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Abstract

Strain, both naturally occurring and deliberately engineered, can have a considerable

effect on the structural, electronic, and transport properties of 2D and layered materials.

Uniaxial or biaxial heterostrain (i.e. different strain applied to different layers) modifies

the stacking arrangement of bilayer graphene (BLG) forming Moiré superlattices. This

subsequently influences the electronic structure and the transport properties of the bilayer.

We performed Density Functional Theory (DFT) calculations to investigate the interplay

between heterostrain and the resulting stacking in BLG. We found that above a critical

strain of 1%, it is energetically favorable for the free layer to be unstrained, indicating a

transition between uniform AB stacking and non­uniform mixed stacking. This suggests

that even small levels of strain can provide a platform to reversibly engineer stacking or­

der and Moiré features in BLGs, providing a viable alternative to twistronics to tune the

stacking order of the system, and consequently its properties.

The domain walls between the AB and BA­stacked gapped BLG have garnered in­

tense interest, as they host topologically protected, valley­polarised transport channels.

The introduction of a twist angle θ between the bilayers and the associated formation of

a Moiré pattern has been the dominant method used to study these topological channels,

but heterostrain can also give rise to similar stacking domains and interfaces. We theoreti­

cally investigated the electronic structure of a uniaxially heterostrained BLG.We discussed

the formation and evolution of interface localized channels in the one­dimensional Moiré

pattern that emerges due to the different stacking registries between the two layers. We

found that a uniform heterostrain is not sufficient to create one­dimensional topological

channels in biased BLG. Instead, using a simple model to account for the in­plane atomic

reconstruction driven by the changing stacking registry, we showed that the resulting ex­



panded Bernal­stacked domains and sharper interfaces are required for robust topological

interfaces to emerge. These states are highly localized in the AA­ or SP­stacked interface

regions and exhibit differences in their layer and sublattice distribution depending on the

interface stacking. We conclude that heterostrain can be used as a mechanism to tune the

presence and distribution of topological channels in gapped BLG systems, complementary

to the field of twistronics.

We then investigated the effect of the Poisson contraction, which can occur with the

application of uniaxial heterostrain for heterostrained BLG. In this initial investigation,

we do not include the effect of atomic relaxation on the electronic and transport properties

of the interface channels. The inclusion of Poisson contraction ν with the application of

heterostrain leads to the formation of 2D Moiré superlattices, similar to the ones created

in twisted BLG. For low energies, the states in the AA­stacked regions are highly local­

ized, whereas the SP­stacked regions host states that form a network throughout the lattice

(topological channels). Moreover, the SP­stacked interface channels occur over a range of

energies (dispersive channels), but they do not have the expected pattern. We explained

this, due to the fact that different strains are applied along x and y directions. The over­

all transmission has very low values due to the existence of the AB/BA­stacked gapped

domains in heterostrained BLG with the application of large interlayer bias, compared to

no bias. Consequently, heterostrained untwisted BLG is an alternative way to tune the

electronic and transport properties of BLG, compared to twisted BLG, overcoming limita­

tions relevant to achieving precise twist angle θ. In future work, we will extend this study

for lower and larger values of heterostrain to investigate how the localization of states is

affected. Also, we could study how transmission is modified by changing the value of

heterostrain for this system, as similar studies have been done for twisted BLG.
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Chapter 1 Introduction

1.1 Properties of 2D materials and fabrication

Two­dimensional (2D) materials consist of single or few­layer atoms and have many

applications, thanks to their unique electromechanical, electrical, optical and piezoelectric

properties compared to their 3D counterparts. Monolayer graphene (MLG) is the first 2D

material that was investigated. It is a one­atom­thick layer of graphite. Wallace investi­

gated theoretically the electronic structure of MLG in 1947 [1] and this was later isolated

from graphite in 2004 by Novoselov et al. [2]. Since then, other 2D materials have been

fabricated, such as Transition Metal Dichalcogenides (TMDs), including MoS2, MoSe2,

WS2 and WSe2, hexagonal Boron­Nitride (h­BN) and phosphorene.

2D materials host a wide range of physical properties. For example, graphene is a

conductor [1], MoS2 is a semiconductor [3] and h­BN is an insulator [4]. MLG exhibits

unique mechanical properties with high in­plane stiffness and strength [2, 5–8].

Interlayer interactions can be tuned by changing the relative arrangement of atoms

between the layers (stacking) when there is more than one layer. This allows a wide range

of different behaviors to be observed, even in structures with multiple layers of the same

material. For example, the Young modulus EY, which shows how easily a material can be

stretched and deformed, forMLG is bigger than that of BLG [9]. Concerning the electronic

properties, MLG is a conductor, whereas BLG and trilayer graphene with certain stackings

have an electrically tunable band gap [10]. The band gap refers to an energy range in the

electronic band structure near Fermi level EF, with no electronic states. It is the energy

difference between the highest occupied energy state of the valence band and the lowest

1
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unoccupied state of the conduction band. There is also a tunable transport gap for bilayer

and trilayer graphene with specific stackings, which does not exist for MLG [11, 12]. A

transport gap is a gap in the transmission that occurs with the application of an electric

field and it affects the transport of charge carriers (electrons or holes).

2D materials can be further combined to create heterostructures that can have different

properties to their component layers due to interlayer interactions [13, 14]. For instance,

the elastic moduli of bilayer heterostructures, such as graphene/MoS2 and MoS2/WS2, are

smaller than the sum of the moduli of the individual layers [15]. The electronic structure

can vary as well. For example, there is a band gap for the heterostructuresMLG/SnO/MLG

and for the heterostructure SnO/MLG/SnO [16].

The stacking of 2D materials can be achieved experimentally using several different

techniques, including metal­assisted transfer methods, polymer­assisted transfer methods,

wet transfer methods, and dry methods. For example, in the polymer­assisted transfer

method, the micrometre­sized 2D crystals can be isolated on top of a polymer. The result­

ing 2D crystal can be put face down onto a chosen target and then the film can be removed

or dissolved. The same procedure can be repeated several times until the desired stack­

ing is achieved [17]. It is possible to place different 2D materials over each other with

micrometer accuracy. This can be done with micromanipulators.

Novoselov et al. used mechanical exfoliation in bulk graphite for the production of

monolayer graphene [2], but this technique has relatively low efficiency and the samples

that are produced are low in size. Other experimental techniques have been used for the

production of 2D materials since then, like Epitaxial Growth, Chemical Vapour Deposi­

tion (CVD) [18–21] and Liquid Phase Exfoliation (LPE) [22–24]. In the CVDmethod, the

precursors react with the substrate or decompose on the substrate and produce the desired

deposit. The substrate is the base material on which a material is deposited for its fabrica­

tion. A subclass of CVD is atomic layer deposition. The CVDmethod produces large area

monolayers, but there are some defects and there is also the requirement for high temper­

atures, such as 650◦C [25]. The best experimental technique so far for the production of

2D materials is LPE, which is a very easy method, low­cost, and environmentally friendly.

The same techniques have been used for the production of other 2D materials [26–28].
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1.2 Graphene

Graphene is a very promising 2D material. It is the strongest material that has been dis­

covered so far (EY=2.4±0.4 TPa) [29], it has very high electron mobility (∼2.5·105cm2

V−1s−1) [30] and it is very flexible material (bending rigidity∼1.44 eV) [31]. It has other

tremendous properties, like high charge carrier mobility, ultrahigh specific surface area,

and high optical transmittance [32–36]. Consequently, it could have applications in super­

capacitors, transistors, solar cells, resonators, batteries, and energy harvesting devices [37–

39].

1.2.1 Structure of monolayer graphene

In graphene carbon atoms are structured in a honeycomb lattice periodically. In this

structure, there are two types of bonds, which are sp2 hybridized. The s, px and py orbitals

are combined to form the in­plane σ bonding and the σ∗ antibonding orbitals. The σ bonds

are strong covalent bonds that determine the energetic stability and the elastic properties

of graphene. Lateral interactions between the pz orbitals form localized π bonding and

π∗ antibonding orbitals. Figure 1.1 (a) shows the σ and π orbitals in graphene. Figure

1.1 (b) shows the energetics of σ, σ∗, π and π∗ carbon valence orbitals. The π and π∗

states are close to Fermi level EF. The lattice structure of graphene is hexagonal and

consists of two sublattices, A and B. There are two atoms in the unit cell of graphene

that belong to different sublattices respectively. The unit cell is the smallest part of the

lattice structure, which is repeated in real space. Figure 1.1 (c) shows the hexagonal lattice

structure of graphene in real space and (d) in reciprocal space. The shaded area in Figure

1.1 (d) corresponds to the First Brillouin Zone (BZ).

Figure 1.1 (c) shows the primitive lattice vectors a1 and a2 of graphene in real space

and Figure 1.1 (d) shows the reciprocal lattice vectors b1 and b2:

a1 = aconst
(√

3
2
, 1
2
, 0
)
, a2 = aconst

(√
3
2
,−1

2
, 0
)
,

b1 = b
(
1
2
,
√
3
2
, 0
)
, b2 = b

(
1
2
,−

√
3
2
, 0
)

(1.1)
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Figure 1.1: (a) The σ and π orbitals in graphene. (b) The energetics of σ, σ∗, π and π∗

states. (c) The hexagonal lattice structure of graphene in real space. (d) The hexagonal
lattice structure of graphene in reciprocal space. Figures (a)–(d) adapted from [40].

where aconst is the value of graphene’s lattice constant and b = 4π
aconst

√
3
. The high symmetry

points for unstrained graphene shown in Figure 1.1 (d) are the following:

Γ = (0, 0, 0), K+ = K = 4π
3aconst

(√
3
2
,−1

2
, 0
)
,

K− = K ′ = 4π
3aconst

(√
3
2
, 1
2
, 0
)
, M = 2π√

3aconst
(1, 0, 0) (1.2)

1.2.2 Stackings of bilayer graphene

Two MLG layers can be stacked to form bilayer graphene (BLG) [10]. In the ground

state AB stacking, half of the carbon atoms on each layer are directly above the center

of a hexagon on the other layer and the other half are directly on top of another carbon

atom [41, 42] (Figure 1.2 (a)). There are two equivalent possibilities, AB andBA stackings,

depending on which sublattices from each layer form dimers (when an atom sits on top of

an atom from the other layer). The least favorable stacking possibility is AA stacking,

where the two layers are perfectly aligned and each atom sits on top of an atom from the

same sublattice in the other layer (Figure 1.2 (b)). Between the low­energy AB and high­

energy AA extremes lie a range of stacking options which can be achieved by varying the

amount and direction by which one layer is shifted relative to the other. The sublattice

symmetric SP (or Saddle Point) stacking, shown in Figure 1.2 (c) is of interest in this work

as it occurs for shifts halfway between AB and BA stackings, and corresponds to a local

energymaximum along this direction. The total energy differences for the shifted stackings

E and the ground state energy of AB stacking EAB for different initial stackings (AA or



1.2. GRAPHENE 5

AB) and shifts along different directions (AC or ZZ) are shown in Figure 1.3 as a function

of the relevant shifts. Twisted BLG (tBLG) is when one of the two layers of BLG is rotated

by a twist angle θ (Figure 1.2 (d)).

Figure 1.2: Atomic structure of (a) AB­stacked BLG, (b) AA­stacked BLG, (c) SP­stacked
BLG, and (d) tBLG with twist angle θ. In (a) the high symmetry directions ZZ and AC are
shown.

0 0.5 1 1.5 2 2.5 3 3.5 4
shift (Å)

0

2

4
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E
E A

B
 (m

eV
/a

to
m

)

AA

AB

AC
ZZ
ZZ

Figure 1.3: Energy differenceE−EAB per atom as a function of the relative shift between
layers in BLG for different initial stackings (AA and AB stackings). Shifts along both ZZ
and AC directions are shown.

1.2.3 Electronic, topological and transport properties of graphene

MLG has interesting electronic properties because it is a zero­gap semiconductor [43].

It has linear bands near Fermi level EF at the K and K ′ points (Figure 1.4) and it hosts a

so­called Dirac cone there. This is the reason why theK andK ′ points are called valleys.

The Dirac cone, due to its linear bands, exhibits high electron mobility, which means that

electrons can move faster with the application of an electric field. This way energy loss

is reduced, which is desirable in devices. Also, the Dirac cone is topologically protected,
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which means that it is robust against scattering effects and perturbations. This stems from

the topology of the material’s band structure. Thus, improved performance is achieved.

K M

2

0

2

E 
(e

V)

Figure 1.4: Electronic band structure of MLG along the high symmetry points Γ → K →
M .

However, when there are two or more graphene layers, the electronic properties depend

on the relevant stacking. For instance, AB­stacked BLG has parabolic electronic bands

(Figure 1.5 (b)), whereas the bands of AA­stacked (Figure 1.5 (a)) and SP­stacked BLGs

(Figure 1.5 (c)) are linear near Fermi level EF. The electronic band structures in Figures

1.5 (a)–(c) are near high­symmetry point K along kx­direction and for ky=0. For ky ̸=0

AA­stacked BLG has more than two crossings at E=0. The linear bands lead to higher

mobility compared to the parabolic bands. Also, the Density of States in the case of linear

bands is almost constant near Fermi level EF, which affects the electrical conductivity and

thus transport properties. In the case of parabolic bands, the Density of States changes

continuously with the energy E near Fermi level EF. The electronic structure for various

stackings of BLG has been investigated both theoretically [44, 45] and experimentally [46]

by performing Angle­resolved photoemission spectroscopy (ARPES) measurements [47].

ARPES is an experimental technique to probe the allowed energies and momenta of the

electrons in a material and is mostly used for the electronic structure of 1D or 2Dmaterials.

Concerning the BLGs, where one layer is allowed to slide (‘shifted BLGs’), DFT cal­

culations showed that for perfect AA and AB/BA stacking, there is no band gap along the

high symmetric lines in BZ, while for other stackings there is a pseudo band gap [48].

This is because the band crossing points move away from the high symmetric lines for

these stackings. The change in the electronic structure influences the topology of the Fermi

surface of low energy bands in BLG (Lifshitz transition) [49].
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Concerning the transport properties of shifted BLGs, DFT studies showed that sliding

was found not to affect the transmission for low energies, but for larger (above 1.23 eV and

below ­1.9 eV) it does [48]. For large energies, there is a big change in the transmission

predicted for AA initial stacking and sliding along AC direction and for sliding and AB

initial stacking and sliding along ZZ direction. For AA initial stacking and sliding along

the ZZ direction, the transmission first increases in the energy range from 1.5 eV to 2.4

eV and from ­2.5 eV to ­1 eV. Beyond this energy range, the transmission value is below

this of AA stacking. Also, they found that transmission for AB initial stacking and sliding

along the ZZ direction is lower than the transmission for AA initial stacking and sliding

along the ZZ direction. Thus, manipulating the stacking of a bilayer is a powerful tool to

tune its electronic and transport behavior.

The application of interlayer bias has an effect on the electronic structure. Interlayer

bias occurs when there are different potentials on each layer. It is possible experimentally

by depositing metal electrodes on the top and bottom layer of 2D layered materials, which

allows the application of interlayer bias. The electronic structure of BLG, depending on

its stacking, is very different under the application of large interlayer bias. There is a band

gap opening proportional to the relevant bias for AB/BA stacking (Figure 1.5 (e)), while

the AA­stacked (Figure 1.5 (d)) and the SP­stacked systems remain semimetallic (Figure

1.5 (f)).

The electronic structure of gated BLGs has been investigated theoretically with Tight­

Binding (TB) calculations [50] andDFT calculations [45, 51]. Experimentally, AB­stacked

BLG has been grown on SiC(0001) substrate, which induces doping in BLG due to the

substrate [10, 52]. This way, the carrier concentration was adjusted on each layer and

there were changes in the Coulomb potential (interlayer bias) that created a small band

gap with ARPES measurements. The gaps opened by an interlayer bias in AB­ and BA­

stacked BLGs are equal in magnitude, but are topologically non­equivalent, as continuum­

model calculations showed for BLG [53] and for tBLG [54]. This means that the valley

Chern number has opposite signs for AB­ and BA­stacked BLGs respectively. However,

for tBLG, the application of an external electric field does not lead to a band gap opening,

according to theoretical studies [55].
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Chern number is an integer number, which is related to the topology of the elec­

tronic bands. It is defined as the integral of the Berry curvature over the Brillouin zone,

C = 1
2π

∫
Ω(k)dk, where Ω(k) is the Berry curvature. Berry curvature is the curvature of

a vector and is defined as Ω(k) = Im⟨Ψ|∇k × [i−1⟨∇kH|Ψ] |Ψ⟩, where Ψ is the wave­

function of the system and i is the imaginary number. The Chern number is equivalent to

finding the ‘flux’ of the Berry curvature through the entire surface of the Brillouin Zone.

When the Chern number is zero for a system, the system is a trivial insulator; if it is non

zero, it is a topological (non­trivial) insulator. This is a gapped system with non­trivial

edge states. When the integral is restricted to regions around each valley, then the ‘valley

Chern number’ is the difference between the integral calculated at each valley.

Figure 1.5: Electronic band structure without bias for (a) AA­stacked, (b) AB/BA­stacked
and (c) SP­stacked BLG and with the application of ∆=­200 meV interlayer bias for (d)
AA­stacked, (e) AB/BA­stacked and (f) SP­stacked BLG respectively near K point along
kx­direction and ky=0.
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1.2.4 Effect of strain in graphene

Strain can be intentionally created and controlled in graphene experimentally by deposit­

ing graphene on a substrate, due to the lattice mismatch. This was shown for a graphene

flake deposited on top of an epoxy­based photoresist (SU8)/poly(methyl methacrylate)

(PMMA) substrate with Raman spectroscopic measurements [56]. For no strain and for

ε=0.3%, ε=0.6% and ε=1% strain applied on the graphene flake, the final distribution of

strain was non­uniform, because of the latticemismatch between the graphene flake and the

substrate. Also, already strained graphene was grown on a h­BN substrate by the Molec­

ular Beam Epitaxy method and MLG was found to be non­uniformly strained due to the

lattice mismatch [57].

A flexible substrate can be used as well for the application of strain (Figure 1.6). Flex­

ible substrate means that the substrate can be bent or stretched, which causes strain to

be transferred to the layer that is in direct contact with the substrate. For example, stud­

ies showed for MLG, which was deposited on a flexible substrate, that tensile strain was

transferred toMLG by bending [58] or stretching [59] the polyethylene terephthalate (PET)

substrate or the polydimethylsiloxane (PDMS) substrate [60], shown by Raman measure­

ments. It was found that strain up to 0.8% was transferred to MLG [59]. Strain transfer

can also be achieved between the polymer substrate (PMMA) and the bottom layer of BLG

when PMMA is bent, as Raman spectroscopic studies showed [61].

Figure 1.6: Flexible substrate for applying uniaxial strain on the bottom layer of a bilayer
system. Figure adapted from [61].

The simplest type of strain is uniaxial strain, which is a strain applied only to one direc­

tion and can be applied experimentally by using a flexible substrate [58–61] (Figure 1.6).
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Biaxial tensile strain is applied to two perpendicular directions and can be applied exper­

imentally by bending a plastic substrate with a cruciform shape [62]. This way, biaxial

strain was transferred to MLG or the bottom layer of multilayered graphene.

Strain can tune the electronic properties of graphene. ForMLG there is theoretically the

prediction that the application of more than 23% uniaxial strain along ZZ on MLG opens

a small band gap [63]. However, this is not an efficient way to open a band gap, because

23% is too large a value of strain to be applied experimentally as graphene will fracture.

Raman spectroscopic studies have shown that MLG deposited on a flexible substrate can

experience strains up to 1.3%­1.8% [59, 64–67]. However, adding formvar resins as a

buffer layer allows strains of up to 3.3% to be achieved [68], which is close to the theoretical

limit for flexible substrates. Thus, other ways should be used to open a band gap in MLG.

Strain can also affect the topology of Fermi surfaces of graphene for low energies, leading

to Lifshitz transition, as TB calculations showed [69].

Also, the transport properties of graphene depend on the applied strain [70]. In ex­

periments in which two electrodes and a back gate were used, a bias voltage was applied

between them, and this way strain was applied to graphene (MLG or BLG). For MLG,

the conductivity and its minimum value as a function of the gate voltage were slightly

improved. However, for BLG conductivity was found to decrease by 10%­15%.

The properties of 2D multilayers can be tuned by applying different strain on each

layer (heterostrain). Theoretical studies have been done for heterostrained BLG (hBLG),

showing the strain transfer between the graphene layers. There is the possibility of

commensurate­incommensurate transition in BLG with the one layer being stretched or

compressed along the AC direction, shown by the Frenkel­Kontorova model and DFT cal­

culations [71]. The Frenkel­Kontorova model is a theoretical model used for the study of

1D systems [72], but now is extended to 2D systems as well. It regards a chain of atoms

or particles which are arranged in a periodic lattice potential, usually described by a sinu­

soidal or a periodic function. The atoms or particles in the chain interact with their nearest

neighbours, through a potential energy function, which defines the interatomic or interpar­

ticle forces. There are variations of this model, such as with the inclusion of external forces

or the inclusion of anharmonic potentials. The Frenkel­Kontorova model can be useful for
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studying the dynamics and the crystal lattices near a dislocation (such as the application of

heterostrain in BLG) where the arrangement of atoms changes periodicity. For example,

this model could be used to determine the energetics of hBLG and to find the critical strain

in the calculations (explained in Chapter 3). Additionally, the Frenkel­Kontorova could

be used to relax the atomic positions of hBLG (explained in Chapter 4).

