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Abstract

Chains of particles, ranging from one-dimensional to three-dimensional structures, offer
an avenue of research spanning condensed matter physics to microengineering, providing
insights into material behavior across diverse length scales. In this thesis we examine a
system of a line of contacting spheres, placed in a transverse confining potential, which
may buckle under compression or when tilted away from the horizontal, once a critical
tilt angle is exceeded. We examine this system for both the case of hard and soft spheres,
through the use of computer simulations and analytical calculations. We compare our
results to existing experimental work.

For the case of hard spheres, under infinitesimal compression and/or tilt, the spheres
form a zig-zag pattern. These structures may be calculated using a recursion relationship
based on the condition of mechanical equilibrium and geometrical constraints. For small
sphere displacements, we propose a continuous formulation of these iterative equations
in the form of a second-order differential equation. We explore solutions to this equation
numerically, but we also find approximate analytic expressions in terms of the Jacobi,
Whittaker and Airy functions.

The analysis of Whittaker functions yields exact results for the case of tilting without
compression. Airy functions yield results for profiles that are both tilted and compressed.
For the case of compression without tilting, we provide a detailed analysis of the relevant
Jacobi functions. This analysis gives further insight into the localised nature of the
buckling at small compression.

We also extend our analysis to the case of a line of contacting bubbles (soft spheres),
placed in a transverse confining potential, under compression. We implement the Morse-
Witten theory, which is based on a linearised version of the Laplace-Young equation, to
describe bubbles under the action of applied forces. We develop a simulation method for a
system of Morse-Witten bubbles which we use to find structures of bubbles in mechanical
equilibrium. We find these structures correspond to the analytical and experimental work
presented in this thesis.

Finally, we present an outlook for how this work may be extended in the future. We dis-
cuss how the continuum model may be generalised for a variety of boundary conditions,
or how it may be used to find further mechanically stable structures. The Morse-Witten
model simulations may be extended to larger systems, and without the confining poten-
tial, may be used to simulate dense packings of bubbles, i.e. foams.
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1 Introduction

Chains of particles are a fascinating area of research which spans from one-dimensional

(1D), two-dimensional (2D) to three-dimensional (3D) structures. These deceptively

simple structures lie at the heart of many areas in physics, and offer an insight into the

behaviour of matter at a variety of length-scales.

1D chains, which are simple lines of particles like beads on a string, are particularly

useful in condensed matter physics, where they can be used to investigate diverse

phenomena: including the behavior of electrons in quantum wires [1] and the dynamics

of magnetic spins in nanowires [2].

Into 2D, the chains take on planar structures that can manifest as colloidal crystals [3]

or the rearrangement of ions in laser-cooled traps [4]. These kinds of 2D structures

have been used to probe the mechanical, optical and electrical properties of materials,

such as graphene [5].

Extending to 3D, we find columnar structures of particles that can be used as scaffolds

for microengineering applications [6] or, at the macro scale, a system of hanging

bubble chains - a structure for which one could win a world record [7]! An example of

some of these structures can be seen in Figure 1.1, demonstrating their many varied

applications - while also showing their similarities from nano- to macro- scale.

The structure and dimensionality of these chains plays an important role in their

applications. Whether it is through tuning the optical properties of an ion trap [8] to

understanding the mechanical properties of micro-robots used for drug delivery [9],

there is a clear need for and interest in a deeper understanding of how structures may

1



Figure 1.1: An example of chains of varying dimensionality, from nano- to macro-scale.
(a) A 1D chain of 23 isotopicall pure Ytterbium ions images in an ion trap [11]. (b)
Scanning Tunnelling Microscopy images of 2D chain arrangements of alkali chains, show-
ing these chain structures on the nano-scale [12]. Also pictured are molecular models
of these chains, showing clearly their zig-zag structure. (c) Image of a chain of bubbles
hanging from a tube. By varying the bubble diamater relative to the nozzle diameter,
the structures formed can be varied. [13]

be assembled and developed, and their relationships between each other. In this thesis

we shall explore chain-like structures of varying dimensionality through the use of a

simple model, closely related to work done on the columnar packings of

spheres [10].

The range of experiments and systems mentioned have a large amount of variation in

their methods. In some cases, the chains are formed by interactions between attractive

particles [14], for others the assembly process is driven by the action of some confining

potential [15]. For some systems the particles are (at least approximately) hard and

resist deformation and/or compression and others are "soft", i.e. the particles

themselves change shape under the action of external forces, most obviously in the

systems involving bubbles.

We will now examine two examples of systems related to the work of this thesis, one at

the macro-scale and one at the micro-scale. The first of these is the classical example

2



of a buckling beam, the Euler Elastic Buckling problem, from which we borrow much

of the language of this thesis. The second example is that of Coulomb crystals,

structures formed by low temperature ions in ion traps.

1.1 Buckling at various length scales

Here we will examine the idea of structures ’buckling’ in a wide range of length-scales:

from the macroscopic buckling of a column under load, to the deformation of a chain

of atoms in a crystal. We will examine these in more detail here, to provide further

context to the work done in this thesis and to introduce some of the concepts which

we will make use of in later chapters.

Buckling at macro-scale: Euler buckling

Euler’s Elastic Buckling Theory, established by the Swiss mathematician Leonhard Euler

in the 18th century, serves as a fundamental framework for understanding the behavior

of slender structural elements (beams) subjected to axial compression [16].

At its core, this theory identifies a critical compressive load (or more simply, an applied

compressive force), known as the Euler buckling load (Fcritical), beyond which buckling

occurs (an example of a column with F > Fcritical can be seen in Figure 1.2). Buckling

is a structural instability phenomenon characterized by a sudden lateral deflection or

deformation of the element, usually a column or beam, under the influence of

compressive forces. For the purposes of this discussion, we shall assume deformation

occurs while the material remains within its elastic limit, meaning it can return to its

original shape when the load is removed.

In the case of Euler buckling, the beam is an idealised construct. It is perfectly straight,

homogeneous, and composed of an isotropic material. Modifications to the theory may

account for realistic materials, but such considerations are beyond the scope of what is

required for this thesis. We will also limit our discussion here to the case of a ’simply

supported beam’ (a structure whose ends are supported, but free to rotate) under

3



Figure 1.2: A disturbing sight at a construction site! The critical load on this steel-
reinforced concrete column has been exceeded, and caused the column to buckle (the
lateral displacement of the steel frame). This is unlikely to be elastic buckling, i.e. the
steel will not return to its original shape when the weight is removed, but it does show
the expected profile of a buckling beam. Image taken from https://www.pinterest.
com/CivilEngDis/.

longitudinal compression, see Figure 1.3. This model Euler buckling demonstrates

many of the properties that we will explore in our model system in later chapters.

This idealised problem was in fact proposed by Jacob Bernoulli, and later solved by

Euler [17] . It demonstrates many interesting properties, including a linear and

non-linear bifurcation, and it describes completely the pre- and post- critical behaviours

of the beam.

