} {0.018}
 [0.408] [0.182]

NEW_TEST_FEQ -0.180 0.060**
 {0.139} {0.029}

97

 [0.198] [0.040]
MAINTAIN_TEST_FEQ -0.150 0.053*

 {0.112} {0.029}
 [0.183] [0.069]

N_M -0.247 0.012 -0.204 0.037
 {0.151} {0.031} {0.145} {0.032}
 [0.103] [0.709] [0.163] [0.257]

HD 0.001 -0.001* 0.001 -0.001*
 {0.002} {0.000} {0.002} {0.000}
 [0.487] [0.097] [0.457] [0.090]

lan_OO 0.055 -0.034 0.067 -0.033
 {0.134} {0.033} {0.139} {0.031}
 [0.682] [0.307] [0.632] [0.288]

LCA_DAG -0.033 0.037 -0.012 0.032
 {0.094} {0.025} {0.101} {0.028}
 [0.726] [0.139] [0.906] [0.247]

LOC 0.005*** -0.003*** 0.005*** -0.003***
 {0.001} {0.000} {0.001} {0.000}
 [0.000] [0.000] [0.000] [0.000]

Constant 2.034*** 4.199*** 1.596*** 4.274***
 {0.203} {0.057} {0.221} {0.055}
 [0.000] [0.000] [0.000] [0.000]

VIF 1.89 1.85 1.99 2.01
Observations 210 237 210 237

R-squared 0.311 0.538 0.227 0.452
Robust standard errors in braces

Robust p-val in brackets
*** p<0.01, ** p<0.05, * p<0.1

Table 6.5 Panel C. Engagement in New or Maintaining Test and Maintainability

I observed that the ITCV value exceeded that of all other independent variables in each model,

indicating that the regression models do not suffer endogeneity problems due to unobserved

variables. I also test RESET p-values for all models, which are all smaller than 0.005 implying that

the result are not influenced by omitted variables. Although there are more variables are applied in

the regression in Panel B and C, but the R2 does not change too much, all around 0.2-0.5.

6.1.4	Additional	Analysis	

This part is used to further support the result of section 4.5.3. I conduct a bivariate analysis to

compare the means of key variables of interest between two groups (Babbie, 2007). If the p-value

is significant at the threshold (0.01, 0.05, and 0.1) are often used as the threshold), then there is

evidence to reject the null hypothesis that there are equal means in two different groups, in other

words, the mean difference among two groups is statistically significant. If the p-value associated

with the t-test is greater than the threshold, then do not reject the null hypothesis and indicate no

significant difference between the two groups (Boneau, 1960).

98

I examine the relationship between the number of the development cycle using TDD and without

TDD. Table 4.8 reports bivariate results that the students who follow test-first dynamic behavior

(SEQ) generate more development cycles, higher by 205%. My result provides some initial evidence

that students are more likely to improve the iterative speed by following test-first dynamic.

Furthermore, the p-value for the mean difference test for groups of whether following test-first

dynamic behavior or not is strongly significant, suggesting that the group following test-first

dynamic has significantly higher commit number (PROD_COMMITS, TEST_COMMITS, and

NUMBER_COMMITS), and commit frequency (PROD_FEQ, TEST_FEQ, and FEQ). Collectively,

the bivariate result confirms the proposition that following test-first dynamic improves engagement

in development activity.

 obs1 obs2 Mean1 Mean2 dif St Err t value p value
cycle by SEQ: 0 1 161 76 1.814 3.711 -1.897 0.263 -7.25 0
NC by SEQ: 0 1 161 76 2.039 2.374 -0.335 0.09 -3.7 0

NPC by SEQ: 0 1 161 76 1.407 1.644 -0.237 0.097 -2.45 0.015
NTC by SEQ: 0 1 159 76 1.175 1.664 -0.489 0.102 -4.8 0
FEQ by SEQ: 0 1 161 76 0.48 0.996 -0.515 0.11 -4.7 0
FP by SEQ: 0 1 161 76 -0.15 0.266 -0.416 0.115 -3.65 0.001
FT by SEQ: 0 1 159 76 -0.399 0.286 -0.684 0.122 -5.6 0

Table 6.6 Bivariate Analysis of Sequence

6.2	Result	of	Group	Experiment	

In order to assess the influence of gamification on the Test-Driven Development (TDD) behavior

and engagement levels in development activity, I apply graphical representations to depict the trend.

Subsequently, I examine the association between gamification strategies and maintainability using

a regression analysis. For this purpose, three independent variables (gamification_1, gamification_2,

and gamification_3) are used to denote gamification intervention, while six dependent variables

(CC, CC_mean, CC_o, MI, MI_mean, and MI_o) are employed to measure maintainability. To

avoid alternative explanations, two control variables (LOC and CR) that might affect

maintainability are also incorporated.

6.2.1	Gamification	and	Behaviors	

99

Figure 6.2 demonstrates that TDD behaviors are altered by gamification intervention. In Panel A,

the higher the behavior score, the more development cycles generated by an individual (students 1,

2, 3 ... 6) in accordance with TDD. The average value for the period is represented by the value of

the day. Panel A highlights that gamification intervention increases the behavior score of the

individuals, as well as the effectiveness of the intervention is sustained even after the intervention

is withdrawn. Although the score of Day 41 drops slightly, this is due to the fact that the number of

development cycles has already reached a high level and consequently, it is difficult to maintain

improvement. Since the number of participants in the treatment and control groups differ, the

number of development cycles is averaged in the analysis.

Panel B in Figure 6.2 assesses the average of the groups. Without gamification treatment, both

groups show similar TDD behaviors. However, post-gamification intervention (Day 23), the

treatment group outperforms the control group. This comparison provides evidence that

gamification strategies are effective. Thus, the results confirm Hypothesis 1 that gamification

changes development behaviors to follow TDD.

100

Figure 6.2 Gamification and TDD Behaviors

6.2.2	Gamification	and	Engagement	

Figure 6.3 illustrates the engagement level in development activity from the number of commits

(NC) perspective. The average value of NC for each day is displayed in Panel A. Following the

0

2

4

6

8

10

12

day 1 day 5 day 9 day 12 day 16 day 19 day 23 day 27 day 30 day 34 day 37 day 41 day 45

Panel A: The trend of Cycle in individual members in treatment group
(The value of individual)

Student 1 Student 2 Student 3 Student 4 Student 5 Student 6

0

1

2

3

4

5

6

7

8

day 1 day 5 day 9 day 12 day 16 day 19 day 23 day 27 day 30 day 34 day 37 day 41 day 45

Panel B: The trend of Cycle for treatment and control group
(The average value of group)

Treatment Control

101

implementation of the gamification intervention on day 23, there is a notable increase in value for

all students on day 30. Student 6 is the exception, as he had already completed his tasks prior to day

37. Panel B similarly displays a comparable trend between the treatment and control groups before

day 23, however, the treatment group experiences a greater improvement in NC after the

gamification intervention. Following the conclusion of the gamification intervention on day 41, NC

numbers remain unchanged.

102

Figure 6.3 Gamification and Engagement (NC)

Figure 6.4 illustrates the engagement level in development activity from a frequency perspective.

The point of the day is the average frequency of engagement (FEQ) during the period. For instance,

the value of day 5 is the average of FEQ between day 1 to day 5. Panel A of Figure 6.4 indicates

0

2

4

6

8

10

12

14

16

day 1 day 5 day 9 day 12 day 16 day 19 day 23 day 27 day 30 day 34 day 37 day 41 day 45

Panel A: The trend of NC in individual members in the treatment group
(The value of individual)

Student 1 Student 2 Student 3 Student 4 Student 5 Student 6

0

1

2

3

4

5

6

7

8

9

day 1 day 5 day 9 day 12 day 16 day 19 day 23 day 27 day 30 day 34 day 37 day 41 day 45

Panel B: The trend of NC for treatment and control group
(The average value of group)

Treatment Control

103

that an individual's FEQ value increased after the gamification intervention. To further evaluate the

frequency changes after the implementation of the gamification intervention, I compare the average

of the team's frequency between the treatment and the control group, as demonstrated in Panel B of

Figure 6.4. From day 1 to day 23, the treatment group and control group display a similar trend,

while the treatment group displays superior performance after the gamification strategy was

introduced (after day 23), suggesting that the gamification strategy has a positive impact on

improving engagement level. Additionally, the FEQ in the treatment group remained at a similar

level even after the termination of the gamification intervention (day 41), indicating that the

effectiveness of gamification intervention can be sustained for an extended period. This further

substantiates Hypothesis 1, that gamification is beneficial in altering behavior towards Test-Driven

Development (TDD) and increasing engagement levels.

104

Figure 6.4 Gamification and Engagement (FEQ)

6.2.3	Gamification	and	Maintainability	

The observations tested spanned the entire experimental period of the treatment group,

approximately 45 days. Descriptive statistics for the entire sample are presented in Table 6.7. The

0

0.5

1

1.5

2

2.5

3

3.5

4

day 1 day 5 day 9 day 12 day 16 day 19 day 23 day 27 day 30 day 34 day 37 day 41 day 45

Panel A: The trend of FEQ in individual members in treatment group
(The value of individual)

Student 1 Student 2 Student 3 Student 4 Student 5 Student 6

0

0.5

1

1.5

2

2.5

day 1 day 5 day 9 day 12 day 16 day 19 day 23 day 27 day 30 day 34 day 37 day 41 day 45

Panel B: The trend of FEQ for treatment and control group
(The average value of group)

Treatment Control

105

mean values of gamification_1 (0.288), gamification_2 (0.456), and gamification_3 (0.628) indicate

that 72, 114, and 157 files in my sample employed gamification intervention, with the remaining

files not receiving gamification. For the control variable, the range of values for LOC was wide, in

accordance with the associated standard deviation (83.994), indicating the files were varied.

Variable Obs Mean Std. Dev. Min Max
CC 184 1.623 1.086 0 3.367

CC mean 184 1.623 1.086 0 3.367
CC o 250 4.704 7.52 0 26
MI 250 89.475 16.254 54.563 134.967

MI mean 250 89.475 16.254 54.563 134.967
MI o 250 84.475 16.697 54.563 134.967

gami1 250 0.288 0.454 0 1
gami2 250 0.456 0.499 0 1
gami3 250 0.628 0.484 0 1

loc 250 104.388 83.994 5 525
comment ratio 250 9.551 9.421 0 47.04

Table 6.7 Descriptive Statistics

Table 6.8 presents the results of my analysis on the correlation between gamification and

maintainability. In Panel A, Models 1-6 examine the correlation between gamification and

Cyclomatic Complexity (CC) in the short term. Contrary to expectation, a significant positive

correlation was found between gami_1, gami_3, and CC in Models 1 and 3, and a significant

positive correlation between gami_1, gami_3, and CC_mean in Models 4 and 6. This suggests that

gamification leads to higher CC in the short term and worse maintainability. However, a strongly

significant negative correlation between gamification_1, gamification_2, and CC_o in Models 7

and 8 was found, indicating that gamification leads to lower CC in the long term and better

maintainability. These results support my hypothesis (H2) that gamification is positively related to

software quality in the long term. Furthermore, they indicate that gamification is negatively related

to maintainability in the short term.

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 	𝛼 + 𝛽! ∗ 𝑔𝑎𝑚𝑖	1 + 𝛽" ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 	𝜀

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 	𝛼 + 𝛽! ∗ 𝑔𝑎𝑚𝑖	2 + 𝛽" ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 	𝜀

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 	𝛼 + 𝛽! ∗ 𝑔𝑎𝑚𝑖	3 + 𝛽" ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 	𝜀

 1 2 3 4 5 6 7 8 9
VARIABLES CC_ln CC_ln CC_ln CC_mean CC_mean CC_mean CC_o CC_o CC_o

gami1 0.116* 0.116* -0.000**

106

 [0.055] [0.055] [0.022]
gami2 0.091 0.091 -0.000**

 [0.101] [0.101] [0.049]
gami3 0.100* 0.100* 0

 [0.082] [0.082] [0.966]
loc 0.006*** 0.007*** 0.006*** 0.006*** 0.007*** 0.006*** 0.000*** 0.000*** 0.000***

 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
comment_ratio 0.041*** 0.040*** 0.039*** 0.041*** 0.040*** 0.039*** 0.000*** 0.000*** 0.000***

 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.002] [0.004] [0.001]
Constant 0.416*** 0.407*** 0.400*** 0.416*** 0.407*** 0.400*** 2.000*** 2.000*** 2.000***

 [0.003] [0.005] [0.006] [0.003] [0.005] [0.006] [0.000] [0.000] [0.000]
Observations 184 184 184 184 184 184 250 250 250

R-squared 1 1 1
Number of group 30 30 30 30 30 30

*** p<0.01, ** p<0.05, * p<0.1
Table 6.8 Panel A Gamification and Maintainability in Short Term

In Panel B, Models 1-6 examine the correlation between gamification and Maintainability Index

(MI) in the long term. Contrary to expectation, a strongly significant negative correlation was found

between gami_1, gami_3, and MI in Model 1, and gami_3 and MI_mean in Model 3. This suggests

that gamification leads to lower MI in the short term and worse maintainability. However, a strong

correlation in the long term was found, which showed a positive association between gami_1 and

MI_o that was significant at the 5% level and a positive association between gami_1 and MI_o that

was significant at the 10% level. Additionally, a positive association between gami_1, gami_3, and

MI_d was found, which suggests that gamification can accelerate the improvement of MI. In

conclusion, Table 6.8 verifies my hypothesis (H2) that gamification is positively related to

maintainability in the long term and accelerates the improvement of maintainability.

 1 2 3 4 5 6 7 8 9
VARIABLES MI MI MI MI_mean MI_mean MI_mean MI_o MI_o MI_o

gami1 -0.766 -0.766 1.825**
 [0.162] [0.162] [0.015]

gami2 -0.760 -0.760 0.899
 [0.129] [0.129] [0.267]

gami3 -1.119** -1.119** 1.792*
 [0.029] [0.029] [0.062]

loc -0.122*** -0.123*** -0.122*** -0.122*** -0.123*** -0.122*** -0.137*** -0.136*** -0.137***
 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

CR -0.494*** -0.486*** -0.485*** -0.494*** -0.486*** -0.485*** -0.483*** -0.486*** -0.482***
 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.001] [0.001] [0.001]

Constant 108.349*** 108.503*** 108.740*** 108.349*** 108.503*** 108.740*** 102.815*** 102.910*** 102.207***
 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Observations 250 250 250 250 250 250 250 250 250
R-squared 0.590 0.588 0.590
Number of

group 40 40 40 40 40 40

*** p<0.01, ** p<0.05, * p<0.1
Table 6.8 Panel B Gamification and Maintainability in Long Term

107

The remaining results of my analysis show that all models employed do not have multicollinearity

problems, with the mean VIF at 1.3 to 2. The ITCV value is greater than all other remaining

independent variables in each model, and all RESET values are greater than 0.05. Thus, my results

are robust and do not suffer endogeneity problems.

108

6.3	Result	of	Individual	Experiment	

In order to investigate the impact of gamification on encouraging students to adopt and sustain Test-

Driven Development (TDD) practices for the improvement of software maintainability, I utilize

several proxies to measure relevant variables. To evaluate students' adherence to TDD, I use the

number of development cycles and the number of test cases. The level of engagement is gauged by

the number of commits. To quantify software maintainability, I employ cyclomatic complexity and

maintainability index as proxies.

In addition, I aim to examine the hypothesis that the combined effects of utilizing various

gamification strategies may differ from the effects of using them individually. Thus, I differentiate

the effects of three gamification strategies, namely points, leaderboard, and feedback. Finally, I

assess the third hypothesis that the impact of gamification endures even after its withdrawal, by

examining a single variable, Sustain.

6.3.1	Gamification	and	TDD	Practice	(RQ3)	

Figure 6.5 and Figure 6.6 demonstrate the impact of gamification on students' adherence to Test-

Driven Development (TDD) practices. Figure 6.5 presents the changes in the number of

development cycles observed in the treatment group. The value on each axis of the graph represents

the total number of development cycles throughout the gamification treatment period. For instance,

when the x-axis value is equal to 1, the y-axis value is 34, indicating the number of development

cycles generated between the initiation of gamification (Day 1) and the first release of gamification

treatment (Day 4). Similarly, Figure 6.6 depicts the variations in the number of test cases in the

treatment group. The graphs reveal a consistent increase in both the number of development cycles

and test cases in the treatment group.

109

Figure 6.5 Gamification Impact on Number of Development Cycle

Figure 6.6 Gamification Impact on Number of Test Case

Figure 6.7 presents the impact of gamification on TDD practices. It depicts the transformation of

students' development behavior towards adherence to TDD, the enhancement of engagement levels

in development activities, and the improvement of software maintainability. To better illustrate the

influence of gamification on the dependent variables, the treatment and control groups are analyzed

in two steps. First, the ratio between the treatment and control groups is calculated and then the log

value of the ratio is taken. A value higher than 0 indicates that the treatment group has a higher value

for the corresponding variable. For instance, if the value of "Cycle" is greater than 0, it suggests that

the treatment group generates more development cycles than the control group.