Heterostrain can be applied intentionally by placing amultilayer on a flexible substrate,

which can be stretched or compressed. In Raman spectroscopic measurements uniaxial

strain lower than 1% was applied to the polymer substrate PMMA and BLG was strained

because it was deposited on this substrate [61]. It was found that the interfacial stress trans­

fer between the substrate and the bottom layer of BLG was three to four times higher than

the interlayer stress transfer between the two graphene layers. It is reasonable to expect

that if the applied strain is sufficiently small, it will be entirely transferred to the second

graphene layer, i.e., both layers will experience the same strain. However, for larger ap­

plied strains the second layer can exhibit a different strain profile. Raman spectroscopic

measurements showed that for applied heterostrain on BLG, stacking is non­uniform any­

more [66]. This provides some evidence for non­uniform stress distributions across the

bilayer, but the threshold is unknown. Thus, the change of stacking affects the electronic,

transport, and optical properties of BLG, as discussed in Subsection 1.2.3.

By applying heterostrain in BLG, is an alternative way to twistronics for engineering

its stacking order. Twistronics is the field of physics that studies how the twist angle be­

tween adjacent layers of 2Dmaterials affects their electronic properties. This is because the

electronic properties depend on the relevant stacking of the combined 2D heterostructure

(Subsection 1.2.3). Twistronics has applications in tuning the properties of 2D materials,

due to the creation of Moiré domains (explained in Subsection 1.2.5). Twistronics can

be related to other fields, like valleytronics or spintronics. Valleytronics is the field of

physics, which focuses on the electronic properties of the relevant valleys formed in the

band structures of 2D materials for their use in information processing and storage. Val­

leytronics is related to twistronics, because the Moiré pattern resulting from the twist angle

can affect the electronic valleys in the relevant material. For example, in tBLG there is the

formation of valley­dependent transport channels [53, 73]. Valleytronics has applications
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in valley filters and diodes, where the flow of the charge carrier is based on the valley

indices. Spintronics on the other hand is the field of physics where the spin (intrinsic prop­

erty of elementary particles, such as electrons) is used for the processing and storage of

information. The spin of an electron can have two possible orientations, either ‘up’ or

‘down’. Also, spintronics is related to twistronics, because the Moiré pattern resulting

from the twist angle can modify the spin­orbit coupling, like in the twisted heterostructure

graphene/TMD [74].

There are also other ways to tune the electronic and transport properties of BLG except

for the application of strain, like the inclusion of Stone­Wales (SW) defects, single vacancy

defects, multiple vacancy defects, line defects or adding carbon adatoms. For example,

the SW defect, which is obtained when there is a rotation of two adjacent carbon atoms

in graphene, resulting in the formation of a pentagon and a heptagon (Figure 1.7), can

influence the electronic properties of BLG with and without the application of interlayer

bias. DFT calculations showed for a SW on the one of the two layers of BLG there is

a band gap of 0.1 eV at the K­valley point, while for perfect AB­stacked BLG there is

no [75]. With the application of electric field (0.25 V/Å) for no defects there is a band gap

of 0.45 eV and for a SW defect the band gap also increased (0.46 eV). Thus, the inclusion

of a SW defect affects the electronic properties of BLG.

Figure 1.7: MLG structure with a SW defect. Figure adapted from [75].

1.2.5 Moiré superlattices

Moiré superlattices are the structures that arise when two or more layers with a slight

mismatch in lattice constant or lattice orientation are stacked on top of each other. This
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creates an interference pattern, which has larger periodicity. An example of Moiré super­

lattice that is created due to lattice mismatch is graphene/MoS2 heterostructure, and its top

and side views are depicted in Figure 1.8 (a) and (b) respectively. This is because graphene

has lattice constant aconst=2.46 Å, while MoS2 has lattice constant aconst=3.18 Å.

Figure 1.8: (a) Top view and (b) side view ofMoiré unit cell of graphene/MoS2 heterostruc­
ture. Figures (a) and (b) adapted from [76].

Examples of Moiré superlattices due to the lattice orientation are the twisted systems,

like tBLG [77]. The smaller the twist angle, the bigger the Moiré pattern that arises, as

shown in Figures 1.9 (a) and (b) that depicts structures of tBLG with twist angle θ=21.79◦

and θ=38.21◦ respectively. In Figures 1.9 (a) and (b), L1 and L2 are the primitive super­

lattice vectors for tBLGs.

Figure 1.9: Moiré structures of tBLG with twist angle (a) θ=21.79◦ and (b) θ=38.21◦.
Here, L1 and L2 are the primitive superlattice vectors for tBLGs. Figures (a) and (b)
adapted from [77].

In tBLG there is a Moiré pattern with periodic modulation of AA­, AB/BA­, and SP­

stacked domains. The interfaces between AB­ and BA­stacked domains form a triangular

superlattice with AA­stacked vertices connected by SP­stacked edges (Figure 1.10). These

transport channels are called networks of interface channels.
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Figure 1.10: Networks of interface channels (‘boundary’) and Moiré patterns in tBLG.
Figure adapted from [78].

Similar to the twist angle in tBLG, the application of heterostrain leads to the creation

of Moiré superlattices. The smaller the twist angle and the application of heterostrain, the

bigger the Moiré that arises. Figures 1.11 (a)–(c) show how the Moiré superlattices are

modified for different heterostrain. They include the atomic structures for applied uniaxial

heterostrain 10%, 20% and 30%, and the length of the Moiré pattern is ycell=27.06 Å,

ycell=14.76 Å and ycell=9.84 Å respectively (dashed boxes). The dashed circles highlight

the two extremes of energy: AB­stacked and ‘Shifted’ regions, which are also shown in

Figure 1.11 (a). For some rare cases though the application of heterostrain or the twist

angle between the two layers may lead to stackings that do not have periodicity. These are

called incommensurate stackings [79].

Figure 1.11: hBLG with the relevant unit cells shown in dashed boxes with uniaxial strain
applied on the bottom layer and relevant size of the unit cell along y­direction respectively
(a) 10% and ycell=27.06 Å, (b) 20% and ycell=14.76 Å and (c) 30% and ycell=9.84 Å. The
AB­stacked and ‘Shifted’ regions that correspond to the two extremes of energy are shown
as well, in dashed circles.
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In Moiré superlattices, the applied strain can be uniform and non­uniform. tBLG un­

dergoes a spontaneous lattice in­plane relaxation, which leads to local strain. This has been

shown theoretically, with continuum model calculations [80] and experimentally with the

use of piezoresponse force microscopy, which locally measures the electromechanical sur­

face deformations [81]. In tBLGwith small twist angles, the AA­stacked domains are min­

imized, the AB/BA­stacked domains are maximized and the SP­stacked domains appear to

be sharper after this in­plane relaxations [80–84, 84–88]. This is because the AA­stacked

domains are not energetically favorable, while the AB/BA­stacked domains are (Figure

1.3).

These in­plane relaxations were overlooked until it was discovered that it was not pos­

sible to get agreement with experiments concerning the electronic properties. They affect

the electronic band structure, for small twist angles θ<3◦ [81, 84, 86, 89–93] in low en­

ergies. For Magic­Angle tBLG, which has twist angle θ ∼1.1◦ twist angle, there are flat

bands close to Fermi levelEF [94, 95], only when relaxation is allowed [93]. The flat bands

lead to enhanced DOS and correlated insulating states at half­filling. These flat bands also

can lead to superconductivity, like in this case, which means that below a certain tem­

perature, the material conducts electricity without resistance. Zero­resistance states were

observed for Magic­Angle tBLG with critical temperature Tc=1.7 K.

We expect to have in­plane relaxation in hBLG, which grows AB/BA­stacked domains

at the expense of AA­ and SP­stacked interfaces. Atomistic and first­principles calcu­

lations for hBLG, that took into account the out­of­plane relaxation, showed the forma­

tion of flat electronic bands around the Fermi level EF at values of strain approximately

ε±1% [96]. The calculations included both tensile and compressive uniaxial heterostrain,

for strain range from ­5% to +5%, and the out­of­plane relaxation was mostly useful for

the compressive heterostrain, due to the rippling. Thus, both tBLG for small twist angles

(θ ∼1◦) and hBLG for small heterostrain (ε ∼1%) show interesting electronic properties,

that can be investigated further. In particular, we extended the studies concerning the local

electronic properties of hBLG for 1% tensile uniaxial heterostrain.
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1.2.6 Topological interface channels in bilayer graphene

Interfaces are regions in which different materials meet or the same material with differ­

ent orientations. Interfaces between AB­ and BA­stacked domains occur in a number of

systems. These interface channels when biased are called ‘topological’ because the AB­

and BA­stacked domains have technically, different ‘valley Chern’ numbers, so different

topological properties, give rise to interesting electronic and transport properties for these

channels. Topological properties are directly related to the band structure of the investi­

gated material and characterize the properties of the material’s electronic states. Interfaces

around domains with changing valley Chern number are topologically protected, if the

valley index is conserved. This means that the electrons do not scatter from one valley to

another.

The simplest example is a change in the stacking registry caused by a grain boundary

in one of the layers. The grain boundary is the interface between two grains in a polycrys­

talline material. This type of system has already been investigated for BLG theoretically

with TB calculations, by including a line of octagon and double­pentagon defects in one of

the layers (Figure 1.12) [97]. Due to the grain boundary, there are flat bands around Fermi

level EF, and the states that belong to this boundary around this energy are found to be

localized. Experimentally, MLG with distinguishable grain boundaries created by doping

was deposited with the CVD method on an amorphous SiO2 substrate [98]. With Raman

spectroscopic measurements, the presence of local transport gaps was found.

Figure 1.12: Interface channel induced by a grain boundary in AB­stacked BLG. Figure
adapted from [97].

Topological interfaces between AB­ and BA­stacked domains can be created as well

when a relative twist angle is introduced between the layers, as for tBLG. The formation of

interface states in tBLG, which are localized, is a topic of huge interest. With the applica­
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tion of large enough interlayer bias, gapped (depleted electronically) and conducting states.

The gapped states are in AB/BA­stacked domains and the conducting states are in the AA­

and SP­stacked domains, as is expected with the application of interlayer bias (Figures 1.5

(d)–(f)). This was shown with continuum model and TB calculations [54, 89, 99, 100] for

small twist angles (θ<1.5◦) and applied interlayer bias lower than 200 meV. The same was

shown from experimental studies, in which STMmeasurements and fast Fourier transform

were used to the extracted topography [101] and with spectroscopic measurements [102].

The flow of the current can thus be controlled, because of the localized and gapped states.

As a consequence, tBLG could be used as a transistor.

The interface channels in tBLGhost topologically protected states. These are electronic

states, which are robust and stable against perturbation due to the topology of the mate­

rial. STM measurements and the application of a fast Fourier transform to the extracted

topology showed the existence of topologically protected edge states in gated BLG [103].

Also, STS measurements with STM images showed that [102] and it was achieved en­

hanced LDOS in these domain walls (interface channels). This was found by calculating

the contrast C = [I(DW )− I(AB)] /I(AB), where I(DW ) and I(AB) are the intensity

of DOS for the domain wall and the BA­stacked region respectively, and it appears to be

enhanced due to the existence of topologically­protected states.

These topological interface channels in tBLG are valley­polarised, with the application

of interlayer bias [53, 73]. This means that they host counterpropagating states from each

valley. The band structure of tBLG systems, there are pairs of bands, for each valley, K

andK ′, which connect the otherwise gapped Dirac cones (Figure 1.13). These valleys have

local minima and maxima in the energy dispersion and the electrons occupy states in these

energy bands. Heterostrain can also break the stacking registry and give rise to different

stacking domains and interfaces between them. We expect to have similar properties for

the interface channels of hBLG, which have not been investigated yet.

The hBLG exhibits interfaces (stacking domains) that are strain solitons, as they sepa­

rate two domains that are topologically opposite (AB­ and BA­stacked domains) with the

application of interlayer bias [104]. Solitons are localized waves, which maintain their

shape and speed as they propagate. STEM images, simulations, and atomic structures
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Figure 1.13: Band structure for tBLG along the high symmetry points K and K ′. Here,
EF denotes the Fermi level and ∆ is the relevant band gap. Figure adapted from [73].

showed these boundaries due to the application of shear uniaxial heterostrain (Figures 1.14

(A)–(C)) and tensile uniaxial heterostrain (Figures 1.14 (D)–(F)) respectively. The widths

of the solitons depend on the competition between strain energy in the interface and the

energy cost per unit length of the soliton due to the misalignment.

There are topological defects at these interface boundaries of hBLG for both tensile

and shear uniaxial applied heterostrain, because the order parameter changes [104]. The

order parameter is used to describe topological transitions and the topological defects arise

due to the nontrivial topology.

Topological channels/interfaces can have multiple applications. For instance, the topo­

logical channels in tBLG could have applications in electronic devices, as they open con­

ducting channels in a system that would otherwise have a bandgap (biased BLG) and this

way carrier density can be controlled. Also, by leveraging the topological protection of

edge/interface states in the topological channels, it could be feasible to engineer transis­

tors, interconnects, and other electronic components. This way, the scattering is mini­

mized, and thus energy efficiency is enhanced. Moreover, topological channels can ease

valley­selective transport andmanipulation, paving the way to valleytronic devices capable

of encoding and processing information in the valley degree of freedom.

1.3 Aim of thesis

Inspired by the electronic and transport properties of tBLG due to the creation of topo­

logical channels, we examined the local and total electronic properties and the transport

properties of hBLG. In Section 1.2 we explained the importance of studying these prop­
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Figure 1.14: (A)–(C) Shear boundary in BLG observed for STEM, simulations, and the
atomic structure respectively. (D)–(F) Depict the same for tensile boundary. Figures (A)–
(F) adapted from [104].
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erties for tBLG, and consequently for hBLG. First, we investigated the interplay between

uniaxial heterostrain and stacking effects in BLG, in order to tune its stacking. Next, we

investigated the local electronic properties of the topological channels for hBLG that are

created due to heterostrain. Also, including the Poisson contraction ν in the calculations

for hBLG, we investigated its electronic and transport properties. We concluded that hBLG

could be used potentially as a transistor, because of the creation of these topological chan­

nels due to the application of heterostrain. For the study of these properties, we used a

combination of computational and analytical methods.

The thesis is organized as follows:

• In Chapter 2 we included the mathematical and computational methods that were

used for our calculations, concerning the energetics, electronic, and transport prop­

erties of hBLG.

• In Chapter 3 we introduced the study of strain­induced stacking transition in hBLG.

In particular, we determined the interplay between strain and stacking, by straining

one of the layers of BLG. We investigated the behavior of the top or else ‘free’ layer

by performing Density Functional Theory calculations. We already mentioned in

Section 1.2 that stacking is important, as it affectsmany properties, such as electronic

and transport. Thus, it is useful to find ways to control the relevant stacking of the

studied system. The application of strain could do this, but we need to understand

fully the interplay between strain and stacking. We determined the critical strain

required to be applied to one of the two layers of BLG which affects the stacking,

considering the energetic cost of changing stacking and the cost of straining. We

found that for ε ∼1% strain applied on the bottom layer stacking changes. This is

an alternative way to twistronics for engineering stacking order, which affects the

electronic, transport, and optical properties of BLG.

• In Chapter 4 we included the study of local electronic properties of heterostrained

and biased BLG, by applying 1% strain only on the bottom layer and using TB calcu­

lations. There are studies so far which show that heterostrain tunes the stacking and

the electronic properties of BLG, but there is not yet clear understanding of whether
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interface channels, like those in tBLG, would emerge in hBLG and how robust they

would be. To make the system more realistic we added the effect of relaxations in

our calculations. We found that similar to tBLG, the states at the interface channels

(AA­ and SP­stacked regions) are highly localized. We found gapped and conduct­

ing (localized) states with the application of big enough interlayer bias and by adding

the effect of relaxation. This is a way to tune the electronic properties of the system,

by controlling the flow of the current. Thus, hBLG could be used as a transistor.

• Chapter 5 contains the results of transport and electronic properties (total and lo­

cal) of heterostrained and biased BLG, after having included Poisson contraction ν.

There are limited studies so far for hBLG with the inclusion of Poisson contraction

for the electronic and transport properties of this system. The Moiré pattern created

due to the heterostrain depends on many factors and affects the electronic and trans­

port properties. There are studies for tBLG [54, 89, 99, 100] and we were motivated

by this system. Because of the high computational cost, we used Recursive Green’s

Functions Method and we determined the Total Density of States, the Local Density

of States, and the transmission, T , across hBLG. We concluded that the application

of heterostrain is an alternative way to tune the electronic and transport properties

of BLG, similar to twistronics.

• The results and conclusions of these calculations are summarised in Chapter 6, where

possible extensions of this work are also discussed.

There are various experimental techniques to enable precise control over the twist angle

θ between the two graphene layers. The first step is to grow MLG using the CVD method

(Section 1.1), and then to be transferred onto a target substrate, using metal­assisted trans­

fer methods, polymer­assisted transfer methods, wet transfer methods, and dry methods

(Section 1.1). The specific alignment of the layers is achieved with optical microscopy

techniques. Then, it can used for the fabrication of electronic or optoelectronic devices,

by utilizing lithography techniques for the electrodes, contacts, and channels. These de­

vices are characterized to evaluate their electronic properties, such as conductivity, car­

rier mobility, and quantum transport phenomena. For the fabrication of hBLG, the CVD
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method is used again to grow the graphene layers. Heterostrain can be applied experimen­

tally in BLG through direct mechanical deformation using nanomanipulation techniques,

through a flexible substrate [61] (Subsection 1.2.4) or with the use of Atomic Force Mi­

croscopy [105]. Again, with lithographic techniques, hBLG can be processed in a de­

vice, to define structures like electrodes, contacts, or channels. Finally, measurements of

resistance and conductivity are taken, to assess the performance of the relevant device.

Concerning the stability of tBLG, it is sensitive to external factors, like air or humidity.

Additionally, the stability of the twist angle, as well as the stability of the heterostrained

system can be influenced by mechanical stress or temperature changes. One solution to

prevent these defects is to encapsulate tBLG and hBLG with h­BN.



Chapter 2 Theoretical and computa­

tional methods

2.1 Introduction

The aim of this Chapter is to introduce the mathematical and computational methods

that are used throughout this thesis. Section 2.2 details the basic concepts behind Density

Functional Theory (DFT) followed by a description of its implementation in the VASP

code. DFT is an ab initio method, which is quantitative, and in our studies, it is used to

determine the energetics of BLG. Section 2.2 explains the Born­Oppenheimer approxima­

tion that has been used to approximate the Hamiltonian of the investigated system and this

way the computational cost was reduced. It also contains the Hohenberg­Kohn theorems

that solve exactly the Schrödinger equation for inhomogeneous systems of interacting elec­

trons. Hohenberg­Kohn theorems evaluate correctly the ground state energy of the investi­

gated system after the application of the Born­Oppenheimer approximation. DFT method

is based on the functional of the electron density and this way the computational cost of

the calculations, is only for Ne instead of 3Ne interactions, as Kohn­Sham formulated.

Furthermore, it contains some basic approximate functionals for the exchange­correlation

term, and Subsection 2.2.5 includes the vdW functions that have to do with the interlayer

interactions. DFT calculations were performed in VASP code, which is self­consistent.

The practical implementation of these calculations in VASP is also discussed.

Section 2.3 introduces the TB Approximation used to implement the electronic and

transport properties of BLG. It is a semi­empirical method which gives qualitative results.

23
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It is explained how it can be applied to give the energy dispersion of MLG, for BLG and

how strain can be included in the relevant calculations concerning the energy dispersion

relations of both MLG and BLG.

Section 2.4 explains how Green’s Functions (GFs) are used to solve problems with the

use of the Dyson equation within the Recursive Green’s Function regime and with the use

of the Rubio­Sancho method to calculate the total Density of States and the Local Density

of States and the transmission, T .

2.2 Density Functional Theory

2.2.1 Born­Oppenheimer Approximation

Many­body systems consist of a large amount of atoms. Because of the large number of

interactions, this system is often simplified in order tomake calculations tractable. A useful

approximation is the Born­Oppenheimer (BO) approximation, which is the assumption that

the electronic and the nuclearmotion inmolecules can be separated [106]. The Schrödinger

equation for a many­body system is written as:

ĤΨ(r,R) = EΨ(r,R) →[
T̂e(r) + T̂n(R) + V̂ee(r) + V̂nn(R) + V̂en(r,R)

]
Ψ(r,R) = EΨ(r,R) (2.1)

where Ĥ is the Hamiltonian of the system, Ψ(r,R) is the many­body wavefunction

of the system, r refers to the electron positions and R refers to the nuclei positions,

T̂e(r) = −1
2

∑Ne
i=1 ∇2

ri is the kinetic energy of electrons, T̂n(R) = − 1
2MI

∑Nn
I=1 ∇2

RI
is the

kinetic energy of nuclei, V̂ee(r) = 1
2

∑Ne
i≠j

1
|ri−rj | is the electron­electron Coulomb interac­

tion energy, V̂nn(R) =
∑Nn

I ̸=J
ZIZJ

|RI−RJ |
is the nuclei­nuclei interaction energy, V̂en(r,R) =

−1
2

∑Ne,Nn
i,I

ZI

|ri−RI |
is the Coulomb interaction between electrons and nuclei and E is the

energy of the system. The system is consisted of Ne electrons with mass me and Nn nu­

clei with massMI and atomic number ZI . For convenience Hartree units have been used:

h̄=me=e=4πϵ0=1.

Because nuclei are much heavier than electrons, nuclei are considered to be fixed.
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Thus, T̂n(R) is much smaller than T̂e(r) by a factor ofMI/me. Consequently, for a fixed

nuclear configuration, the Schrödinger equation, according to BO approximation, is writ­

ten as:

Ĥelψ(r,R) = Eelψ(r,R) →[
T̂e(r) + V̂en(r,R) + V̂ee(r)

]
ψ(r,R) = Eelψ(r,R) →[

−1
2

Ne∑
i=1

∇2
ri −

1
2

Ne,Nn∑
i,I

ZI

|ri−RI |
+ 1

2

Nn∑
i ̸=j

1
|ri−rj |

]
ψ(r,R) = Eelψ(r,R) (2.2)

Equation (2.2) still contains 3Ne degrees of freedom, so solving it for systems with hun­

dreds of atoms will be difficult. Thus, further approximations are required.