As shown in Figure 1.3, we will consider an inextensible rod of length L that is simply

supported between two supports a distance d apart. We characterise the profile of the

beam by the angle of inclination of a line tangential to the beam, ✓. In the case of

separation between the supports d > 0, it can be shown that this angle of inclination

as a function of position along the beam s is described by:

d2✓

ds2
= �

F

B
sin ✓, (1.1)

where s is the distance along the beam, F is the axial compression force and B is the

’bending stiffness’, a measure of the beam’s resistance to buckling when subjected to

an external load (it is the product of the Young’s modulus of the material times the
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Figure 1.3: A schematic of the Euler buckling problem discussed in this section. We
consider a slender, incompressible beam of length L, held by supports which allow for
the rotation of the beam at the supports. The right support is free to move, and the
distance between the supports is d . We characterise the deflection of the beam, under
an applied compressive load F , by the angle of inclination of the tangent line ✓ at the
point s. This function, ✓(s) is a solution to Eqn (1.1).

area moment of inertia of the beam). Immediately, we may draw a comparison between

this equation and that governing the oscillation of a simple pendulum [18].

We may consider a linearised version of this equation for small deflections, expanding

around ✓ = 0. This results in a linear eigenvalue problem which, for our choice of

boundary conditions, produces a sinusoidal solution [19]. Although the amplitude of

this solution is undetermined as a consequence of the linearisation, an infinite number

of solutions are found:

✓(s) = An cos
n⇡s

L
, (1.2)

where n = 1, 2, 3..., as well as the trivial solution ✓ = 0. The non-trivial solutions are

the ’bifurcation modes’ of the Euler beam. We show the first two non-trivial modes in

Figure 1.4.

It is possible to determine the amplitudes of these solutions, as well as verify the
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Figure 1.4: Examples are shown here of the first two modes of Euler buckling of the
system shown in Figure 1.3 (reproduced from [20]), the first two solutions of Eqn (1.1).
The variety of structures are characterised by the initial angle ✓(0) = ↵. Note that the
distance betweeen the supported ends, d , is a function of this angle. A physical example
of the first mode can be seen on the left, showing the buckling of a concrete-filled steel
tube under compression (image reproduced from [21]).

validity of the linearised method, by solving the original non-linear equation. We will

not do so here, but we will briefly note the appearance of the Jacobi elliptic functions

in the full solutions [20], analogously to the solutions of the nonlinear pendulum

problem [18]. We will also encounter Jacobi elliptic in our discussions of our model

system, and we will discuss them and their implications in detail in Chapter 4.

Euler’s elastic buckling theory provides a foundational understanding of structural

instability, guiding engineers in designing columns, beams, and other slender elements

to resist buckling under compressive loads. While it simplifies complex phenomena, it

remains a cornerstone in structural analysis [19] , forming the basis for more advanced

buckling theories [22] and practical design guidelines [23].

Micro-scale buckling: Coulomb crystals

Physical ion traps are complex devices used in quantum computing, quantum

information processing, and precision spectroscopy. They function by employing
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electromagnetic fields to confine and manipulate ions in a controlled manner. These

ion traps come in various forms, the main two of which are the Paul trap and Penning

trap. We will focus on the linear Paul trap here, as it is the usual method of forming

Coulomb crystals.

A charged particle experiences a force within an electric field. Earnshaw’s theorem [24]

states that a static electric field is not sufficient to completely confine a charged

particle. The Paul trap circumvents this by employing a static electric field in

conjunction with an oscillating electric field. The Penning trap uses a magnetic field

for a similar effect.

The linear Paul trap [25] uses an oscillating quadrupole field to trap charged particles

in the radial direction. A static electric field confines the particles in the axial direction

(also referred to as a stopping potential). A schematic of a linear Paul trap is shown in

Figure 1.5.

A Coulomb crystal of ions may be formed within a linear Paul trap if the system is

sufficiently cool, approximately T ⇡ 10mK (the Coulomb crystallisation temperatures).

Thus formation of these structures was only feasible after the rise in prominence of

laser cooling in the 1980s.

Although Coulumb crystals usually form in the Body Centred Cubic (BCC) structure,

as is theorised in the collapse of neutron stars in astrophysics [26], the structure

depends strongly on the nature of the confinement and the density of ions within the

trap. It has been shown, and observed experimentally as shown in Figure 1.6, that for

sufficiently low number of ions within the trap, the ions form a linear arrangement

along the axis of the trap.

If the number of ions within the trap is increased, or if the strength of the oscillating

quadrupole potential is decreased, the ions move into a 2D structure: a zig-zag like

pattern. Furthermore, when the number of ions is increased further, the structure

moves into a 3D structure, a helical pattern. A theoretical prediction of these

transition points was produced by Totsuji, H., and Barrat, J.-L. in 1988 [27], and was

7



(a)

(b)

Figure 1.5: (a) shows a diagram of the two maximal states of the linear Paul trap,
looking down the axis of symmetry of the system. The quadropole fields are caused
by AC, and thus vary throughout cycles. The symmetry confines the ions in the radial
direction. Not pictured are the two electrodes providing the stopping potential in the
axial direction, these are usually static fields. (b) shows a macroscopic example of the
linear Paul trap, with charged grains of flour suspended in the trap well. Both images
were sourced from https://en.wikipedia.org/wiki/Quadrupole_ion_trap.
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Figure 1.6: An image of 22 ytterbium ions held on the axis of a linear Paul trap,
reproduced from [4]. By relaxing the radial potential, the structure moves into a zig-
zag shape. We will observe similar structural transitions in our model systems in later
sections.

explored experimentally in the 1990s [28,29]. An example of the arrangements of

ytterbium ions found by RC Thompson [4] are shown in Figure 1.6.

Aside from their natural occurrence in stellar collapse [26], Coulomb crystals also have

applications in quantum information processing and spectroscopy [30].

1.2 A model system for a buckled line of spheres

It is an attractive idea to unite these concepts of a line of particles deforming under

compression and buckling with a simple model. Can we ascribe the language of
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Figure 1.7: A diagram of the cross-section of 10 hard spheres of unit diameter under
compression by two hard walls, and held in confinement by a harmonic potential. The
x-axis represents the line of symmetry of the confining potential, and the restoring
forces experienced by the spheres are indicated by black arrows. The dashed black line
represents the ’natural length’ of the system, and the thick black walls represent the
boundary walls. Already some of the interesting properties of the system are on display,
which shall be explored later: the strcture immediately buckles under slight compression
due to the hardness of the spheres, the displacement of the spheres are around the
midpoint of the system, and the buckling is localised (the system has fewer spheres with
larger displacements). The displacements for this representative diagram were made
using the continuum model for buckling profiles, which we shall discuss in Chapter 3.

buckling to structures such as Coulomb crystals? Where a beam experiences a lateral

deflection due to its load, a line of ions displace themselves through a confining

potential field as a result of compression. Here we endeavour to do so. Such simple

models are an attractive prospect in physics, both for research and teaching purposes.