The results depicted in Figure 6.7 support the first hypothesis (H1), which states that gamification

can alter students' development behavior towards TDD. This is evidenced by the increase in the

number of development cycles and test cases in the treatment group. Additionally, gamification

treatment improves the engagement level in development activities as indicated by higher values of

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

Cycle

treat control

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12

Tests

treat control

110

NTC, NPC, and NC. Finally, gamification also enhances software maintainability by increasing MI,

FM, and FC and lowering CC.

Figure 6.7 Gamification Impact on TDD Practice

The objective of the present study is to assess the effect of gamification on the students' adherence

to Test-Driven Development (TDD) practice. In order to do so, bivariate analysis and Ordinary Least

Squares (OLS) regression were utilized. The bivariate analysis was employed to compare the means

of relevant variables between two groups (Babbie, 2007). When the p-value is significant at the

commonly used threshold levels (0.01, 0.05, and 0.1), it suggests that there is a statistically

significant difference in the means between two groups and rejection of the null hypothesis of equal

means in two groups. However, if the p-value is greater than the threshold, the null hypothesis of

equal means is not rejected and no significant difference is indicated (Boneau, 1960).

I adopt the OLS model to examine the relationships between gamification and TDD practice, and the

results also answer RQ3. P-values are in square brackets below the coefficients. Model 1-2 of Table 6.9

Panel A examines the correlation between gamification and TDD behaviors. Model 3-5 of Panel A shows

that gamification had a positive correlation with engagement level in development activities. I find a

significant positive correlation between gamification and Function, MI, and FM in Models 6, 7, and 9,

and a significant negative correlation between gamification and CC in Model 8, which means that

gamification leads to better software maintainability. Panel A answer my RQ3 that gamification can

motivate students to develop and maintain TDD practice, including changing students’ behaviors to

-1.5

-1

-0.5

0

0.5

1

1.5

2

Cycle Test NTC NPC NC Function MI CC FM FC

111

follow TDD, increasing engagement in development activities, and ultimately improving software

maintainability.

𝑇𝐷𝐷	𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 = 	𝛼 + 𝛽! ∗ 𝐺𝑎𝑚𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽" ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 	𝜀

𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 	𝛼 + 𝛽! ∗ 𝐺𝑎𝑚𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽" ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 	𝜀

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 	𝛼 + 𝛽! ∗ 𝐺𝑎𝑚𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽" ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 	𝜀

 1 2 3 4 5 6 7 8 9
Variables Cycle Test NTC NPC NC MI CC FM FC

Gamificatio
n

3.571**
* 0.733* 1.133*

* 4.827* 2.623 12.399**
* -0.340* 92.015**

* 0.102
 [0.003] [0.066] [0.025] [0.073] [0.393] [0.000] [0.062] [0.000] [0.902]

gender -0.301 0.392 1.014* -3.376 -3.179 0.454 -0.144 -11.112 -1.098
 [0.902] [0.353] [0.075] [0.628] [0.645] [0.886] [0.535] [0.746] [0.389]

CR 0.021 -0.005 0.004 0.123 0.081 -0.149 -0.009* -0.231 -0.017
 [0.695] [0.602] [0.798] [0.393] [0.615] [0.367] [0.081] [0.843] [0.655]

lan_OO 1.347 -0.323 -0.2 4.586 4.681 -6.383** -0.006 37.833 1.655
 [0.352] [0.404] [0.695] [0.179] [0.232] [0.021] [0.974] [0.176] [0.104]

HD 0.071**
*

0.007**
* 0.007 0.128**

*
0.147**

* -0.112*** 0 0.570** 0.021*
 [0.000] [0.002] [0.123] [0.000] [0.000] [0.010] [0.849] [0.029] [0.068]

loc -0.001** 0 0 -0.001** -0.001** -0.003*** 0 -0.015*** 0
 [0.023] [0.397] [0.787] [0.047] [0.043] [0.000] [0.135] [0.001] [0.448]

use_exp 0.499 0.032 -0.02 1.366 1.43 -1.440* 0.032 5.517 0.393
 [0.218] [0.762] [0.876] [0.179] [0.177] [0.087] [0.613] [0.352] [0.201]

Constant 0.534 -0.287 -0.829 6.857 11.097 76.484**
*

2.383**
* 79.918* 3.913*

*
 [0.845] [0.401] [0.169] [0.355] [0.158] [0.000] [0.000] [0.087] [0.028]

Observation
s 162 162 162 162 162 162 162 162 162

R-squared 0.216 0.058 0.062 0.162 0.147 0.391 0.097 0.195 0.098
Robust pval in brackets
*** p<0.01, ** p<0.05, * p<0.1

Table 6.9 Panel A

The relationship between TDD practice with and without gamification treatment was analyzed. The

results of the bivariate analysis, as presented in Table 6.10, indicate that students who received

gamification treatment showed 162% and 336% increase in development cycles and test cases,

respectively. The engagement level in development activity (NTC and NPC) and software

maintainability (MI, CC, and FM) in the treatment group was found to be superior to that in the

control group. The p-value of the mean difference test between the two groups (with and without

gamification treatment) was found to be highly significant, suggesting that the group with

gamification treatment showed significantly improved TDD behaviors (more Cycle and Test),

112

higher engagement level (NTC and NPC), and improved maintainability (MI, CC, and FM). These

findings collectively support the hypothesis that gamification plays a positive role in improving

TDD practice, including TDD behaviors, engagement level in development activities, and software

maintainability.

Gamification Control Treatment Mean1 Mean2 dif St Err t value p value
Cycle 73 89 5.657 9.191 -3.534 1.33 -2.65 0.009
Test 73 89 0.301 1.011 -0.71 0.364 -1.95 0.053
NTC 73 89 0.424 1.472 -1.048 0.458 -2.3 0.024
NPC 73 89 16.698 21.91 -5.212 2.943 -1.75 0.079
NC 73 89 21.767 24.528 -2.761 3.293 -0.85 0.403

Function 73 89 2.082 3.045 -0.963 0.315 -3.05 0.003
MI 73 89 60.148 73.541 -13.393 3.392 -3.95 0
CC 73 89 2.245 1.876 0.369 0.172 2.15 0.033
FM 73 89 117.434 207.554 -90.12 20.039 -4.5 0
FC 73 89 5.357 5.361 -0.003 0.805 0 0.997

Table 6.10 Bivariate Analysis of Gamification Impact on TDD practice

6.3.2	Comparing	the	Effect	of	Different	Gamification	Strategies	(RQ4)	

Figure 6.8 represents the impact of the use of different gamification strategies on TDD practices.

The first pillar represents Group 1, while the second and third pillars depict the ratio of Group 2 and

Group 3 to Group 1, respectively. For instance, if the value of the second pillar is greater than 1,

this indicates that Group 2 has a higher value for the dependent variable in comparison to Group 1.

The figure indicates that the magnitude of the impact on TDD practice increases with the utilization

of more gamification strategies.

Figure 6.8 Compare Gamification Strategies’ Impact on TDD Practice

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Cycle Tests NTC NPC NC MI CC FM FC

Points Only Points & Leaderboard Points & Leaderboard & Feedback

113

To further analyze the relationship between different gamification strategies and TDD practice, I

present Figure 6.9. To provide a comprehensive view of the results, I process the data in two steps.

Firstly, I calculate the ratio between two groups for each variable. Then, I take the logarithm of the

ratio. For instance, consider the independent variable Leaderboard and the dependent variable Cycle.

When Leaderboard equals 1, the value of Cycle is 6.32 and when Leaderboard equals 0, the value

of Cycle is 2.48. Thus, the ratio between the two groups is 2.54 (calculated as 6.32 divided by 2.48).

The final step is to take the logarithm of the ratio, yielding a value of 0.93 (calculated as the natural

logarithm of 2.54). The other values for each gamification strategy are calculated in the same manner.

The results of Figure 6.9 indicate that the combination of leaderboard and points has a more

substantial effect on TDD practice compared to using points alone. The Leaderboard has a

significant impact on maintainability, especially with regards to the number of functions. The results

of the independent variable All suggest that implementing all gamification strategies, as opposed to

using points solely, has a more considerable impact on TDD practice. This conclusion is further

strengthened by the results of the independent variable Extra, although the outcome is similar. This

may suggest that the impact of feedback is limited, and its effects require further examination, as

indicated by the results of the independent variable Feedback. The results suggest that utilizing

feedback as a gamification technique has a more significant impact on TDD practice compared to

not using it, albeit to a limited extent. The results of Figure 6.9 provide support for the second

hypothesis (H2) that utilizing gamification strategies in combination is more effective than using

them individually. The results indicate that the effectiveness of gamification increases with the

integration of its strategies. The results of the fifth group indicate that randomly or voluntarily

selected gamification elements do not seem to have a significant impact on the effectiveness of

gamification. These conclusions are further supported by the results of the bivariate test that is

discussed in the following section.

114

Figure 6.9 Distinguish the Impact of Different Gamification Strategies on TDD Practice

To examine the impact of the utilization of a leaderboard on the TDD practice, a bivariate analysis

was performed. The independent variable of Feedback was analyzed to determine the differences

between utilizing or not utilizing a leaderboard. The results of the bivariate analysis, as presented

in Table 6.11, indicated that all dependent variables with the exception of NTC, function, and MI

had better mean values when a leaderboard was combined with points, compared to the use of points

alone. For instance, students who received both points and a leaderboard demonstrated 255% and

486% higher development cycles and test cases, respectively, than those who received points only.

The results of Tables 6.3 to 6.6, which correspond to the independent variables of All, Extra,

Feedback and Random, respectively, were consistent with the findings of Figure 6. In conclusion,

the bivariate results support the hypothesis that utilizing gamification strategies together is more

effective than utilizing them individually, and the effectiveness of gamification increases with the

application of each successive strategy. The results also suggest that the utilization of randomly or

voluntarily selected gamification elements does not seem to impact the gamification's effectiveness.

 Point
Only Leaderboard Mean1 Mean2 dif St Err t

value
p

value
Cycle by Lead: 0 1 27 25 2.482 6.32 -3.839 1.607 -2.4 0.021
Test by Lead: 0 1 27 25 0.074 0.36 -0.286 0.165 -1.75 0.089
NTC by Lead: 0 1 27 25 0.593 0.56 0.033 0.435 0.05 0.941
NPC by Lead: 0 1 27 25 9.148 17.44 -8.292 3.566 -2.35 0.024
NC by Lead: 0 1 27 25 10.667 18.96 -8.293 3.756 -2.2 0.032

function by Lead: 0
1 27 25 1.778 2.48 -0.702 0.469 -1.5 0.141

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

I (Leaderboard) I (All) I (Extra) I (Feedback) Random

Cycle Tests NTC NPC NC Function MI CC FM FC

115

MI by Lead: 0 1 27 25 75.9 76.826 -0.927 5.686 -0.15 0.871
CC by Lead: 0 1 27 25 2.322 1.636 0.686 0.205 3.35 0.002

FM by Lead: 0 1 27 25 120.964 179.231 -
58.267 30.857 -1.9 0.065

FC by Lead: 0 1 27 25 4.253 4.119 0.134 1.083 0.1 0.902
Table 6.11 Bivariate Analysis on Leaderboard

 Point Only All Mean1 Mean2 dif St Err t value p value
Cycle by All: 0 1 27 37 2.482 16.027 -13.546 2.345 -5.8 0
Test by All: 0 1 27 37 0.074 2.135 -2.061 0.86 -2.4 0.019
NTC by All: 0 1 27 37 0.593 2.73 -2.137 1.075 -2 0.051
NPC by All: 0 1 27 37 9.148 34.243 -25.095 5.144 -4.9 0
NC by All: 0 1 27 37 10.667 38.406 -27.739 5.546 -5 0

function by All: 0 1 27 37 1.778 4.351 -2.574 0.582 -4.45 0
MI by All: 0 1 27 37 75.9 69.602 6.298 4.878 1.3 0.202
CC by All: 0 1 27 37 2.322 1.712 0.61 0.186 3.3 0.002
FM by All: 0 1 27 37 120.964 289.879 -168.915 37.531 -4.5 0
FC by All: 0 1 27 37 4.253 7.008 -2.755 1.297 -2.1 0.037

Table 6.12 Bivariate Analysis on All

 Point Only Extra Mean1 Mean2 dif St Err t value p value
Cycle by Extra: 0 1 27 62 2.482 12.113 -9.632 2.24 -4.3 0
Test by Extra: 0 1 27 62 0.074 1.419 -1.345 0.69 -1.95 0.054
NTC by Extra: 0 1 27 62 0.593 1.855 -1.262 0.867 -1.45 0.148
NPC by Extra: 0 1 27 62 9.148 27.468 -18.32 4.669 -3.9 0
NC by Extra: 0 1 27 62 10.667 30.564 -19.898 5.021 -3.95 0

function by Extra: 0 1 27 62 1.778 3.597 -1.819 0.522 -3.5 0.001
MI by Extra: 0 1 27 62 75.9 72.515 3.385 4.155 0.8 0.417
CC by Extra: 0 1 27 62 2.322 1.681 0.64 0.173 3.7 0.001
FM by Extra: 0 1 27 62 120.964 245.263 -124.299 33.276 -3.75 0.001
FC by Extra: 0 1 27 62 4.253 5.843 -1.59 1.117 -1.4 0.158

Table 6.13 Bivariate Analysis on Extra

 No
Feedback Feedback Mean1 Mean2 dif St Err t

value
p

value
Cycle by Feedback:

0 1 25 37 6.32 16.027 -9.707 2.716 -3.55 0.001

Test by Feedback: 0
1 25 37 0.36 2.135 -1.775 0.903 -1.95 0.054

NTC by Feedback: 0
1 25 37 0.56 2.73 -2.17 1.096 -2 0.052

NPC by Feedback: 0
1 25 37 17.44 34.243 -16.803 5.697 -2.95 0.005

NC by Feedback: 0 1 25 37 18.96 38.406 -19.445 6.006 -3.25 0.002
function by

Feedback:0 1 25 37 2.48 4.351 -1.871 0.595 -3.15 0.003

MI by Feedback: 0 1 25 37 76.826 69.602 7.225 3.498 2.05 0.043
CC by Feedback: 0 1 25 37 1.636 1.712 -0.076 0.201 -0.4 0.707

FM by Feedback: 0 1 25 37 179.231 289.879 -
110.648 37.777 -2.95 0.005

116

FC by Feedback: 0 1 25 37 4.119 7.008 -2.889 1.27 -2.25 0.026
Table 6.14 Bivariate Analysis on Feedback

 volunteer random Mean1 Mean2 dif St Err t value p value
Cycle by Random: 0 1 28 34 12.572 11.736 0.836 2.947 0.3 0.777
Test by Random: 0 1 28 34 1.286 1.53 -0.243 0.918 -0.25 0.791
NTC by Random: 0 1 28 34 1.179 2.412 -1.233 1.103 -1.1 0.269
NPC by Random: 0 1 28 34 24.893 29.588 -4.696 5.979 -0.8 0.435
NC by Random: 0 1 28 34 28.107 32.588 -4.481 6.39 -0.7 0.486

function by Random: 0 1 28 34 3.143 3.97 -0.828 0.624 -1.35 0.19
MI by Random: 0 1 28 34 73.07 72.058 1.012 3.567 0.3 0.777
CC by Random: 0 1 28 34 1.729 1.643 0.087 0.198 0.45 0.663
FM by Random: 0 1 28 34 219.087 266.819 -47.733 39.331 -1.2 0.23
FC by Random: 0 1 28 34 4.78 6.718 -1.938 1.281 -1.5 0.136

Table 6.15 Bivariate Analysis on Random

In order to obtain statistical support for Figure 6.15, I also use the OLS model to evaluate the relationship

between gamification strategies and TDD practice, and the results are shown below. P-values are in

square brackets below the coefficients. Table A to D examines the correlation between Leaderboard,

All, Extra, Feedback and TDD practice.

𝑇𝐷𝐷	𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒 = 	𝛼 + 𝛽! ∗ 𝐿𝑒𝑎𝑑𝑒𝑟𝑏𝑜𝑎𝑟𝑑 + 𝛽" ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 	𝜀

𝑇𝐷𝐷	𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒 = 	𝛼 + 𝛽! ∗ 𝐴𝑙𝑙 + 𝛽" ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 	𝜀

𝑇𝐷𝐷	𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒 = 	𝛼 + 𝛽! ∗ 𝐸𝑥𝑡𝑟𝑎 + 𝛽" ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 	𝜀

𝑇𝐷𝐷	𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒 = 	𝛼 + 𝛽! ∗ 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 + 𝛽" ∗ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙	𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 	𝜀

In summary, the figures results, bivariate analysis, and OLS regression answer my research question

(RQ4): using gamification strategies together better than using them in individually.