2.2.2 Hohenberg­Kohn Theorems

DFT uses the Hohenberg­Kohn (HK) theorems to solve the Schrödinger equation [107].

The formulation can be applied to a system with a Hamiltonian like in Equation (2.2).

Now, instead of 3Ne wavefunction, the electron density is used which depends only on the

three spatial coordinates. The electron density is defined as the probability of finding an

electron at the position r:

ρ(r) = Ne ∫ |Ψ(r, r1, ..., rNe)|2dr1...drNe (2.3)

There are two HK Theorems and they state the following:

• Theorem I: For every system that has interacting particles in an external poten­

tial Vext(r), the potential Vext(r) is determined uniquely by the ground state density

ρ0(r) except for a constant. This means that Hamiltonian is fully defined, except

for a constant shift in energy. Thus, the many­body wavefunctions for all states are

determined, including both ground and excited states.

• Theorem II: A universal functional for the energy E [ρ] in terms of the density ρ(r)

can be defined, valid for any external potential Vext(r). For any particular Vext(r)

the exact ground state energy of the system is the global minimum value of the

functional and the density that minimizes the functional is the exact ground state
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density ρ0(r). Thismeans that the functionalE [ρ] alone is sufficient to determine the

exact ground state energy and density. In general, the excited states of the electrons

must be determined by other means.

The proofs of HK theorems are shown below:

Proof of Theorem I

Two different external potentials are assumed, Vext,1(r) and Vext,2(r), which differ by more

than a constant and lead to the same ground state density ρ(r). The two external potentials

form different Hamiltonians, Ĥ1 and Ĥ2, which have different ground state wavefunctions

Ψ1 and Ψ2, but they are assumed to have the same ground state density ρ0(r). It is:

E1 = ⟨Ψ1|Ĥ1|Ψ1⟩ < ⟨Ψ2|Ĥ1|Ψ2⟩ (2.4)

The inequality follows if the ground state is non­degenerate. The last term can be written

as:

⟨Ψ2|Ĥ1|Ψ2⟩ = ⟨Ψ2|Ĥ2|Ψ2⟩+ ⟨Ψ2|Ĥ1 − Ĥ2|Ψ2⟩ →

⟨Ψ2|Ĥ1|Ψ2⟩ = E2 + ∫ d3r
[
Vext,1(r)− Vext,2(r)

]
ρ0(r) (2.5)

It is consequently:

E1 < E2 + ∫ d3r
[
Vext,1(r)− Vext,2(r)

]
ρ0(r) (2.6)

For E2 it is:

E2 < E1 + ∫ d3r
[
Vext,1(r)− Vext,2(r)

]
ρ0(r) (2.7)

From Equations (2.6) and (2.7) there is the contradictory inequality E1 + E2 < E2 + E1.

Thus, two different external potentials cannot differ bymore than a constant and the density

uniquely determines the external potential within a constant.

Proof of Theorem II

Since all properties such as kinetic energy are uniquely determined if ρ(r) is specified, the
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Hamiltonian can be viewed as a functional of ρ(r) as follows:

EHK[ρ] = T [ρ] + Eint[ρ] + ∫ d3rVext(r)ρ(r) (2.8)

A system with ground state density ρ1(r) corresponds to an external potential Vext,1(r).

From Theorem I the HK functional is equal to the expectation value of the Hamiltonian in

the unique ground state which has wavefunction Ψ1:

E1 = EHK[ρ1] = ⟨Ψ1|Ĥ1|Ψ1⟩ (2.9)

A different density ρ2(r) is considered, that corresponds to a different wavefunctionΨ2. It

is:

E1 = ⟨Ψ1|Ĥ1|Ψ1⟩ < ⟨Ψ2|Ĥ1|Ψ2⟩ = E2 (2.10)

Thus, the energy given by Equation (2.8), evaluated for the correct ground state density

ρ0(r) is indeed lower than the value of this expression for any other density ρ(r). This

variational principle allows one to determine the ground state density assuming the form

of the energy functional in Equation (2.2) is known. The variational principle states that

the ground state energyE is always less than or equal to the other values of energy obtained

for any other density ρ(r). However, the HK Theorems do not prescribe any form of this

functional.

2.2.3 Kohn­Sham scheme

DFT is based on a formulation of the energy functional that was formulated by Kohn

and Sham [108]. Kohn and Sham replaced the original many­body problem by an auxiliary

independent­particle problem. The ansatz of Kohn and Sham assumes that the ground state

density of the original interacting system is equal to that of some chosen non­interacting

system. That leads to independent­particle equations for the non­interacting system that

can be considered exactly soluble. For a system of Ne independent electrons obeying

the Hamiltonian, the ground state has one electron in each of the orbitals ψi(r) with the

lowest eigenvalues ϵi of the Hamiltonian. The term orbital means the wavefunction of one
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electron. The total density of this system is given by:

ρ(r) =
∑Ne

i=1 fi|ψi(r)|2 (2.11)

The magnitude fi determines the occupancy and it takes two values: 0 or 1.

The KS system of equations is:

ĤKSψi(r) = ϵiψi(r) →[
− 1

2
∇2 + Veff(r)

]
ψi(r) = ϵiψi(r) (2.12)

where ϵi is the KS single­particle energy and the effective potential is a functional deriva­

tive of energy functional:

Veff(r) = Vext(r) + VH[ρ(r)] + Vxc[ρ(r)] (2.13)

where VH[ρ(r)] = ∫ dr′ ρ(r
′)

|r−r′| is the Hartree potential and Vxc[ρ(r)] =
δExc
δρ(r) is the exchange­

correlation potential that is the derivative of the exchange­correlation energy with respect

to density. The exchange­correlation effects arise due to the interactions between elec­

trons. Electrons are fermions, which obey the Pauli exclusion principle. This states that

two electrons cannot occupy the same quantum state. The exchange interaction guaran­

tees that the total wavefunction of a many­body system is antisymmetric, which means a

repulsion between electrons with the same spin and an attraction between electrons with

opposite spins. This affects the arrangement of electrons within the electronic structure.

The correlation interaction describes how the behaviour of electrons is influenced by the

positions and motion of other electrons beyond the mean field approximation, which is not

captured by the Hartree­Fock single determinant wavefunction. Understanding exchange­

correlation effects is essential for predicting the electronic and structural properties of ma­

terials accurately. However, achieving precise descriptions of exchange­correlation effects

in all situations is a difficult task and this is the reason why we use approximate methods

to describe these interactions. The expression (2.12) describes a set of Schrödinger­like

independent­particle equations that must be solved subject to the condition that the effec­

tive potential Veff(r) and the density ρ(r) are consistent. This is a self­consistent problem.
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The solution of the KS auxiliary system for the ground state can be viewed as the prob­

lem of minimization with respect to either the density ρ(r) or the effective potential Veff(r).

The KS approach applied to the full interacting system gives the total energy functional:

EKS[ρ] = Ts[ρ] + ∫ drVext(r)ρ(r) + EH[ρ] + Exc[ρ] (2.14)

where Ts[ρ] is the independent­particle kinetic energy :

Ts[ρ] = −1
2

∑Ne
i=1 ∫ dr|∇ψi(r)|2 (2.15)

EH[ρ] is the Hartree energy of the electron density ρ(r) interacting with itself:

EH[ρ] =
1
2
∫ drdr′ ρ(r)ρ(r

′)
|r−r′| (2.16)

and Exc[ρ] is the term for the exchange­correlation energy.

2.2.4 Approximate exchange­correlation functionals

While the KS formalism is in principle exact, a major limitation is that the exact function­

als for the exchange­correlation energy are not known, except for that of the free­electron

gas [109, 110]. One of the simplest approximations is the Local Density Approximation

(LDA), in which the exchange­correlation functional depends only on the density at the

coordinate where the functional is evaluated, as follows:

ELDA
xc [ρ] = ∫ ϵxc(ρ(r))ρ(r)dr (2.17)

In Equation 2.17, the term ϵxc(ρ(r)) is the exactly known exchange­correlation energy per

particle for a homogeneous electron gas of density ρ(r).

If the exchange­correlation functional depends also on the gradient of the density, this

leads to the Generalized Gradient Approximation (GGA) functional:

EGGA
xc [ρ] = ∫ ϵxc(ρ(r),∇ρ(r))ρ(r)dr (2.18)

GGA functional gives very good results for molecular geometries and ground­state ener­

gies [111].
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There are extensions of these approximate exchange­correlation functionals. The

Laplacian of the density ∇2ρ(r) or the kinetic energy density can be added for the cal­

culation of ϵxc except for ρ(r) and ∇ρ(r). This is called meta­GGA functional, but its

calculation requires much higher computational cost, and the results are not improved sig­

nificantly [112]. Functionals can also include a portion of the exact exchange­correlation

energy functional from the Hartree­Fock approach and from the approximate exchange­

correlation functionals (LDA, GGA etc.) and these are called hybrid [113].

2.2.5 Van der Waals functionals

In DFT calculations the true exchange­correlation functional should include the van der

Waals (vdW)/dispersion interactions, which are the interactions between adjacent layers.

These are the interactions that exist between atoms that belong to vertically stacked layers.

Unfortunately, the well­established approximations (LDA and GGA functionals) do not

capture vdW interactions at all. The total energy EDFT−D including vdW corrections is

given by:

EDFT−D = EKS + Edisp (2.19)

where EKS is the total energy obtained from the KS equations and Edisp is the extra energy

term added to account for the vdW corrections. There are many different ways to calculate

the term Edisp.

One of them is the D2 method of Grimme [114], in which the correction term takes the

form:

Edisp = −s6
Nn∑
I=1

Nn∑
J=1

CIJ
6

R6
IJ,L

fdmp(RIJ) (2.20)

where the summations are over all nuclei Nn, CIJ
6 symbolizes the dispersion coefficient

for the pair IJ , s6 is a scaling factor that is dependent on the relevant functional and RIJ

is the distance between nuclei. The damping function is given by the formula:

fdmp(RIJ) =
1

1+e−d(RIJ/Rr−1) (2.21)

where Rr is the summation of the atomic vdW radii.
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2.2.6 Practical implementation of Density Functional Theory

An actual calculation for DFT uses a numerical procedure that successively updates

Veff(r) and ρ(r), in order to reach a self­consistent solution. First, an electron density ρ(r) is

suggested and the effective potential Veff(r) is calculated. Next by solving the one­electron

KS equation ĤKSψi(r) = ϵiψi(r) the orbitals ψi(r) are obtained. The new electron density

is then implemented by Equation (2.11). If the value of the electron density is the same as

the initial guess, within an accuracy ϵ, self­consistency is achieved and the ground­state

total energy, forces, stresses, and eigenvalues are calculated. However, if the value of the

electron density is not the same as the initial guess, the same procedure is repeated with

an updated electron density, until the two values coincide. Figure 2.1 shows the general

iterative scheme.

Initial density ρ(r)

Calculate Veff(r)

Solve KS equation ϵi, ψi (Equation
(2.12))

Construct new charge density ρ′(r)

Check convergence

|ρ(r)− ρ′(r)| < ϵ

Self consistent density achieved

|ρ(r)− ρ′(r)| > ϵ

Figure 2.1: Schematic outline of the iterative solution of the KS equations.
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We performed DFT calculations with VASP program [115–118]. The Projector

Augmented­Wave (PAW) method [119, 120] is implemented in VASP, which uses plane

waves as a basis set for the expansion of eigenstates for the solution of KS equations.

According to Bloch’s theorem [121], the electron wavefunctions in a crystalline material

can be written as the product of a plane wave and a periodic function. Using the Fourier

expansion over a set of plane waves the single­particle wavefunctions ψj(r) are:

ψj(r) =
∑

eik·rcjk (2.22)

where the summation is all over the plane waves, k is the Bloch wavevector within the

first BZ and cjk corresponds to the expansion coefficients. For the k­points mesh within the

first BZ Monkhorst­Pack grid was used, which means that the selected k­points consist of

a grid of points, which is distributed homogeneously in the BZ [122].

The expansion coefficients are also expanded in plane waves, as follows:

cjk(r) =
1√
Ω

∑
G

eiG·rCk
G (2.23)

where Ω is the volume in real space. The basis set includes all plane waves for which:

1
2
|G+ k|2 < Ecutoff (2.24)

where energy cutoff is: Ecutoff =
|k|2
2
and corresponds to the maximum kinetic energy of

any plane wave. The higher the energy cutoff Ecutoff, the more accurate the calculation.

VASP simplifies calculations with the use of pseudopotentials. Because of the large

number of plane waves to expand the wavefunctions of core electrons, the pseudopotentials

replace the potential for the core electrons with a much softer effective potential felt by the

valence electrons. This reduces the computational cost, as the number of plane waves

needed for the expansion of the wavefunctions is decreased.

2.3 Tight­Binding Approximation

A Tight­Binding (TB) technique was first introduced for 1D linear atomic chains [123]

and later was generalised for 2D systems [124]. It is a semi­empirical method that has a
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much lower computational cost compared to DFT. The name ‘Tight­Binding’ means that

the electrons considered for this model should be tightly bound to the atom to which they

belong and have limited interactions with the surrounding atoms. TB approach was used

for the study of the electronic structure and transport properties of graphene.

2.3.1 Energy dispersion for monolayer graphene

In graphene, σ and σ∗ orbitals are strongly separated in energy as shown in Figure 1.1

(b). Because of this, their contribution to the electronic and transport properties is often

neglected and only the π and π∗ orbitals are taken into account. The total wavefunction

of MLG can then be expressed as a linear combination of the atomic pz orbitals for the A

and B sublattice. According to Bloch’s theorem [121], the total wavefunction of MLG is

written as:

Ψ(k, r) = ΨA(k, r) + ΨB(k, r), (2.25)

with ΨA(k, r) =
∑Nn

j=1CA,j(k)ΦA,j(r− rA,j) =
1√
Nn

∑Nn
j=1 e

ik·rA,jΦA,j(r− rA,j)

and ΨB,j(k, r) =
∑Nn

j=1CB,j(k)ΦB,j(r− rB,j) =
1√
Nn

∑Nn
j=1 e

ik·rB,jΦB,j(r− rB,j)

where ΦA,j(r) and ΦB,j(r) are the TB Bloch orthogonal wavefunctions for the pz orbitals

with positions rA,j and rB,j for the A and B sublattices respectively and CA,j(k) and

CB,j(k) are the plane­wave contributions for the j­th orbital for the A and B sublattices

respectively [125]. Here, k = (kx, ky) is the crystal momentum, which is chosen to be

in the first BZ in our calculations, and Nn refers to the number of atoms (pz orbitals for

graphene). The Schrödinger equation for MLG is:

Ĥ(k)Ψ(k, r) = E(k)Ψ(k, r) (2.26)

where Ĥ(k) is the Hamiltonian of MLG and E(k) its eigenvalues. Equation (2.26) can be

rewritten by inserting Equation (2.25), as follows:HAA(k) HAB(k)

HBA(k) HBB(k)

 ·

CA(k)

CB(k)

 = E(k)

CA(k)

CB(k)

 (2.27)
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The elementsHAA(k) are equalHBB(k), because the atoms in the A and B sublattices are

identical. The matrix element HAA(k) is written as follows:

HAA(k) = ⟨ΨA|Ĥ|ΨA⟩ →

HAA(k) = 1
Nn

Nn∑
i,j

eik(ri−rj)⟨ΦA(ri)|Ĥ|ΦA(rj)⟩ = 0 (2.28)

Same for HBB(k) it is:

HBB(k) = ⟨ΨB|Ĥ|ΨB⟩ →

HBB(k) = 1
Nn

Nn∑
i,j

eik(ri−rj)⟨ΦB(ri)|Ĥ|ΦB(rj)⟩ = 0 (2.29)

The matrix elementsHAA andHBB are set to zero because the onsite energies are set to zero

for simplicity and only first nearest­neighbor interactions are taken into account. This can

be done, because in graphene there is only one type of atom (carbon), so all of the atoms

have the same onsite energies, for no interlayer bias.

For the matrix element HAB(k) it is:

HAB(k) = ⟨ΨA|Ĥ|ΨB⟩ →

HAB(k) = 1
Nn

Nn∑
i,j

eik(ri−rj)⟨ΦA(ri)|Ĥ|ΦB(rj)⟩ (2.30)

After restricting the electron interactions only to first­nearest neighbors, Equation (2.30)

is written as:

HAB(k) = ⟨ΦA,0|Ĥ|ΦB,0⟩+ e−ik·a1⟨ΦA,0|Ĥ|ΦB,−a1⟩+ e−ik·a2⟨ΦA,0|Ĥ|ΦB,−a2⟩ →

HAB(k) = V 0
ppπ · f(k) (2.31)

where V 0
ppπ=­2.7 eV [126] is the nearest­neighbor in­plane transfer integral for graphene

and f(k) = 1 + e−ik·a1 + e−ik·a2 . For the matrix element HBA(k) it is:

HBA(k) = H∗
AB(k) = V 0

ppπ · f ∗(k) (2.32)
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Inserting Equations (2.28), (2.29), (2.31) and (2.32) into Hamiltonian Ĥ(k), leads to:

Ĥ(k) =

 0 V 0
ppπ · f(k)

V 0
ppπ · f ∗(k) 0

 (2.33)

The solution of Schrödinger equation 2.26 for the Hamiltonian in Equation (2.33) leads to

the energy dispersion relation for MLG:

E±(k) = ±V 0
ppπ|f(k)| →

E±(k) = ±V 0
ppπ

√
3 + 2cos(k · a1) + 2cos(k · a2) + 2cos(k(a2 − a1)) →

E±(kx, ky) = ±V 0
ppπ

√
1 + 4coskxaconst

√
3

2
coskyaconst

2
+ 2(1 + coskyaconst) →

E±(kx, ky) = ±V 0
ppπ

√
1 + 4cos

√
3kxaconst

2
coskyaconst

2
+ 4cos2 kyaconst

2
(2.34)

The electronic band structure for MLG is depicted in Figure 1.4 along the high­symmetry

points Γ → K →M .

2.3.2 Energy dispersion for bilayer graphene

In BLG the exact form of Hamiltonian Ĥ(k) depends on the relevant stacking because the

interlayer interactions change with stacking. The intralayer and the interlayer interactions

for nearest neighbors interactions for BLG with AA stacking and AB stacking are depicted

in Figures 2.2 (a) and (b) respectively.

Figure 2.2: Interlayer interactions for (a) AA­stacked and (b) AB­stacked BLG. Figures
(a) and (b) adapted from [127].

The Hamiltonian Ĥ(k) for BLG is constructed by determining the hopping terms. The

generalized formula for calculating the hopping terms beyond nearest neighbors in BLG
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is given by the Slater­Koster­type formula [128]:

t(d) = V 0
ppπ

[
1−

(
d·ez
|d|

)2]
+ V 0

ppσ

(
d·ez
|d|

)2

(2.35)

where d = ri − rj is the distance between atoms i and j at atomic positions ri and rj
respectively, V 0

ppσ=0.48 eV is the nearest­neighbor out­of­plane, vertically­aligned, transfer

integrals for unstrained BLG, d0=3.35 Å is the unstrained out­of­plane atomic separations

and ez is the unit vector in the out­of­plane z­direction, perpendicular to graphene xy­

plane. Thus, d · ez is the projection along z­direction. The values of the parameters Vppσ
and d0 were chosen according to Reference [92]. The interlayer distance depends on the

relevant stacking, but here we assumed that it is the same for every stacking. We took into

account interactions beyond nearest neighbors, because of the interlayer interactions for

arbitrary stackings. From the DFT calculations that we performed in Chapter 3 we found

the two extremes of energy for BLG correspond to AA and AB­stacked BLG (Figure 1.3),

to have interlayer distance difference 0.13 Å. In our calculations, we considered electron

interactions beyond nearest neighbors for the xy­plane. The Slater­Koster­type TB model

is suitable for systems with inhomogeneous strains and stackings, as it can account for

differing bond lengths in both the in­plane and out­of­plane directions and has previously

been applied in studies of twisted bilayers [92, 129]. The electronic band structures of

BLG for AA­, AB/BA­, and SP stacking near K point are depicted in Figures 1.5 (a)–(c)

respectively.

The effect of a simple interlayer bias∆ can be included by adding the term ϵi = ±∆
2
to

the diagonal terms, where there are the onsite energies. Onsite energies in the TB method

refer to the energy of an electron at a particular orbital. We have chosen the sign ‘+’ to

correspond to the atoms on the top layer and the sign ‘­’ to correspond to the atoms on the

bottom layer of BLG. Figures 1.5 (d)–(f) depict the electronic band structures of BLG for

AA, AB/BA and SP stacking under the application of ∆=­200 meV interlayer bias.

2.3.3 Energy dispersion for strainedmonolayer and bilayer graphene

With the inclusion of strain inMLG, the hopping term depends on the distance between the

in­plane carbon atoms: Vppπ(|r|) = V 0
ppπe

−
|r|−a0
r0 , where a0=1.42 Å is the nearest­neighbor
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in­plane distance between carbon atoms and r0=2.453 Å is the decay length of graphene,

i.e. the distance over which the bond strength or the probability of finding an electron

between two atoms decreases significantly [130]. Thus, the energy dispersion relation for

MLG (Equation (2.34)) with the inclusion of strain is modified as follows:

E±(kx, ky) = ±Vppπ(|r|)
√

1 + 4cos
√
3kxaconst

2
coskyaconst

2
+ 4cos2 kyaconst

2
(2.36)

Concerning BLG, strain is included through the hopping terms as follows:

t(d) = Vppπ(|d|)
[
1−

(
d·ez
|d|

)2]
+ Vppσ(|d|)

(
d·ez
|d|

)2

, (2.37)

with Vppπ(|d|) = V 0
ppπe

−
|d|−a0

r0 and Vppσ(|d|) = V 0
ppσe

−
|d|−d0

r0 . (2.38)

where |d| is the magnitude of the vector d.