The model we propose here has found success in both [31,32].

We consider a line of N spheres, monodisperse and without attractive inter-particle

forces. This line of spheres is held in a transverse, cylindrically symmetric, harmonic

confining potential. Perpendicular to the axis of symmetry, at either end of the line, are

two movable hard walls which may set the system length. The spheres may be hard or

soft. See Figure 1.7 for a schematic diagram of the model.

For the purposes of this thesis, we will limit ourselves to static, monodisperse (all

spheres in the system will be of equal size) arrangements of spheres with no attractive

forces acting between them.

We will investigate the behaviour of the lines of spheres under compression, i.e. by

varying the distance between the boundary walls, such that the length is shorter than

the natural length of the straight line of spheres. In accordance with the experimental
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methods which we will discuss later, we will focus on systems that are displacement

controlled, meaning that the compression is driven by the movement of the boundary

walls. We define this compression as:

� = (L0 � L)/D, (1.3)

where L0 = ND, the number of spheres in the system times their diameter: the natural,

uncompressed length of the system. L is the distance between the boundary walls. We

will use this quantity to characterise both experimental and theoretical structures.

Even at this early stage, the system demonstrates interesting details which are a

challenge to theory. If the two boundary walls are brought closer together the results

will initially differ depending on the hardness/softness of the spheres. For hard spheres,

the chain will immediately move into a 2D planar structure by the virtue of the

geometrical constraints. For soft spheres, there will be a region of compression where

the 1D chain will be stable, until some critical value of compression where it too will

move into a 2D structure.

We refer to this process of movement between the 1D and 2D phase as ’buckling’.

These buckled chains may be characterised by their displacement profiles which plots

the displacement of each sphere centre away from the central axis. An analysis of the

sphere displacement profiles and the various 2D structures which may exist under

compression will be explored in Chapter 2. These plots of the magnitude of sphere

displacements bring to mind the similar profiles of the buckling Euler beam.

There exists another critical point of compression (which again varies depending on

whether the spheres are hard or soft) at which point the buckled structure moves from

a planar structure to a 3D structure. The 3D structures formed this way are very

similar to those found for the packings of hard and soft spheres within cylindrical

confinement [10,32,33].

One of the attractive aspects of this model is how amenable it is to experiment. We
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(a)

(b)

Figure 1.8: The experiment in (a) shows a simple method to explore the buckling of a
line of spheres under compression. Here a line of billiard balls lie on the curved interior
surface of a perspex tube. If this line of balls is compressed by applying a force at either
end, the linear arrangement becomes unstable and buckles. The curvature of the surface
acts as the confining potential, resulting in the ’zig-zag’ arrangement we observe in (b).
Image credited to Ali Irannezhad.

will now explore how the full range of structures from the 1D chain to the 3D columnar

structures may be studied in experiment.

1.3 Experiment: Approximating the harmonic po-

tential using a cylindrical surface

For the investigation of the 1D and 2D structures, a simple experimental set-up was

proposed in [34]. This work was expanded upon in [35], and it is this implementation

of the experiment which we shall discuss here.

For investigating the case of hard spheres, lubricated ball bearings are placed on the
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Figure 1.9: Ali Irannezhad and the experimental apparatus he had comissioned to study
the buckling of a line of spheres under compression and tilt. This image was featured in
an article titled ’Physics in a Small Bedroom’, highlighting experiments that were rich
in detail and yet could be carried out outside the lab (Image reproduced from [31]).

interior curved surface of a cylindrical tube. For soft spheres, the system may be filled

with water and bubbles inserted. These bubbles will then be held under the curved

surface of the tube by buoyancy.

In both cases, provided that the diameter of the ball bearings/bubbles is much smaller

than that of the cylindrical tube, the structures will be approximately planar. The

weight of the hard sphere and the buoyancy of the bubbles moving against the curved

surface of the tube gives rise to a restoring potential which is approximately quadratic

(see Appendix A2 for more details on exactly how the quadratic potential may be

related to the experimental parameters).

The cylindrical tube may be plugged by pistons, which play the role of our movable

hard walls. This means that the compression of the system is an adjustable parameter,

defined as in Eqn (1.3). One effect of this experimental set-up is that the bubbles are

slightly deformed by their contact with the surface of the cylinder. We shall explore

this in more detail in Chapter 5. A sequence of photographs showing the buckling of a
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line of hard spheres under compression is shown in Figure 1.9. A sequence of images

for bubbles under increasing compression is shown in Figure 1.10.

This experiment presents a clear image for the expected evolution of a line of spheres

under compression. Under infinitesimal compression, systems with hard spheres will

buckle immediately forming 2D planar structures. For soft spheres, the particles will

instead deform under compression remaining in their 1D chain structure. At some

critical value of compression they will then buckle.

Under low compressions, for both hard and soft spheres, these experiments display a

symmetrical, localised buckling where spheres close to the midpoint of the system are

displaced more than spheres near the boundaries. These symmetric structures arise as

a consequence of the symmetry of the system, and we will discuss how this symmetry

may be broken later. For increased compression, this buckled structure evolves into

another kind of 2D structure, which can be seen in Figures 1.10 and 1.11, Image 10,

an arrangement where most of the chain is in a linear arrangement, but two spheres

have formed next-nearest neighbour contacts - an arrangement which we refer to as

the ’doublet’. This point will be important in our theoretical description of these

structures in Chapters 2 and 3.

Structures formed at compressions beyond the doublet were not discussed in [34]

or [35], as the doublet was considered the limit of this experimental method. Due to

the use of a curved surface as a confining potential, the structures found in this

experiment must remain planar, and the prediction of the time was that beyond the

doublet there was no guarantee that further buckling would remain planar; in principle

any further buckling could occur out of plane with the doublet that had formed.

However, in simulation work done on this subject [36] and indeed according to results

presented in this thesis, it is found that the structures do remain 2-dimensional after

the formation of the doublet. In fact, the doublet forms part of an emerging structure

which we refer to as "the zipper". This is the true termination point of this

experimental method, relative to our model. In order to move past this point, we must
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consider an experimental system with true cylindrical symmetry. We shall discuss such

a system in the next section. Examples of the linear, buckled, doublet and zipper

structures are shown in Figure 1.11.

1.4 Experiment: Chains of spheres in a rotating

fluid

An experimental method which allows for the investigation into the evolution of 3D

structures was proposed by Lee et al. [37]. In this system, spheres are contained in a

cylindrical tube with hard walls, and immersed in a fluid of greater density. In their

experiments this tube is attached to a lathe, capable of rotating the tube at high

speeds. The less dense spheres are driven towards the central axis by centripetal force

(in the experiment done by Lee et al, these were mainly hard spheres: polymeric

beads). For a constant rotational speed, the centripetal force behaves similarly to the

harmonic confining potential in our model system. A schematic of this system is shown

in Figure 1.12.

Unlike the experiment described in the previous section, the tube in this experiment is

of fixed length. The method of obtaining different structures was then to increase the

number density of spheres within the tube, or by varying the rotational speed.