VARIABLE
S Cycle Test NTC NPC NC MI CC FM FC

Table A

Leaderboard 3.456** 0.299 -0.235 7.997** 7.988** -0.603
-

0.757*** 49.679 -0.464

 [0.028] [0.152] [0.615] [0.037] [0.043] [0.868] [0.001] [0.104] [0.620]

gender 0.564 -0.208 0.134 -1.072 -4.104 7.909** -0.206 -51.096 -2.125

 [0.632] [0.483] [0.712] [0.820] [0.422] [0.034] [0.326] [0.271] [0.150]

CR -0.031 0.001 -0.003 0.040 0.000 -0.108 -0.007 -1.066 -0.024

 [0.397] [0.876] [0.786] [0.759] [0.998] [0.346] [0.339] [0.334] [0.460]

117

lan_OO -2.093 -0.054 -0.205 -4.561 -4.254 -7.640* -0.116 -20.175 -0.132

 [0.141] [0.723] [0.489] [0.178] [0.223] [0.087] [0.653] [0.528] [0.900]

HD 0.066 0.003 0.033 0.212* 0.248* -0.476*** 0.008 1.464* 0.079***

 [0.258] [0.510] [0.159] [0.052] [0.053] [0.000] [0.176] [0.097] [0.002]

loc -0.001 -0.000 -0.001 -0.002 -0.003 0.003* -0.000** -0.030**
-

0.001***

 [0.365] [0.466] [0.157] [0.192] [0.133] [0.095] [0.035] [0.027] [0.000]

use_exp 0.810* 0.024 0.033 1.454 1.440 -2.495*** -0.039 6.452 0.151

 [0.092] [0.515] [0.704] [0.360] [0.365] [0.002] [0.668] [0.302] [0.547]

Constant -0.707 0.091 -0.464 0.237 3.731 98.647*** 2.544*** 132.553** 3.752**

 [0.797] [0.686] [0.453] [0.966] [0.548] [0.000] [0.000] [0.041] [0.045]

Obs 52 52 52 52 52 52 52 52 52

R-squared 0.287 0.091 0.273 0.337 0.354 0.676 0.304 0.244 0.296

Table B

All
11.144**

*
1.906*

* 1.901*
21.803**

*
23.951**

* -5.336
-

0.570***
155.098**

* 2.498*

 [0.000] [0.030] [0.089] [0.000] [0.000] [0.207] [0.004] [0.000] [0.059]

gender -0.031 0.673
2.056**

* 1.040 0.454 3.273 -0.050 -33.916 -1.064

 [0.992] [0.273] [0.009] [0.908] [0.961] [0.391] [0.829] [0.545] [0.576]

CR 0.100 -0.028 -0.006 0.309 0.210 0.058 -0.007 -0.017 -0.005

 [0.200] [0.198] [0.870] [0.166] [0.449] [0.614] [0.284] [0.994] [0.942]

lan_OO 1.427 -0.987 -0.502 5.327 3.414
-

11.066*** -0.160 45.564 1.742

 [0.582] [0.313] [0.689] [0.389] [0.635] [0.007] [0.512] [0.437] [0.373]

HD 0.073*** 0.004 0.001 0.103** 0.121** -0.095** -0.002 0.414 0.007

 [0.000] [0.436] [0.933] [0.031] [0.050] [0.042] [0.204] [0.416] [0.586]

loc
-

0.001*** 0.000 0.000 -0.001 -0.001 -0.002*** -0.000 -0.016* -0.000*

 [0.006] [0.844] [0.644] [0.382] [0.316] [0.004] [0.296] [0.072] [0.086]

use_exp -0.049 0.036 -0.204 -0.344 -0.001 -0.584 -0.075 3.683 -0.323

 [0.940] [0.864] [0.356] [0.779] [0.999] [0.640] [0.265] [0.749] [0.387]

Constant -2.003 0.158 -0.299 -2.196 0.950 84.386*** 2.809*** 117.100 5.256*

 [0.588] [0.857] [0.827] [0.819] [0.933] [0.000] [0.000] [0.194] [0.064]

Obs 64 64 64 64 64 64 64 64 64

R-squared 0.490 0.125 0.101 0.386 0.376 0.506 0.235 0.292 0.110

Table C

Extra 7.835***
1.174*

* 1.004
16.316**

*
17.440**

* -3.583
-

0.646***
110.509**

* 1.260

 [0.000] [0.019] [0.160] [0.000] [0.000] [0.356] [0.000] [0.000] [0.235]

gender 0.188 0.420 1.517** -0.985 -1.549 4.828* -0.128 -33.430 -1.155

 [0.944] [0.413] [0.020] [0.892] [0.836] [0.097] [0.484] [0.459] [0.445]

CR 0.072 -0.014 0.000 0.280 0.216 0.069 -0.008 -0.018 -0.007

 [0.359] [0.330] [0.994] [0.170] [0.362] [0.424] [0.147] [0.992] [0.901]

lan_OO -0.305 -0.665 -0.544 1.043 -0.384 -6.991** -0.246 29.524 0.968

 [0.891] [0.353] [0.557] [0.830] [0.944] [0.028] [0.210] [0.490] [0.500]

118

HD 0.092*** 0.007 0.006 0.138** 0.158** -0.123** -0.001 0.651 0.016

 [0.000] [0.104] [0.485] [0.011] [0.019] [0.034] [0.497] [0.222] [0.269]

loc -0.001** -0.000 0.000 -0.001 -0.001 -0.002** -0.000* -0.017** -0.000*

 [0.013] [0.886] [0.870] [0.314] [0.258] [0.028] [0.052] [0.049] [0.050]

use_exp 0.352 0.009 -0.137 0.706 0.925 -1.200 -0.085 6.256 -0.204

 [0.506] [0.956] [0.474] [0.553] [0.440] [0.195] [0.172] [0.454] [0.450]

Constant -2.718 -0.049 -0.318 -2.270 0.248 83.988*** 2.927*** 108.047 5.059**

 [0.411] [0.937] [0.756] [0.788] [0.979] [0.000] [0.000] [0.144] [0.031]

Obs 89 89 89 89 89 89 89 89 89

R-squared 0.374 0.075 0.059 0.298 0.296 0.467 0.227 0.196 0.066

Table D

Feedback 6.611***
1.472*

* 1.783** 11.489**
13.977**

* -1.759 0.186 99.726*** 2.740**

 [0.004] [0.044] [0.021] [0.014] [0.004] [0.434] [0.324] [0.006] [0.028]

gender -0.527 0.551 1.901* -5.382 -2.855 4.641** -0.005 -20.536 -0.044

 [0.899] [0.484] [0.059] [0.633] [0.803] [0.038] [0.982] [0.702] [0.981]

CR 0.074 -0.021 0.009 0.386 0.340 0.086 -0.007 0.455 0.011

 [0.463] [0.340] [0.809] [0.112] [0.221] [0.166] [0.267] [0.832] [0.862]

lan_OO -1.759 -1.230 -1.298 -0.008 -3.040 -3.125 -0.387* 43.412 1.048

 [0.537] [0.300] [0.351] [0.999] [0.619] [0.187] [0.074] [0.365] [0.498]

HD 0.048 -0.009 -0.023 0.035 0.040 0.020 -0.000 0.182 0.003

 [0.139] [0.619] [0.263] [0.498] [0.562] [0.548] [0.814] [0.731] [0.824]

loc 0.007 0.003 0.005 0.016 0.017 -0.030*** -0.000 0.020 -0.000

 [0.320] [0.408] [0.236] [0.114] [0.182] [0.000] [0.321] [0.800] [0.917]

use_exp 0.496 -0.002 -0.216 1.284 1.512 -0.053 -0.148** 8.920 -0.460

 [0.509] [0.995] [0.399] [0.476] [0.406] [0.917] [0.022] [0.486] [0.147]

Constant 1.398 0.160 -0.748 7.990 8.044 79.637*** 2.355*** 142.253* 4.606*

 [0.749] [0.851] [0.522] [0.486] [0.506] [0.000] [0.000] [0.079] [0.054]

Obs 62 62 62 62 62 62 62 62 62

R-squared 0.392 0.164 0.218 0.306 0.314 0.689 0.213 0.160 0.113

	

 	

119

6.3.3	Examine	Sustainability	of	Effect	of	Gamification	

In this section, I examine the third hypothesis (H3), which posits that the effect of gamification is

sustainable over time, using a combination of a figure and a table. The data is processed and

presented in Figure 6.10, utilizing the method previously demonstrated. The variables in Figure 6.10

are all close to 1, suggesting that there is no significant difference between the groups that continued

to receive gamification treatment and those that discontinued it. To further verify this conclusion, I

conduct a bivariate analysis in Table 6.16, the results of which are statistically insignificant, with

each p-value exceeding 0.1. This leads us to conclude that the effect of gamification is indeed

sustainable over time.

Figure 6.10 Sustainability of Gamification

 stop continue Mean1 Mean2 dif St Err t value p value
Cycle by Continue: 0 1 44 45 8.204 10.155 -1.951 2.258 -0.85 0.39
Test by Continue: 0 1 44 45 1.046 0.978 0.068 0.648 0.1 0.917
NTC by Continue: 0 1 44 45 1.387 1.556 -0.169 0.806 -0.2 0.834
NPC by Continue: 0 1 44 45 22.137 21.689 0.448 4.657 0.1 0.923
NC by Continue: 0 1 44 45 25.182 23.889 1.293 5.014 0.25 0.797

function by Continue: 0 1 44 45 2.978 3.111 -0.134 0.512 -0.25 0.794
MI by Continue: 0 1 44 45 77.916 69.264 8.652 3.722 2.3 0.022
CC by Continue: 0 1 44 45 1.839 1.913 -0.074 0.171 -0.45 0.664
FM by Continue: 0 1 44 45 209.97 205.192 4.778 32.955 0.15 0.885
FC by Continue: 0 1 44 45 5.274 5.446 -0.172 1.038 -0.15 0.869

Table 6.16 Bivariate Analysis of Sustainability of Gamification

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cycl
e

Test
s

NTC
NPC NC

fun
cti

on MI
CC FM FC

120

Chapter	7	Discussion	

In this section, we begin with an overall discussion of the validity of the study. Subsequently We

discuss each in the order in which the research was conducted, including the emergence of the

research questions, key findings, and implications and significance for reality.

121

7.1	Threat	to	Validity	

In this section, I discuss the threats to the validity of my study, which is classified by (Wohlin et al.,

2012):

-Internal validity threats are the influences of independent variables on causality beyond the

researcher’s knowledge.

-External validity threats limit the results from an experimental study conducted in a different

context to other practices, such as industry.

-Construct validity refers to whether the experimental results could be generalized to other theories

and concepts behind this experiment.

-Conclusion validity threats are concerned with issues that affect the ability to draw the correct

conclusion about relations between the treatment and the outcome of an experiment.

7.1.1	Internal	Validity	

In this study, various factors that could threaten the internal validity were considered and efforts

were made to mitigate their impact. The potential threats to internal validity include selection,

history, maturation, testing, instrumentation, and statistical regression.

With regards to selection, the reason that all my sample consists of the third-year level participants

is that they are in their last year of bachelor’s degree and are ready for to job market. Also, the

sample was constructed to minimize the selection effect by selecting participants from the same

college, grade, course, time limits, and task. This ensured that the participants have similar skills

and task difficulty levels. However, I acknowledge that this study might have potential threats like

adopting different development tools. Although this requirement is not applied to the project, the

impact might be small since the task assigned is simple.

In experimental studies, it is important to acknowledge the potential influence of self-selection bias.

The participants who volunteered to be part of the gamification intervention may possess

122

characteristics or motivations that differ from those who did not participate. This could introduce a

potential bias in the results, as the participants who self-selected may already be more motivated or

interested in the topic, potentially inflating the observed effectiveness of the gamification

intervention. Consequently, the findings may not be fully generalizable to all development teams or

software development contexts. But the results provide insights into the effects of gamification

within the specific sample studied.

In terms of history, in observational study, while some cohorts attended lectures in person and others

attended online, I conducted a bivariate analysis to assess whether the mode of instruction had an

impact on my results. My findings indicate that the mode of instruction did not significantly affect

my results. In experimental studies, all students attended lectures online. Therefore, I can conclude

that there is no history threat associated with the mode of instruction in this study.

Regarding maturation validity, in observational study, the project only lasts for four weeks, during

which students are more likely to keep the same level of skills, thus the threat of maturation validity

can be reduced. In experimental studies, the project only lasted for 45 days, which is not a significant

time period for skill level changes. So, the threat of maturation validity could be reduced.

To minimize the testing threat, the project is released as the first task at the beginning of each

semester, and this module is the first course that introduces TDD. However, I cannot guarantee

students do not have experience with TDD before participating in this project.

The instrumentation threat could be eliminated since all data is collected from the same source

GitHub, and the students had similar abilities to use GitHub. To minimize the statistical regression

threat, I do several diagnostic, for example, extreme values were excluded in the regression test.

7.1.2	External	Validity	

The external validity limits the generalizability of my results (Ciolkowski et al., 2004; Hannay and

Jørgensen, 2008) to industry.

123

Interaction of selection and treatment: the participants in the study do not represent the entire

population of software developers, especially senior engineers. However, the size and the

complexity of the task do not require a high level of industrial experience, thus I believe the students

could be appropriate participants as entry-level practitioners. Also, my sample could be initially

representative of both students from an academic perspective and entry-level engineers from an

industry perspective on an Irish base. To control other factors that might impact my dependent

variable (maintainability), and since most are unobservable, such as personal skills and experience,

therefore I construct the sample based on certain criteria to try to minimize the selection effect.

Students that participated in this project are from the same college, grade, and course, and are

assigned the same tasks and time limits, so the participants have similar knowledge and task

difficulty level.

Interaction of setting and treatment: As the size and the complexity of this task is limited, it might

not be representative of real-world tasks, such as complex software or advanced system

development.

Interaction of history and treatment: To minimize the impact of external threats, such as a pandemic

and the occurrence of environmental disasters, I collect all data online and test the impact of covid

on the module.

7.1.3	Construct	Validity	

Inadequate preoperational explication of constructs: The TDD behaviors and maintainability are

based on transparent, previous definitions that were argued and tested. However, I acknowledge the

challenge of measuring engagement level in development activity, which is hard to quantify. As a

result, to be as accurate as possible, I understand the engagement level from the behavioral

engagement view and adopt two instrumental variables from different perspectives including

commit number and commit frequency. In the future, it could be defined more accurately through

interviews with students and developers.

124

Evaluation apprehension: This study is not exposed to this threat because the students are not

evaluated based on the results they obtained in the experiment.

Experimenters’ expectancies: The participants will not consciously bias the results based on their

expectations of the results, as this is an ex post facto study.

7.1.4	Conclusion	Validity	

Low statistical power: The limited statistical power of the test resulting from the small sample size

may make it more difficult to draw accurate inferences from the outcomes of my investigation.

However, my sample size is 237 and it can eliminate this threat (The power analysis results show

that a sample size of 156 is sufficient).

Fishing and the error rate: fishing has been mitigated because I analysis data with program and

same standard to limit the fostering for specific outcomes. As for error rate, I chose three adequate

significances level (0.1, 0.05, and 0.01) while testing null hypotheses.

Reliability of measures: The majority of the measures were automatized, and can be repeated with

the same outcome. When human judgement was necessary, I adopted a uniform standard.

Random heterogeneity of participants: Theoretically, due to the similar backgrounds of the subjects,

i.e., students from the same university, same module, same grade, and had similar experience,

heterogeneity should be reduced. Empirically, I adopt Robust Standard Error to solve this problem.

125

7.2	Discussion	of	Studies	

7.2.1	Observational	Study	

Drawing inspiration from recent research suggesting that the benefits of TDD might not be solely

attributed to its test-first characteristics, but rather, to the augmented focuses on coding and testing

(Fucci et al., 2016; Fucci et al., 2015). This leads to my question that does following TDD behaviors

have positive impacts on engagement level in development activities (RQ2a). My results support

this conjecture, whereby a stronger impact is observed for engagement during the testing phase

relative to the coding phase. I then elaborate empirically on the consequences of engagement levels

on software maintainability (RQ2b), and find that engagement level has significant and positive

performance consequences for developer’s code quality. My results remain robust when controlling

for various factors such as readability, different tasks, size, and programming language. Of particular

interest, the positive impact on maintainability is especially pronounced for engagement in the

testing phase versus the coding phase. Thus, the enhancement of engagement levels can have

substantial implications not only for software quality but also for developer performance.

Our findings underscore the importance of engagement levels in explaining the performance

consequences of coding quality. It integrates ideas from software psychology and propose a novel

metric for quantifying engagement levels during the software development process. Unlike prior

work that measures engagement using broad indicators, such as duration of time spent, which might

not be entirely applicable to the domain of software engineering, my study constructs the

engagement’s response variables on a commit-based approach instead. This approach can be easily

implementable and generalizable to all GitHub users, enabling the monitoring of performance

across both long-run or short-run horizon.