2.4 Green Functions

The Green function (GF) [131] that corresponds to the Schrödinger equation (2.26) is

defined as:

ĝ = lim
η→0+

[(E ± iη)Î − Ĥ]−1 (2.39)

where Ĥ is the relevant Hamiltonian for the investigated system, Î is the identity operator

and E is the energy. Here, η is a small and positive number added to the energy to secure

that the GF ĝ is well­defined around the eigenvalues of the Hamiltonian Ĥ . In Equation

(2.39) the ‘+’ sign corresponds to the retarded GF ĝ+ and the ‘­’ sign corresponds to the

advanced GFs ĝ−. For simplicity, when there is no sign ‘+’ or ‘­’ in the GFs ĝ, we meant

the retarded GFs. GFs can be used to calculate the Density of States (DOS), as well as the

transmission, T , of a given system. The Total DOS (TDOS) refers to the number of energy

states per energy interval that are available to be occupied by electrons for each energy for

all the lattice points of the system and the Local DOS (LDOS) is the DOS at a particular

site or orbital in the material.

Here, we show the steps to calculate LDOS and TDOS knowing the GFs of the sys­
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tem. The Hamiltonian Ĥ of a system with eigenvalues ϵm and eigenstates |Ψm⟩ for each

particular orbitalm is written as:

Ĥ =
∑
m

|Ψm⟩ϵm⟨Ψm| (2.40)

Inserting Equation (2.40) into Equation (2.39) gives:

ĝ = lim
η→0+

∑
m

|Ψm⟩ 1
E+iη−ϵm

⟨Ψm| (2.41)

Projecting into orbitals |j⟩ and |l⟩ gives for the GF ĝ:

gj,l = ⟨j|ĝ|l⟩ = lim
η→0+

∑
m

⟨j|Ψm⟩ 1
E+iη−ϵm

⟨Ψm|l⟩ (2.42)

Multiplying the numerator and the denominator by (E − iη − ϵm) gives:

gj,l = lim
η→0+

∑
m

⟨j|Ψm⟩E−iη−ϵm
E−ϵ2m+η2

⟨Ψm|l⟩ (2.43)

The imaginary part of gi,j is:

Im (gj,l) = lim
η→0+

∑
m

⟨j|Ψm⟩ −η
E−ϵ2m+η2

⟨Ψm|l⟩ (2.44)

Using the Dirac Delta function:

δ(x) = 1
π
lim
η→0+

η
x2+η2

(2.45)

and setting l=j gives:

− 1
π
Im (gj,j) =

∑
m

|⟨j|Ψm⟩|2δ(E − ϵm) (2.46)

Equation (2.46) provides the LDOS for a particular atom j. Summing over all sites in the

system results in the TDOS. Alternatively, TDOS can be written as a trace over the GF ĝ:

TDOS = − 1
π
Im Tr (ĝ) (2.47)
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2.4.1 The Dyson Equation

When a system has translational invariance, the eigenvectors can be calculated using

Bloch’s theorem. However, when translational invariance is broken, such as with the ap­

plication of heterostrain, the Bloch wavevectors are no longer eigenvectors of the system.

The Dyson equation lets us write the GF Ĝ of the perturbed system using the GF ĝ of the

unperturbed system and the term form the applied perturbation, without the need to cal­

culate the eigenvectors of the perturbed system. This process has an easy calculation of

physical properties, including the DOS, when there is a perturbation.

The Dyson equation can be calculated, by using the definition of the GF ĝ (Equation

(2.39)). The Hamiltonian of the perturbed system can be expressed as Ĥ = Ĥunperturbed+V̂ ,

where V̂ determines the interactions between adjacent cells in our calculations, as ex­

plained in Subsection 2.4.2. Here, V̂ refers to the hopping terms of electrons, as they move

from one location to the other. The GF of the full system Ĝ can be written in terms of the

GF of the unperturbed system ĝ, which is associated with the Hamiltonian Ĥunperturbed, as

follows:

Ĝ = [(E + iη)Î − (Ĥunperturbed + V̂ )]−1 →

Ĝ = [ĝ−1 − V̂ ]−1 →

Ĝ = [Î − ĝV̂ ]−1ĝ (2.48)

Multiplying Equation (2.48) by [Î − ĝV̂ ]−1, results in the Dyson equation:

Ĝ = ĝ + ĝV̂ Ĝ (2.49)

The Dyson equation can be used specifically for connecting two large systems. In order

to be applied efficiently (with minimum computational cost), it can be used recursively.

For our study, the Dyson equation is used for the calculation of surface GFs, as explained

in Subsection 2.4.2. Surface GFs are the GFs that account for the effects of the boundaries

or interfaces, and in our study include the effect of the left and right lead, because of the

inclusion of periodicity along x­direction. The surface GFs are necessary to determine the

electronic and transport properties of hBLG, as explained in Subsections 2.4.3 and 2.4.4.
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2.4.2 Recursive Green Functions Method with application in Rubio­

Sancho method

In large systems, such as hBLGwith small strain, the DOS and the transmission, T , can be

calculated more efficiently by splitting the unit cell of the investigated system (hBLG) into

smaller cells, as is implemented in the Recursive Green Functions (RGF) method [123].

The unit cells of our calculations were divided into cells, by selecting specific atoms as

the first cell and then we specified the other cells, by setting a cutoff distance d=1.82 Å

for the interactions in the xy­plane. Because of the application of heterostrain and the

inclusion of Poisson contraction ν, each cell has a different number of atoms, so different

sizes. The unit cell of the central device of hBLG that we investigated and the unit cells of

the left and right leads, were divided in the same way into 1, 2, ..., Nc cells, are depicted

in Figure 2.3. The RGF method is very reliable, and computationally efficient and allows

for parallel implementation. For the calculation of GFs and subsequently the DOS and the

transmission, T , we first split the unit cell of hBLG (called ‘Central Device’) into cells.

The central device is the supercell used in the leads, which is useful for very large but

periodic systems. In order to determine the transmission, T , we add ‘leads’ on the left and

on the right of the central device which have the same size and the same arrangement of

carbon atoms as the unit cell of the central device, and we used the Rubio­Sancho method

to calculate the surface GFs, ĜSL and ĜSR, for the left and right lead respectively, and

consequently the self­energies from the left and right leads [132]. Self­energy arises due

to the interactions between the system (Central Device) and the surrounding environment

consisting of the left and right lead modifies the energy of the electrons.

Figure 2.3: Unit cells of the central device and the left and right leads, divided into 1, 2,..,
Nc cells. Here, x and y­directions are also shown.



2.4. GREEN FUNCTIONS 41

The Hamiltonian of the central device and the leads is a block matrix:

Ĥ =


Ĥ1,1 Ĥ1,2 . . .

Ĥ2,1 Ĥ2,2 . . .
... . . .

ĤNc,1 ĤNc,2 ĤNc,Nc


where Ĥ1,1 corresponds to the Hamiltonian of the first cell, Ĥ2,2 corresponds to the Hamil­

tonian of the second cell etc. The submatrices Ĥi,i+1 and Ĥi+1,i correspond to the electron

interactions between the i­th and the (i+1)­th cell.

Bloch phases can be used to account for periodicity in the other direction (e.g. the

y­direction in this example). For the inclusion of periodicity along y­direction, we used as

Hamiltonian of the system, the following:

Ĥtotal = Ĥ + Ĥbte
i·ky ·ycell + Ĥtbe

−i·ky ·ycell (2.50)

where Ĥbt is the Hamiltonian that includes the elements of the unit cell which is on top

of the unit cell of the central device and Ĥtb is the unit cell which is below the unit cell

of the central device, as depicted in Figure 2.4. These unit cells have the same size and

the same arrangement of carbon atoms. Here, ycell is the length of the unit cell along

y­direction and ky includes points in k­space which belong in the First BZ along the y­

direction. Last, we normalized the results for the k­space for the calculation of TDOS,

LDOS, and transmission, T .

For the calculation of TDOS with the RGF method, we first calculated the GF ĝi,i for

each individual i­th cell (Equation (2.39)), as follows:

ĝi,i = lim
η→0+

[(E + iη)Îi,i − Ĥi,i]
−1 (2.51)

and the TDOS (Equation (2.47)), including only the contribution from the first cell, as

follows:

TDOS = − 1
π
Im Tr (ĝ11,1) (2.52)
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Figure 2.4: Central device and the adjacent unit cells on top and on the bottom respectively
for the inclusion of periodicity along y­direction.
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For the second cell we computed the quantity Â2:

Â2 = V̂2,1ĝ
[1]
1,1ĝ

[1]
1,1V̂1,2 (2.53)

while for the other i­th cells we had:

Âi = V̂i,i−1ĝ
[i−1]
i−1,i−1(Âi−1 + Îi−1,i−1)ĝ

[i−1]
i−1,i−1V̂i−1,i (2.54)

where the matrix elements V̂i,i−1 and V̂i−1,i correspond to the electron interactions between

the i­th and the (i­1)­th cells for cutoff distance d=1.82Å for the xy­plane and ĝ[i−1]
i−1,i−1 is the

GF of the (i­1)­th cell after all (i­1) has been added. The GF ĝ[i]i,i and TDOS are calculated

recursively for each step as follows:

ĝ
[i]
i,i = (Îi,i − ĝi,iV̂i,i−1ĝ

[i−1]
i−1,i−1V̂i−1,i)

−1ĝ
[i−1]
i,i (2.55)

TDOSnew = TDOSold − 1
π
Im Tr

(
ĝ
[i]
i,i(Âi + Îi,i)

)
(2.56)

We used the GF in Equation (2.55) for the calculation of the surface GFs that stem from

the left and right lead. For each step, going from the i­th cell to (i+1)­th cell, we calculated

the surface GFs that correspond to the left and right edges and the GFs that connect them,

until the surface GFs are within an accuracy ϵGF. This means that the surface GFs obtained

from the n­th step obey this inequality: |Ĝ[n] − Ĝ[n−1]| ≤ ϵGF, and once it is satisfied the

recursive calculations stop. For each step, the Rubio­Sancho method efficiently doubles

the length of the unit cells along x­direction for our study. This means that for a unit cell

with Nc connected cells with relevant GFs ĝ1,1, ĝNc,Nc , ĝ1,Nc and ĝNc,1 which are known,

the corresponding GF for a system twice this size can be calculated by joining the right

edge of this system to the left edge of an identical system, whose cells are now denoted

Nc+1, ..., 2Nc, instead of 1, ..., Nc. The doubling of the unit cell is depicted in Figure 2.5.

For each step we set: ĝold1,1 = ĝ1,1 = ĝNc+1,Nc+1, ĝold1,E = ĝ1,Nc = ĝNc+1,2Nc , ĝoldE,1 =

ĝNc,1 = ĝ2Nc,Nc+1 and ĝoldE,E = ĝNc,Nc = ĝ2Nc,2Nc , where the index ‘E’ corresponds to the

relevant edge for each step and the superscript ‘old’ refers to the GFs obtained from the

previous step. We can define V̂Nc,Nc+1 = V̂LR (electron interactions from the previous to the

next cell) and V̂Nc+1,Nc = V̂RL (electron interactions from the next to the previous cell). The
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Figure 2.5: Rubio­Sancho method for doubling the relevant system (left and right lead)
for the calculation of surface GFs.

relevant system is shown in Figure 2.5. We want to find the GFs that correspond to the new

connected system Ĝnew
1,1 = Ĝ1,1, Ĝnew

1,E = Ĝ1,2Nc , Ĝnew
E,1 = Ĝ2Nc,1 and Ĝnew

E,E = Ĝ2Nc,2Nc . For

this reason, we made a new derivation for these quantities. Here, Ĝnew
E,E can be determined

with the use of the Dyson equation (Equation 2.49), as follows:

Ĝ2Nc,2Nc = ĝ2Nc,2Nc + ĝ2Nc,Nc+1V̂Nc+1,NcĜNc,2Nc (2.57)

ĜNc,2Nc = ĝNc,NcV̂Nc,Nc+1ĜNc+1,2Nc (2.58)

ĜNc+1,2Nc = ĝNc+1,2Nc + ĝNc+1,Nc+1V̂Nc+1,NcĜNc,2Nc (2.59)

Inserting Equation (2.59) into Equation (2.58), leads to:

ĜNc,2Nc = ĝNc,NcV̂Nc,Nc+1(ĝNc+1,2Nc + ĝNc+1,Nc+1V̂Nc+1,NcĜNc,2Nc) →

ĜNc,2Nc = (Î − ĝNc,NcV̂Nc,Nc+1ĝN]c+1,Nc+1V̂Nc+1,Nc)
−1·

ĝNc,NcV̂Nc,Nc+1ĝNc+1,2Nc

(2.60)

Last, inserting Equation (2.60) into Equation (2.57) gives:

Ĝ2Nc,2Nc = ĝ2Nc,2Nc + ĝ2Nc,Nc+1V̂Nc+1,Nc·

(Î − ĝNc,NcV̂Nc,Nc+1ĝNc+1,Nc+1V̂Nc+1,Nc)
−1ĝNc,NcV̂Nc,Nc+1ĝNc+1,2Nc

(2.61)

or else:

Ĝnew
E,E = ĝoldE,E + ĝoldE,1V̂RL(Î − ĝoldE,EV̂LRĝ

old
1,1V̂RL)

−1ĝoldE,EV̂LRĝ
old
1,E (2.62)

For convenience, we defined: t̂1 = ĝold1,1V̂RL, t̂2 = ĝoldE,EV̂LR, Â = (Î − t̂2t̂1)
−1t̂2ĝ

old
1,E and
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B̂ = (Î − t̂1t̂2)
−1t̂1ĝ

old
E,1. With these definitions Equation (2.62) can be written as:

Ĝnew
E,E = ĝoldE,E + ĝoldE,1V̂RLÂ (2.63)

Similarly, we determine the GF Ĝnew
1,1 using Dyson equation (Equation 2.49), as follows:

Ĝ1,1 = ĝ1,1 + ĝ1,NcV̂Nc,Nc+1ĜNc+1,1 (2.64)

ĜNc+1,1 = ĝNc+1,Nc+1V̂Nc+1,NcĜNc,1 (2.65)

ĜNc,1 = ĝNc,1 + ĝNc,NcV̂Nc,Nc+1ĜNc+1,1 (2.66)

Inserting Equation (2.66) into Equation (2.65) leads to:

ĜNc+1,1 = ĝNc+1,Nc+1V̂Nc+1,Nc(ĝNc,1 + ĝNc,NcV̂Nc,Nc+1ĜNc+1,1) →

ĜNc+1,1 = (Î − ĝNc+1,Nc+1V̂Nc+1,Nc ĝNc,NcV̂Nc,Nc+1)
−1ĝNc+1,Nc+1V̂Nc+1,Nc ĝNc,1 (2.67)

Last, inserting Equation (2.67) into Equation (2.64) gives:

Ĝ1,1 = ĝ1,1 + ĝ1,NcV̂Nc,Nc+1·

(Î − ĝNc+1,Nc+1V̂Nc+1,Nc ĝNc,NcV̂Nc,Nc+1)
−1ĝNc+1,Nc+1V̂Nc+1,Nc ĝNc,1

(2.68)

or else:

Ĝnew
1,1 = ĝold1,1 + ĝold1,EV̂LR(Î − ĝold1,1V̂RLĝ

old
E,EV̂LR)

−1ĝold1,1V̂RLĝ
old
E,1 (2.69)

and using the definitions for t̂1, t̂2, Â and B̂, we have that:

Ĝnew
1,1 = ĝold1,1 + ĝold1,EV̂LRB̂ (2.70)

For the term Ĝnew
1,E it is:

Ĝ1,2Nc = ĝ1,NcV̂Nc,Nc+1ĜNc+1,2Nc (2.71)

ĜNc+1,2Nc = ĝNc+1,2Nc + ĝNc+1,Nc+1V̂Nc+1,NcĜNc,2Nc (2.72)

We replaced ĜNc,2Nc from Equation (2.60) into Equation 2.72, as follows:

ĜNc+1,2Nc = ĝNc+1,2Nc + ĝNc+1,Nc+1V̂Nc+1,NcĜNc+1,1·

(Î − ĝNc,NcV̂Nc,Nc+1ĝNc+1,Nc+1V̂Nc+1,Nc)
−1ĝNc,NcV̂Nc,Nc+1ĝNc+1,2Nc

(2.73)
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Inserting Equation (2.73) into Equation (2.71) leads to:

Ĝ1,2Nc = ĝ1,NcV̂Nc,Nc+1[ĝNc+1,2Nc + ĝNc+1,Nc+1V̂Nc+1,Nc·

(Î − ĝNc,NcV̂Nc,Nc+1ĝNc+1,Nc+1V̂Nc+1,Nc)
−1ĝNc,NcV̂Nc,Nc+1ĝNc+1,2Nc ]

(2.74)

or else:

Ĝnew
1,E = ĝold1,EV̂LR[ĝ

old
1,E + ĝold1,1V̂RL(Î − ĝoldE,EV̂LRĝ

old
1,1V̂RL)

−1ĝoldE,EV̂LRĝ
old
1E] (2.75)

and the use of definitions t̂1, t̂2 and Â leads to:

Ĝnew
1,E = ĝold1,EV̂LR[ĝ

old
1,E + t̂1Â] (2.76)

For the term Ĝnew
E,1 it is:

Ĝ2Nc,1 = ĝ2Nc,Nc+1V̂Nc+1,NcĜNc,1 (2.77)

ĜNc,1 = ĝNc,1 + ĝNc,NcV̂Nc,Nc+1ĜNc+1,1 (2.78)

Inserting ĜNc+1,1 from Equation (2.67) into Equation 2.78 leads to:

ĜNc,1 = ĝNc,1 + ĝNc,NcV̂Nc,Nc+1·

(Î − ĝNc+1,Nc+1V̂Nc+1,Nc ĝNc,NcV̂Nc,Nc+1)
−1ĝNc+1,Nc+1V̂Nc+1,Nc ĝNc,1

(2.79)

Inserting Equation 2.79 into Equation (2.77), as follows:

Ĝ2Nc,1 = ĝ2Nc,Nc+1V̂Nc+1,Nc [ĝNc,1 + ĝNc,NcV̂Nc,Nc+1·

(Î − ĝNc+1,Nc+1V̂Nc+1,Nc ĝNc,NcV̂Nc,Nc+1)
−1ĝNc+1,Nc+1V̂Nc+1,Nc ĝNc,1]

(2.80)

or else:

Ĝnew
E,1 = ĝoldE,1V̂RL[ĝ

old
E,1 + ĝoldE,EV̂LR(Î − ĝold1,1V̂RLĝ

old
E,EV̂LR)

−1ĝold1,1V̂RLĝ
old
E,1] (2.81)

and with the definitions t̂1, t̂2 and B̂ it is:

Ĝnew
E,1 = ĝoldE,1V̂RL[ĝ

old
E,1 + t̂2B̂] (2.82)

Equations (2.63), (2.70), (2.76) and (2.82) calculate the surface GFs ĜSL and ĜSR for each

iteration. If for each element of the GFs (2.63), (2.70), (2.76) and (2.82) it is |Ĝ[n] −
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Ĝ[n−1]| ≤ ϵGF for the n­th step, the recursive calculations stop. Here, ϵGF is chosen here

to be 10−8. After convergence is achieved, ĜE,E = ĜSL is the surface GF for the left lead

and Ĝ1,1 = ĜSR is the surface GF for the right lead respectively.

In order to include the contributions from the leads, we calculated the GF of the last

cell ((Nc­th cell) as follows:

ĜNc,Nc = [(E + iη)ÎNc,Nc − ĤNc,Nc − Σ̂+
L − Σ̂+

R]
−1 (2.83)

where the retarded and advanced self­energy functions from the left Σ+
L ,Σ

−
L and right lead

Σ+
R,Σ

−
R are:

Σ̂+
L = V̂ †

L Ĝ
+
SLV̂L, Σ̂−

L = V̂ †
L Ĝ

−
SLV̂L (2.84)

Σ̂+
R = V̂RĜ

+
SRV̂

†
R , Σ̂−

R = V̂RĜ
−
SRV̂

†
R (2.85)

Ĝ+
SL and Ĝ

+
SR are the retarded surface GFs for the left and right lead and Ĝ

−
SL and Ĝ

−
SR are

the advanced surface GFs for the left and right lead respectively. The matrices V̂L and V̂R

correspond to the electron interactions between the central device and the left and right

lead respectively.

2.4.3 Total DOS and Local DOS

In order to find TDOS, we added the contributions from each cell according to Equation

(2.56). ForNc­th cell we included the contribution from the leads by obtaining the surface

greens functions ĜSL and ĜSR and including them in the GF ĜNc,Nc , as follows:

TDOSnew = TDOSold − 1
π
Im Tr

(
ĜNc,Nc · (ÂNc + ÎNc,Nc)

)
(2.86)

whereANc was obtained from Equation (2.54), where the matrix elements V̂i,i−1 and V̂i−1,i

correspond to the electron interactions between the Nc­th cell and the leads for cutoff dis­

tance d=1.82 Å for the xy­plane. Last, TDOS was normalized by the number of atoms in

the system.

Similar to the calculation of TDOS, for the calculation of LDOS we also used the GF

ĝ
[i]
i,i in Equation (2.55) and we included the contribution from the leads for the GF of the

Nc. By using the GFs ĝ
[i]
i,i, we determined the GFs Ĝi,i for each cell i, in order to take into
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account the contributions from all the atoms, as follows:

Ĝi,i = ĝ
[i]
i,i + ĝ

[i]
i,iV̂i,i+1ĝ

[i+1]
i+1,i+1V̂i+1,iĝ

[i]
i,i (2.87)

We obtained LDOS by replacing the GFs from Equation (2.87) for each atom j into the

following equation:

LDOSj = − 1
π
Im (Ĝj,j) (2.88)

where Ĝj,j refers to the GF of the individual atom j.