Examples of the structures that can be found using this method can be seen in Figure

1.13.

The evolution of the structures under increasing number density (or equivalently

compression) matches closely with simulation results obtained in [32, 38], where a

complete description of the 3D structures obtained from this method was

presented.

We note that in experimental work, even with systems that are level, asymmetric

structures may form instead of the expected symmetric structures. We assume that

these are higher energy structures, and that by perturbing the system (as done in [35])
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Figure 1.10: A sequence of images displaying a line of bubbles (19 bubbles,
D = 2.3mm, inner tube diameter D = 6.7mm) under compressions �i =
0.13, 0.32, 1.00, 1.56, 2.13, 2.36, 2.56, 2.62, 2.80, 2.85 [35]. The images were taken se-
quentially, with compression being increased a small amount between images. Immedi-
ately obvious is the difference between these images and the hard sphere results: the
bubbles do not immediately buckle, remaining in a ’1D’ structure until a critical value
of compression is reached. We will explore theoretical models of this critical value of
compression in Chapter 6.
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Figure 1.11: A line of hard spheres contained within a transverse harmonic confining
potential displays a range of structures under compression. These structures, and the
terms used to describe them, are shown here. Compression is increasing from (a) through
(d). If the system is between hard walls, as shown here, the structure will first buckle
locally as in (b). Eventually this becomes the ’doublet’ structure, where one pair of
spheres make next-nearest neighbour contacts. For longer chains this becomes the
zipper structure, a structure where each sphere has formed a next-nearest neighbour
contact. Beyond this point, if compression is increased again, the structure will ’twist’
into a 3D structure.

Figure 1.12: A schematic of the rotational method of assembling columnar structures
of spheres explored in [32, 37] (Figure reproduced from [38]). A tube of rotating fluid
containing relatively less dense spheres forms columnar structures of spheres along the
axis of rotation. Varying the rotation speed varies the strength of the confining potential.
This experiment generates a cylindrically symmetric confining potential, allowing for the
observation of 3D columnar structures.
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Figure 1.13: Examples of the planar buckled chain of spheres found using the rotational
method (image reproduced from [32]). Here polypropylene beads are held in a tube
rotating at 1800 rpm. The structures match those found by the previous experimental
method, and the results of simulations which we will discuss in later chapters.

that the structures can be coaxed into their symmetric arrangement.

1.5 Manipulating buckling: Adding a longitudinal

force

We can draw parallels between the buckling of a line of spheres and the study of

crystalline defects [39]. The localised, buckled structure resembles topological defects

found in Coulomb crystals [40]. It is then of interest to ask - can this ’defect’ be

manipulated? Is it possible to control the position of where these buckling defects

occur?

In an effort to answer this question, we will add a new parameter to our simple model -

a longitudinal force which acts on sphere centres, parallel to the axis of symmetry of

the confining potential. The addition of this force breaks the symmetry of the problem;

the longitudinal force results in a displacement of the peak position of the sphere

displacements.
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Figure 1.14: A conceptual illustration of the experimental method used to investigate
the buckling of a chain of hard spheres under the action of tilt. A tilt by an angle ↵
beyond a critical value leads to a buckling of the initially linear chain; transverse sphere
displacement results in a harmonic restoring force, represented here by springs.

This force may be realised experimentally by both the methods proposed by Irannezhad

et al. [41] and Lee et al. [37]. In these cases, the force is introduced by inclining the

axis of symmetry of the tube relative to the horizontal. In this case, the component of

the spheres’ weight acting parallel to the central axis of the potential provides the

symmetry breaking longitudinal force. For this reason, we shall refer to this longitudinal

force as a "tilt force", or more simply, "tilt": ⌧ .

Figure 1.14 shows the effect of this on our line of spheres. Here we represent the

confining harmonic potential with springs. Each sphere now experiences a compressive

force due to the component of the weights of the sphere above it. This may result in a

buckled structure emerging, even without a compressive force exerted by a second wall,

as shown in this figure. We will discuss both the cases of structures formed by tilt

alone and the combination of tilt and compression in Chapter 3.

We may ask the question: what happens to a line of spheres held between hard walls in

a transverse harmonic potential as tilt is increased? Unlike the case of compression,

initially the hard sphere linear arrangement does not become unstable under the action

of tilt. Only once a critical value of tilt is reached does the structure begin to buckle.
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These buckled structures are no longer symmetric, and instead localise at a point closer

to the lower wall of the system.

The displacement of this buckling peak can be considered similarly to the transport of

a defect in a crystalline lattice, and the energies involved in this movement may be

used to calculate the Peierls-Nabarro potential [42].

In the next chapter we will discuss this effect of buckling under tilt in more detail,

explaining how the original theoretical models for untilted systems were generalised to

account for the presence of the tilt force. We will discuss the concept of a "critical

value of tilt" at which structures undergo sudden transformations. In later chapters we

will also discuss structures which are both tilted and compressed.

1.6 Thesis overview

It is clear that even this simple model of a line of spheres compressed by two hard walls

and confined by a transverse harmonic potential, provides a rich amount of detail to

explore. It is, however, important to keep clear the subtle differences between the ideal

model and the variations explored in the theoretical and experimental work. As such, a

brief overview of the contents of the thesis will be provided here, as well as a "map" of

the topics to be explored and the relationships between them, Figure 1.15. We hope

this will be an aid to reading the thesis, and allow one to jump between chapters and

sections without too much confusion.

In the first part of this thesis, we will specifically discuss systems of hard spheres under

tilt and compression. In particular we will focus on systems with a low degree of

buckling. We will discuss a difference relation, originally proposed in [43], which

provides a method of computing structures under compression. We will extend this

description to systems of spheres under tilt, as well as further the analysis on the

critical value of tilt ⌧c at which the linear chain of spheres becomes unstable.

On the basis of this difference relation, we shall develop a continuous theory which
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Figure 1.15: A map of the topics discussed in this thesis and their relationships to
each other. Chapter/Section references are indicated for most of the topics, and the
directional arrows should give some idea of the logical progression, a chronological map
would have been much more complicated!

describes buckled profiles as solutions to a second order differential equation. We shall

present numerical results, and discuss limits where analytical results may be obtained.

This work will dive deeper into the concepts of localisation of buckling under

compression, the critical value of tilt, and discuss systems subjected to both

compression and tilt simultaneously.

In the second part of this thesis we will focus on chains of soft, elastic spheres,

particularly bubbles. We will discuss various methods of simulating bubbles, returning

to the Soft Sphere model and introducing the Surface Evolver. We will implement

Morse-Witten theory [44] in a 3D system, and use it to model a chain of soft spheres

under compression. These bubbles chains will serve as an excellent test-case for the

Morse-Witten theory in 3D, which has only so far been applied to systems with high

degrees of symmetry [45], or bubbles with only a single contact [46]. We will finally

close the thesis with an outlook section.
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Part I

Hard Spheres
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2 Lines of hard spheres under com-

pression and tilt

In this chapter we will discuss our model system in more explicit detail. We shall start

with the case of a line of hard spheres held in the transverse harmonic potential, under

compression between two hard walls. We will then extend this description to include

the action of a longitudinal force acting on the spheres in the line: tilt. An example of

an untilted profile as seen in experiment is shown in Figure 2.2 and a tilted profile in

Figure 2.4.