Our study has several practical implications. Beyond the conventional notion that focusing on

programming skills leads to a better maintainability, I provide new insights into the significance of

engagement levels during software development activities as a determinant of coding quality.

Furthermore, my study provides some implications to software engineering education, advocating

for the integration of TDD practices in the curricula. Additionally, by combining my data with

126

longitudinal measures of evolving software codebase quality, I thereby can explain and link

professional software engineering practical activity to outcomes in terms of individual software

quality.

Relatedly, my findings here are applicable to student and novice developers but cannot necessarily

be generalizable to senior engineers. Therefore, a direct extension of my work would be to examine

my proposed engagement metric in a broader context, i.e., experienced engineers and sophisticated

projects. Further, future studies could also explore the potential role of engagement in productivity

such as LOC per hour. Additionally, apart from the examination of TDD method on individual

projects, it would be of special interest to explore whether behavior-driven development (BDD)

impacts engagement levels at the team level, where BDD is a team methodology.

7.2.2	Group	Experiment	

This section provides a summary of the research design employed in the group setting experiment,

including the research questions, experimental design, and the resulting findings.

The research question (RQ3) addressed in this study are centered on the impact of gamification on

students' TDD practices and the improvement of software maintainability. This is motivated by prior

literature that suggests gamification can enhance user performance and promote personal focus.

To address these research questions, a 45-day experimental study was conducted, and data was

collected from the GitHub repository. The effectiveness of gamification on TDD behaviors and the

engagement level in development activity was analyzed using graphical expressions. The

relationship between gamification and software maintainability was evaluated through statistical

analysis (OLS).

The findings of this study support the hypothesis that gamification can effectively improve students'

TDD practices and software maintainability. Gamification was found to positively influence TDD

behaviors and the engagement level in development activities, as well as positively relate to

software maintainability. These results align with the notion that gamification can enhance software

engineering practice performance.

127

The study under consideration is the first of its kind to explore the potential of gamification in

enhancing complex software development activities. This is a significant contribution in itself.

Moreover, the findings of this study have important implications for educators, software developers,

and project managers who are seeking to improve the efficiency of software development. By

incorporating gamification into their curriculum, educators can enhance the TDD practices of their

students. Similarly, software developers can use gamification strategies to motivate team members

and improve project outcomes, while project managers can increase the engagement levels of their

team members and improve overall project quality through gamification. The study also proposes

gamification as a promising and cost-effective alternative to traditional methods such as introducing

new methodologies or enhancing expertise. This finding is particularly important for organizations

seeking efficient ways to improve their software development processes.

7.2.3	Individual	Experiment	

In this section, I summarize the significance of the experiment in individual setting, outline

recommendations for educator, and discuss the potential implications of my findings for future

research in the field of gamification. My study focuses on the application of gamification strategies

on the practice of Test-Driven Development (TDD) in individual setting (RQ3), and examines the

most commonly used gamification strategies such as rewards, points, leaderboards, and feedback in

the software engineering domain (RQ4), and gamification sustainability (RQ5) (Çeker and Özdaml,

2017; Koivisto and Hamari, 2019; Ren et al., 2020).

TDD is a critical software development practice aimed at improving software maintainability (Beck,

2003; C. Chen et al., 2017; Mäkinen and Münch, 2014; Tosun et al., 2017), but it can be challenging

for students and novice developers to adopt and maintain (Hammond and Umphress, 2012). My

study is motivated by previous research that suggests that gamification can improve users'

performance in completing a task (Pedreira et al., 2015). My study aims to investigate whether

gamification strategies can motivate students to adopt and maintain TDD practice and improve

software maintainability.

128

Our results show that gamification strategies can positively impact students' TDD practice and

software maintainability. In particular, I observed that gamification can change students' behaviors

to follow TDD, and increase their engagement in development activities. Furthermore, I found that

the combination of gamification strategies has a more positive impact than using individual

strategies. My study also highlights the sustainability of the impact of gamification, even after the

strategies have been withdrawn.

The practical implications of my study are significant. This contributes to the current literature by

providing a clearer understanding of the potential impact of gamification on complex development

activities. In addition, this study can help educators and junior software developers to design more

effective gamification interventions that focus on specific areas of TDD practices. This experiment

distinguishes the impact of different gamification strategies on TDD practice by constructing

various gamification strategy combinations. This can help inform the design and implementation of

gamification interventions in software development contexts. This contribution is significant as it

suggests that gamification can have long-lasting effects on TDD practice, leading to sustainable

improvements in software development efficiency. These findings have important implications for

universities and the entre-level industry since they suggest that gamification can positively impact

TDD practices and can be easily replicated and generalized to broader contexts.

However, it should be noted that my findings apply only to students and novice developers and may

not necessarily generalize to senior engineers or complex projects. Therefore, future studies should

explore the potential role of gamification in software management practices, such as team

communication, and extend the scope of my work to broader contexts, including experienced

engineers and sophisticated projects.

7.2.4	Engagement	

In the context of software development activities, "engagement" refers to the level of involvement

and focus by developers towards their tasks and projects. The studies measure engagement primarily

through observable behaviors during software development activities. For instance, in the

observational study, engagement is inferred from developers' activities, with a focus on coding and

129

testing phases. The activities, such as writing tests, code, and frequent testing, is considered

indicative of engagement. Similarly, in the group and individual experiments, engagement is

assessed based on students' development activities.

While these studies provide valuable insights into engagement levels within software development

contexts, it's essential to acknowledge the limitations in measuring engagement through observable

behaviors alone. Engagement is a multifaceted construct that encompasses not only outward actions

but also internal states such as motivation, interest, and cognitive involvement, which may not

always be directly observable or accurately captured through development behaviors.

Moreover, the claims made regarding the impact of engagement on software quality should be

interpreted with caution. While the studies suggest a positive association between engagement and

software maintainability, it's important to recognize that correlation does not imply causation. Other

variables and factors may influence these outcomes, and the observed relationships may be

influenced by confounding variables or alternative explanations.

In summary, while the studies provide valuable insights into engagement levels and their impact on

software maintainability, it's important to recognize the complexity of the concept of engagement

and the limitations of measuring it through development behaviors alone. Further research exploring

alternative measures and deeper understandings of engagement in software development activities

can contribute to a more comprehensive understanding of its role and implications.

7.2.5	Limits	of	Empirical	Study	

Statistical analysis plays an important role in empirical research, providing quantitative insights into

the relationships between variables, the significance of observed effects, and the generalizability of

findings. Through statistical techniques such as regression analysis and correlation analysis, I can

uncover associations within the data, which can inform the impact of factors such as TDD behaviors,

engagement levels, and gamification techniques on software quality. While statistical analysis is a

powerful tool for quantifying relationships and making inferences, it's important to acknowledge its

limitations in capturing the complexity of human behavior.

130

An important limitation is that complex human behavior may not be fully captured by statistical

analysis alone. Human behavior is multifaceted, influenced by many factors including individual

differences, social context, and cultural background. While statistical methods can quantify

relationships between variables, they may not adequately capture the underlying mechanisms that

drive human behavior. For example, while statistical analysis may reveal a significant correlation

between engagement levels and coding quality, it may not provide insights into the specific

motivational factors, or cognitive processes that underlie this relationship.

While quantitative data can provide valuable insights, it can be complemented with qualitative

approaches, such as interviews or surveys, to gain a deeper understanding. Future research could

benefit from quantitative analysis with qualitative approaches to gain a deeper understanding of the

underlying factors. Additionally, exploring broader contexts and extending the study to include more

diverse populations, such as experienced engineers and sophisticated projects, could further enhance

the generalizability and practical relevance of the findings.

Moreover, statistical analysis is inherently limited by the quality and scope of the data collected.

Empirical studies often rely on data that are subject to various sources of bias, measurement error,

and confounding variables, which can impact the validity and reliability of statistical findings.

Therefore, the factors such as effect size and practical relevance are also considered to provide a

more nuanced interpretation of the results.

Overall, while the current study makes significant contributions, there are opportunities for future

research to build upon these findings and deepen our understanding of the relationship between

engagement and software development outcomes.

131

Chapter	8	Conclusion	and	Future	Work	

This thesis expends explanation and examines the application of gamification strategies in software

engineering practice in education setting. Chapter 3 presenting a framework and configurable

method for selecting appropriate gamification elements. Chapter 4 demonstrates studies setting, and

Chapter 5 shows the methodology, which includes variables definition and gamification design.

Chapter 6 shows the results of the thesis, and Chapter 7 discuss the validity. Finally, Overall, this

research highlights the potential of gamification as a practical tool to enhance the efficiency of

software engineering practice.

132

8.1	Contribution	

This thesis presents a systematic approach to applying gamification strategies in software

engineering practice, offering a theory-based framework for designing gamification interventions.

The thesis highlights the positive impact of gamification on Test Driven Development (TDD)

practices in both individual and group settings.

The main contributions to the field of software engineering and gamification include: first of all, it

provides a novel, theory-based framework to designing gamification for software engineering,

offering researchers a systematic approach to apply gamification strategies on software engineering

practice.

Second, this thesis provide a novel analysis of the relationship between TDD, engagement level in

development activity, as well as maintainability. It is a novel study to construct a set of commit‐

based proxies to measure engagement in development activities, especially for software engineering

area. This thesis also provide empirical evidence beyond the conventional notion that focusing on

programming skills leads to a better maintainability, underscore the importance of engagement

levels in development activities.

Third, this thesis did comprehensive analysis of various gamification strategies, provide empirical

evidence of gamification impact on software engineering practice, and provide insights for

educators, junior developers, and managers seeking to improve software engineering practice

efficiency.

For educators, this work facilitates effective teaching of software engineering concepts and skills.

For junior developers, this study could encourage self-engagement and improved performance in

their work.

For managers, this work might provide a way to optimize team performance and efficiency.

For society, the potential benefit of this thesis is to enable a more cost-effective development process.

133

It underscore the role of gamification as a promising and cost-effective alternative to traditional

methods.

134

8.2	Limitation	

The current thesis focuses on the application of gamification in educational settings, and the impact

of gamification on software engineering practices. While the results suggest that gamification can

be effective in encouraging students to adopt and maintain best practices in software engineering,

the current study is limited to education setting, and the effects of gamification may vary across

different contexts and settings.

Replication of the evaluations: The chosen sample for the evaluations comprised students from

Trinity College Dublin. However, in order to assess the effectiveness of gamification on software

engineering practice, further evaluations ought to be conducted using samples from other

universities, such as undergraduate students from China and the United States of America. These

replications should be performed using a larger sample size, in order to acquire more accurate results.

In order to increase the validity of the results, it is important to consider the participants’ different

cultural backgrounds. This will allow for a more comprehensive assessment of the effectiveness of

gamification as a teaching tool. Furthermore, it is worth noting that different nationalities may have

different attitudes towards gaming and software engineering. For example, the American culture

may be more accepting of gaming than the Chinese culture. It is therefore important to consider the

attitudes of each culture when conducting the studies.

Extend to broader contexts: The effectiveness of gamification in educational software engineering

has been established, yet it is crucial to further examine its implementation in a variety of other

contexts. For instance, the response to gamification strategies among senior developers might vary

greatly; they may reject the idea of participating in a “game”. Furthermore, the complexity of tasks

posed in industrial environments may also impact the efficacy of gamification, as it may be difficult

to identify which behaviors have a positive influence on project outcomes. Consequently, these

considerations should not be overlooked and provide ample opportunity for further research.

135

External validity: Some of the studies were conducted in controlled environments, which may not

reflect the complexity and variability of real-world software development. Future studies should

consider conducting experiments in more realistic settings to improve external validity.

Long-term sustainability: Although some studies suggest that the effects of gamification

interventions can be long-lasting, it is unclear whether the effects would persist over longer periods

of time or in different contexts. Further research is needed to investigate the long-term sustainability

of gamification interventions.

 	

136

8.3	Implications	for	future	research	

Due to the limits of this doctoral thesis, I leave some unaddressed questions that might be of interest

for future research. One important direction is to replicate the evaluations using different samples

from various universities and countries. While the current study was limited to students from Trinity

College Dublin, future studies should aim to expand the scope to include undergraduates from China,

the United States, and other countries. In doing so, I can assess whether the effectiveness of

gamification as a teaching tool varies across different cultural contexts and nationalities.

Another area for future research is to extend the study to other contexts beyond educational settings.

Specifically, it may be useful to explore how gamification strategies can be implemented in

industrial environments with senior developers. Additionally, I could investigate how gamification

can be used to promote specific behaviors that contribute to project outcomes. This could help

address the concern that the complexity of tasks in industrial settings may make it difficult to

identify which behaviors have a positive influence on project outcomes.

Another important consideration for future research is the external validity of studies. While my

studies have been conducted in controlled environments, it is unclear whether the results would hold

up in more realistic settings. Future studies should aim to address this issue by conducting

experiments in more realistic settings to improve external validity.

Finally, it is worth exploring the long-term sustainability of gamification interventions. While my

studies suggest that the effects of gamification can be long-lasting, it is unclear whether these effects

would persist over longer periods of time or in different contexts. Additional research is needed to

investigate the long-term sustainability of gamification interventions.

One potential limitation of the current thesis is that all of the studies were conducted by me, which

could introduce potential bias in data collection and analysis. Future studies should consider using

multiple researchers to minimize the potential for bias.

137

References	 	

Aggarwal, K. K., Singh, Y., & Chhabra, J. K. (2002). An integrated measure of software maintainability.

Akpolat, B. S., & Slany, W. (2014). Enhancing software engineering student team engagement in a high-
intensity extreme programming course using gamification. Paper presented at the 2014 IEEE
27th conference on software engineering education and training (CSEE&T).

Al-Yafi, K., & El-Masri, M. (2016). Gamification of e-government services: A discussion of potential
trans formation.

Alawad, D., Panta, M., Zibran, M., & Islam, M. R. (2019). An empirical study of the relationships
between code readability and s oftware complexity. arXiv preprint arXiv:1909.01760.

Albilali, A. A., & Qureshi, R. J. (2016). Proposal to Teach Software Development Using Gaming
Technique. International Journal of Modern Education & Computer Science, 8(8).

Alhammad, M. M., & Moreno, A. M. (2018). Gamification in software engineering education: A
systematic mapping. Journal of Systems and Software, 141, 131-150.

Alhammad, M. M., & Moreno, A. M. (2020). Challenges of gamification in software process
improvement. Journal of Software: Evolution and Process, 32(6), e2231.

Allamanis, M., Barr, E. T., Bird, C., & Sutton, C. (2014). Learning natural coding conventions. Paper
presented at the Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering.

Alsolai, H., & Roper, M. (2020). A systematic literature review of machine learning techniques for soft
ware maintainability prediction. Information and Software Technology, 119, 106214.

Alsunki, A. A. M., Ali, M. A., Jaharadak, A. A., & Tahir, N. M. (2020). Framework of software developers
engagement antecedents and productivity-A review. Paper presented at the 2020 16th IEEE
International Colloquium on Signal Processing & Its Applications (CSPA).

Anderson, D. J. (2003). Agile management for software engineering: Applying the theory of cons traints
for business results: Prentice Hall Professional.

Ardito, L., Coppola, R., Barbato, L., & Verga, D. (2020). A Tool-Based Perspective on Software Code
Maintainability Metrics: A S ystematic Literature Review. Scientific Programming, 2020.

Ašeriškis, D., & Damaševičius, R. (2014). Gamification of a project management system.

Avritzer, A., Paulish, D., Cai, Y., & Sethi, K. (2010). Coordination implications of software architecture
in a global softwar e development project. Journal of Systems and Software, 83(10), 1881-1895.

138

Babbie, E. (2007). The practice of social research. 11th. Belmont, CA: Thomson Wadsworth, 24(511), 66.

Bacharach, S. B., & Aiken, M. (1977). Communication in administrative bureaucracies. Academy of
Management Journal, 20(3), 365-377.

Bakker, A. B., & Demerouti, E. (2008). Towards a model of work engagement. Career development
international.

Baltes, S., Knack, J., Anastasiou, D., Tymann, R., & Diehl, S. (2018). (No) influence of continuous
integration on the commit activity in Git Hub projects.

Banker, R. D., & Datar, S. M. (1989). SOFrWARE COMPLEXITY AND MAINTAINABILITY.

Barata, G., Gama, S., Jorge, J. A. P., & Gonçalves, D. J. V. (2014). Relating gaming habits with student
performance in a gamified learning experience.

Barreto, C. F., & França, C. (2021). Gamification in Software Engineering: A literature Review.

Beck, K. (2000). Extreme programming explained: embrace change: addison-wesley professional.

Beck, K. (2003). Test-driven development: by example: Addison-Wesley Professional.