2.4.4 Transmission

Transmission, T̂ , shows the probability that a particle (electron) passes through a barrier

(in our study from the Left to the Right Lead, Subsection 2.4.2). For the single channel

case, the value of transmission is between zero and one, where zero indicates no transmis­

sion and one complete transmission. Transmission can be greater than one if more than

one channel is available. In practice, we are looking at transmissions for periodic systems

and we divide by the cell width. The transmission, T̂ , across hBLG (Central Device) is

calculated using the Caroli formula [133]:

T̂ = Tr(Γ̂LĜ+Γ̂RĜ−) (2.89)

where the retarded GF Ĝ+ and the advanced GF Ĝ− correspond to atoms of the Nc­th cell

in the central device (Equation (2.83) gives the expression for the retarded GF of theNc­th

cell). Here, Γ̂L and Γ̂R are the broadening matrices for the left and right lead respectively,

which account for the broadening effect. The broadening effect arises from the uncertainty

principle in quantum systems. The energy levels have a finite uncertainty in energy due to

the limited lifetime of the excited states. The broadening matrices Γ̂L and Γ̂R are related to

the self­energies Σ̂+
L , Σ̂

−
L , Σ̂

+
R and Σ̂−

R (self­energies are explained in Subsection 2.4.2), as

follows:

Γ̂L = i[Σ̂+
L − Σ̂−

L ], Γ̂R = i[Σ̂+
R − Σ̂−

R ] (2.90)
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Thus, transmission, T̂ , can be written as:

T̂ = Tr(i[Σ̂+
L − Σ̂−

L ]Ĝ+i[Σ̂
+
R − Σ̂−

R ]Ĝ−) (2.91)

2.5 Summary of Chapter

In this Chapter we presented the mathematical and computational tools that were used

for the implementation of our calculations throughout this thesis. We explained the the­

oretical formalism of DFT calculations. We also included the TB formalism, which is a

semi­empirical method. Next, we introduced the concept of the RGF method which is

computationally very efficient. We also showed the usefulness of the RGF method for the

calculation of TDOS, LDOS, and transmission, T .
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Chapter 3 Strain­induced stacking

transition in graphene

3.1 Introduction

Strain can have a considerable effect on the structural, electronic, and transport proper­

ties of 2D materials and heterostructures. Here, we focused on the effect of heterostrain

on the structural properties of BLG. Uniaxial and biaxial heterostrain can modify its stack­

ing arrangement of BLG, as already mentioned in Subsection 1.2.4. We investigated the

strain­induced stacking transition in hBLG, by performing DFT calculations and investi­

gated the interplay between an externally applied heterostrain and the resulting stacking.

This way, we determined how a strain applied to one layer (bottom layer or L1) is trans­

ferred to a ‘free’ layer (top layer or L2) and at what critical strain the ground­state AB

stacking is disrupted (Figure 3.1). This is an alternative way to twistronics for engineering

stacking order, which affects the electronic, transport, and optical properties of BLG near

this critical point, due to the change in stacking order.

Uniaxial strain can be applied on the L1 layer of BLG experimentally with its deposi­

tion on a flexible substrate (Subsection 1.2.4). Raman spectroscopic studies showed that

the maximum strain that can be transferred to MLG through a flexible polymer substrate

is 1.3%­1.8% [59, 64–67]. However, there are some ways to increase the strain applied to

MLG through the straining of the substrate, by adding formvar resins as a buffer layer to

this system [68]. With this method, the maximum strain that can be transferred to MLG is

3.3%, which is quite large.

51
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Figure 3.1: Structure of the BLG system considered in this work, where uniaxial strain is
applied only to the L1 layer and we consider strained and unstrained configurations of the
L2.

Androulidakis et al. used a flexible substrate to apply heterostrain on BLG [61]. They

showed that for uniaxial tensile strain up to 1% on the flexible substrate, the strain transfer

between the substrate and the L1 layer of BLG is always larger than the strain transfer

between the two graphene layers by three to four times. Also, they showed that the strain

transfer depends on the amount of the applied strain on the substrate.

There are two energetic costs that determine the final stacking of BLG concerning the

applied heterostrain, the cost of straining the ‘free’ layer and the cost of changing the initial

ground state AB stacking. For small amounts of strain applied to the L1, the ‘free’ layer is

expected to strain by the same amount, as the energetic cost of straining is small compared

to that of breaking uniform AB stacking. However, at a certain critical value of applied

strain, which is not known yet, the energetic cost of maintaining strain in the ‘free’ layer

exceeds the cost of breaking AB stacking. At this point, strain is released in the free layer

as the energy benefit in doing so is greater than the energy penalty to be paid for a less­

than­ideal stacking configuration. At this critical strain, a transition between a uniform

AB stacking order and a non­uniform stacking will occur, together with the formation of

Moiré superlattices.

Theoretical studies showed the possibility of commensurate­incommensurate transi­

tion in BLG with the one layer being stretched or compressed along the AC direction,

using the Frenkel­Kontorova model and DFT calculations [71]. For ­0.39% compressive

heterostrain, there is a need for reducing the elastic energy of the system, which leads
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to the first incommensurability defect. Figure 3.2 depicts the energy difference of total

energies of BLG for the incommensurate state with a single incommensurate defect and

without per unit width of the layers perpendicular to the elongation as a function of the

relevant elongation. This indicates that as the elongation increases, the energy difference

is decreased.

Experimentally, Frank et al. performed Raman spectroscopic measurements for BLG

which was deposited on a polymer substrate and they found an uneven stress transfer be­

tween the two graphene layers for large strain [66]. This was also verified theoretically

by Wang et al., who also performed Molecular Dynamics simulations for a graphene flex­

ible substrate and a graphene flake connected to it. They found that for a large value of

applied uniaxial heterostrain on the graphene flexible substrate, the relevant stacking was

non­uniform due to the lattice mismatch [134]. However, the critical strain threshold that

this happens is not known yet, and we performed DFT calculations to find it.

Figure 3.2: Difference in the total energies of BLG for the incommensurate state with a
single incommensurate defect and without per unit width of the layers perpendicular to the
elongation as a function of the relevant elongation. Figure adapted from [71].

Section 3.2 has the computational details of the DFT calculations performed to find the

critical strain of the transition and the relevant results are included in Section 3.3. We have

used a simplemodel to determine approximately the critical strain for the transition. Taking

into account this approximate value of critical strain, we did the actual DFT calculations

for values of strain close to this value. To overcome restrictions caused by the use of

periodic boundary conditions in the graphene plane, the hBLG system was approximated

using a hydrogen­terminated armchair graphene nanoribbon (AGNR) adsorbed on top of

an MLG. The dangling carbon bonds at the AGNR edges were passivated with hydrogen

atoms. Section 3.4 has a discussion of these results, concerning the feasibility of this study
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to experimental methods as well as its potential applications.

3.2 Computational details

DFT calculations were performed using VASP­5.4.1. The Perdew­Burke­Ernzerhof

(PBE) [135] parameterization of the GGA functional was employed and the vdW inter­

actions were included using the D2 semi­empirical method of Grimme. The plane wave

basis set was converged using a 950 eV energy cutoff. A 13 × 21 × 1 k­point mesh was

used to determine the total energies of both perfect unstrained MLG and BLG for the DFT

calculations. All structures were optimized until the residual forces were less than 0.01

eV/Å and a vacuum layer of at least 11.5 Å was included in the direction normal to MLG

or BLG to ensure no spurious interactions between repeating slabs. The GGA­calculated

lattice constants of MLG and BLG were both found to be 2.47 Å, in good agreement with

the experimental value of 2.46 Å. The interlayer distances in AB­ and AA­stacked BLGs

were found to be 3.37 Å and 3.5 Å, respectively, in good agreement with previous theo­

retical [136] and experimental studies [137, 138].

Heterostrain was then introduced by straining the MLG along the ZZ direction. A 21×

5×1 k­point meshwas sufficient to converge the total energy of all the composite structures

(AGNR/MLG) considered. A distance of at least 12.5 Å was maintained between periodic

replicas of adsorbed AGNRs to ensure that they do not interact. To achieve this, the size of

the L1 layer is increased for wider ribbons. The optimal AGNR width was determined by

comparing the stacking­dependent AGNR binding energy (EB) to the stacking­dependent

binding energy of BLG. These quantities are normalized by the overlap between the two

layers (Equation (3.1)), in order to allow a meaningful comparison between ribbons of

different widths. In this case, the in­plane positions of the two central atoms of the AGNR

were held fixed at the chosen stacking and all other AGNR atoms were allowed to relax

both in­plane and out­of­plane. To determine the lowest energy stacking configuration for

different heterostrains, the carbon­hydrogen bonds and the interlayer distance between the

MLG and the AGNR were relaxed while the in­plane positions of all other atoms were

held fixed.
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The interlayer distance is found to largely follow the stacking order, as expected. Be­

yond its role in determining the stacking order, a strain of order 1% has a negligible ad­

ditional effect (<0.01 Å) on the interlayer distance. This is at least an order of magnitude

smaller than the variation due to stacking or due to the finite width of the ribbon in compos­

ite systems. A reduced interlayer distance is found in our composite systems compared to

infinite bilayers (3.25 Å versus 3.37 Å for AB­stacked regions), similar to the trend noted

previously in bilayer GNRs.

3.3 Results

To determine the critical strain for which a transition occurs from a uniformly strained

BLG with AB stacking to a heterostrained system with disrupted stacking, we compared

the energetics of two limiting cases: when L2 layer either adopts the same strain as that

applied to L1 or it remains completely unstrained. Possible intermediate scenarios, where

the layer L2 adopts a non­zero strain different from that in the L1 layer or displays a non­

uniform strain distribution, are not considered in this work due to their high computational

cost. Similarly, in order to maintain periodicity for the DFT calculations, we neglect the

role of contraction in the direction perpendicular to the applied strain. This is equivalent

to setting Poisson ratio ν=0.

3.3.1 Simple Model

We used a simple model to determine approximately the amount of critical strain required

for the transition and then we performed DFT calculations for a strain range close to this

approximate critical value. There are two principal energy costs, due to strain (∆Estrain)

and stacking (∆Estack), which determine the behavior of the L2 layer when uniaxial strain

is applied to the L1. To get a rough estimate of where the transition between a strained and

unstrained L2 layer occurs, we can compare the expected energy costs of straining the L2

layer in isolation, and of breaking AB stacking in an unstrained BLG system.

We first consider∆Estrain = E−Eunstrained, the energy cost associated with straining the

L2 layer away from its relaxed structure to match the strain applied to L1. The energy cost
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of straining a graphene layer increases with the amount of strain considered, as shown in

Figure 3.3 (a) for MLG with strain applied along the ZZ direction. Here,∆Estrain displays

almost identical behavior in AA­ and AB­stacked BLG, once normalized by the number

of atoms in the system, and for strains along the AC direction in all three systems, with a

maximum variation of only 2.8 meV per atom. Since ∆Estrain is not significantly affected

by the strain direction, or the nature of the stacking in BLG systems, the curve in Figure

3.3 (a) should also be an excellent approximation to the energetic cost of straining a single

layer in BLG in the absence of stacking effects.

If the amount of strain is different in the two layers, the system is no longer able to

maintain energetically favorable AB stacking and instead must display a modulation of the

stacking order with an associated energy cost∆Estack = E−EAB. Although themodulation

wavelength depends on the strain mismatch, the energy cost per atom is roughly constant,

as a similar range of stackings will occur for any mismatch. Therefore,∆Estack should not

depend sensitively on the strain applied to the L1, and we approximate it by considering

different stacking configurations in unstrained BLG. Figure 3.3 (b) shows the energetic cost

of rigidly shifting one graphene layer over the other along ZZ or AC directions, starting

from either an initial AB or AA stacking. As the layers are shifted, the in­plane positions

of atoms are held fixed to maintain the desired stacking configuration, but the interlayer

distance is allowed to relax. Any shift away from AB stacking results in a positive∆Estack,

confirming that this is the preferred configuration. Here, ∆Estack is the maximum for AA

stacking with a value of 5.84 meV/atom, in excellent agreement with the results of DFT

calculations in Reference [48]. The stacking modulation arising from heterostrain contains

a combination of various stackings, and the corresponding∆Estack can be approximated as

an appropriately weighted average of the values appearing in Figure 3.3 (b).

Comparing Figures 3.3 (a) and (b) allows us to understand the interplay between strain

and stacking in hBLG. For small strains applied to the L1, ∆Estrain ≪ ∆Estack, and it is

energetically favorable for the L2 layer to adopt the same strain. However, as the strain

applied to the L1 layer is increased, the cost of uniformly straining the L2 layer eventually

balances the cost of breaking AB stacking. A transition occurs above this critical strain,

releasing the strain in the L2 layer and introducing a modulation of the stacking order.
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Figure 3.3: (a) ∆Estrain per atom as a function of applied ZZ uniaxial strain in MLG.
(b) ∆Estack per atom as a function of the relative shift between layers in BLG for different
initial stackings (AA and AB stackings). Shifts along both ZZ and AC directions are shown.

The maximum possible value of critical strain is restricted by the finite range of ∆Estack:

the maximum possible cost of breaking AB stacking (i.e., ∆EAA
stack ∼ 5.84 meV/atom),

corresponds to a strain of 1.98%. In reality, the mix of different stackings that occur in a

hBLG will give 0 < ∆Estack < ∆EAA
stack. For an even distribution of stackings between AB

and AA, we can estimate ∆Estack ∼ 1
2
∆EAA

stack, corresponding to a critical strain of 1.36%.

Uneven stacking distributions can occur if the considered strain excludes certain stackings,

or if a non­uniform strain distribution is allowed in the L2. However, even accounting for

a significant reduction in ∆Estack due to these effects does not dramatically change the

expected critical strain. For example, assuming ∆Estack ∼ 1
4
∆EAA

stack still gives a critical

strain of 0.94%. The results of this simple model strongly suggest that the critical strain is

near 1%, and that uniform AB stacking will be broken when larger strains are applied to

the L1.

3.3.2 AGNR on strained MLG

DFT calculations of hBLGs will now be used to test the prediction of this simple model

that the critical strain occurs near 1%. However, periodic boundary conditions enforce a

commensurability condition when dealing with two infinite graphene sheets. Although ne­

glecting contraction in the transverse direction (ν=0) simplifies matters considerably, only

certain values of strain would be achievable. The unit cells of hBLG are different in size

and depend on the value of heterostrain, as atomic structures showed for 11.1% and 20%
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uniaxial strain applied along the ZZ direction on L1 layer of BLG [139]. Furthermore,

very large supercells would be required to investigate the relevant strain range, because

1% strain requires 101 cells of the L2 layer and 100 cells of the strained layer L1. Get­

ting sufficient resolution to determine the critical strain quickly becomes computationally

prohibitive.

Figure 3.4: (Left:) Structure of BLG when the bottom (orange) layer is uniaxially strained
by 15% along the ZZ (vertical) direction. A modulation of the stacking is clearly visible.
(Right:) The systems considered in this work, where AB and shifted regions of the BLG
system are represented by finite­width AGNRs.

To overcome this constraint, we instead investigate the interplay of strain and stacking

in a system where different regions of the L2 layer are modeled by finite­width AGNRs.

This is shown schematically on the left side of Figure 3.4, for an exaggerated strain of 15%

along the ZZ (vertical) direction applied to the L1. A 1DMoiré pattern is evident in the full

BLG with regions of AB stacking (lower dashed box) separated by other stacking types.

Due to the ZZ strain direction and ν=0, no AA stacking occurs and the furthest stacking

from AB is that in the upper dashed box, which we denote as ‘Shifted’ and corresponds

to rigidly shifting one layer of unstrained BLG by half a graphene lattice constant in the

ZZ direction. We aim to determine the energetics of the complete system (left­hand side)

by modeling different portions of it by a finite­width ribbon adsorbed onto an infinite L1

layer (right­hand side). The AGNR can be rigidly shifted over the continuous L1 layer to
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approximate the different stackings that occur in a hBLG system. As the L2 layer is no

longer continuous, but now consists of a periodic array of AGNRs, we can consider differ­

ent strains in each layer using a constant­size supercell. We consider hydrogen­passivated

AGNRs to circumvent features including unpassivated bonds and localized edge states.

These may occur in certain AGNRs but are not expected in extended bilayer systems. It

was found that the width dependence does not experience the hyperbolic expected trend

in the band gap for AGNRs, using the extended Hückel theory [140]. Also, zigzag GNRs

(ZGNRs) have localized edge states, as TB calculations indicated [141, 142]. For our

calculations, the relaxed structure of the H­passivated 6­AGNR/MLG system, with the

periodic unit cell is shown by the grey box in Figure 3.5.

Figure 3.5: Relaxed structure of the H­passivated 6­AGNR/MLG system, with periodic
unit cells shown by the grey box.

We approximated the two graphene layers with one infinite graphene sheet and one

graphene nanoribbon adsorbed on top of it, to study the effects of stacking on the energet­

ics, but we consideredmultiple stacking configurations for the AGNR to represent different

sections of the BLG setup. To assess the reliability of this model, we reproduced the bind­

ing energy EB between two graphene layers of the approximate MLG/AGNR system and

the perfect BLG for various stackings. We used this approximate system because in this

study we are only interested in the energetic aspects and this approximate system would

not give good results, necessarily, for the study of electronic properties. Other DFT stud­

ies concerning the electronic properties of hBLG have considered the full unit cells, which
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restricted them to certain strain values [96, 139]. We finally found that the approximate

system indeed captures the important energetic aspects that arise due to different stackings.

The choice of AGNR width is determined by that which best approximates the stacking­

dependent EB of BLG at a reasonable computational cost. To meaningfully compare EB

in BLG and the n­AGNR/MLG systems we normalise EB by the number of carbon atoms

in the top­layer, Nc, as follows:

β =
EB

Nc
(3.1)

Figure 3.6 (a) shows how β varies as the L2 layer is rigidly shifted along the AC di­

rection from AA to AB alignment with the L1. The dashed black curve shows β for BLG

while the other curves show β for the approximate n­AGNR/MLG systems with n=5,. . . ,

10. While there is an offset between the BLG EB and the AGNR/MLG EB, this offset

is approximately constant across all stackings between AA and AB. For widths in excess

of n=6, the error is less than 10%. Figures 3.6 (b) shows the EB difference between AA

and AB stackings, βAA − βAB, as a function of width n, compared to the corresponding

quantity for BLG (dashed line). Thus, the finite size of the ribbon model is suitable for

studying the effects of stacking on the energetics, but for the study of electronic, transport

or optical properties it is required to use the full unit cells of the hBLG system. Agreement

between the BLG and AGNR/MLG systems improves in general with the increase of n,

but non­uniformly due to different behavior of ribbons with widths n=3q, 3q+1 and 3q+2,

where q=1, 2, 3, . . . . Similar trends have been noted, for example, for the band gap of

AGNRs [143]. The odd­even effect states that certain properties alternate between odd

and even values. Therefore, there is not a strict ‘odd­even’ effect, but there is a period 3

oscillation. The TB calculations showed the lowest band gap (almost zero) for n=3q+2,

a bigger band gap for n=3q, and an even higher one for n=3q+1 [143]. As we are inter­

ested in how stacking changes the energetics, and not the absolute magnitude of the EB,

the 6­AGNR is deemed sufficiently wide for our purposes.

To estimate the critical strain in hBLG using the 6­AGNR/MLG system, we consider

the energy difference, ∆EX , between strained and unstrained AGNR layers, for different

stackings (X=AB, shifted). We emphasize that it is the unstrained case that gives rise to

broken stacking, due to the strain applied to the L1, whereas the strained case restores AB
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Figure 3.6: (a) Plot ofEB (per overlap atom) β as a function of stacking for different width
n­AGNR/MLG systems, compared to that for infinite BLG. (b) Energy difference βAA−βAB
as a function of width n for the approximate system n­AGNR/MLG, with the black dashed
line showing the corresponding BLG result.

stacking by matching the strain in both layers. The energy difference between strained and

unstrained AGNR layers is then given by:

∆E = EAB, strain − EX,unstrain , (3.2)

where we note that the energy of the final state EAB, strain is the same in each case, as AB

stacking has been restored. Here, EX,unstrain corresponds to the case that MLG is strained

and AGNR is unstrained, with the stacking, X , set by fixing the positions of the central

carbon atoms of the AGNR. The in­plane positions of the AGNR carbon atoms are held

fixed as determined by the strain and stacking, while the hydrogen­carbon bonds and the

interlayer distance are allowed to relax.

The full heterostrained system is considered as an average of the two stacking extremes,

AB and Shifted (more general cases will be discussed later), as follows:

∆Eav = EAB, strain − 1
2
(EAB, unstrain + Eshifted, unstrain). (3.3)

Negative values of ∆Eav imply that the L2 layer prefers to be strained so that the bilayer

system remains AB­stacked. Positive values indicate that the L2 layer prefers to be un­

strained, and the system adopts a non­uniform stacking profile. Figure 3.7 shows∆E and
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Figure 3.7: Energy difference ∆E between the strained and unstrained L2 geometries
as a function of ZZ uniaxial strain applied to the L1. In the strained case, the layers are
AB­stacked, whereas in the unstrained case, different stackings are possible, with different
contributions to the ∆E. These calculations were performed using the 6­AGNR/MLG
system, and the averaged curve indices a critical strain of ε ∼1.2%.

∆Eav, as a function of the applied strain along ZZ direction. The curve for the AB­stacked

AGNR/MLG system shows that it prefers to be unstrained, i.e., that it is energetically fa­

vorable for the AGNR to break perfect AB stacking, instead of maintaining a strain of

between 0.8%­1.3%. This is not surprising, as the stacking mismatch is not too significant

in this part of the modulated structure (Figure 3.4). However, in the Shifted region, the

stacking deviates furthest from AB when the L2 layer is unstrained, and the associated

∆E curve shows that a strained, uniform AB stacking is preferred. The overall preference

of the system is a competition between these different regions. For a uniform distribution

of stackings in the modulated structure, the averaged case shown by the grey curve in Fig­

ure 3.7 indicates that a transition occurs at a critical strain of ε ∼1.2%. This is in very

good agreement with the estimate given by the simple model.