2.1 Model and method

We are concerned with a system of N hard spheres of diameter D, confined between

hard walls. The spheres are contained within a cylindrically symmetric harmonic

potential, such that a displacement Y in this potential results in a restoring force kY ,

where k is a spring constant. From this point onwards we shall proceed with a

dimensionless description of the system: we shall express lengths in terms of the sphere

diameter x = X/D and forces in terms of the restoring force of the confining potential

f = F/(kD) (we shall adopt lowercase lettering for dimensionless quantities).

The dimensionless compression is therefore given by the equation:

� = N � l , (2.1)
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Figure 2.1: A schematic diagram of the untilted system showing the quantities of in-
terest. The axis of symmetry of the confining potential is shown as a dotted line.
Displacements of the spheres from the central axis, yn, are subject to a restoring force
Fn. The compressive force exerted at sphere contacts is given by Gn, with the condition
of mechanical equilibrium giving Gn cos ✓n = G, the compressive force exerted by the
wall on the system.

where N is the number of spheres (equivalent to the natural length of the chain in our

dimensionless notation) and l is the dimensionless compressed length of the chain,

L/D. The dimensionless energy can be obtained by summing the square of the sphere

displacements:

E =
1

2

NX

n=1

y 2
n . (2.2)

In [43] an iterative stepwise method was proposed which describes arrangements of

spheres in the ’zig-zag’ structure (we expanded upon this method in [34]). We will

describe the method here, as it forms the basis of the continuum model which we will

explore in the next chapter.

Referring to Figure 2.1, we wish to calculate the dimensionless displacements from the

central axis yn and the angle of lines between sphere centres ✓n. We use the nature of

the ’zigzag’ arrangement to consider only the positive values of these quantities, i.e.

the direction of measurement of displacement and angle alternates from one sphere to
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Figure 2.2: (a) Photograph of a buckled line of N = 10 metal spheres (ball bearings)
resting in a horizontal cylinder, between two stoppers. In such an experiment, the cur-
vature of the cylinder provides an approximately harmonic potential, that is, a restoring
force acting on transversely displaced spheres [35,41]. The angles ✓n between contacting
spheres and the cylinder axis vary along the line. (Inner cylinder diameter 21.05 mm,
sphere diameter D = 6.44mm, line length L = 61.6mm, corresponding to a compression
� = (ND � L)/D = 0.47 (see also Eqn (2.7)). Figure (b) shows the corresponding plot
of the angle profile ✓n. The continuum theory described in this paper yields a continuous
profile for �(u) = tan ✓(u)). This is shown by the continuous line in (c), together with
the experimental data from (b).
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the next. In the scope of this investigation, this is sufficient to describe all structures

that are found. We will now consider the condition of mechanical equilibrium, and the

geometrical constraints of the system of hard spheres, in order to produce a set of

iterative equations.

We express the compressive force acting between sphere n � 1 and n as Gn.

Considering the condition of mechanical equilibrium, it follows that Gn cos ✓n = G, the

force exerted by the system on the walls (see Appendix A1).

If we consider the equilibrium of forces acting on sphere n, perpendicular to the axis of

symmetry of the potential, we find that:

fn = Gn sin ✓n + Gn+1 sin ✓n+1 = G(tan ✓n + tan ✓n+1). (2.3)

As the system consists of hard spheres, the centres must be separated by a sphere

diameter. Therefore:

yn + yn+1 = sin ✓n+1. (2.4)

However, remembering our choice of dimensionless quantities relates the restoring force

due to the potential to the displacement through that potential as yn = fn, we may use

the previous expressions to relate (✓n, yn) ! (✓n+1, yn+1). Thus we arrive at the

following iterative equations:

✓n+1 = arctan

✓
yn
G

� tan ✓n

◆
, (2.5)

yn+1 = sin(✓n+1)� yn. (2.6)

In [34, 43], these original difference relations were solved using a shooting method.

This shooting method is done by noting that the hard wall boundary conditions

demand that ✓0 = ✓N = 0, and that the initial displacement y1 may be arbitrary. With
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the left-hand boundary set, we may use Eqs (2.5), (2.6) to search for values of y1 such

that the right-hand boundary condition is satisfied. This is done by coarse-graining the

initial search of y1 over a range 0 < y1  0.5 in steps of 10�4. These intervals are then

searched for solutions using the bisection method.

We note that in many experiments, such as those discussed in the previous chapter,

compression is not a control parameter. Instead, equilibrium structures are found for

varying values of G and compression is calculated afterwards by evaluating:

� = N �

NX

n=1

cos ✓n. (2.7)

Note the limits of summation of Equation 2.7. The angles associated with the contacts

at the hard wall contribute only half a sphere diameter to the total length of the chain

(see Figure 2.1), thus we discount the initial angle ✓0 from the sum to prevent the

overestimation of compression (its contribution is included in the n = N term).

This method finds solutions in mechanical equilibrium, but it does not make any

comment on their stability. Thus the results are combined with the soft-sphere energy

minimisation simulations described in Section 5.2 in order to establish whether the

calculated structures are stable or unstable.

2.1.1 Results of the iterative method

At low compression, the equilibrium structures found are symmetric between the two

walls. The basic symmetry of the system means that this must be the case, and that

asymmetric structures occur as equivalent pairs, related by reflection through the

midpoint of the system. Such asymmetric structures emerge at higher compressions.

For low values of compression the only solution found is symmetric, with buckling

localised around the midpoint of the chain.

A sample of equilibrium structures found is shown in Figure 2.3 for N = 7, 8. There is

no difficulty in applying this method to systems of higher N , but these values are
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(a) (b)

Figure 2.3: Examples of the structures found from the iterative equations using the
shooting method, generated by Adil Mughal, for (a) N = 7 and (b) N = 8. The
labelling of these structures is discussed in [34], for our purposes we just note that the
structures are named alphabetically in order of increasing displacement of the localised
buckling from the midpoint. The stability of the structures is calculated using the soft
sphere simulations (see Section 5.2), and here we label unstable structures with an
asterisk. Note the difference in stability of the symmetric structure S for odd and even
N . Each of the asymmetric structures also forms part of a pair, with an equivalent
structure formed by reflection through the midpoint (represented in these diagrams by
the vertical red line).

sufficient to demonstrate the localisation properties. We also show the stability of

these structures, derived from the soft-sphere simulations. We note that there is a

distinct difference between odd and even value of N regarding the stability of

symmetric states.