Bender, M. A., Farach-Colton, M., Pemmasani, G., Skiena, S., & Sumazin, P. (2005). Lowest common
ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2), 75-94.

Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction
in speech processing (pp. 1-4): Springer.

Bertolino, A. (2007). Software testing research: Achievements, challenges, dreams.

Bhat, T., & Nagappan, N. (2006). Evaluating the efficacy of test-driven development: industrial case
studies. Paper presented at the Proceedings of the 2006 ACM/IEEE international symposium
on Empirical software engineering.

Bianchini, D., Fogli, D., & Ragazzi, D. (2016a). Promoting citizen participation through gamification.

Bianchini, D., Fogli, D., & Ragazzi, D. (2016b). TAB sharing: A gamified tool for e-participation.

Bı́ró, G. I. (2014). Didactics 2.0: A pedagogical analysis of gamification theory from a co mparative
perspective with a special view to the components of learnin g. Procedia-Social and Behavioral
Sciences, 141, 148-151.

Bissi, W., Neto, A. G. S. S., & Emer, M. C. F. P. (2016). The effects of test driven development on internal
quality, external q uality and productivity: A systematic review. Information and Software
Technology, 74, 45-54.

139

Bjarnason, E., & Sharp, H. (2017). The role of distances in requirements communication: a case study.
Requirements Engineering, 22(1), 1-26.

Bjarnason, E., Sharp, H., & Regnell, B. (2019). Improving requirements-test alignment by prescribing
practices that mi tigate communication gaps. Empirical Software Engineering, 24(4), 2364-
2409.

Bjarnason, E., Smolander, K., Engström, E., & Runeson, P. (2016). A theory of distances in software
engineering. Information and Software Technology, 70, 204-219.

Bjarnason, E., Wnuk, K., & Regnell, B. (2011). Requirements are slipping through the gaps—A case
study on causes & ef fects of communication gaps in large-scale software development.

Bjørnson, F. O., Wijnmaalen, J., Stettina, C. J., & Dingsøyr, T. (2018). Inter-team coordination in large-
scale agile development: A case study of three enabling mechanisms.

Blaine, B. E. (2018). Winsorizing. The SAGE Encyclopedia of Educational Research, Measurement, and
Evalua tion, 1817.

Blanchard, B. S., Verma, D. C., & Peterson, E. L. (1995). Maintainability: a key to effective serviceability
and maintenance management (Vol. 13): John Wiley & Sons.

Boehm, B., & Turner, R. (2003). People factors in software management: lessons from comparing agile
an d plan-driven methods. Crosstalk-The Journal of Defense Software Engineering,(Dec 2003).

Boehm, B. W. (1976). Software engineering. IEEE Trans. Computers, 25(12), 1226-1241.

Boehm, B. W. (1984). Software engineering economics. IEEE Transactions on Software Engineering(1),
4-21.

Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software quality.

Boehm, B. W., & Ross, R. (1989). Theory-W software project management principles and examples.
IEEE Transactions on Software Engineering, 15(7), 902-916.

Boneau, C. A. (1960). The effects of violations of assumptions underlying the t test. Psychological
bulletin, 57(1), 49.

Borjesson, A., & Mathiassen, L. (2004). Successful process implementation. IEEE software, 21(4), 36-
44.

Borle, N. C., Feghhi, M., Stroulia, E., Greiner, R., & Hindle, A. (2018). Analyzing the effects of test
driven development in GitHub. Empirical Software Engineering, 23(4), 1931-1958.

140

Botella, P., Burgués, X., Carvallo, J., Franch, X., Grau, G., Marco, J., & Quer, C. (2004). ISO/IEC 9126
in practice: what do we need to know. Paper presented at the Software Measurement European
Forum.

Botte, B., Bakkes, S., & Veltkamp, R. (2020). Motivation in gamification: constructing a correlation
between gamification achievements and self-determination theory. Paper presented at the
Games and Learning Alliance: 9th International Conference, GALA 2020, Laval, France,
December 9–10, 2020, Proceedings 9.

Breevaart, K., Bakker, A. B., Demerouti, E., & Hetland, J. (2012). The measurement of state work
engagement. European Journal of Psychological Assessment.

Briciu, C.-V., & Filip, I. (2018). Applying gamification for mindset changing in automotive software proj
ect management. Procedia-Social and Behavioral Sciences, 238, 267-276.

Buchan, J., Li, L., & MacDonell, S. G. (2011). Causal factors, benefits and challenges of test-driven
development: Pr actitioner perceptions.

Buffardi, K., & Edwards, S. H. (2014). A formative study of influences on student testing behaviors.

Busenbark, J. R., Yoon, H., Gamache, D. L., & Withers, M. C. (2021). Omitted Variable Bias: Examining
Management Research With the Impact T hreshold of a Confounding Variable (ITCV). Journal
of Management, 01492063211006458.

Calder, B. J., Phillips, L. W., & Tybout, A. M. (1982). The concept of external validity. Journal of
consumer research, 9(3), 240-244.

Callan, R. C., Bauer, K. N., & Landers, R. N. (2015). How to avoid the dark side of gamification: Ten
business scenarios and their unintended consequences. In Gamification in education and
business (pp. 553-568): Springer.

Cataldo, M., & Herbsleb, J. D. (2012). Coordination breakdowns and their impact on development
productivity a nd software failures. IEEE Transactions on Software Engineering, 39(3), 343-
360.

Çeker, E., & Özdaml, F. (2017). What" Gamification" Is and What It's Not. European Journal of
Contemporary Education, 6(2), 221-228.

Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D., & Garcia, A. (2017). How does refactoring affect
internal quality attributes? A multi-proje ct study.

Chen, C., Alfayez, R., Srisopha, K., Boehm, B., & Shi, L. (2017). Why is it important to measure
maintainability and what are the best w ays to do it?

Chen, J.-C., & Huang, S.-J. (2009). An empirical analysis of the impact of software development problem
factors on software maintainability. Journal of Systems and Software, 82(6), 981-992.

141

Cheong, C., Filippou, J., & Cheong, F. (2014). Towards the gamification of learning: Investigating
student perception s of game elements. Journal of Information Systems Education, 25(3), 233.

Choma, J., Guerra, E. M., & Silva, T. S. d. (2018). Developers’ initial perceptions on TDD practice: A
thematic analysis w ith distinct domains and languages.

Chou, Y.-k. (2019). Actionable gamification: Beyond points, badges, and leaderboards: Packt Publishing
Ltd.

Chow, I., & Huang, L. (2017). A software gamification model for cross-cultural software development
teams.

Ciani, L., Guidi, G., Patrizi, G., & Venzi, M. (2018). System maintainability improvement using
allocation procedures.

Ciolkowski, M., Muthig, D., & Rech, J. (2004). Using academic courses for empirical validation of
software developmen t processes.

Cohn, M., & Ford, D. (2003). Introducing an agile process to an organization [software development].
Computer, 36(6), 74-78.

Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994). Using metrics to evaluate software system
maintainability. Computer, 27(8), 44-49.

Coleman, R., & Boldt, B. (2018). Aesthetics Versus Readability of Source Code. International Journal
of Advanced Computer Science and Applications, 9(9), 12-18.

Connolly, T. M., Stansfield, M., & Hainey, T. (2007). An application of games-based learning within
software engineering. British Journal of Educational Technology, 38(3), 416-428.

Coram, M., & Bohner, S. (2005). The impact of agile methods on software project management.

Cordero, R., & Farris, G. F. (1992). Administrative activity and the managerial development of technical
pr ofessionals. IEEE Transactions on Engineering Management, 39(3), 270-276.

Cosentino, V., Izquierdo, J. L. C., & Cabot, J. (2017). A systematic mapping study of software
development with GitHub. IEEE Access, 5, 7173-7192.

Costello, S. H. (1984). Software engineering under deadline pressure. ACM SIGSOFT Software
Engineering Notes, 9(5), 15-19.

Counsell, S., Liu, X., Eldh, S., Tonelli, R., Marchesi, M., Concas, G., & Murgia, A. (2015). Re-visiting
the'Maintainability Index'Metric from an Object-Oriented P erspective.

Crispin, L. (2006). Driving software quality: How test-driven development impacts software quality.
IEEE software, 23(6), 70-71.

142

Crowston, K., & Howison, J. (2005). The social structure of free and open source software development.
First Monday.

Curcio, K., Navarro, T., Malucelli, A., & Reinehr, S. (2018). Requirements engineering: A systematic
mapping study in agile software development. Journal of Systems and Software, 139, 32-50.

Cursino, R., Ferreira, D., Lencastre, M., Fagundes, R., & Pimentel, J. (2018). Gamification in
requirements engineering: a systematic review.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design process for large systems.
Communications of the ACM, 31(11), 1268-1287.

da Rocha Seixas, L., Gomes, A. S., & de Melo Filho, I. J. (2016). Effectiveness of gamification in the
engagement of students. Computers in Human Behavior, 58, 48-63.

Dal Sasso, T., Mocci, A., Lanza, M., & Mastrodicasa, E. (2017). How to gamify software engineering.
Paper presented at the 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER).

Damian, D. (2001). An empirical study of requirements engineering in distributed software projects: is
distance negotiation more effective?

Damian, D., Helms, R., Kwan, I., Marczak, S., & Koelewijn, B. (2013). The role of domain knowledge
and cross-functional communication in soc io-technical coordination.

de Almeida Souza, M. R., Constantino, K. F., Veado, L. F., & Figueiredo, E. M. L. (2017). Gamification
in software engineering education: An empirical study. Paper presented at the 2017 IEEE 30th
Conference on Software Engineering Education and Training (CSEE&T).

Defranco, J. F., & Laplante, P. A. (2017). Review and analysis of software development team
communication researc h. IEEE Transactions on Professional Communication, 60(2), 165-182.

Denny, P. (2013). The effect of virtual achievements on student engagement.

Denny, P., McDonald, F., Empson, R., Kelly, P., & Petersen, A. (2018). Empirical support for a causal
relationship between gamification and l earning outcomes.

Deterding, S., Sicart, M., Nacke, L., O'Hara, K., & Dixon, D. (2011). Gamification. using game-design
elements in non-gaming contexts. In CHI'11 extended abstracts on human factors in computing
systems (pp. 2425-2428).

Dhillon, B. S. (2006). Maintainability, maintenance, and reliability for engineers: CRC press.

Diaz, D. B., & Yudin, A. K. (2017). The versatility of boron in biological target engagement. Nature
Chemistry, 9(8), 731-742.

143

Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in education: A systematic
mapping study. Journal of educational technology & society, 18(3), 75-88.

Dingsøyr, T., Moe, N. B., & Seim, E. A. (2018). Coordinating knowledge work in multiteam programs:
findings from a lar ge-scale agile development program. Project Management Journal, 49(6),
64-77.

Dogša, T., & Batič, D. (2011). The effectiveness of test-driven development: an industrial case study.
Software Quality Journal, 19(4), 643-661.

Dorling, A., & McCaffery, F. (2012). The gamification of SPICE.

Duarte, D., Farinha, C., da Silva, M. M., & da Silva, A. R. (2012). Collaborative requirements elicitation
with visualization techniques. Paper presented at the 2012 IEEE 21st International Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises.

Dubois, D. J., & Tamburrelli, G. (2013). Understanding gamification mechanisms for software
development.

Dutta, S., & Van Wassenhove, L. N. (1997). An empirical study of adoption levels of software
management practices within European firms.

Dyer, R., Nguyen, H. A., Rajan, H., & Nguyen, T. N. (2015). Boa: Ultra-large-scale software repository
and source-code mining. ACM Transactions on Software Engineering and Methodology
(TOSEM), 25(1), 1-34.

Ehrlich, K., & Cataldo, M. (2012). All-for-one and one-for-all? A multi-level analysis of communication
p atterns and individual performance in geographically distributed softw are development.

El Shoubashy, H., ElKader, H., & Khalifa, N. (2020). What is gamification? A literature review of
previous studies on gamification. Australian Journal of Basic and Applied Sciences, 14(8), 29-
51.

Elgrably, I. S., & Oliveira, S. R. B. (2018). Gamification and Evaluation of the Use the Agile Tests in
Software Qua lity Subjects: The Application of Case Studies.

Erdogmus, H., Morisio, M., & Torchiano, M. (2005). On the effectiveness of the test-first approach to
programming. IEEE Transactions on Software Engineering, 31(3), 226-237.

Espinosa, J. A., & Carmel, E. (2003). The impact of time separation on coordination in global software
teams : a conceptual foundation. Software Process: Improvement and Practice, 8(4), 249-266.

Estdale, J., & Georgiadou, E. (2018). Applying the ISO/IEC 25010 quality models to software product.

Eyolfson, J., Tan, L., & Lam, P. (2011). Do time of day and developer experience affect commit bugginess?

144

Farrar, D. E., & Glauber, R. R. (1967). Multicollinearity in regression analysis: the problem revisited.
The Review of Economic and Statistics, 92-107.

Flemming, W. R. (1978). Requirements communication.

Fulcini, T., Coppola, R., Ardito, L., & Torchiano, M. (2023). A Review on Tools, Mechanics, Benefits,
and Challenges of Gamified Software Testing. ACM Computing Surveys.

Ford, G. (1994). The progress of undergraduate software engineering education. ACM SIGCSE Bulletin,
26(4), 51-55.

Francisco-Aparicio, A., Gutiérrez-Vela, F. L., Isla-Montes, J. L., & Sanchez, J. L. G. (2013).
Gamification: analysis and application. In New trends in interaction, virtual reality and
modeling (pp. 113-126): Springer.

Frank, K. A. (2000). Impact of a confounding variable on a regression coefficient. Sociological Methods
& Research, 29(2), 147-194.

Fraser, G. (2017). Gamification of software testing.

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept,
state of the evidence. Review of educational research, 74(1), 59-109.

Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., & Juristo, N. (2016). A dissection of the test-driven
development process: Does it really ma tter to test-first or to test-last? IEEE Transactions on
Software Engineering, 43(7), 597-614.

Fucci, D., & Turhan, B. (2014). On the role of tests in test-driven development: a differentiated and
partial replication. Empirical Software Engineering, 19(2), 277-302.

Fucci, D., Turhan, B., & Oivo, M. (2015). On the effects of programming and testing skills on external
quality a nd productivity in a test-driven development context.

Garcı́a, F., Pedreira, O., Piattini, M., Cerdeira-Pena, A., & Penabad, M. (2017). A framework for
gamification in software engineering. Journal of Systems and Software, 132, 21-40.

Garcia, F., Pedreira, O., Piattini, M., Cerdeira-Pena, A., & Penabad, M. (2017). A framework for
gamification in software engineering. Journal of Systems and Software, 132, 21-40.

Garousi, V., & Mäntylä, M. V. (2016). A systematic literature review of literature reviews in software
testi ng. Information and Software Technology, 80, 195-216.

Garousi, V., Rainer, A., Lauv\aas Jr, P., & Arcuri, A. (2020). Software-testing education: A systematic
literature mapping. Journal of Systems and Software, 165, 110570.

145

Ghobadi, S. (2015). What drives knowledge sharing in software development teams: A literat ure review
and classification framework. Information & Management, 52(1), 82-97.

Gladstein, D. L. (1984). Groups in context: A model of task group effectiveness. Administrative science
quarterly, 499-517.

Goles, T., & Chin, W. W. (2005). Information systems outsourcing relationship factors: detailed concept
ualization and initial evidence. ACM SIGMIS Database: the DATABASE for Advances in
Information Systems, 36(4), 47-67.

Hajjdiab, H., & Taleb, A. S. (2011). Adopting agile software development: issues and challenges.
International Journal of Managing Value and Supply Chains (IJMVSC), 2(3), 1-10.

Hakulinen, L., Auvinen, T., & Korhonen, A. (2013). Empirical study on the effect of achievement badges
in TRAKLA2 online learning environment.

Hal, S. R. P., Post, M., & Wendel, K. (2019). Generating Commit Messages from Git Diffs. arXiv preprint
arXiv:1911.11690.

Hallifax, S., Serna, A., Marty, J.-C., & Lavoué, E. (2019). Adaptive gamification in education: A
literature review of current tre nds and developments.

Hamari, J. (2013). Transforming homo economicus into homo ludens: A field experiment on g
amification in a utilitarian peer-to-peer trading service. Electronic commerce research and
applications, 12(4), 236-245.

Hamari, J., & Koivisto, J. (2015). Why do people use gamification services? International Journal of
Information Management, 35(4), 419-431.

Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work?–a literature review of empirical
studies on ga mification.

Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. (2016). Challenging
games help students learn: An empirical study on engagemen t, flow and immersion in game-
based learning. Computers in Human Behavior, 54, 170-179.

Hammond, S., & Umphress, D. (2012). Test driven development: the state of the practice.

Han, E., Yin, D., & Zhang, H. (2023). Bots with feelings: Should AI agents express positive emotion in
customer service?. Information Systems Research, 34(3), 1296-1311.