3.4 Discussion

For a heterostrain to occur a greater transfer of strain is required between the polymer

substrate and the bottom graphene layer than between the two graphene layers (Section

3.1). This is the case observed experimentally by Raman spectroscopic measurements for

AB­stacked BLG, compared to MLG [144], with the strain transfer between the substrate
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and the L1 layer to be larger than the strain transfer between the two layers [61]. Modu­

lated stacking profiles in BLG systems lead to a wide range of new properties, particularly

when combined with an interlayer bias, as already mentioned in Subsection 1.2.3. Such an

interlayer bias will open a band gap in regions with particular stackings, leading to a com­

plex distribution of gapped and conducting regions that follow the underlying stacking

pattern. This has been widely investigated in twisted bilayers where, for example, net­

works of 1D topological channels have been found between gapped AB­ and BA­ stacked

regions of the Moiré pattern, which have been investigated both with the continuum theory

calculations [54, 145] and STS measurements [102].

Heterostrained, untwisted BLG, as considered here, could potentially host a similar

range of phenomena. The schematic structure in Figure 3.4 shows the formation of a 1D

Moiré pattern with different stacking profiles, which would also create a spatially varying

band gap landscape in the presence of an interlayer bias, as we discuss in the Chapter

4. To maintain periodicity for our calculations, we neglected the Poisson contraction ν

perpendicular to the direction of the applied strain. Including such a contraction would

lead to a 2D modulation of the stacking pattern and a more complete analogy with twisted

systems. We note that setting ν ̸=0 (Chapter 5) allows a wider range of stackings when

the free layer is unstrained than for the simple 1D modulation considered in Figures 3.4

and 3.7. In particular, more energetically unfavorable stackings, such as AA, are now

possible, which may slightly increase the critical strain due to the increased energetic cost

of breaking uniform stacking.

Last, the estimate of the critical strain in this work is based on the L2 layer being

either unstrained or uniformly adopting the same strain as the L1. We have not considered,

for example, an intermediate value of strain in the free layer. We expect such cases to

be less energetically favorable than the unstrained free layer. This is because such cases

will have to pay both strain and stacking­related energy costs, and the latter is expected

to be largely strain­independent, as discussed in Section 3.3.1. Therefore the minimum

energy heterostrained system should be that which minimizes ∆Estrain, namely that with

an unstrained free layer. Due to the periodicity constraints of our calculations, we also

have not been able to explicitly consider the role of non­uniform strain in the free layer, as
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discussed in Section 3.1.

3.5 Summary of Chapter

In this Chapter we showed the existence of a critical strain ε ∼1% applied to one layer of

BLG, which was supported by DFT calculations. First, we considered the energetic costs

of strain and stacking independently in infinite, periodic systems, by doing two simple

approximations to determine the range of critical strain that exists. Next, we performed

further DFT calculations which consider both contributions of these energy costs simulta­

neously, and one layer is represented by finite AGNRs, in order to reduce computational

cost.

The application of critical strain to one of the two layers of BLG could be used to tune

the stacking profile of the system. In particular, below the critical strain, it is energetically

favorable to transfer the strain to the second layer in order to maintain a uniform AB stack­

ing configuration. On the other hand, above the critical value, the cost of maintaining the

strain in the second layer is too high and the system prefers to release it and adopts a non­

uniform stacking profile. Thus, for values of strain bigger than∼1% strain the stacking of

BLG changes, and this consequently affects different properties, like electronic structure

and transmission, that are directly related to the relative stacking. In the next Chapters 4

and 5, we explain the effect of heterostrain on the electronic and transport properties.



Chapter 4 1D topological channels in

graphene

4.1 Introduction

The application of heterostrain on BLG leads to the creation of Moiré superlattices

(Figures 1.11 (a)–(c)). In some cases, interface channels are created (AA­ and SP­stacked

domains), which exist between the AB/BA­stacked domains. These interface channels

may have similar properties compared to the ones that tBLG has. Concerning the elec­

tronic properties of interface channels in tBLG, with the application of large enough inter­

layer bias (∆>200 meV) there is a localization of electronic states in AA­ and SP­stacked

domains (topological channels). Theoretical studies have shown that electrons propa­

gate without dissipation along these interface channels (AA­ and SP­stacked interfaces)

in minimally­twisted tBLG, using continuum model calculations [53, 54, 89, 92, 99, 100],

verified by STM measurements [101]. For twist angle θ ∼1.1◦ interesting phenomena

arise, like correlated insulating states and unconventional superconductivity, as experi­

mental studies showed [94]. Due to the similar Moiré domains created in hBLG (Figures

1.11 (a)–(c)), we expect relative phenomena.

DFT calculations have predicted that heterostrain can be used to open and tune an

electronic energy gap in BLG [139]. For these DFT studies the LDA functional was used,

while for our calculations for the study of the effects of stacking on the energetics of BLG

(Chapter 3) we used the GGA functional. Choi et al. showed how the direct band gap

(red color) and the indirect band gap (blue color) change with the application of uniaxial

65
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strain along the ZZ direction for BLG (Figure 4.1). For small strains (ε<2%) and for larger

strains (ε>10%) the band gap is direct, while for the intermediate strains between AA

and AB stackings, the band gap is indirect. A direct band gap means that the minimum

energy of the conduction band and maximum energy of the valence band of the electrons

occur at the same wavevector in the BZ, while for the indirect band gap, they occur for

different wavevectors in reciprocal space. In the case of the direct band gap, the electrons

can directly transition from the valence band to the conduction band with minimal change

in momentum. A direct band gap is more desirable in electronic applications, as electrons

can be emitted and absorbed more easily.

Figure 4.1: Band gap of hBLG as a function of the uniaxial strain applied on the L1. The
blue curve corresponds to the indirect band gap and the red curve corresponds to the direct
band gap. Figure adapted from [139].

Also, Crosse et al. performed theoretical calculations (nearest­neighbor TB method)

and showed how the energy band gap depends on both the application of interlayer bias

and uniaxial heterostrain for an initially AB­stacked BLG ribbon [146]. This system is

1D, so it is periodic only along one of the two perpendicular in­plane directions. The BLG

ribbon is wide enough, whichmeans that its size is sufficient so that the confinement effects

are negligible, which means that the band structure of the graphene ribbon resembles this

of bulk graphene. Its upper layer is subjected to uniaxial compressive strain along the AC

direction and its lower layer is subjected to a uniaxial tensile strain along the same direction.

In the absence of interlayer bias and the application of low strain (ε=2%), the BLG ribbon

still is band gap semimetal (region (A) in Figure 4.2). Thus, only with the application of

layer­asymmetric strain, there is no band gap opening for the BLG ribbon. However, with

the application of a large enough interlayer bias (∆ ∼300 meV), there is the formation

of a band gap of size of 400 meV (region (B) in Figure 4.2). Also, for the application of
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both uniaxial strain (ε ∼6%) and interlayer bias (∆ ∼300 meV), Crosse et al. found the

creation of a negative band gap, which means that the bands cross the Fermi Level and

the material is a metal, as shown in Figure 4.3 (region (C) in Figure 4.2). Therefore, the

application of only interlayer bias or both layer­asymmetric strain and interlayer bias is an

alternative way to tune the electronic properties of BLG systems and only the application

of heterostrain without interlayer bias is not sufficient to tune the electronic properties of

BLG ribbon.

Figure 4.2: Dependence of energy gap on both the interlayer bias and the uniaxial het­
erostrain for BLG ribbon, which is initially AB­stacked. Region (A) corresponds to the
case that only layer­asymmetric strain is applied to the ribbon without bias, region (B)
to the case that only interlayer bias is applied and region (C) to the case that both large
layer­asymmetric strain ε ∼6% and large interlayer bias (∆ ∼300 meV) are applied to
the BLG ribbon. Figure adapted from [146].

There is no study so far that explains the local electronic properties of the interface

channels in this heterostrained system. Continuum model calculations showed the forma­

tion of valley­protected topological channels in a similar system: BLGwhich has a domain

wall­grain boundary between AB and BA stackings (Figure 4.4) [53]. Figure 4.5 shows

the band structure around the Fermi level EF near the K­point (top panel) and K ′­point

(bottom panel) with the application of uniform interlayer bias (∆=50 meV) in the system

with a grain boundary. The bands for both panels are linear near Fermi level EF. This pair

of bands for the application of uniform interlayer bias has states that belong to the domain

wall, as the AB­ and BA­stacked domains are gapped. We expect to have the formation of
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Figure 4.3: Band structure of BLG without bias (dashed lines) and with bias (solid lined)
in the presence of a layer­asymmetric strain. In the case of applied bias there is a ‘negative’
band gap. Figure adapted from [146].

similar topological channels in 1%­AC­strained hBLG under the application of interlayer

bias.

Figure 4.4: Interface channel induced by a grain boundary in AB­stacked BLG. Figure
adapted from [53].

Moiré systems have been found experimentally to exhibit relaxation due to the many

different stacking arrangements that they have, such as tBLG systems [81]. This relax­

ation, which leads to local strain and deformations has been found to affect the properties

of these systems. For example, in Magic­Angle tBLG experimental studies showed the

formation of flat bands close to Fermi level EF [94, 95]. The flat bands lead to enhanced

DOS and correlated insulating states at half­filling. These flat bands also can lead to super­

conductivity, like in this case, which means that below a certain temperature, the material

conducts electricity without resistance. Zero­resistance states were observed for Magic­

Angle tBLG with critical temperature Tc=1.7 K.

Relaxation could also affect the electronic properties of hBLG, as it is a Moiré system.
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Figure 4.5: Band structure near Fermi level EF of BLG with a grain boundary along K
valley (top panel) andK ′ valley (bottom panel) with the application of∆=50 meV uniform
interlayer bias. The BLG is initially AB­stacked and results in the BA stacking with a grain
boundary between the two stackings. With the application of uniform interlayer bias the
AB­ and BA­stacked domains are gapped, while the domain boundary has localized states,
resulting in a robust topological channel. Figure adapted from [53].
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Molecular Dynamics and DFT calculations showed the creation of flat bands for hBLG

near Fermi level EF, with the use of out­of­plane relaxation, for ε±1% strain [96]. In this

study, they used a combination of Molecular Dynamics (to get the structure) and DFT (to

get the electronic structure). Because of the use of DFTwith periodic boundary conditions,

they were restricted to certain cell sizes and certain strains. These calculations included

both compressive and tensile strain from ­5% to +5%, allowing out­of­plane relaxation.

They showed the formation of flat bands near Fermi level EF only for ε±1% heterostrain.

They were primarily interested in the effect of the Moiré pattern on chemical functional­

ization. They found flat bands but did not investigate thoroughly and did not consider the

effect of a gate voltage. To do that on an experimentally relevant system size, you have

to use TB, which we do. Thus, it is important to include the effect of in­plane and out­

of­plane relaxation for the study of electronic properties of hBLG. For our calculations,

out­of­plane relaxation has been ignored for simplicity.

This Chapter includes the study of local electronic properties of hBLG for 1% applied

uniaxial heterostrain on the L1. In the absence of a Poisson contraction ν perpendicular

to the applied strain, this creates a regular 1D Moiré pattern. An example of the system

that we investigated is shown in the main panel of Figure 4.6. An exaggerated 4% uniaxial

strain is applied on the L1 along the AC direction (orange­bottom) and the L2 layer (blue­

top) remains unstrained. The resulting lattice mismatch along the y­direction gives rise to

an alternating sequence of (from bottom to top on Figure 4.6) AA (Figures 4.6 (c) & (e)),

AB (Figure 4.6 (a)), SP (Figure 4.6 (d)) and BA (Figure 4.6 (b)) stackings. This situation

can arise, for example, if the strain applied to a bilayer system using a flexible substrate

does not transfer between the layer directly in contact with the substrate to the L2 layer. In

Chapter 3, we proved that this can happen if the energetic penalty caused by the broken AB

stacking is less than the energy cost required to strain the L2 layer by the same amount. For

applied heterostrain of approximately 1% or greater, we found that the modulated stacking

is energetically favorable, which indicates that such strains can be used as a tool to tune

the stacking of a BLG system.

Here, we focus on the formation and evolution of interface states in hBLG under the

application of interlayer bias using the TB method. We want to find out if the application
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(a)  BA

(d)  SP

(b)  AB

(e)  AA

Figure 4.6: hBLG with 4% uniform heterostrain, applied along the AC direction to L1
layer (orange). A 1D Moiré pattern is formed, which consists of (c) & (e) AA stacking, (a)
BA stacking, (d) SP stacking, and (b) AB stacking.

of a uniform heterostrain and interlayer bias are sufficient for the creation of topological

channels in BLG. Section 4.2 contains the computational details of our TB calculations,

to determine the electronic properties of hBLG and a simple model to account for these

in­plane relaxations. In Section 4.3 we examine the band structure and the distributions

of states in hBLG, and compare the results to what is found for uniformly­stacked AA,

AB/BA, and SP systems. The application of realistic values of interlayer bias and het­

erostrain do not give clear signatures of the expected topological channels, as the relevant

band structures and the distribution of states demonstrated. In Section 4.4 we used a simple

model to mimic the effect of in­plane relaxation, which is motivated by previous studies

in twisted systems. In tBLG relaxation tends to minimize AA­stacked domains, maxi­

mize AB/BA­stacked domains, and sharpen SP­stacked interfaces, as already mentioned

in Section 1.2.5. These structural deformations affect the electronic band structure and, in

particular, the formation of flat bands at specific twist angles in tBLG.

In this heterostrained system, one layer is assumed to remain uniform due to its interac­

tion with a substrate. If strain is applied using a flexible substrate, the in­plane relaxation

should occur in the unstrained layer, as shown by Raman spectroscopic measurements for
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MLG [56, 58, 60] and for BLG [61] respectively. However, if the strain is applied to the

L2 layer using, for example, the tip of an atomic force microscope [105], then we expect

in­plane relaxation within this layer. Therefore, we consider in­plane relaxations of both

the strained and unstrained layers independently in order to capture the geometries that

emerge from both processes. We find that in­plane relaxation, of either the strained or

unstrained layer, allows for more robust topological interfaces to emerge due to larger,

gapped AB/BA­stacked domains and sharper AA­ and SP­stacked interfaces. After the

discussion of structural, energetic, and band structure considerations, we examine the re­

sulting topological interfaces in more detail in Section 4.5. The layer and sublattice distri­

bution of states at the AA­ and SP­stacked domains are investigated, and it was found that

it depends on the type of interface. Last, we discuss our findings and the potential role of

heterostrain as a mechanism to tune the presence and distribution of topological channels

in BLG systems.

4.2 Computational details

The electronic structure of hBLG which has a range of different stackings and inter­

layer biases is investigated using a TB model (Equation (2.37)). The nearest­neighbor

in­plane transfer integral for graphene which is used for these TB calculations is V 0
ppπ=­2.7

eV according to Reference [126], and the nearest­neighbor out­of­plane transfer integral

V 0
ppσ=0.48 eV and the unstrained interlayer distance d = 3.35Åfor BLG according to Refer­

ence [92], which have been mentioned in Section 2.3. We considered interactions beyond

nearest neighbors with a cutoff distance for the xy­plane of d=1.82 Å, to account for the

nearest­neighbor hopping terms with the application of heterostrain, as well as for the in­

terlayer interactions. The main geometry considered in this work is a BLG sheet with 1%

applied uniaxial heterostrain along the AC direction in L1, with the other layer L2, being

unstrained. As the stacking modulation does not affect periodicity along the ZZ direction

(Figure 4.6), the periodic unit cell required for calculations of this system consists of a

single chain of atoms from each layer. We assume an initial AA stacking at y=0 and the

stacking returns to AA at the top of the unit cell in order to maintain periodicity. This
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requires a total extension which is a multiple of yu=3a0, the width of a four­atom graphene

unit cell. We assume that the L1 layer containsN strained cells and ε is the relevant uniax­

ial applied strain. The unit cell for the 1% applied heterostrain case corresponds toN=100

strained cells in L1 and N=101 cells in L2 and contains in total 804 carbon atoms. The

band structures presented in the following sections are calculated using exact diagonaliza­

tion of the corresponding Hamiltonian matrices with the appropriate Bloch phases. We are

interested in the emergence of states confined to x­direction interfaces, so we only show

bands as a function of kx, with ky=0.

In­plane relaxation has been shown to play a vital role in determining the electronic

properties of twisted Moiré systems [84, 86, 87, 89, 92, 93]. The main effect of such

relaxation is an increase of the AB­ and BA­stacked domains at the expense of AA­ and

SP­stacked regions. In the presence of an interlayer bias, this affects the localization of

states along the sharper AA­ and SP­stacked interfaces between the gapped AB­ and BA­

stacked regions. To consider how in­plane relaxations affect the geometry of hBLG, we

employ a simple model that allows the relevant stackings of hBLG to be continuously

tuned. In our model, we assume that only one layer of the system is allowed to relax. As

mentioned in Section 4.1, the layer that is actually strained in the experiment will depend

on the method used to apply the strain. In experimental conditions, this corresponds to the

layer which is not in contact with the substrate, but only with the other graphene layer. We

first consider the case where relaxation occurs within the strained layer (L1). A uniform

strain ε = 1
N
applied to the L1 layer along the AC direction introduces an extension that

is linearly dependent on the unstrained y­coordinate y0,L1 and is given by:

∆yL1 (y0,L1) = ε y0,L1 . (4.1)

The linear extension and uniform strain as a function of position, are shown by the grey

curves in Figures 4.7 (a) and (b) respectively. The lattice mismatch with L2 layer con­

serves the high symmetry AA, AB, SP, and BA stackings when ∆yL1=0, a0, 3
2
a0 and 2a0

respectively, which correspond to yAA1
0,L1=0, yAB

0,L1 = Nyu
3
, ySP0,L1 = Nyu

2
and yBA

0,L1 = 2Nyu
3

.

The stacking returns to AA again at ∆yL1=yu=3a0 and yAA2
0,L1=Nyu. Due to periodicity,

AA1 and AA2 correspond to the same point, but it is useful to consider them separately in



74 CHAPTER 4. 1D TOPOLOGICAL CHANNELS IN GRAPHENE

0

2

4

y
(Å

)

Uniform
= 4
= 8

0

2

4

6
St

ra
in

 (%
)

yAA1 yAB ySP yBA yAA2

y

AB

AA
SP

BA

St
ac

ki
ng

(a)

(b)

(c)

Figure 4.7: (a) Local displacement, (b) strain, and (c) stacking order for 1% uniaxially
strained hBLG as a function of position along the AC strained direction (y). The grey
curve shows the case of a uniform uniaxial strain in layer L1, while the purple and orange
curves correspond to ‘relaxed’ structures for interface smoothness parameter α = 8 and
α=4.

the context of a finite unit cell. The positions of these high symmetry stacking locations

are shown along the x­axis in Figure 4.7 (c) and the local stacking near them by the Figures

4.6 (a)–(e).

To include the effect of relaxation and have sharper interfaces and wider gapped do­

mains, we replace the linear extension from Equation (4.1) with a summation of sigmoid

functions, ∆yrel.L1 (y0,L1) =
∑

i Si −
SAA1

2
, which have the following form:

Si(y0,L1) =
∆Yi

1 + e−(y0,L1−yi0,L1)/(α∆Yi)
, (4.2)

with i ∈ {AA1, SP,AA2}. These sigmoid functions are centered at the AA­ and SP­

stacked interfaces (orange and purple curves in Figure 4.7 (a)), where they locally increase

the strain (Figure 4.7 (b)) and sharpen the interfaces (Figure 4.7 (c)). The inclusion of the
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effect of relaxation leads to much lower strains and more uniform stackings in the AB­ and

BA­stacked regions. The ‘sharpness’ of an interface is determined by the parameter α,

which adjusts the local maximum value of strain at the interface and relates the character­

istic width of an interface to the total stacking shift (∆Yi) that occurs across it. Low values

of α correspond to sharp interfaces and bigger values of α to wider interfaces. However,

the model assumes that the effects of each interface are independent and break down if α

is increased to values where the interface regions begin to merge.

This approach can also be used to consider relaxation which occurs instead in the ini­

tially unstrained L2 layer, as is expected to occur if heterostrain is applied to the other

layer via a flexible substrate. In this case, a uniform tensile strain is first applied to L2 to

match that in the strained layer, before a non­uniform compressive strain is applied using

the ‘sum­of­sigmoids’ approximation above to return the average strain in the unstrained

layer to zero. The structural and electronic effects of both types of relaxation are discussed

in detail in Section 4.4.

4.3 Electronic properties of heterostrained systems

We consider the electronic structure of BLG with a 1% strain applied to one of the

layers, in the absence of interlayer bias and relaxation effects. The 804­atom unit cell of

this system is four times wider than the structure depicted in Figure 4.6. The electronic

structure of this system along the kx direction is shown in Figure 4.8 (a). It has a complex

series of subbands due to the large real­space unit cell with 804 atoms. The parabolic bands

that are expected for AB/BA­stacked BLG cannot be clearly distinguished here (Figure 1.5

(b)). There is a large number of bands that cross the Fermi energyEF nearE=0 and give the

system a metallic character. This suggests that the band structure from our heterostrained

system has features from the band structures of uniformly AA­ (Figure 1.5 (a)) and SP­

stacked (Figure 1.5 (c)) BLGs. Unlike AB stacking, these cases resemble the conical band

structure of MLG, but with two copies of the linear MLG cone separated in either energy

(AA), or energy and momentum (SP).