We note that the termination point of this method is the doublet structure (Figure

1.11), where one sphere forms an additional contact. This doublet may be constructed

at any point in the chain, but always has the same compression

�doublet = 3�
p
3 ⇡ 1.2679, and the same energy Edoublet = 1/4. We also note that

the compressive force exerted by the system on the wall drops to G = 0 here.

Thus, we will characterise the localised buckling that occurs between compression
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Figure 2.4: (a) View of a compressed and tilted linear line of spheres; the maximum
of sphere displacement has moved towards the lower end of the cylinder. (Cylinder and
sphere dimensions as in Figure 2.2, chain length 61.56mm, tilt angle ↵ ' 7 degrees.)
(b) Theoretical results from the continuum model, compared with the measured profile,
in terms of �(u) = tan ✓(u) (cf. Fig 2.2).

� = 0 and the termination point associated with the doublet using the angle profile ✓n

(see Figure 2.2), in particular the maximum value of the angle profile ✓max . This may

take any value in the interval 0  ✓max  ⇡/2. For this analysis we developed a

continuum description, where these angle profiles are approximated by functions of a

continuous variable. We will discuss this method in the next chapter.

2.2 Adding a longitudinal force: Tilt

If we consider our previous system, except now the axis of symmetry of the cylindrical

potential lies at an angle ↵ to the horizontal, each sphere will experience a force due to

the component of its weight acting along the axial direction. Writing this in our
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Figure 2.5: A modified version of Figure 2.1 showing the effect of the tilt force, ⌧ .

dimensionless notation, we define the tilt variable ⌧ as:

⌧ = mg sin(↵)/(kD), (2.8)

where mg is the weight of a sphere, and kD is our force-scale as defined in the

previous section. Here we will consider only the action of this longitudinal compressive

force, where the chain is uncompressed by the boundary walls. In Chapter A3.3 we will

discuss the combined action of tilt and compression by the boundary walls.

The addition of this tilt force modifies the iterative equations presented in the previous

section, see Figure 2.5. Equation 2.6 remains unchanged, however Equation 2.5

becomes:

✓n = arctan

✓
yn(⌧(n � 1)) tan ✓n�1

⌧n

◆
. (2.9)

Again, equilibrium solutions may be found using the same shooting method described

in the previous section. Compression of an equilibrium structure may still be calculated

using Eqn (2.7).

The energy of the system, Eq (2.2), is modified by the addition of a term due to the
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tilt: ⌧
PN

n=1 xn, where xn is the displacement of sphere n along the central axis of the

system. It may be calculated from the angle profile using xn = 1/2 +
PN�n

i=1 cos ✓N�i .

This results in the modified version of Eqn (2.2):

E =
1

2

NX

n=1

y 2
n + ⌧

 
NX

n=0

(n cos ✓n)�
N

2

!
. (2.10)

2.2.1 Results of simulations with tilt

We first address the question: what happens if the tilt is gradually increased from

zero?

It may be obvious that a small tilt will not render the chain unstable. We expect it to

become unstable with respect to buckling at some critical value of tilt, ⌧ = ⌧c . We

wish to determine ⌧c (for specified N , the number of spheres) and describe what

happens around the critical point. As an example, we choose N = 10, for which results

are shown in Figure 2.6.

It is trivial to derive the energy of a straight chain (whether stable or not),

Es = ⌧N2/2, and we subtract this from calculated energies E (Eqn (2.10)), for

simplicity of presentation,

�E = E � Es . (2.11)

Hence the horizontal axis in Figure 2.6 represents the straight chain solution, which is

stable in the range 0 < ⌧ < ⌧c , where ⌧c = 0.03557 (as determined by using the

stepwise method of Section 2.2), and unstable for higher values of ⌧ .

One might have expected a bifurcation at the critical point ⌧c such that a branch

emerges that corresponds to a buckled solution, developing as ⌧ is further increased, as

in the classic description of Euler buckling of a beam [22], see Section 1.1. This is not

the case here; there is no such “forward branch”, but rather a “backward” one, which

one may readily identify as unstable. In later sections, we will explore its nature. For

now, let us ask: what happens to the stable system when ⌧ reaches ⌧c?
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Figure 2.6: Bifurcation diagram for a system with N = 10, obtained from a combination
of the soft sphere simulations (Section 5.2) and iterative method (Section 2.2) Shown
is the variation of the energy difference �E = E � Es of total energy E (Eqn (2.10))
and energy of the straight chain, Es , as a function of tilt ⌧ . Examples of the various
structures described in the text are shown, with arrows indicating allowed directions of
change of stable solutions. The transition from the doublet to the zipper structure is
shown in close-up in an inset.
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To answer this question we have had recourse to the deformable sphere model of

Section 5.2. We equilibrate a linear chain of such spheres using gradient descent

methods for energy minimisation and find that it is stable for ⌧ < ⌧c . Beyond this

point, it falls into a doublet, if energy is minimised (see dashed black arrow in

Figure 2.6). This type of state was encountered in our earlier study of buckling under

compression [34]. The energy difference between the doublet structure and the linear

chain is given analytically by

�Edoublet = 1/4� (3�
p

3)(N � 2)⌧ . (2.12)

If ⌧ is now reduced, the system remains in the doublet state for ⌧ < ⌧c and transitions

to the linear chain only at ⌧ = 0. The stable straight chain with which we began this

description is the state of lowest energy only for ⌧ < 0.0246 (from Eqn (2.12)). On the

other hand, if ⌧ is increased, the doublet structure develops into an extended double

chain (similar to the zipper described in Figure 1.11).

For ⌧ < ⌧c the bifurcation diagram includes the “backward branch” corresponding to an

unstable state. The variation of energy close to ⌧c is quadratic for this state, as Figure

2.7 shows. The critical value of tilt (for N = 10) is ⌧c = 0.03557.

Figure 2.8(a) shows examples of profiles of displacements fn for the unstable state,

obtained from simulations of the discrete N = 10 chain, for values of tilt just below ⌧c .

The profiles are characterized by a long tail of near zero displacements, with a peak

below the ninth sphere and a substantial displacement also for the tenth sphere, which

is in contact with the wall. We will return to the interpretation of these profiles and

their scaling in the next chapter.

Our bifurcation diagram, Figure 2.6, shows also the variation of energy of an unstable

higher energy double-peak structure, but we have not yet further analysed this

state.
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Figure 2.7: Close to the critical value of tilt, ⌧c , the variation of the computed energy �E
(Eqn (2.11)) (blue data points) for the unstable buckled structure indicated in Figure
2.6 is well fitted by a quadratic form (dashed red line). (Data shown is for N=10.)

2.2.2 Simple models for tilted systems

We can shed further light on the results with simple heuristic models as follows. The

instability occurs where the local compressive force is largest, i.e. towards the bottom

of the chain. Suppose we allow displacement of only the penultimate sphere, so that

there is only a single variable (f , the displacement of the sphere, or ✓, the angle

associated with the line connecting the centres of the penultimate and the final sphere,

which is in contact with the wall) describing the buckled state. The compressive force

acting on sphere N � 1 is due to the weight of the linear chain. At the onset of

buckling its transverse component, (⌧(N � 2) + ⌧(N � 1)) sin ✓ (the sum of the forces

due to the contacts with spheres N � 2 and N , respectively), overcomes the restoring

force f = sin ✓. It results in the estimate ⌧ > (2N � 3)�1 for buckling. It provides a

crude, but fairly successful, estimate of ⌧c .