Hannay, J., & Jørgensen, M. (2008). The role of deliberate artificial design elements in software engineer
ing experiments. IEEE Transactions on Software Engineering, 34(2), 242-259.

Harwood, T., & Garry, T. (2015). An investigation into gamification as a customer engagement
experience environment. Journal of Services Marketing.

146

Hassan, L. (2017). Governments should play games: Towards a framework for the gamificatio n of civic
engagement platforms. Simulation & Gaming, 48(2), 249-267.

Hassan, L., & Hamari, J. (2020). Gameful civic engagement: A review of the literature on gamification
of e-participation. Government Information Quarterly, 37(3), 101461.

He, C., Liu, H., He, L., Lu, T., & Li, B. (2022). More collaboration, less seriousness: Investigating new
strategies for promoting youth engagement in government-generated videos during the COVID-
19 pandemic in China. Computers in Human Behavior, 126, 107019.

Hedges, L. V. (1994). Fixed effects models. The handbook of research synthesis, 285, 299.

Henttonen, K., & Blomqvist, K. (2005). Managing distance in a global virtual team: the evolution of
trust thr ough technology-mediated relational communication. Strategic Change, 14(2), 107-
119.

Herbsleb, J. D., & Grinter, R. E. (1999). Architectures, coordination, and distance: Conway's law and
beyond. IEEE software, 16(5), 63-70.

Herbsleb, J. D., & Mockus, A. (2003). An empirical study of speed and communication in globally
distributed software development. IEEE Transactions on Software Engineering, 29(6), 481-494.

Herbsleb, J. D., & Moitra, D. (2001). Global software development. IEEE software, 18(2), 16-20.

Herranz, E., Guzmán, J. G., de Amescua-Seco, A., & Larrucea, X. (2019). Gamification for software
process improvement: a practical approach. IET Software, 13(2), 112-121.

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in Open Source
projects: an Internet -based survey of contributors to the Linux kernel. Research policy, 32(7),
1159-1177.

Hoegl, M., & Gemuenden, H. G. (2001). Teamwork quality and the success of innovative projects: A
theoretical concept and empirical evidence. Organization science, 12(4), 435-449.

Hsieh, H. C. L., & Yang, H.-H. (2020). Incorporating gamification into website design to facilitate
effective communication. TheoreTical issues in ergonomics science, 21(1), 89-111.

Humphrey, W. S. (1989). Managing the software process: Addison-Wesley Longman Publishing Co., Inc.

Hunicke, R., LeBlanc, M., & Zubek, R. (2004). MDA: A formal approach to game design and game
research.

Huotari, K., & Hamari, J. (2017). A definition for gamification: anchoring gamification in the service m
arketing literature. Electronic Markets, 27(1), 21-31.

147

Ilhan, A. E., Sener, B., & Hacihabiboglu, H. (2022). Improving Sleep-Wake Behaviors Using Mobile
App Gamification. Entertainment Computing, 40, 100454.

Ivanova, G., Kozov, V., & Zlatarov, P. (2019). Gamification in software engineering education.

Janzen, D., & Saiedian, H. (2008). Does test-driven development really improve software design quality?
IEEE software, 25(2), 77-84.

Jazayeri, M. (2004). The education of a software engineer.

Jeffries, R., & Melnik, G. (2007). Guest Editors' Introduction: TDD–The Art of Fearless Programming.
IEEE software, 24(3), 24-30.

Jobson, J. D. (2012). Applied multivariate data analysis: regression and experimental design: Springer
Science & Business Media.

Johnson, L., Becker, S. A., Estrada, V., & Freeman, A. (2014). NMC horizon report: 2014 K: The New
Media Consortium.

Just, S., Herzig, K., Czerwonka, J., & Murphy, B. (2016, October). Switching to Git: the good, the bad,
and the ugly. In 2016 IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE) (pp. 400-411). IEEE.

Kalogiannakis, M., Papadakis, S., & Zourmpakis, A.-I. (2021). Gamification in science education. A
systematic review of the literatu re. Education Sciences, 11(1), 22.

Kapp, K. M. (2012). The gamification of learning and instruction: game-based methods and s trategies
for training and education: John Wiley & Sons.

Karlsson, L., Dahlstedt, A. G., Regnell, B., Dag, J. N., & Persson, A. (2007). Requirements engineering
challenges in market-driven software developm ent–An interview study with practitioners.
Information and Software technology, 49(6), 588-604.

Karlström, D., & Runeson, P. (2006). Integrating agile software development into stage-gate managed
product development. Empirical Software Engineering, 11(2), 203-225.

Kasurinen, J., & Knutas, A. (2018). Publication trends in gamification: A systematic mapping study.
Computer Science Review, 27, 33-44.

Katz, R. (1982). The effects of group longevity on project communication and performanc e.
Administrative science quarterly, 81-104.

Keuler, T., Knodel, J., Naab, M., & Rost, D. (2012). Architecture Engagement Purposes: Towards a
Framework for Planning" Just Enough"-Architecting in Software Engineering. Paper presented
at the 2012 Joint Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture.

148

Khanam, Z., & Ahsan, M. N. (2017). Evaluating the effectiveness of test driven development: advantages
an d pitfalls. International Journal of Applied Engineering Research, 12(18), 7705-7716.

Kiani, Z. U. R., Smite, D., & Riaz, A. (2013). Measuring awareness in cross-team collaborations–
distance matters.

Kim, Y., Kim, J., Jeon, H., Kim, Y. H., Song, H., Kim, B., & Seo, J. (2020). Githru: visual analytics for
understanding software development history through git metadata analysis. IEEE Transactions
on Visualization and Computer Graphics, 27(2), 656-666.

Klock, A. C. T., Gasparini, I., Pimenta, M. S., & Hamari, J. (2020). Tailored gamification: A review of
literature. International Journal of Human-Computer Studies, 144, 102495.

Koivisto, J., & Hamari, J. (2019). The rise of motivational information systems: A review of gamification
research. International Journal of Information Management, 45, 191-210.

Kolassa, C., Riehle, D., & Salim, M. A. (2013). The empirical commit frequency distribution of open
source projects.

Korkala, M., & Abrahamsson, P. (2007). Communication in distributed agile development: A case study.

Kraut, R. E., & Streeter, L. A. (1995). Coordination in software development. Communications of the
ACM, 38(3), 69-82.

Krishnamoorthy, K. (2016). Handbook of statistical distributions with applications: CRC Press.

Landers, R. N. (2014). Developing a theory of gamified learning: Linking serious games and ga
mification of learning. Simulation & gaming, 45(6), 752-768.

Landers, R. N., & Callan, R. C. (2011). Casual social games as serious games: The psychology of
gamification i n undergraduate education and employee training. In Serious games and
edutainment applications (pp. 399-423): Springer.

Landman, D., Serebrenik, A., Bouwers, E., & Vinju, J. J. (2016). Empirical analysis of the relationship
between CC and SLOC in a large corpus of Java methods and C functions. Journal of Software:
Evolution and Process, 28(7), 589-618.

Lane, E. S., & Harris, S. E. (2015). A new tool for measuring student behavioral engagement in large
univer sity classes. Journal of College Science Teaching, 44(6), 83-91.

Latulipe, C., Long, N. B., & Seminario, C. E. (2015). Structuring flipped classes with lightweight teams
and gamification.

Law, F. L., Kasirun, Z. M., & Gan, C. K. (2011). Gamification towards sustainable mobile application.

149

Lee, T., Lee, J. B., & In, H. P. (2013). A study of different coding styles affecting code readability.
International Journal of Software Engineering and Its Applications, 7(5), 413-422.

Legaki, N.-Z., Xi, N., Hamari, J., Karpouzis, K., & Assimakopoulos, V. (2020). The effect of challenge-
based gamification on learning: An experiment in the context of statistics education.
International journal of human-computer studies, 144, 102496.

Lenberg, P., Feldt, R., & Wallgren, L. G. (2015). Human factors related challenges in software
engineering–an industrial perspective.

Levin, S., & Yehudai, A. (2017). Boosting automatic commit classification into maintenance activities b
y utilizing source code changes.

Li, X. (2018). A method to support gamification design practice with motivation analy sis and goal
modeling.

Li, X., & Chu, S. K. W. (2021). Exploring the effects of gamification pedagogy on children’s reading: A
mixed-method study on academic performance, reading-related mentalit y and behaviors, and
sustainability. British Journal of Educational Technology, 52(1), 160-178.

Liu, M., Calvo, R. A., Pardo, A., & Martin, A. (2014). Measuring and visualizing students’ behavioral
engagement in writing a ctivities. IEEE Transactions on learning technologies, 8(2), 215-224.

Lounis, S., Kotsopoulos, D., Bardaki, C., Papaioannou, T. G., & Pramatari, K. (2017). Waste no more:
Gamification for energy efficient behaviour at the work place.

Lycett, M., Macredie, R. D., Patel, C., & Paul, R. J. (2003). Migrating agile methods to standardized
development practice. Computer, 36(6), 79-85.

M. Pereira, I., JP Amorim, V., A. Cota, M., & C. Gonçalves, G. (2017). Gamification use in agile project
management: an experience report. Paper presented at the Agile Methods: 7th Brazilian
Workshop, WBMA 2016, Curitiba, Brazil, November 7-9, 2016, Revised Selected Papers 7.

Machuca-Villegas, L., & Gasca-Hurtado, G. P. (2018). Gamification for improving software project
management processes: a sy stematic literature review.

Madeyski, L., & Biela, W. (2007). Capable Leader and Skilled and Motivated Team Practices to
Introduce e Xtreme Programming.

Majuri, J., Koivisto, J., & Hamari, J. (2018). Gamification of education and learning: A review of
empirical literatu re.

Mäkinen, S., & Münch, J. (2014). Effects of test-driven development: A comparative analysis of empirica
l studies.

150

Malhotra, R., & Chug, A. (2016). Software maintainability: Systematic literature review and current tre
nds. International Journal of Software Engineering and Knowledge Engineerin g, 26(8), 1221-
1253.

Mallardo, T., Calefato, F., Lanubile, F., & Damian, D. (2007). The effects of communication mode on
distributed requirements negotiat ions.

Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination. ACM Computing
Surveys (CSUR), 26(1), 87-119.

Mamone, S. (1994). The IEEE standard for software maintenance. ACM SIGSOFT Software Engineering
Notes, 19(1), 75-76.

Manohar, P. A., Acharya, S., Wu, P., Hansen, M., Ansari, A., & Schilling, W. (2015). Case Studies for
Enhancing Student Engagement and Active Learning in S oftware V&V Education. Journal of
Education and Learning, 4(4), 39-52.

Martinez, M., & Monperrus, M. (2019, May). Coming: A tool for mining change pattern instances from
git commits. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion) (pp. 79-82). IEEE.

Mariano, R. V. R., Santos, G. E., Almeida, M. V., & Brandão, W. C. (2019). Feature changes in source
code for commit classification into maintena nce activities.

Markos, S., & Sridevi, M. S. (2010). Employee engagement: The key to improving performance.
International journal of business and management, 5(12), 89.

Matsubara, P. G. F., & Da Silva, C. L. C. (2017). Game elements in a software engineering study group:
a case study. Paper presented at the 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering Education and Training Track (ICSE-SEET).

Matturro, G., Raschetti, F., & Fontán, C. (2019). A Systematic Mapping Study on Soft Skills in Software
Engineering. J. Univers. Comput. Sci., 25(1), 16-41.

Mazarakis, A. (2015). Using gamification for technology enhanced learning: The case of feedb ack
mechanisms. Bull. IEEE Tech. Comm. Learn. Technol, 17(4), 6-9.

Mills, J. E., Treagust, D. F., & others. (2003). Engineering education—Is problem-based or project-based
learning the a nswer. Australasian journal of engineering education, 3(2), 2-16.

Mishra, A., Ercil Cagiltay, N., & Kilic, O. (2007). Software engineering education: some important
dimensions. European Journal of Engineering Education, 32(3), 349-361.

Misra, S., Kumar, V., Kumar, U., Fantazy, K., & Akhter, M. (2012). Agile software development practices:
evolution, principles, and criticisms. International Journal of Quality & Reliability
Management.

151

Mittal, H., & Bhatia, P. (2009). Software maintainability assessment based on fuzzy logic technique.
ACM SIGSOFT Software Engineering Notes, 34(3), 1-5.

Moldon, L., Strohmaier, M., & Wachs, J. (2021). How gamification affects software developers:
Cautionary evidence from a natural experiment on github. Paper presented at the 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE).

Monteiro, R. H. B., Almeida Souza, M. c. R., Oliveira, S. R. B., Santos Portela, C., & Cristo Lobato, C.
E. (2021). The diversity of gamification evaluation in the software engineering e ducation and
industry: Trends, comparisons and gaps.

Monterrat, B., Lavoué, É., & George, S. (2014). Toward an adaptive gamification system for learning
environments.

Morschheuser, B., Hassan, L., Werder, K., & Hamari, J. (2018). How to design gamification? A method
for engineering gamified software. Information and Software Technology, 95, 219-237.

Mugridge, R. (2003). Challenges in teaching test driven development.

Muller, M. M., & Tichy, W. F. (2001). Case study: extreme programming in a university environment.

Munir, H., Wnuk, K., Petersen, K., & Moayyed, M. (2014). An experimental evaluation of test driven
development vs. test-last de velopment with industry professionals.

Muntean, C. I. (2011). Raising engagement in e-learning through gamification.

Muszyńska, K. (2020). Gamification of communication and documentation processes in project t eams.
Procedia Computer Science, 176, 3645-3653.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing: John Wiley & Sons.

Nah, F. F.-H., Telaprolu, V. R., Rallapalli, S., & Venkata, P. R. (2013). Gamification of education using
computer games.

Nah, F. F.-H., Zeng, Q., Telaprolu, V. R., Ayyappa, A. P., & Eschenbrenner, B. (2014). Gamification of
education: a review of literature.

Namara, M., Sloan, H., & Knijnenburg, B. P. (2022). The Effectiveness of Adaptation Methods in
Improving User Engagement a nd Privacy Protection on Social Network Sites. Proceedings on
Privacy Enhancing Technologies, 2022(1), 629-648.

Nanthaamornphong, A., & Carver, J. C. (2017). Test-Driven Development in scientific software: a survey.
Software Quality Journal, 25(2), 343-372.

Nguyen, V., Deeds-Rubin, S., Tan, T., & Boehm, B. (2007). A SLOC counting standard. Paper presented
at the Cocomo ii forum.

152

Nundlall, C., & Nagowah, S. D. (2021). Task allocation and coordination in distributed agile software
develop ment: a systematic review. International Journal of Information Technology, 13(1),
321-330.

Oman, P., & Hagemeister, J. (1992). Metrics for assessing a software system's maintainability.

Orji, F. A., Vassileva, J., & Greer, J. (2021). Evaluating a Persuasive Intervention for Engagement in a
Large Univers ity Class. International Journal of Artificial Intelligence in Education, 31(4),
700-725.

Ostberg, J.-P., & Wagner, S. (2014). On automatically collectable metrics for software maintainability
eval uation.

Ouhbi, S., & Pombo, N. (2020). Software engineering education: Challenges and perspectives.

Paasivaara, M., & Lassenius, C. (2003). Collaboration practices in global inter-organizational software
develo pment projects. Software Process: Improvement and Practice, 8(4), 183-199.

Paasivaara, M., & Lassenius, C. (2010). Using Scrum practices in GSD projects. In Agility across time
and space (pp. 259-278): Springer.

Pakarinen, A., Parisod, H., Linden, I., Aromaa, M. E., Smed, J., Leppänen, V., & Salanterä, S. (2017).
Usability of a gamified application to promote family wellbeing in chi ld health clinics.

Pancur, M., Ciglaric, M., Trampus, M., & Vidmar, T. (2003). Towards empirical evaluation of test-driven
development in a universit y environment.

Papis, B. K., Grochowski, K., Subzda, K., & Sijko, K. (2020). Experimental evaluation of test-driven
development with interns workin g on a real industrial project. IEEE Transactions on Software
Engineering.

Parnas, D. L., & Clements, P. C. (1986). A rational design process: How and why to fake it. IEEE
Transactions on Software Engineering(2), 251-257.

Paula Porto, D., Ferrari, F. C., & Fabbri, S. C. P. F. (2019). Improving project manager decision with
gamification: An experience re port.

Paula Porto, D., Jesus, G. M., Ferrari, F. C., & Fabbri, S. C. P. F. (2021). Initiatives and challenges of
using gamification in software engineeri ng: A Systematic Mapping. Journal of Systems and
Software, 173, 110870.

Pedreira, O., Garcı́a, F., Brisaboa, N., & Piattini, M. (2015). Gamification in software engineering–A
systematic mapping. Information and software technology, 57, 157-168.