We now explore the relationship between the band structure of hBLG and those of
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regularly­stacked systems in more detail. Figures 4.8 (b)–(d) show the bands from Figure

4.8 (a) projected onto narrow 20 Å strips centered around yAB, yAA, and ySP respectively,

where the color of each point corresponds to the weight of the associated states of hBLG in

these regions. Figures 4.8 (b)–(d) show the effective band structures in the AB­, AA­, and

SP­stacked regions of hBLG. Bands that are only strongly colored in one region indicate

states that are largely localized in that region. Similarly, a strong correspondence between

the bands in each region and their bulk counterparts in Figures 1.5 (a)–(c) would indicate

that bands in a region with a particular stacking resemble those in a uniform bilayer with

the same stacking. However, the majority of these states, are not localized in this manner.

Instead, they have weight in multiple regions, indicating states that are distributed across

large parts of the system and not confined to regions with a particular stacking. These

states reside in regions of kx–E space common to all three stackings, and can be viewed

as hybridizations between states with similar momentum and energy that occur in regions

with different stackings. Although they have a similar spatial distribution to that expected

for topological interface states, we note that there is no band gap in this system.

Interlayer bias opens a band gap only in BLG systems with certain stackings, with the

largest gap occurring for AB stacking and no gap opens for AA­ and SP­stacked systems

(Figures 1.5 (d)–(f)). The application of interlayer bias can lead to a complex distribution

of gapped and conducting domains, and the formation of topological interface states, in

systems with modulated stacking, such as tBLG [54]. We anticipate that similar behaviour

could emerge in the heterostrained system considered here, and in particular that the AA­

and SP­stacked domains that separate the AB/BA­stacked regions should host 1D topo­

logically protected channels. Figure 4.9 (a) shows the band structure of the heterostrained

system when∆=­200 meV interlayer bias is applied and Figures 4.9 (b)–(d) show the band

structure and projections of the corresponding states onto each atom in a 20 Å strip around

AB­, AA­ and SP­stacked domains respectively. We note that here the negative potential

is applied to the unstrained layer L2. For an opposite sign of interlayer bias, a slightly dif­

ferent result is obtained, due to the inequivalence of the layers and the broken electron­hole

symmetry. We note that, unlike other 1D interface cases such as grain boundaries or sharp

bias flips [97, 98, 147–150], the application of an interlayer bias does not seem to give rise
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Figure 4.8: (a) K­valley band structure of a BLG system with 1% uniform heterostrain.
Figures (b), (c), and (d) show the band structure projected onto 20 Å wide strips around the
perfect AB­, AA­, and SP­stacked regions respectively. Most of the states are distributed
across multiple stacked domains, with exceptions for low energies which show confinement
to regions with particular stackings.
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Figure 4.9: (a) Band structure of a hBLG with 1% uniform heterostrain and an additional
interlayer bias ∆=­200 meV along kx direction. Figures (b), (c), and (d) show the band
structure projected onto 20 Åwide strips around the perfect AB, AA, and SP stacking points,
respectively, where the color of each point corresponds to the weight of the associated
state of hBLG in these regions. No clear band gap opens, even for states in the AB­stacked
region, despite a sizeable band gap opening for the corresponding uniformly AB­stacked
system in Figure 1.5 (e) for the same bias.

to clearly defined topological channels (Figure 4.9 (a)). In these other systems, an inter­

layer potential opens a bulk band gap which is bridged only by pairs of chiral boundary

modes with opposite propagation directions in the K andK ′ valleys (Figure 4.5) [53]. For

our system, this would correspond to a total of four valley­protected topological modes in

each valley, two each for the interfaces along the AA­ and SP­stacked domains. Instead

of the clear emergence of a bulk gap and topological modes, we see only minor changes

compared to the unbiased system discussed in Figures 4.8 (a)–(d). Consequently, uniform

heterostrain and interlayer bias alone are not sufficient to create 1D topological channels.

An accompanying relaxation that sharpens the interfaces and expands the Bernal­stacked

regions may be required.
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4.4 Role of interface smoothness

The absence of a band gap formation in Section 4.3 can be explained by the stacking of

the heterostrained system. It has only very small regions with perfect AB or BA stackings,

which suppresses the formation of a band gap. However, including the effect of relax­

ation might lead to the creation of topological channels. We consider the simple relaxation

model, explained in Section 4.2, in order to determine how in­plane relaxation affects the

electronic properties of a biased hBLG system. It allows us to continuously adjust the in­

terface smoothness and redistribute the local strain (Figure 4.7 (b)). The panels in Figure

4.10 (a) show the evolution of the band structure of the biased hBLG system, as the inter­

face smoothness α is decreased. They include the band structure for the application of a

uniform heterostrain and for interface smoothness parameters α=15, α=11, α=7, and α=3.

As the interfaces become sharper (smaller interface smoothness parameter α), the number

of bands crossing the Fermi energy EF decreases until only two pairs of crossings remain.

We note that this is the expected number of band crossings for a BLG system with two

topological interfaces between AB and BA­type regions, i.e. with the formation of valley­

polarised interface states along both the AA­ and SP­stacked domains in our system. The

energy window in which only these four bands are present (the so­called ‘pseudogap’), is

shown by the red shaded areas in the panels of Figure 4.10 (a), and increases as the inter­

faces become sharper. The pseudogap opens at the critical value of α=11 and is not present

for unrelaxed or smoother interfaces. The evolution of the pseudogap for ∆=­200 meV is

shown by the orange curve in Figure 4.10 (b), together with the pseudogap for smaller bias

(∆=­100 meV) and bigger bias (∆=­400 meV).

The critical smoothness α required to open a pseudogap and observe interface states

varies with the magnitude of the bias (Figure 4.10 (b)). Lower biases require a sharper

interface to open a pseudogap. This is consistent with the different stacking profiles in

these systems, as sharper interfaces give rise to larger regions with nearly perfect AB­ and

BA­stacked domains. In order to observe a pseudogap and consequently have topological

channels, relaxation has to be sharp enough. For example, for low bias, such as ∆=­100

meV, the interface smoothness parameter α has to be at least below 9 to induce a pseudo­
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gap. If it is smoother, it does not lead to topological channels for this value of interlayer

bias. From Figure 4.10 (b) it is shown that pseudogap depends on both the applied bias

and the interface smoothness parameter α. Thus, pseudogap can be presented as the bias

needed for different types of interfaces. Consequently, even if the AB/BA­stacked do­

mains become gapped with the application of large interlayer bias, this is not enough to

observe the pseudogap. With the inclusion of the effect of relaxation these gapped domains

become bigger which leads to sharper interfaces and then pseudogap is evident.

In the experiment, strain solitons with widths of 6 to 11 nm were reported on sam­

ples grown by CVD method [104], whereas a recent work on a biaxially strained bilayer

system reports domainwall solitons with widths of between 15 and 35 nm depending on en­

ergy [151]. In our model, we can approximate the structural width of a soliton by∼8α∆Y ,

which corresponds to the width over which 96% of the stacking shift between perfect AB

and BA registries occurs. The interface regions in our work have a width of ∼4.5 nm for

SP­stacking and ∼9.1 nm for AA­stacking for α = 4, with these values doubling for the α

= 8 cases. These are similar to widths of 5.2 nm and 12 nm reported by continuum model

simulations of similar interfaces [71, 152]. The electronic width of the soliton, determined

from the localization of interface states may vary from the structural width, as shown later

in Figure 4.12.

The degree to which intralayer relaxation will occur can be simulated in a number of

ways, including molecular dynamics [89, 129, 153, 154] or ab initio simulations [91], and

the Frenkel Kontorova model and related continuum approaches [71, 84, 85, 92]. The

specifics of the relaxation are also likely to be affected by experimental conditions, such

as the effects due to substrate interactions. However, relaxation occurs principally to min­

imize the energy costs which are introduced by straining the graphene lattice and breaking

the uniform AB stacking registry. Both energy cost contributions can be calculated by ab

initio simulations of uniform systems [155], allowing the energetics of larger, non­uniform

systems to be estimated by summing over local stacking and strain costs throughout the

system. We consider two possible relaxation scenarios, which either the strained layer

relaxes using the simple model in Section 4.2 (Figure 4.11 (a)) or the unstrained layer

(Figure 4.11 (b)). The energy costs associated with the stacking [48] and strain were cal­
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Figure 4.10: (a) Evolution of the band structure for hBLG for ∆=­200 meV applied in­
terlayer bias on the hBLG system for uniform heterostrain, α = 15, α=11, α=7 and α=3.
The AA­ and SP­stacked interfaces are sharpened by relaxing the strained layer (L1). The
‘pseudogap’ window, where only four band crossings are present near Fermi level EF is
shown in red. (b) Pseudogap for different values of interlayer bias (∆=­100 meV,∆=­200
meV, and ∆=­400 meV) and interface smoothness parameter (α varies from 16 to 2).

culated with DFT method for perfect BLG systems and are quite accurate. Experimental

studies showed similar energy cost for the stacking (∼2 eV/supercell) [104]. The strain

energy depends on the width of the relevant interface channels. In each case, the atomic

positions in the other layer remain the same after the application of heterostrain.

Figures 4.11 (a) and (b) show the total energy costs per supercell of breaking uniform

AB stacking (red curves) and local strains (blue curves) for the relaxed hBLG and the un­

relaxed. The total energy cost is shown by the black curve, with the corresponding energy

values for a uniformly heterostrained system shown by the square symbols. The energy

costs due to the change of stacking are identical for the two scenarios, with the energy

costs decreasing linearly for sharper interfaces (lower interface smoothness parameter α).

In contrast, the energy cost due to strain is higher for the case of relaxing the initially un­
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Figure 4.11: Energy costs per supercell associated with breaking AB stacking registry
(red curves) and strain (blue curves) in hBLG. The effect of the simple relaxation model
applied to either the (a) strained or (b) unstrained layer is shown to give sharper interfaces.
The black curves show the total energy from both terms, and the square symbols show the
corresponding values for uniformly strained unrelaxed systems.

strained layer L2. In this case, large portions of both layers have strain values near 1% as

the AB/BA­stacked regions grow for smaller values of α. For both relaxation scenarios,

and for all values of α, the strain energy cost is greater than that of the uniformly­strained

system (blue squares). This is trivial for relaxing the unstrained layer, as the cost of the

additional strain introduced by the relaxation of this layer must be added to the cost of

the uniformly strained layer. When the strained layer is relaxed, the strain is redistributed

throughout the layer such that the average strain in the layer is conserved. As the energy

cost of strain increases superlinearly, the additional energy cost of higher strain near the

interfaces is not compensated by the reduced strain in the AB­ and BA­stacked domains.

Also, there is a slight reduction in the total energy, compared to the uniformly strained case

(black square symbol), if the interface smoothness parameter is α ≳8 when L1 is allowed
to relax and α ≳10 when L2 is allowed to relax. Consequently, whether the L1 layer or the
L2 layer is allowed the relax, this does not affect significantly the total energy cost. For this

reason, we decided to include the effect of relaxation for the L1 heterostrained layer. For

applied interlayer bias∆=­400 meV and for interface smoothness parameter α=9, we have

∼100 meV pseudogaps (Figure 4.10 (b)), which is reasonable. Also, for this value of inter­

face smoothness parameter α=9, which has been introduced for the inclusion of relaxation,
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the total energy cost is not high (∼3 eV per supercell). A similar pseudogap (100 meV)

could be achieved for a lower value of bias, such as for ∆=­200 meV (Figure 4.10 (b)),

but with a much higher energetic cost due to the larger local strain at the interfaces (Figure

4.11 (a)). Conversely, a similar pseudogap with a smoother interface (larger values for α),

would require a larger bias to be applied between the layers. Consequently, for applied

interlayer bias∆=­400 meV and interface smoothness parameter α=9 we investigated the

local electronic properties of hBLG in the next Section.

4.5 Interface states

Figure 4.12 (a) depicts the band structure of hBLG near K point along kx for ∆=­

400 meV and α=9. It has a pseudogap of ∼100 meV, spanned by two pairs of dispersive

bands. To verify that these correspond to the interface­localized channels we plotted the

band structure and the distribution of states projected onto each atom in a 20 Å strip around

AB­, AA­ and SP­stacked regions (Figures 4.12 (b), (c) and (d) respectively). Figure 4.12

(b) proves the AB­stacked regions are indeed gapped, whereas the AA­ and SP­stacked

interfaces host a pair of boundary modes each in the K­valley. From the slope of the

bands near Fermi level EF, we observe that the modes at a particular interface (AA or SP)

propagate in the same direction. Also, theK­valleymodes from the two different interfaces

propagate in opposite directions. This is due to the opposite displacements of the AB­ and

BA­stacked domains relative to the two interfaces. All these features are consistent with

the formation of valley­protected topological modes at the interfaces due to a change in

the valley Chern number between AB and BA regions in biased BLG, as continuummodel

calculations showed for simple domain wall for BLG [53].

There are subtle differences between modes at AA­ or SP­stacked interfaces. The

AA­stacked interface in our system is broader than the SP­stacked interface because the

AA­stacked interface has twice the interlayer shift of the SP­stacked interface (∆YAA =

2a0,∆YSP = a0. This does not seem to correspond to a wider interface state, however. Fig­

ures 4.12 (e)–(h) show the projections of the corresponding states in Figures 4.12 (c) and

(d) respectively onto each atom in a 20 Å strip around the relevant interface. A slightly
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Figure 4.12: (a) Band structure of hBLG under the application of∆=­400 meV interlayer
bias, where the interfaces are sharpened by a relaxation with α=9 in the strained layer.
Figures (b), (c), and (d) show the band structure projected onto 25 Å wide strips around
the perfect AB, AA, and SP stacking points, respectively. Clear topological channels are
formed at the AA­ and SP­stacked interfaces in Figures (c) and (d) respectively. The dis­
tributions of these states around these interfaces (AA­ and SP­stacked domains) on each
layer (L1 and L2) and each sublattice (A and B) are shown in Figures (e)–(h).

broader spread is noted for the SP­stacked interface modes in Figures 4.12 (f) and (g)

compared to the AA­stacked interface modes in Figures 4.12 (e) and (h). There is a more

significant difference however in the layer distribution of these AA­stacked modes. Each

of the two AA modes in Figures 4.12 (e) and (h) has the largest weight exactly at the in­

terface on one of the two layers, with both sublattices having very similar distributions in

the dominant layer. The other layer has a smaller, sublattice­split distribution with peaks

on either side of the interface. In contrast, the SP modes in Figures 4.12 (f) and (g) appear

to have a more symmetric distribution between both layers and sublattices. However, this

distribution of states might be sensitive to the strain levels at the interfaces, and may not

be present if, for example, relaxation results in different local strains at each interface.

4.6 Summary of Chapter

In this Chapter we showed that the application of interlayer bias and local deformations

which arise due to the application of heterostrain on BLG give rise to robust 1D topolog­

ically protected interface channels between the AB­ and BA­stacked domains. The ap­

plication of interlayer bias leads to gapped (AB/BA­stacked regions) and localized states
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(AA­ and SP­stacked regions). The latter states are evident in the pseudogap which opens

in the AB/BA­stacked regions with the application of interlayer bias. The size of the pseu­

dogap and the emergence of interface states depend on how sharp the interface is modified

by relaxation, as well as the magnitude of applied bias. When the AB­stacked regions

are gapped, the AA­ and SP­stacked interfaces each host a pair of boundary modes in the

K valley propagating unidirectionally. The corresponding modes in the K′ valley propa­

gate in the opposite direction, which is consistent with the formation of valley­protected

topological modes at the interfaces due to a change in the valley Chern number between

AB­ and BA­stacked regions in biased BLG. Last, unlike tBLG where only the SP­stacked

interfaces contribute to the network, the Moiré system generated by the application of a

uniaxial strain has two distinct interface states, namely those at the AA­ and SP­stacked

interfaces. These interface states at the AA­ and SP­stacked interfaces are not identical,

with differences in the layer and sublattice distribution of these modes. We expect the ex­

act nature of the distribution of these modes to depend sensitively on the strain levels at

these interfaces.

The relaxation model employed here is a simplification that allowed us to examine, in

a general manner, the role of interface sharpness in such systems. So far we have consid­

ered a pure uniaxial strain which creates a strictly 1D modulation of the stacking order.

Allowing for a biaxial strain, or a Poisson compression of the strained layer, produces a

2D Moiré pattern [156]. We will explain in Chapter 5 how this will modify the emergent

network of interface states. We expect that the channels associated with the AA­stacked

interface will no longer contribute to the network, as in tBLG, while those associated with

the SP­stacked regions will remain. However, their configuration is likely to be different

from those in tBLG. Therefore, hBLG is a very promising platform from which to tune the

presence and distribution of topological channels. This system could potentially exhibit

phenomena akin to those in tBLG while circumventing some of the limitations associated

with achieving precise twist angles.
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Chapter 5 2DMoiré physics in heteros­

trained bilayer graphene

5.1 Introduction

In Chapter 4 we investigated the formation and evolution of interface­localized topolog­

ical channels in 1D Moiré patterns, which emerge due to the different stacking registries

between the two layers of a hBLG. The necessary condition for the formation of topologi­

cal channels was to include large interlayer bias, as well as larger AB/BA­stacked regions

and sharper interfaces. For simplification, we neglected the Poisson contraction, which

results in a compression perpendicular to the applied uniaxial strain [157].

Here, we investigated the formation of interface channels for the same system (hBLG),

including Poisson contraction ν. Poisson contraction is the deformation in the direction

which is perpendicular to the applied strain. This deformation depends on the value of

the applied strain (but it is much smaller in any case) and on the relevant material that is

applied. For some materials, it is positive, which means that for uniaxial tensile applied

strain we have contraction along the perpendicular in­plane direction (like graphene), while

for some other materials, Poisson contraction is negative, which means that for uniaxial

tensile applied strain, there is tension along the perpendicular in­plane direction. Poisson

contraction, for MLG and BLG, is in the range from 0.16 to 0.46 [158–160]. The exact

value of Poisson contraction depends on the amount of strain applied to graphene and the

direction in which it is applied. With the inclusion of Poisson contraction in hBLG the

layers are now mismatched in both directions and to different extents, which gives the

87
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creation of networks of interface channels, as opposed to the 1D channels created for no

Poisson contraction. However, we can eliminate to some degree Poisson contraction, by

selecting substrates or encapsulating materials which have a Poisson ratio close to zero.

Poisson contraction has a broad spread, because its value depends on the material and

the direction of the applied strain. For 1% applied heterostrain and Poisson ratio ν=0.4 the

unit cell of hBLG has ∼200,000 carbon atoms, while for ν=0.2, which is a more realistic

value of Poisson ratio for 1% heterostrain, the unit cell of hBLG has ∼400,000 carbon

atoms. The aspect ratio of the unit cell changes, due to the different Poisson ratio, which

will affect the overall shape, but we expect the qualitative features (networks of channels)

to persist. Poisson contraction will also likely depend on substrate effects and may be dif­

ferent for heterostrain than uniform strain applied to both layers. For small values of strain

(ε<2%), the Poisson ratio was found to be isotropic and not to be affected by the direction

of the applied strain. For graphene and for low values of strain the Poisson contraction was

found to have value ν ∼0.17­0.18. Here, we applied a low value of uniaxial heterostrain

(ε=1%), we chose Poisson contraction ν=0.4. Changing the value of Poisson contraction

affects the aspect ratio of the Moiré pattern. We magnified the effect to see how it affects

the electronic properties and to reduce the system size, but lower values of Poisson con­

traction have to be checked in the future. In tBLG this is fixed and does not depend on the

angle.

The unit cell of hBLG for these parameters consists of 201,400 carbon atoms and is

depicted in Figure 5.1 (a) in the dashed box. The white color corresponds to the SP­stacked

regions, which are connected through the AA­stacked regions. The blue and the red colors

correspond to the energetically favorable AB­ and BA­stacked domains respectively. The

Moiré domains of this system consist of a triangular network of 1D interface channels (SP­

stacked domains) connected with each other through the junctions (AA­stacked regions),

as opposed to the 1D interface channels observed in hBLG where the Poisson contraction

was neglected (Figure 4.6). A similar triangular network of interface channels is formed

in tBLG and is depicted in Figure 5.1 (b), where the gray regions show the SP­stacked

interface channels, the yellow color is associated with the AA­stacked domains, the pink

color with the AB­stacked regions and the blue color with the BA­stacked domains.
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Figure 5.1: (a) hBLG with 1% uniaxial tensile heterostrain applied along the AC direction
(y) and Poisson contraction ν=0.4 applied along the perpendicular ZZ direction (x). The
AA­ and SP­stacked domains are depicted with white color and the energetically favor­
able AB­ and BA­stacked domains with blue and red color respectively. The unit cell of
hBLG is shown in the dashed box. (b) Networks of interface channels for tBLG (similar
to the networks of interface channels for hBLG), where the grey domains correspond to
SP­stacked regions, the pink domains to AB­stacked regions, the blue color to BA­stacked
regions, and the yellow color to AA­stacked domains. Figure (b) adapted from [92].
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Before considering the heterostrained case, it is worth revisiting the twisted system,

where similar interface channels are created. The formation of interface states in tBLG,

which are localized under the application of large enough interlayer bias, was investigated

with continuummodel and TB calculations [54, 89, 99, 100] for small twist angles (θ<1.5◦).

Furthermore, the interface states in tBLG were investigated with experimental tools, in

which STM measurements and fast Fourier transform were used to the extracted topog­

raphy [101] and with spectroscopic measurements [102]. Depleted electronic states were

found in the AB/BA­stacked domains and conducting states in the AA­ and SP­stacked

domains. By taking into account the local strains due to the twist angles, which max­

imize AB/BA­stacked domains, sharpen SP­stacked regions, and minimize AA­stacked

domains, it was proven that there is strong localization in the AA­stacked domains for

small twist angles θ ≤1.1◦. In Magic­Angle tBLG (θ ∼1.1◦), the localization of states

is maximised [93]. There is the creation of ultraflat bands for low energies, which are

associated with enhanced DOS and correlated insulating states at half­filling [94]. Both

tBLG and hBLG systems present similar Moiré domains (Figures 5.1 (a) and (b)) and con­

sequently we expect that similar effects could emerge in hBLG. For instance, ab initio

calculations, in which out­of­plane relaxation was allowed, showed that for 1% uniaxial

heterostrain applied on BLG, there is the formation of flat bands [96], similar to the ones

found in tBLG [94].