A variation of this model allows equal and opposite displacement of the two spheres

N � 1 and N � 2 (where sphere N is in contact with the wall). This more accurately
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(a)

(b)

Figure 2.8: Simulation results for the (unstable) single peak solution shown in Fig-
ure 2.6. (a) Displacement profiles for values �⌧ = ⌧c � ⌧ close to ⌧c (�⌧ =
0.0055, 0.0030, 0.0017, 0.0005). The data points result from the discrete calculations
(using the stepwise method), the solid lines are analytic solutions obtained from the
continuum model, involving the Whittaker function; Chapter 3. (b) Square of the dis-
placement, taken at spheres 7, 8, 9, 10, respectively, as a function of �⌧ . The linear
scaling of the square of the displacement with �⌧ is also reproduced in the simple heuris-
tic model of Section 2.2.2 and the continuum model.
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Figure 2.9: Variation of the critical value of tilt ⌧c as a function of the number of spheres,
N . The data points are from discrete simulations (iterative method), the solid line is
obtained from numerical solutions for the roots of the Whittaker function (a prediction
of the continuum model, see Chapter 3). Also shown is an estimate obtained from a
simple ansatz for a displacement profile, Eqn(2.13) (dashed line).
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Figure 2.10: Variation of energy, Eqn (2.14), with angle ✓ and different ratios ⌧/⌧c for
the simple model, in which only the two penultimate spheres are displaced by f = sin ✓.
For values of tilt in the range 0 < ⌧/⌧c < 1 there are unstable solutions at finite value of
✓, marked as black dots. For ⌧c � 1 the unstable solution has moved to zero, showing
how unstable branch decays as ⌧ ! ⌧c .
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describes the effect of localised buckling, and captures some of the behaviour of the

structure as it approaches the doublet. It leads to an even better estimate for the value

of tilt ⌧c , at which the unstable solution vanishes,

⌧c = [3(N � 2)]�1 , (2.13)

see Figure 2.9.

This trial set of displacements for two spheres involves a single parameter,

displacement f , or angle ✓, the latter being ✓ = arcsin f . The relative energy,

Eqns (2.11) and (2.10), is given by

�E (✓) = sin2 ✓ +
⌧

3⌧c
(2 cos ✓ +

p
1� 4 sin2 ✓ � 3). (2.14)

The maximum value of ✓ is ⇡/6, which corresponds to the doublet structure. The

model is terminated here since it does not have allowance for the additional contacts

which arise at that point.

Figure 2.10 illustrates the form of this function for different values of ⌧ . For ⌧ < ⌧c ,

the minimum at ✓ = 0 corresponds to the stable straight chain solution indicated in

Figure 2.6. The maximum corresponds to the unstable solution, represented in Figure

2.6. For ⌧ = ⌧c there is only one stationary state, ✓ = 0 (straight chain), and for

⌧ > ⌧c it is unstable. We will return to this heuristic model when interpreting

experimental work described in the next section.

2.3 Comparison with experiments: Systems with

tilt

In [35] and as discussed in Section 1.3, it is possible to examine structures formed by

chains of hard spheres under compression and tilt. Unfortunately, the results for hard

spheres do not satisfactorily match the predictions made by the simulation methods
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presented above, however we will provide explanations here as to why we believe this to

be the case.

The experiments were carried out (by Ali Irannezhad, using the experimental apparatus

discussed in 1.3) with metal spheres (sets of ball bearings with diameter D = 9.5mm

and mass m = 3.52g), confined in a cylindrical perspex tube (diameter DT = 34mm)

which was filled with vegetable oil to reduce friction (see Figure 2.11). The angle of

tilt of the cylinder against the horizontal was determined using a digital spirit level

(Neoteck NTK034). The cylinder was sealed with rubber stoppers at both ends; the

surface of the stopper in contact with the spheres was covered with a circular plastic

sheet to further reduce friction at the contact point.

In these experiments the restoring transverse force is provided by the curvature of the

cylinder. The dimensionless tilt variable ⌧ of Eqn (2.8) is then given by

⌧ =
1

2

✓
DT

D
� 1

◆
sin↵, (2.15)

as shown in Appendix A2.

If one simply tilts such a system, no instability is found until ⌧ is much greater (e.g. by

a factor 3 greater) than the ⌧c that we have computed for ideal hard spheres. Hence

friction is sufficient to hold the system in the unstable straight-chain arrangement of

hard spheres, up to a point.

We rule out the use of large perturbations since these tend to force the system into the

doublet arrangement over a very wide range of tilts. Instead we have tried to overcome

the effects of friction by rolling the tube gently back and forth, thus providing a

perturbation of the linear chain.

The experimental procedure was thus as follows. Starting from an initially linear

arrangement of spheres the tube was tilted away from the horizontal by a tilt angle ↵.

This was followed by ten cycles of manually rolling the tube back and forth with a fixed

period of 10 seconds and a specified amplitude. An image is taken after the rolling is
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Figure 2.11: Sphere arrangements obtained using the rolling procedure described in the
text. The examples shown are the straight chain (no tilt), buckled single peak structures
for tilt angles 0.8, 1.1 and 1.4 degrees, respectively, a "skewed doublet" structure for
1.5 degrees, and a ‘zipper’ structure for 1.9 degrees. (The presence of oil in the tubes
results in optical distortion. We have corrected for this in these images by re-scaling
the photographs by a factor of 2.04 to result in circular shapes for the sphere. Sphere
diameter 9.50mm, inner tube diameter 34mm, uncertainty in angle measurements, 0.03
degrees. Rolling amplitude, 30mm.)
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Figure 2.12: Experimental displacement profiles for (from bottom to top) tilt angles
0.40, 0.80, 1.10 and 1.40 ±0.03 degrees, corresponding to ⌧ = 0.009, 0.018, 0.024 and
0.0315 (using Eqn (2.15) for conversion).

stopped; Figure 2.11 shows examples of sphere arrangements for six different values of

tilt.

Image analysis using ImageJ [47] results in profiles of sphere displacement from the

tube axis. Experiments were repeated three times for each angle; in each of these runs

we started from an initially linear chain.

We find that once the rolling is stopped, even for values of tilt well below ⌧c , the

system does not return to the linear configuration. The experiments consistently

resulted in the formation of a single peak zig-zag configuration, similar in form to the

unstable equilibrium state discussed above. All profiles are asymmetric, with a

maximum displacement at sphere 9, and a substantial displacement also for sphere 10,

which is in contact with the flat stopper at the end of the cylinder.