Pedreira, O., García, F., Piattini, M., Cortiñas, A., & Cerdeira-Pena, A. (2020). An architecture for
software engineering gamification. Tsinghua Science and Technology, 25(6), 776-797.

153

Perera, P., Silva, R., & Perera, I. (2017). Improve software quality through practicing DevOps.

Persson, N., & Isberg, A. T. (2019). How reliable is Test-Driven Development.

Perez De Rosso, S., & Jackson, D. (2013, October). What's wrong with git? A conceptual design analysis.
In Proceedings of the 2013 ACM international symposium on New ideas, new paradigms, and
reflections on programming & software (pp. 37-52).

Pesare, E., Roselli, T., Corriero, N., & Rossano, V. (2016). Game-based learning and gamification to
promote engagement and motivat ion in medical learning contexts. Smart Learning
Environments, 3(1), 1-21.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., & Still, J. (2008). The impact of agile practices
on communication in software development. Empirical Software Engineering, 13(3), 303-337.

Pinto, M. B., & Pinto, J. K. (1990). Project team communication and cross-functional cooperation in new
pro gram development. Journal of Product Innovation Management: an international
publication of the product development & management association, 7(3), 200-212.

Piorkowski, D., Park, S., Wang, A. Y., Wang, D., Muller, M., & Portnoy, F. (2021). How ai developers
overcome communication challenges in a multidiscipli nary team: A case study. Proceedings of
the ACM on Human-Computer Interaction, 5(CSCW1), 1-25.

Prause, C. R., & Jarke, M. (2015). Gamification for enforcing coding conventions.

Prause, C. R., Nonnen, J., & Vinkovits, M. (2012). A Field Experiment on Gamification of Code Quality
in Agile Developmen t.

Qahri-Saremi, H., & Turel, O. (2016). School engagement, information technology use, and educational
develop ment: An empirical investigation of adolescents. Computers & Education, 102, 65-78.

Qiu, H. S., Nolte, A., Brown, A., Serebrenik, A., & Vasilescu, B. (2019). Going farther together: The
impact of social capital on sustained part icipation in open source.

Rafique, Y., & Mišić, V. B. (2012). The effects of test-driven development on external quality and
productivity: A meta-analysis. IEEE Transactions on Software Engineering, 39(6), 835-856.

Rahy, S., & Bass, J. (2018). Information flows at inter-team boundaries in agile information system s
development.

Ramsey, J. B. (1969). Tests for specification errors in classical linear least-squares regre ssion analysis.
Journal of the Royal Statistical Society: Series B (Methodological), 31(2), 350-371.

Rauf, I., Lopez, T., Sharp, H., Petre, M., Tun, T., Levine, M., . . . Nuseibeh, B. (2022). Influences of
developers' perspectives on their engagement with security in code. Paper presented at the

154

Proceedings of the 15th International Conference on Cooperative and Human Aspects of
Software Engineering.

Razina, E., & Janzen, D. S. (2007). Effects of dependency injection on maintainability.

Reddy, B. R., & Ojha, A. (2019). Performance of Maintainability Index prediction models: a feature sele
ction based study. Evolving Systems, 10(2), 179-204.

Ren, W., Barrett, S., & Das, S. (2020). Toward gamification to software engineering and contribution of
softwa re engineer.

Riemer, V., & Schrader, C. (2016). Impacts of behavioral engagement and self-monitoring on the
developmen t of mental models through serious games: Inferences from in-game meas ures.
Computers in Human Behavior, 64, 264-273.

Rocha, F. G., Souza, L. S., Silva, T. S., & Rodrı́guez, G. (2021). Enhancing the Student Learning
Experience by Adopting TDD and BDD in C ourse Projects.

Rodrigues, P., Souza, M., & Figueiredo, E. (2018). Games and gamification in software engineering
education: A survey wit h educators.

Roman, A., & Mnich, M. (2021). Test-driven development with mutation testing–an experimental study.
Software Quality Journal, 29(1), 1-38.

Rosen, C., Grawi, B., & Shihab, E. (2015). Commit guru: analytics and risk prediction of software
commits.

Runeson, P. (2006). A survey of unit testing practices. IEEE software, 23(4), 22-29.

Ruvimova, A., Lill, A., Gugler, J., Howe, L., Huang, E., Murphy, G., & Fritz, T. (2022). An exploratory
study of productivity perceptions in software teams. Paper presented at the Proceedings of the
44th International Conference on Software Engineering.

Saleem, A. N., Noori, N. M., & Ozdamli, F. (2021). Gamification applications in E-learning: a literature
review. Technology, Knowledge and Learning, 1-21.

Sanchez, D. R., Langer, M., & Kaur, R. (2020). Gamification in the classroom: Examining the impact of
gamified quizzes on student learning. Computers & Education, 144, 103666.

Santos, A., Vegas, S., Dieste, O., Uyaguari, F., Tosun, A., Fucci, D., . . . others. (2021). A family of
experiments on test-driven development. Empirical Software Engineering, 26(3), 1-53.

Santos, E. D., & Oliveira, S. R. B. (2018). Gamification and Evaluation the Use of the Function Points
Analysis Te chnique in Software Quality Subjects: The Experimental Studies.

155

Santos, V., Goldman, A., & De Souza, C. R. B. (2015). Fostering effective inter-team knowledge sharing
in agile software dev elopment. Empirical Software Engineering, 20(4), 1006-1051.

Sarwar, M. I., Tanveer, W., Sarwar, I., & Mahmood, W. (2008). A comparative study of mi tools: defining
the roadmap to mi tools stan dardization.

Schaufeli, W. B. (2013a). What is engagement. Employee engagement in theory and practice, 15, 321.

Schaufeli, W. B. (2013b). What is engagement? In Employee engagement in theory and practice (pp. 29-
49): Routledge.

Schaufeli, W. B., & Bakker, A. B. (2003). UWES–Utrecht work engagement scale: test manual.
Unpublished Manuscript: Department of Psychology, Utrecht University, 8.

Seaborn, K., & Fels, D. I. (2015). Gamification in theory and action: A survey. International Journal of
human-computer studies, 74, 14-31.

Shi, L., & Cristea, A. I. (2016). Motivational gamification strategies rooted in self-determination theory
for social adaptive e-learning. Paper presented at the Intelligent Tutoring Systems: 13th
International Conference, ITS 2016, Zagreb, Croatia, June 7-10, 2016. Proceedings 13.

Shihab, E., Bettenburg, N., Adams, B., & Hassan, A. E. (2009). On the central role of mailing lists in
open source projects: An explo ratory study.

Shull, F., Basili, V., Boehm, B., Brown, A. W., Costa, P., Lindvall, M., . . . Zelkowitz, M. (2002). What
we have learned about fighting defects.

Simões, J., Redondo, R. D. a., & Vilas, A. F. (2013). A social gamification framework for a K-6 learning
platform. Computers in Human Behavior, 29(2), 345-353.

Singer, L., & Schneider, K. (2012). It was a bit of a race: Gamification of version control.

Singleton, R. A., Straits, B. C., Straits, M., & McAlister, R. J. (1999). Approaches to Social Research:
Oxford University Press. New York and Oxford, 9.

Sisomboon, W., Phakdee, N., & Denwattana, N. (2019). Engaging and motivating developers by
adopting scrum utilizing gamific ation.

Siutila, M. (2018). The gamification of gaming streams.

Sommerville, I. (2015). Software engineering 10th Edition. ISBN-10, 137035152, 18.

Stapel, K., & Schneider, K. (2014). Managing knowledge on communication and information flow in
global sof tware projects. Expert Systems, 31(3), 234-252.

Stellman, A., & Greene, J. (2005). Applied software project management: " O'Reilly Media, Inc.".

156

Stock, J. H., & Watson, M. W. (2008). Heteroskedasticity-robust standard errors for fixed effects panel
data regression. Econometrica, 76(1), 155-174.

Storey, M.-A., Zagalsky, A., Figueira Filho, F., Singer, L., & German, D. M. (2016). How social and
communication channels shape and challenge a participat ory culture in software development.
IEEE Transactions on Software Engineering, 43(2), 185-204.

Suh, A., Cheung, C. M. K., Ahuja, M., & Wagner, C. (2017). Gamification in the workplace: The central
role of the aesthetic experience. Journal of Management Information Systems, 34(1), 268-305.

Sukale, R., & Pfaff, M. S. (2014). QuoDocs: Improving developer engagement in software
documentation thro ugh gamification. In CHI'14 Extended Abstracts on Human Factors in
Computing Systems (pp. 1531-1536).

Svensson, H., & Höst, M. (2005). Views from an organization on how agile development affects its collab
oration with a software development team.

Tahmasbi, N., & Fuchsberger, A. (2018). Gamification for Achieving Sustained Engagement in
Programming Classes.

Thomas, C., & Berkling, K. (2013). Redesign of a gamified software engineering course.

Tizard, J., Rietz, T., Liu, X., & Blincoe, K. (2022). Voice of the users: an extended study of software
feedback engagement. Requirements Engineering, 27(3), 293-315.

Toda, A. M., Valle, P. H., & Isotani, S. (2018). The dark side of gamification: An overview of negative
effects of gamification in education. Paper presented at the Higher Education for All. From
Challenges to Novel Technology-Enhanced Solutions: First International Workshop on Social,
Semantic, Adaptive and Gamification Techniques and Technologies for Distance Learning,
HEFA 2017, Maceió, Brazil, March 20–24, 2017, Revised Selected Papers 1.

Tosun, A., Ahmed, M., Turhan, B., & Juristo, N. (2018). On the effectiveness of unit tests in test-driven
development.

Tosun, A., Dieste, O., Fucci, D., Vegas, S., Turhan, B., Erdogmus, H., . . . others. (2017). An industry
experiment on the effects of test-driven development on ex ternal quality and productivity.
Empirical Software Engineering, 22(6), 2763-2805.

Towey, D., Chen, T. Y., Kuo, F.-C., Liu, H., & Zhou, Z. Q. (2016). Metamorphic testing: A new student
engagement approach for a new softw are testing paradigm.

Treude, C., & Storey, M.-A. (2010). Work item tagging: Communicating concerns in collaborative
software de velopment. IEEE Transactions on Software Engineering, 38(1), 19-34.

Trinidad, M., Ruiz, M., & Calderón, A. (2021). A bibliometric analysis of gamification research. IEEE
Access, 9, 46505-46544.

157

Tsunoda, M., & Yumoto, H. (2018). Applying gamification and posing to software development.

Unkelos-Shpigel, N., & Hadar, I. (2015). Gamifying software engineering tasks based on cognitive
principles: Th e case of code review.

Uskov, V., & Sekar, B. (2014). Gamification of software engineering curriculum.

van Hal, S., Post, M., & Wendel, K. (2019). Generating commit messages from git diffs. arXiv preprint
arXiv:1911.11690.

Velmourougan, S., Dhavachelvan, P., Baskaran, R., & Ravikumar, B. (2014). Software development life
cycle model to improve maintainability of so ftware applications.

Veltsos, J. R. (2017). Gamification in the business communication course. Business and Professional
Communication Quarterly, 80(2), 194-216.

Voas, J., & Agresti, W. W. (2004). Software quality from a behavioral perspective. IT professional, 6(4),
46-50.

Weinberg, G. M. (1971). The psychology of computer programming (Vol. 29): Van Nostrand Reinhold
New York.

Wen, M., Wu, R., & Cheung, S.-C. (2016). Locus: Locating bugs from software changes.

Werbach, K., & Hunter, D. (2020). For the Win, Revised and Updated Edition: The Power of
Gamification an d Game Thinking in Business, Education, Government, and Social Impact:
University of Pennsylvania Press.

Williams, L., Kudrjavets, G., & Nagappan, N. (2009). On the effectiveness of unit test automation at
microsoft.

Williams, L., Maximilien, E. M., & Vouk, M. (2003). Test-driven development as a defect-reduction
practice.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation
in software engineering: Springer Science & Business Media.

Wongso, O., Rosmansyah, Y., & Bandung, Y. (2014). Gamification framework model, based on social
engagement in e-learning 2.0.

Yagüe, A., Garbajosa, J., Dı́az, J., & González, E. (2016). An exploratory study in communication in
Agile Global Software Develop ment. Computer Standards & Interfaces, 48, 184-197.

Yusifoğlu, V. G., Amannejad, Y., & Can, A. B. (2015). Software test-code engineering: A systematic
mapping. Information and Software Technology, 58, 123-147.

158

Zahra, K., Azam, F., Ilyas, F., Faisal, H., Ambreen, N., & Gondal, N. (2017). Success factors of
organizational change in software process improveme nt: A systematic literature review.

Zelkowitz, M. V. (1978). Perspectives in software engineering. ACM Computing Surveys (CSUR), 10(2),
197-216.

Zhu, L., Shan, M., & Hwang, B.-G. (2018). Overview of design for maintainability in building and
construction re search. Journal of Performance of Constructed Facilities, 32(1), 04017116.

Zichermann, G., & Cunningham, C. (2011). Gamification by design: Implementing game mechanics in
web and mobile apps: " O'Reilly Media, Inc.".

Zielinski, K., & Szmuc, T. (2005). Preliminary analysis of the effects of pair programming and test-drive
n development on the external code quality. Frontiers in Artificial Intelligence and Applications,
113.

159

Appendix	

A. Variables	Used	in	Studies	

a. Variables	Used	in	Observational	Study:	

Type Variables Data Type
TDD-Sequence SEQ Dummy
TDD-Iteration The number of development cycle (Cycle) Continuous
TDD-Iteration Cycle created following TDD style (TC) Continuous
TDD-Iteration Cycle created following other styles (GC) Continuous

Engagement-Commit number Number of Commits (NC) Continuous
Engagement-Commit number Number of Product Commits (NPC) Continuous
Engagement-Commit number Number of Test Commits (NTC) Continuous
Engagement-Commit number Number of New Test Commits (NNTC) Continuous
Engagement-Commit number Number of Maintenance Test Commits (NMTC) Continuous

Engagement-Commit frequency Frequency of Update Code (FEQ) Continuous
Engagement-Commit frequency Frequency of Update Product Code (FP) Continuous
Engagement-Commit frequency Frequency of Update Test Code (FT) Continuous
Engagement-Commit frequency Frequency of Update New Test Code (FNT) Continuous
Engagement-Commit frequency Frequency of Update Maintenance Test Code (FMT) Continuous

Engagement New versus Maintain (N_M) Dummy
Maintainability Cyclomatic Complexity (CC) Continuous
Maintainability Maintainability Index (MI) Continuous

Control Variable-Readability Halstead Difficulty (HD) Continuous
Control Variable-Different Language Object-Oriented Language (lan_OO) Dummy

Control Variable-Different Task LCA_DAG Dummy
Control Variable-Size Line of Code (LOC) Continuous

Appendix Table A Variables Description

b. Variables	Used	in	Group	Experiment:	

Type Variables Data Type
TDD-Iteration The number of development cycle (Cycle) Continuous

Engagement-Commit number Number of Commits (NC) Continuous
Engagement-Commit frequency Frequency of Update Code (FEQ) Continuous

Maintainability Cyclomatic Complexity (CC) Continuous
Maintainability Mean Cyclomatic Complexity (CC) Continuous
Maintainability Maintainability Index (MI) Continuous
Maintainability Mean Maintainability Index (MI) Continuous

Control Variable-Readability Halstead Difficulty (HD) Continuous
Control Variable-Readability Comment Ratio (CR) Continuous

Gamification Gamification_1 Dummy

160

Type Variables Data Type
Gamification Gamification_2 Dummy
Gamification Gamification_3 Dummy

c. Variables	Used	in	Individual	Experiment:	

Type Variables Data Type
TDD-Iteration The number of development cycle (Cycle) Continuous
TDD-Iteration The number of test cases (Test) Continuous

Engagement-Commit number Number of Commits (NC) Continuous
Engagement-Commit number Number of Product Commits (NPC) Continuous
Engagement-Commit number Number of Test Commits (NTC) Continuous

Maintainability Cyclomatic Complexity (CC) Continuous
Maintainability Maintainability Index (MI) Continuous
Maintainability Function with MI (FM) Continuous
Maintainability Function with CC (FC) Continuous

Control Variable-Readability Halstead Difficulty (HD) Continuous
Control Variable-Readability Comment Ratio (CR) Continuous

Control Variable-Different Language Object-Oriented Language (lan_OO) Dummy
Control Variable-Size Line of Code (LOC) Continuous

Control Variable-Experience User Experience (use_exp) Continuous
Gamification Gamification Dummy
Gamification Leaderboard Dummy
Gamification All Dummy
Gamification Extra Dummy
Gamification Feedback Dummy
Gamification Continue Dummy

	

 	

161

2.	Ethics	Documents	

a.	Participate	Consent	

Gamification on Software Engineering Process - Participation

Information

I would like to invite you to take part in a learning opportunity regards Test-driven Development

(TDD). Before you decide you need to understand why this program is being done and what it would

involve for you. Please take time to read the following information carefully. Ask questions if

anything you read is not clear or if you would like more information before deciding whether you

will take part or not.