We determined the total and local electronic properties, as well as the transport prop­

erties of the interface channels of hBLG, by calculating the TDOS, LDOS, and transmis­

sion, T , across this system. We compared our results with and without the application of

interlayer bias because, in the previous Chapter 4, we showed that both the application of

interlayer bias and the inclusion of the effect of relaxation are vital for the formation of

1D topological channels in the hBLG system. We ignored the effect of relaxation because

the model of the sigmoid function is too simple to work here, and this system is huge. To

overcome this, we applied larger interlayer bias on hBLG (∆=­800 meV instead of ∆=­

400 meV that we used in the previous study in Chapter 4), because the smoother the effect

of relaxation the larger bias is required as shown in Figure 4.10 (b). We speculate that

relaxation will enhance the 1D channels for lower applied bias. We leave confirmation of
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this for future work. Section 5.2 has the details of TB calculations for determining TDOS

and transmission, T , for low energies. Also, the computational details for the calculation

of LDOS for specific energies are contained. Section 5.3 includes preliminary results of

our study, where possible extensions are discussed in Section 5.4.

5.2 Computational details

We performed TB calculations, using the RGF method with the Rubio­Sancho approach

(Section 2.4.2) to determine the electronic and transport properties of hBLG. The supercell

was split into subcells and we used sparse matrices to store Hamiltonians of the very large

system (∼ 200,000 carbon atoms) due to memory. The size of each subcell varies due to

the application of heterostrain. This is because the distribution of carbon atoms is different

on the bottom L1 layer and the top L2 layer. For example, most of the subcells contain

804 carbon atoms, but some others have 811, 823 or 837 carbon atoms.

We included periodicity along x­direction by taking into account the self­energies of

the two leads (left and right) and periodicity along y­direction by including the Bloch

phases. We applied 1% uniaxial strain on the L1 layer along the AC direction and Poisson

contraction ν=0.4 along the ZZ direction. We used 251 four­atom­cells for the L1 layer

along the ZZ direction and 100 four­atom­cells along the AC direction and 250 and 101

four­atom­cells for L2 respectively. The unit cell of hBLG has in total of 201,400 carbon

atoms. Concerning the k­space along y­direction we used 7 ky points for hBLG. We used

100 energy points for the energy range from ­0.5 eV to +0.5 eV and from ­0.1 eV to +0.1

eV, to determine the TDOS and the transmission, T .

5.3 Electronic and transport properties of heterostrained

graphene

The key features in tBLG systems are the formation of networks of topological channels

under the application of interlayer bias and the inclusion of the effect of relaxation. Also,

strong localization of electronic states for very low energies in the AA­stacked domains
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was found with TB calculations [93]. We expect to find similar states in the corresponding

domains in hBLG.

For the study of the electronic properties of hBLG, we begin by considering the TDOS

in a wide energy range of ­0.5 eV to +0.5 eV without an interlayer bias (Figure 5.2 (a)). We

compared these results for the same system for TDOS in the same energy range but with

∆=­800 meV bias applied on both layers. Because we did not take into account the effect

of relaxation we applied larger interlayer bias to the system, compared to the previous study

in Chapter 4 (∆=­400 meV). Without the inclusion of relaxation, the AB­ and BA­stacked

regions are smaller and we expect to have a pseudogap for the AB/BA­stacked regions

for larger bias, as shown in Figure 4.10 (b). From Figures 5.2 (a) and (b), we can possibly

observe a small bump for the TDOS for low energies near half­filling, only when interlayer

bias is applied.

However, there are many peaks for both without and with the inclusion of interlayer

bias, and is difficult to clearly resolve features with any certainty. We need to mention that

these results are preliminary. These ‘noise­like’ features do not seem the result of numeri­

cal methods, as they appear in the same places as the number of k points and convergence

parameters, η and ϵGF, are varied. Further work is required to verify exactly this, because

these ‘noise­like’ features may indicate errors in the Hamiltonian or GFs, rather than real

features.

We are interested in the electronic properties of the system near half­filling and we

want to determine whether this is an actual bump in the TDOS. For this reason, we plotted

the TDOS for lower energies (from ­0.1 eV to +0.1 eV for 100 energy points), as shown

in Figures 5.3 (a) and (b) without and with the application of∆=­800 meV interlayer bias

respectively. When the interlayer bias is applied, for energies close to Fermi levelEF (from

∼30 meV to ∼50 meV) the TDOS of hBLG has indeed a prominent bump, while for no

bias this is not observed. In tBLG a similar feature is associated with the strong localization

of states in the AA­stacked regions for low energies [93]. We also expect the formation of

clear SP­stacked topological channels with the application of interlayer bias in hBLG.

To investigate the distribution of states and determine if these properties are indeed

present in our system, we calculated and mapped the distribution of states (LDOS) for
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Figure 5.2: TDOS for the energy range from ­0.5 eV to +0.5 eV (a) without and (b) with
the application of ∆=­800 meV interlayer bias.

energies close to Fermi level EF. For no bias, we chose three energies, E=­45 meV, E=­

35 meV, and E=35 meV, which correspond to a small peak, a small dip, and a small peak

respectively in the relative TDOS graph (shown by the red dots in Figure 5.3 (a)). The

LDOS for these three energies is depicted in Figures 5.4 (a)–(c) and are in the logarithmic

scale. We can observe subtle differences between these three plots and for some energies

there seems to be more localization of the electronic states on the AA­stacked domains

(the energy which corresponds to the dip E=35 meV). However, there is no strong spatial

dependence on the electronic properties of the LDOS. This means that electronic states in

this system, in general, are delocalized across the entire system.

For comparison, the LDOS when interlayer bias ∆=­800 meV is applied is shown for

three energies, E=11 meV (Figure 5.5 (a)), E=17 meV (Figure 5.5 (b)) and E=39 meV

(Figure 5.5 (c)), which correspond to a small peak and a small dip outside the prominent
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Figure 5.3: TDOS for the energy range from ­0.1 eV to +0.1 eV (a) without and (b) with
the application of interlayer bias ∆=­800 meV. The selected energies for no bias (E=­45
meV,E=­35 meV, andE=35meV in this order) and for applied interlayer bias (E=11meV,
E=17 meV and E=39 meV in this order) for the LDOS are shown in red dots respectively.

bump, and a small peak inside the prominent bump respectively (Figure 5.3 (b)). The

LDOS is on a logarithmic scale and for all these cases it has a distinctive pattern. For

all these energies the AB­ and BA­stacked domains appear to be depleted electronically.

However, for the energy that corresponds to the prominent bump, E=39 meV, there is an

enhancement of the electronic states which are localized in the AA­stacked domains at the

corners and center of the mapped region, as happens in tBLG.

Moreover, from the comparison of the Figures 5.5 (a)–(c) we can deduce that the SP­

stacked channels are dispersive, because they occur over a range of energies (same pattern

for LDOS), while the very bright AA spots (associated with high LDOS) occur in the

relevant ‘bump’. The same qualitative physics occurs in tBLG (localized AA­stacked do­

mains, dispersive SP­stacked channels). The difference between tBLG and hBLG is that
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Figure 5.4: LDOS for (a) E=­45 meV, (b) E=­35 meV and (c) E=35 meV for the unit cell
of 1% hBLG without interlayer bias. The LDOS is on a logarithmic scale.

Figure 5.5: LDOS for (a) E=11 meV, (b) E=17 meV and (c) E=39 meV for the unit cell
of 1% hBLG under the application of ∆=­800 meV interlayer bias. The LDOS is on a
logarithmic scale.

in tBLG the SP­stacked channels are straight lines (gray areas in Figure 5.1 (b)), while for

hBLG there is a distinctive new pattern if the SP­direction has a y­component, as opposed

to the x­component. In Figure 5.6 (b) the white SP lines along the x­direction, do not

appear to be as strongly affected by the larger y­direction strain (green lines). For com­

parison, the stacking of hBLG is depicted in Figure 5.6 (a). We explain this by the fact

that the strain applied along the AC direction is larger than the strain applied along the ZZ

direction, which means that not all the SP directions are the same anymore. Also, STM

measurements have very recently shown that biaxial strain lower than 1.5% applied only

to one of the two layers, due to the contact with the SiC substrate, leads to the formation

of swirl topological channels (SP­stacked domains), under atomic reconstruction [151]. In

both cases, the shape of the topological channels is affected by strain, unlike the regular

triangular networks in tBLG.

Next, we consider the transport properties of this system, which are related to its elec­

tronic properties. Generally, we expect the transmission, T , to have similar features to the

TDOS. We showed how transmission, T , changes with respect to energy for the energy
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Figure 5.6: (a) hBLG with 1% uniaxial tensile heterostrain applied along the AC direction
(y) and ν=0.4 Poisson contraction applied along the ZZ direction (x). The AA­ and SP­
stacked domains are depicted with white color and the energetically favorable AB­ and
BA­stacked domains with blue and red color respectively. (b) LDOS for the same structure
in Figure (a), for E=39 meV for hBLG under the application of ∆=­800 meV interlayer
bias. We have included four unit cells, to show the topological channels which are created.
The LDOS is on a logarithmic scale.
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range from ­0.5 eV to +0.5 eV with and without the application of interlayer bias (Figure

5.7). For low energies close to Fermi levelEF there is a prominent dip with the application

of interlayer bias in a narrow energy range near half­filling (from ∼­5 meV to ∼65 meV).

This corresponds to the opening of a pseudogap in AB­ and BA­stacked regions which

reduces the number of transport channels through the system.

Figure 5.7: Transmission, T , for the energy range from ­0.5 eV to +0.5 eV without and
with the application of ∆=­800 meV interlayer bias.

We are interested in the transport properties of hBLG for low energies, so we plotted

the transmission for energy range from ­0.1 eV to +0.1 eV near the dip without (Figure 5.8

(a)) and with the application of∆=­800 meV interlayer bias (Figure 5.8 (b)). For the same

energy range as we have already computed the TDOS (Figures 5.3 (a) and (b) respectively)

we may expect correspondence between these plots, as the ‘bump’ in the TDOS should

correspond to a dip in the transmission graph for the same energy. However, the results do

not coincide completely with the case of interlayer bias. The bump of TDOS is observed

for the energy range from∼30 meV to∼50 meV and the dip of transmission for the energy

range from ­5 meV to +65 meV. This is because the system is complicated and the relevant

states are not evenly distributed throughout the system and not all of them contribute to

transport. Localized states in AA­stacked domains, for instance, do not contribute to the

overall transmission, as they are not strongly connected to each other, even if they are

strongly localized. The SP­stacked channel states are spread throughout the system in

certain stacking regions, but they can carry current. The transmission, when interlayer

bias ∆=­800 meV is applied, is close to zero, but still nonzero. This is because even
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if some domains become electronically depleted due to the application of interlayer bias

(AB/BA­stacked domains) and correspond to zero transmission, there are still domains

that contribute to nonzero transmission (SP­stacked domains). This is why the value of

transmission for low energies is still nonzero. On the other hand, the new localized AA

states, which give a prominent TDOS bump, do not contribute to transport and have no

signature in Figure 5.8 (b). For no bias, the transmission is slightly bigger.

Figure 5.8: Transmission, T , for the energy range from ­0.1 eV to +0.1 eV (a) without and
(b) with the application of ∆=­800 meV interlayer bias.

5.4 Summary of Chapter

Overall, we found that there is a strong spatial variation of the states in hBLG under the

application of large interlayer bias along the interface topological channels. For very low

energies, we find the signature of strong localization in the AA­stacked domains, which is
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associatedwith the formation of flat bands, as in tBLG.Also, SP­stacked interface channels

were formed, which occur over a range of energies (dispersive channels), as happens for

tBLG. However, these topological channels do not have the expected straight channels, but

a distinctive zigzag pattern. We explained this, due to the fact the strain applied to the AC

and the ZZ direction is not the same, affecting the shape of interface channels. Moreover,

the transmission has very low values due to the existence of the AB/BA­stacked gapped

domains in hBLG with the application of large interlayer bias, compared to no bias.

Also, in Figures 5.2 and 5.3, which show the TDOS as a function for energy for different

energy intervals, there is the existence of some local peaks. If these peaks are indeed real

features, theymay correspond to localized states. Similar dips we found in the graphs of the

transmission as a function of energy (Figures 5.7 and 5.8), which can indicate the existence

of localized states. Further study is required to verify these. Consequently, heterostrained

untwisted BLG is an alternative way to tune the electronic and transport properties of BLG,

compared to tBLG, overcoming limitations relevant to achieving precise twist angle [105].

As future work, we could extend this analysis for smaller and bigger values of heteros­

train to find how the distribution of states is affected by the amount of uniaxial heterostrain

and for which value of strain the localization in the energetically unfavorable AA­stacked

domains was maximum. TB calculations for tBLG, performed by Nguyen et al, showed

that for twist angle θ ∼1.1◦ is a critical value where the localization of states in the AA­

stacked domains is maximised [93]. For twist angles θ>1.1◦ the atomic relaxation is negli­

gible and the low Dirac electrons are conserved. On the other hand, for twist angles θ<1.1◦

there is strong spatial variation and localization in the AA stacking regions. However, as

the twist angle θ is reduced the relative contribution of the AA­stacked domains is de­

creased. As a consequence, the isolated flat bands close to Fermi level EF and the strong

electron localization do not contribute to the global electronic properties of the system.

Also, we could include a more realistic value for the Poisson contraction (as explained in

Section 5.1), or directly relax the system.

Concerning the transport properties of this system, we could show how the transmis­

sion is modified as a function of energy, as well as by changing the value of the uniaxial

applied heterostrain. Relevant TB calculations for tBLG demonstrated that the system’s
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transmission can be tuned by varying the energy and the twist angle θ [161]. Similar cal­

culations could be performed for hBLG. We could also investigate for which stackings we

observe localized current for low energies and for specific values of strain (e.g. ε=1%), as

studies showed for tBLG [161].



Chapter 6 Conclusions and future

work

6.1 Summary of thesis

In this thesis we used ab initio and semi­empirical methods to study the energetic,

electronic, and transport properties of hBLG. We considered small values of heterostrain,

in line with what is achievable experimentally. This system has similar Moiré domains to

the ones found in tBLG and consequently, we wanted to investigate if similar properties

would emerge in this system.

In Chapter 2 we described the ab initio and analytical methods that we used in this

thesis. The DFT method, which is an ab initiomethod, is used to calculate the ground state

properties of many­electron systems. Themain disadvantage of this method is its relatively

high computational cost. We also explained the TB method, which gives more qualitative

results compared to DFT, but with a significantly reduced computational cost. TBmethods

were used to investigate the electronic properties of large systems, such as hBLG with 1%

applied uniaxial heterostrain on one of the two layers. Uniaxial strain was included in the

model, through a modification of hopping terms. For some other calculations that required

the study of even larger systems (∼200,000 carbon atoms for 1% heterostrain and ν ̸=0),

we used the TB method within RGF formalism, which reduces further the computational

cost.

In Chapter 3 we performed DFT calculations to find the value of critical strain applied

only to one of the two layers at which the stacking order in BLG changes. We found that

101
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above a critical strain of ∼1%, it is energetically favorable for the free top layer to be

unstrained, indicating a transition between uniform AB­stacking and non­uniform mixed

stacking. This was in agreement with a simple model estimate based on the individual

energy contributions of strain and stacking effects. Our findings suggest that small levels of

strain provide a platform to reversibly engineer stacking order and Moiré features in BLG,

providing a viable alternative to twistronics to engineer topological and exotic physical

phenomena in such systems.

In Chapter 4 we performed TB calculations to study the local electronic properties

in hBLG at a 1% strain. We found that the application of both an interlayer bias and

the inclusion of relaxation effects is vital for observing the formation of 1D topological

channels. A simple model was used to account for the in­plane atomic reconstruction

caused by the changing of the stacking registry due to the application of heterostrain. As a

result, the AB and BABernal stacked domains were larger and the interface channels (AA­

and SP­stacked regions) were sharper, leading to robust topological interfaces. These states

are highly localized in the interfaces and exhibit differences in their layer and sublattice

distribution depending on the interface stacking (AA or SP). Consequently, heterostrain

can be used as a mechanism to tune the presence and distribution of topological channels

in gapped BLG systems, complementary to the field of twistronics.

In Chapter 5 we investigated how the 2DMoiré patterns that emerge with the inclusion

of a Poisson contraction affect the properties of hBLG. We used the RGF method with the

Rubio­Sancho approach to determine the TDOS, LDOS, and transmission, T . We did not

include local relaxation in this case to simplify the structure. To compensate, we applied a

larger interlayer bias. Networks of topological interface channels were formed. For very

low energies we showed the strong localization in the AA­stacked domains, which are as­

sociated with the flat bands, as in tBLG. SP­stacked dispersive channels were also created,

but they did not have the expected pattern. This may be due to the fact that hBLG has dif­

ferent values of strain along the AC and the ZZ direction, which introduces an anisotropy

that is present in heterostrained systems.

Overall, we showed that heterostrain is an alternative to twisting BLG. The difference

is that hBLG allows different Moiré features, with different wavelengths in the x and y
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directions. Also, the level of the applied strain can be changed in­situ in hBLG, whereas

the twist angle θ cannot, because of the expeirmental methods.

6.2 Future work

Our work comprises the study of many properties for hBLG, such as the tuning of stack­

ing, the electronic, and the transport properties. These calculations can extended. For

example, the study of the electronic properties of hBLG as a function of uniaxial heteros­

train would be very interesting. Similar studies in tBLG found that the electron localization

is maximized in specific domains for particular twist angles. It is unknown whether the

magnitude of strain can be used to tune localization in hBLG.

Moreover, different values of Poisson contraction can be used instead of ν=0.4 for the

calculations in Chapter 5. Poisson contraction for graphene has values in the range from

0.16 to 0.46, depending on the magnitude direction of applied strain [158–160]. For small

strains (ε<2%), the Poisson ratio was found to be ν ∼0.17­0.18. Thus, the effect of ν on

the electronic and transport properties of hBLG could be investigated in more detail.

For simplicity in Chapter 4 we have only considered a single value of α within each

structure so that the local strain at the AA­ and SP­stacked interfaces is the same. However,

these interfaces have different local stacking energetics, relative shifts, and widths, and so

may be able to sustain different levels of local strain. We do not expect these considerations

to dramatically alter the main trends in our results. The main effect is likely to be that these

more complicated relaxed geometries could reduce the energy costs due to strain beyond

the values predicted by our simple model, leading to an increased preference for sharper

interfaces.

It is worth considering additional factors that may affect strain redistribution in hBLG,

with and without the Poisson contraction ν. For both systems, substrate effects were ne­

glected, except in the simplifying assumption that relaxation only occurs in one layer of

the system in Chapter 4. The specific nature of the interaction between the substrate, or

any tips or contacts used for either the application of strain or other measurements, may

also affect the local distribution of strain in the system. It is feasible to study the effects
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of a substrate theoretically, as several DFT studies have been done for graphene on top of

a substrate, like SiC, Si(100), h­BN, SiO2 and Al2O3 [162]. However, it could be difficult

to study on the scale required for this system. We could perhaps include the effects of

certain substrates (doping, disorder, charge puddles etc.) by varying the TB model used to

describe the graphene layer in contact with it.

Also, we have not considered the role that out­of­plane deformations could play in re­

ducing the total energy of heterostrained systems, as happens for tBLG systems. The local

stacking energy is sensitive to modulations of the interlayer separation introduced by such

deformations, as DFT calculations showed for tBLG with small twist angle θ [163]. This

has an effect on hBLG, as recent work showed that such out­of­plane deformations can

affect flat band formation and local chemical reactivity in this type of system [96]. Ad­

ditionally, the effect of the compressive strain should be further investigated for the local

electronic and transport properties of hBLG [96]. In­plane deformations should be con­

sidered as well because STM measurements showed that they exist for biaxially strained

BLG [151]. However, including the relaxation effects using the simple method mentioned

in Chapter 4 for biaxially strained BLG (hBLG with Poisson contraction) is difficult, be­

cause this is applicable only to uniaxially strained systems. One method for the inclusion

of local in­plane deformations in hBLG is to use configuration space, as has been employed

for tBLG and twisted MoS2 [164]. This method accounts for the local deformations and

has minimal computational cost.

Concerning the transport properties of this hBLG, we could investigate how the trans­

mission changes as a function of energy, as well as with the applied uniaxial heterostrain.

Relevant TB calculations for tBLG demonstrated that the system’s transmission can be

tuned by varying the energy and the twist angle θ [161]. We could also find out for which

stackings we observe localized current for low energies and for specific values of strain

(e.g. ε=1%), as studies showed for tBLG [161].

As already mentioned in Chapter 1, the inclusion of 5/7­membered rings (SW defect)

affects the electronic properties of BLG.We also showed that the application of heterostrain

affects the electronic properties of BLG (Chapters 4 and 5). Because both the application

of heterostrain and the inclusion of a SW defect lead to a gapped system with bias, the
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combination of bothmight require lower bias to tune its electronic properties, but additional

studies are required.

Overall, these calculations can be extended for other layered systems. For example,

similar DFT calculations that were performed in Chapter 3 could be implemented in other

layered materials. Instead of two graphene, we can have two layers of MoS2 and find the

effect of heterostrain for this system. The effect of heterostrain for the tuning of stack­

ing could be investigated for heterostructures as well, such as graphene/MoS2. Also, the

effect of heterostrain could be investigated for the electronic and transport properties of

other layered systems, like bilayer MoS2. TB methods can be extended to systems like

MoS2 [165].
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