If you agree to participate this program, I will engage with team engineers to teach and promote the

Test-driven Development method, and I will seek to use gaming strategies to encourage that

behaviors. I will ask you to sign up to this program and asking for your agreement to participate.

Please read the following content, if you are happy to participate, complete the participation consent

form.

WHO I AM AND WHAT THIS PROGRAM IS ABOUT?

I am a PhD candidate of School of Computer Science and Statistics in Trinity College. My research

field is social software engineering. In this program, I would like to validate that gamification has

positively impacts on software engineers’ behaviors and engagement. The process of the program

is to establish baseline of behaviors, introducing gamification, and measure the change baseline of

behaviors.

The program aims to encourage developer following Test-Driven Development, a cyclic

development technique which means writing test case first, writing code with a short duration. The

162

program is being undertaken as part of the course of study state. The program does not require

participant generating additional code.

THE DETAILS OF THIS PROGRAM

This program tries to encourage participants apply TDD during their development by gamification

method.

Ideally, the good working process of TDD is in small and rapid iterations, which means each cycle

or iteration coincides with the implementation of a tiny feature. So, in this program, the participants

will be encouraged to write test case first and development with rapid development iterations. The

benefit of applying TDD is that the TDD method has approximately 40% fewer defects than the

traditional fashion. There is significant improvement in the code quality by using TDD method,

compared to non-TDD method.

Gamification is a concept that apply game elements in non-game context. The game elements

include points, leaderboard, feedback and etc. Gamification might be an effective way to encourage

behavior change and improve the engagement. In this program, there are five gamification rules to

help participants understanding TDD and improve the working performance of software

engineering. The gamification rules are shown follow:

1. Finishing a cycle (a unit test and product code), participant will get 2 points.

2. Generating a failing unit test before function code, and participant will get 1 point when unit

test pass after finishing function code. (Finishing a cycle with TDD style)

3. Writing one commit of test case, participant will get 0.5 points, if writing a commit of creating

new test case, earn extra 2 point.

4. Participant will get 5 points if your repository has one star. Everyone is expected to star your

peers (more than one peer).

163

5. Participants will be ranked and participant position in the leaderboard will be released with
gamification point. The points will be accumulated.
o The highest ranking in total will earn 15 points, but you can get extra bonus (10 points)

if your coverage reaches 70%.
o The second highest will get 14 points, etc.
o The ranking will be refreshed every week, and the points will be accumulated.

The participants will be noticed that their current points and their position in the leaderboard. At the

end of week 12, every five participants will be grouped in one leaderboard based on their point. The

participants in different leaderboard will get real-world reward including meal, drink and snack.

Leaderboard 1: 30, 25 and 20 euro (meal voucher).

Leaderboard 2: 15, 12 and 9 euro (drink voucher).

Leaderboard 3: 6, 4 and 2 euro (snack voucher).

The notification which will be released every Monday and Thursday by email, includes current point

and participant position in the leaderboard.

The gamification points and the position of leaderboard will not have any IMPACT on the module

GRADE.

The timeline of the process is shown as follow:

Week 8, Tuesday:

1. Introducing TDD and the benefit of applying TDD during the development

2. What is gamification and introduce gamification rules

Week 9, Monday and Thursday morning: release gamification points for individual and the

participant’s position in the leaderboard. (release point every Monday and Thursday morning)

Week 10: provide some feedback to individual about how to apply TDD more efficient.

164

Week 12: invited students to answer the questionnaire about their feeling of gamification and TDD

and release final leaderboard position.

 Week 8 Week 9 Week 10 Week 11 Week 12

Mon Score and
position

Score and
position

Score and
position

Score and
position

Tue

Wed

Thu
 Score and

position
Score and
position

Score and
position

Score and
position

Fri Introduce TDD
& Gamification Feedback &

suggestion
Questionnaire

& Final
Leaderboard

WHY HAVE YOU BEEN INVITED TO TAKE PART?

The program focuses on experienced software engineers. The participants have basic programming

skill and experience. The participants may adopt various development methods during the project

development of the module, and they may have higher motivation of trying TDD than people for

the other courses.

DO YOU HAVE TO TAKE PART?

Participating in this program is completely VOLUNTARY. There is no obligation on you to take

part in this program, it is entirely voluntary. You have the right to refuse to participate, answer the

question, and withdraw from the program at any time without any consequence whatsoever. Your

participation or non-participation has NO IMPACT on your grading in this module.

WHAT ARE THE POSSIBLE RISKS AND BENEFITS OF TAKING PART?

165

The benefits for the participants include accumulating the experience of using TDD, which helps

the developers gain competitive advantage when they come to job hunting. For example, IBM

published a Test Automation Engineer job description: As a test engineer work with developers

employing TDD to develop desired outcomes. Many software engineering jobs prefer developers to

have TDD experience. Another benefit for participants is that, if the student chooses to continue the

research study, TDD is also a popular research topic. In google scholar, there are 91,100 papers

about Test-Driven Development by 2020.

Although it is more likely to increase code quality by using TDD, it cannot guarantee this

improvement. The potential risk of joining this work is that participants may need to put more efforts

on testing than others, including writing test cases before functional code, setup testing environment

and so on. In addition, the participants may feel unhappy to know their position in the leaderboard,

even if their personal information is anonymous.

WHO SHOULD YOU CONTACT FOR FURTHER INFORMATION?

If you have any question, please feel free contact me:

Wei Ren

School of Computer Science and Statistics at Trinity College Dublin

renw@tcd.ie

Supervisor detail:

Professor Stephen Barrett

stephen.barrett@tcd.ie

Tel. +353 (0)1 8962730

mailto:renw@tcd.ie

166

THANK YOU VERY MUCH FOR YOUR READING!

 	

167

b.	Data	Consent	

Gamification on Software Engineering Process - Data Information

You are currently engaging in Test-driven Development (TDD) with Wei Ren, and you are learning

to how to do TDD that being done in the form of gamification. We would like to conduct formal

research and publish based on this activity. In order for us to do this, we must have your additional

consent. So, therefore we are turning now to ask explicitly for your consent to be a subject in a

research study. Above beyond giving your consent, NO ADDITIONAL EFFORT, however we do

want you to review this document to be sure that you are happy. Consent for Participation the

research is entirely optional, and it has NO impact and will NOT influence your grading in

CSU33D06. If you wish, you may refuse this consent request and continue participate the TDD

activity.

If you agree to participate this study, I will ask you to sign up to this study and asking for your

agreement to share your data for research purpose ONLY. Please read the following content carefully,

ask questions if anything you read is not clear or if you would like more information before deciding

whether you will take part or not. If you are happy to share the data, please complete the Data

Consent Form.

WHAT WILL INVOLVE WHEN TAKING PART?

We ask for your consent if you agree the data that we are using to do the gamification work and can

be used in research studies. So, there is no additional requirements or activities form you. As part of

your participation and Test-driven development work. My research is concerned with study in the

effective gamification in software engineering process. I intend to use the data that you allow us to

include in research on the subject. We expect that a measurable difference in performance based on

the application of gamification strategy. The specific data we would gather and the way which we

would use these data (store, use and publish) is detailed in appendix 1. We would like to collect

following data:

168

-Your email address and GitHub ID

-Commits history on GitHub which including:

Commit description
Commit time
Contributor ID of the commit

- Source Code on GitHub for analysis code quality which is code quality data including:
 Source code Maintainability Index (MI)
 Source code Cyclomatic Complexity
 Source code Halstead science metrics
 Test cases coverage

-Questionnaire

For consent sharing these data, you ONLY need to share your EMAIL address and ACCESS

AUTHORITY of your GitHub repository. To protect your personal data, I will use function to

anonymize your email address and GitHub ID. The code quality in this program associates with

individual commit and reflect the coding performance of individual person. Thus, the code quality

is only connected with GitHub ID which is anonymized to protect your personal data.

I will get your permission to access your GitHub repository via email in week nine. Then, I will

access your commits to generate your gamification score. Also, I will analysis your development

behaviors to generate development process data which includes writing test cases sequence,

development cycle and time consumption of development cycle based on your commit information

and time. At the same time, I will analysis your code quality associates with the commits to find out

the code quality change. At the end of week 12, you will receive your finally gamification score and

your code quality change during this period (week 9 to week 12). At the end of week 12, you will

receive a questionnaire (see Appendix 2) which is anonymize about your feeling of applying

gamification. These data will help us better understand gamification process and provide analysis

that is more insightful for future research.

Your email address, GitHub ID, commit information, commit time, and commit contributor ID will

be deleted at the end of week 12. The development process data and code quality data will be

retained until the study finished and research paper published. This means all your personal data

169

will be deleted after week 12 and only population and anonymize data will be retained until the

study finished.

The duration of participation from week nine to week twelve, approximately four weeks.

WHAT IS THE DATA USED FOR?

We expect to publish and for this reason, we are seeking separate thing from original your agreement

of engaging the project, we are asking if you are willing to allow your data to be used in a research

analysis and publication. The data will only be used for research purpose including research paper.

If we are to include your work in the research, you must give free independent consent.

WILL TAKING PART BE CONFIDENTIAL?

All the data will be collected online to ensure the confidentiality and anonymity of the participants.

Your GitHub id, email address and all personal data will be anonymous. All data will not be shared

to others or the third party.

HOW WILL INFORMATION YOU PROVIDE BE RECORDED, STORED AND

PROTECTED?

All development related data will be collected from git and the participants need to grant

access authority to Wei. The data will be gathered and anonymized to store securely. All data

will be anonymous and processing that we were stored only long as necessary to conduct

the study.

‘Signed consent forms and original data will be retained securely and only Wei Ren

can access these data. The data will be retained until the study finish. The study finish

means the relevant research papers and dissertation published. Under freedom of

170

information legalisation, you are entitled to access the information you have

provided at any time.

171

Appendix 1 Data Gathering Information

ID Type of Data
Justification:

Data
Format

Technical and
Organisational
Controls

Will it
be
stored

Identifiable
coded, or
anonymised

How long
will the
data be
retained?

Why do we need
the data?

1 Consent Form
Evidence of consent
from an ethical
perspective

Word
Form

Stored in encrypted
equipment. Accessible
to PI only.

Yes Identifiable
Until the
study
finished

2 Commit

Analysis
development
process, which
includes ID 3, ID 4
and ID 5.

Word
Text

Stored in Participator’s
GitHub repository, PI
can only access it.

No Anonymised Not retain

3 Commits
Information

Analysis
development process

Word
Text

Stored in Participator’s
GitHub repository, PI
can only access it.

No Anonymised Not retain

4 Commits time
Analysis time
consuming of
development process

Word
Text

Stored in Participator’s
GitHub repository, PI
can only access it.

No Anonymised Not retain

5 Commits
contributor ID

Identify commits
belong to

Word
Text

Stored in Participator’s
GitHub repository, PI
can only access it.

No Anonymised Not retain

6

Writing test
cases sequence
(0-test last, 1-
test first)

Analysis
development
behavior, this data is
generated based on
ID 3.

Numerical
Value

Stored in encrypted
equipment. Accessible
to PI only.

Yes Anonymised
Until the
study
finished

7
Number of
Development
cycle

Analysis
development
behavior, this data is
generated based on
ID 3.

Numerical
Value

Stored in encrypted
equipment. Accessible
to PI only.

Yes Anonymised
Until the
study
finished

8

time
consumption of
development
cycle

Analysis
development
behavior, this data is
generated based on
ID 3 and ID 4.

Numerical
Value

Stored in encrypted
equipment. Accessible
to PI only.

Yes Anonymised
Until the
study
finished

9 Source Code Analysis code
quality change Code

Stored in Participator’s
GitHub repository, PI
can only access it.

No Anonymised Not retain

10 Maintainability
Index

Analysis code
maintianability, this
data is generated
based on ID 9.

Numerical
Value

Stored in encrypted
equipment. Accessible
to PI only.

Yes Anonymised
Until the
study
finished

11 Cyclomatic
Complexity

Analysis code
complexity, this data
is generated based
on ID 9.

Numerical
Value

Stored in encrypted
equipment. Accessible
to PI only.

Yes Anonymised
Until the
study
finished

172

12 Halstead
science metrics

Analysis code
quality, this data is
generated based on
ID 9.

Numerical
Value

Stored in encrypted
equipment. Accessible
to PI only.

Yes Anonymised
Until the
study
finished

13 Test cases
coverage

Analysis code
quality, this data is
generated based on
ID 9.

Numerical
Value

Stored in encrypted
equipment. Accessible
to PI only.

Yes Anonymised
Until the
study
finished

14 Questionnaire
Collecting feedback
of applying
gamification

Numerical
Value

Stored in encrypted
equipment. Accessible
to PI only.

Yes Anonymised
Until the
study
finished

Commit: a snapshot of your repository at certain time.
Code quality: Software functional quality reflects how well it complies with or conforms to a given design, based on
functional requirements or specifications

Appendix 2 Questionnaire

Questionnaire of Applying Gamification

Each question is optional. Feel free to omit a response to any question; however, the researcher would be
grateful if all questions are responded to.

• Do you feel your skills improving?

1______ 2______ 3______ 4______ 5______ Don’t know______
• Do you feel gamification strategy fair?

1______ 2______ 3______ 4______ 5______ Don’t know______
• Do you easily understand how point is computed?
• 1______ 2______ 3______ 4______ 5______ Don’t know______
• Does gamification have positive motivating effects in your group?
• 1______ 2______ 3______ 4______ 5______ Don’t know______
• Does gamification provide you additional effort?
• 1______ 2______ 3______ 4______ 5______ Don’t know______
• Do you engage in code testing?
• 1______ 2______ 3______ 4______ 5______ Don’t know______

5 means most likely, and 1 means least likely.

Illicit activity: In the extremely unlikely event that illicit activity is reported I will be

obliged to report it to appropriate authorities.

You have right to not submit or exit without submitting at any time.

174

c.	Participate	Consent	Form	

Participant Consent Form

[Gamification on Software Engineering Process]

Consent to take part in program

x I voluntarily agree to participate in this program.

x I understand that even if I agree to participate now, I can withdraw at any time or refuse to answer

any question without any consequences of any kind.

x I have had the purpose and nature of the program explained to me in writing and I have had the

opportunity to ask questions about the program.

x I understand that participation involves development process and codebase being analyzed.

x I understand that I will not benefit directly from participating in this program.

175

x I agree to my development process and codebase from GitHub being analyzed.

x I understand that all information I provide for this program will be treated confidentially and

anonymous.

x I understand that if I inform the researcher that myself or someone else is at risk of harm, they may

have to report this to the relevant authorities - they will discuss this with me first but may be required to

report with or without my permission.

x I understand that under freedom of information legalisation I am entitled to access the information

I have provided at any time while it is in storage as specified above.

x I understand that I am free to contact any of the people involved in the program to seek further

clarification and information.

Wei Ren

PhD Candidate

renw@tcd.ie

Trinity College Dublin, School of Computer Science and Statistics

176

Signature of program participant

--- ----------------

Signature of researcher

I believe the participant is giving informed consent to participate in this program

-- ----------------------

177

d.	Data	Consent	Form	

Data Consent Form

[Gamification on Software Engineering Process]

Consent to share Data

x I voluntarily agree to share the data in this research study.

x I understand that even if I agree to share data now, I can withdraw at any time or refuse to share my

data without any consequences of any kind.

x I understand that I can withdraw permission to use data from my code repository (GitHub) within

two weeks after study finish, in which case the material will be deleted.

x I understand that in any paper on the results of this research my identity will remain anonymous.

This will be done by deleting my name, code repository ID and disguising any details of my data which

may reveal my identity or the identity of people I speak about.

178

x I understand that analysis result extracts from my data may be quoted in dissertation, conference

presentation, published papers etc.

x I understand that signed consent forms and data recordings will be retained in encrypted equipment

securely until the study finish.

x I understand that under freedom of information legalisation I am entitled to access the data I have

provided at any time while it is in storage as specified above.

x I understand that I am free to contact any of the people involved in the research to seek further

clarification and information.

Wei Ren

PhD Candidate

renw@tcd.ie

Trinity College Dublin, School of Computer Science and Statistics

Signature of research participant

179

--- ----------------

Signature of researcher

I believe the participant is giving informed consent to participate in this study

-- ----------------------

180

3.	Gamification	Document	

a.	Screen	Shot	of	Gamification	Structures	

b.	Screen	Shot	of	Gamification	Feedback	

181

c.	Screen	Shot	of	Github	

d.	Screen	shot	of	Data	Sample	

182

 	

183

4.	Plot	Distribution	of	Variables	

Here are the main variables used in regression.

a.	Observational	Study	

Number of Commits, Frequency of update code, Complexity and maintainability index.

b.	Group	Experiment	

Maintainability index

184

c.	Individual	Experiment	

Maintainability index and complexity.