However, while in the frictionless case the displacement amplitude decreases as the

critical value of tilt is approached (Figure 2.8), friction causes the observed

displacement to increase with tilt, as shown in Figure 2.12. In Figure 2.13 we show the

maximum displacement (i.e. the displacement of sphere nine) as a function of tilt ⌧ for
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Figure 2.13: Contrasting experimental and simulated results for maximum displacement
(i.e. corresponding to displacement of sphere 9) as a function of tilt ⌧ . In the simulation
(solid blue line) the amplitude of the unstable buckled state decreases to zero at the
critical value ⌧c , where the spheres rearrange to form a doublet structure. In the exper-
iment (data points) the buckled state is friction-arrested, with an increasing amplitude
as the doublet is approached. The solid red line is the result of a simple heuristic model,
as discussed in Section 2.2.2.
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Figure 2.14: In a simple heuristic model, as discussed in Sections 2.2.2 and , an initial
configuration, displaced from a straight line, is arrested by friction if it lies in the shaded
region. This figure shows the region for a sample value of µ = 0.12. In other regions
of the diagram, friction is overcome; the system moves as indicated by the arrows,
until arrested. This figure shows how the combination of friction and tilt affect a chain
with a given initial displacement. The dotted blue line represents the initial maximum
displacement of that state, while the dashed blue line shows the observed state. The red
line corresponds to that in Figure 2.13. (The black dashed line is the unstable branch)

both our numerical and experimental data. This highlights the different behaviour as

the critical point is approached.

We will address this discrepancy between theory and experiment through the addition

of friction to the simple heuristic model. We will do this by noting that the derivative

of the energy of the system with respect to the characteristic angle of the model,

dE/d✓, may be equated to the restoring force acting on the displaced spheres. We

claim that for restoring forces below some threshold value, the structures are arrested

and will not move to the lower energy structures predicted by the original theory. This

is an approximation, as there are multiple contributions to the friction in the

experimental system - the friction between contacting spheres and the friction between

the spheres and the surface of the confining cylinder. Our model combines these.

Given our choice of dimensionless quantities, with forces made dimensionless through

division by kD, we will equate this threshold value with the coefficient of friction, µ.

Therefore, for a given value of µ, we can define a region where the structures are
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"arrested", i.e. their displacement will remain fixed in this region regardless of tilt. For

a sample value of µ = 0.12, this is given by the grey region in Figure 2.14. Outside this

region, the behaviour depends on the value of tilt. For lower values of tilt, the

displacement of the structures falls to the arrested region. This is demonstrated by the

large grey arrows in Figure 2.14. For larger values of tilt, or initial displacement of the

spheres, the displacement increases until the doublet structure is reached. Note that

the red curve in Figure 2.14 corresponds to what is shown in Figure 2.13.

In both experiment and this crude theory, upon increase in tilt the single-peak buckled

structure eventually becomes unstable and the doublet structure emerges. A further

increase in tilt renders also the latter unstable, resulting in what we called the ‘zipper

structure”, see bottom photograph in Figure 2.11.

2.4 Conclusions

In this chapter we examined the original iterative relationship described in [43], and

showed how it may be extended to the case of a line of tilted spheres.

In vague terms, the system presents a type of buckling under tilt which, in one form or

another, is quite general. Structures that fail under load may do so continuously

(although possibly with discontinuous secondary consequences) or catastrophically.

The latter word has a modern mathematical meaning which may well apply to our

case.

The stability of the linear chain and the presence of the buckled structure in our

experimental results, serve to highlight the role of friction in arresting structures that

would otherwise be unstable. In this regard, these findings are reminiscent of various

columnar structures, composed of tennis balls, that are stable only due to the presence

of friction between contacting balls [48]. While the incorporation of the simple theory

of states arrested by friction brings the experimental results broadly in line with the

theoretical predictions, a detailed comparison is impossible. We will propose a

comparison with systems of bubbles in Part II of this thesis, where the assumptions of
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our theory match the experimental conditions more precisely.

In many cases in this chapter we have had reason to refer forward to the results of the

next chapter, the continuum model: to describe parameters such as the critical tilt ⌧c

and the prediction for variation of parameters such as maximum angle ✓max as a

function of the compression and/or tilt of the system. In the next chapter we will

develop this continuum theory fully, showing how it arises from the original iterative

description of these structures. We will show how analytic approximations can provide

an insight into the behaviour of this system in various limits.
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3 The continuum model for buck-

led chains

In this chapter we will make a curious proposition. What if the buckling profiles we

observed in Chapter 2 were discrete samples of some underlying continuous curve?

Turning continuous systems into discrete ones is commmonplace, such as in digital

signal processing [49] and numerical analysis [50]. Here, however, we argue that the

reverse is both useful and interesting when applied to the buckled chain of spheres

confined in the harmonic potential. We consider our discrete difference equations and

we ask, is it possible to find the underlying differential equation, whose solutions are

our familiar buckling profiles? In this chapter we shall discuss this, transforming our

discrete system into a continuous one, and using the methods of solving ODEs to

further probe the behaviour of the buckled chain.

The structure of this chapter is as follows. In section 3.1 we introduce the nonlinear

differential equation of the continuum model, Eqn (3.2), and show some sample

solutions for specific values of compression and tilt. In Section 3.2 we present several

approximations to the equation which allow for analytical solutions in terms of scaled

Jacobi, Airy, and Whittaker functions, respectively. The properties of these solutions

are discussed in Section 3.3 (a more detailed exploration of the Jacobi solutions is

reserved for the next chapter), examples are shown in Figure 3.2. In Section 3.4 we

present our results in the form of a phase diagram. Mathematical details are mostly

confined to the Appendices.
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The progression of successive approximations in our mathematical description is

outlined in Table 3.1, as a guide to the sections that follow, and relevant publications.

For now, we will limit the experimental and numerical data shown in the following to

N = 10 spheres; in our analytical expressions N enters simply as a parameter. We will

investigate the N-dependence of properties of the system in a later section.

It is important to note that this is not a true continuum limit in the mathematical

sense, as we neither explore the limit of N ! 1 or D ! 0, but rather our description

of the problem in terms of continuous profiles provide curves from which the discrete

profiles can be sampled.

3.1 The continuous formulation

3.1.1 Differential equation

Equilibrium configurations of contacting hard spheres in a harmonic confining potential

(with tilt), as shown in the previous chapter, result from a balance of forces. In the

previous chapter, we showed how the force balance leads to a set of iterative equations

(Eqns (2.6), (2.5)) for the transverse forces acting on the spheres, and the angles ✓n

(see Figure 2.5 for notation) between successive lines of contact and the longitudinal

direction. These discrete equations have been solved numerically using the shooting

method, as discussed in the previous chapter, and the solutions produce the angle

profiles, ✓n.

In the absence of tilt we reformulated the discrete equations as a second order

differential equation for which it is convenient to use as a dependent variable �(u),

where

�(u) = tan ✓(u). (3.1)

The variable u replaces the index n in the discrete formulation. In Appendix A3.1 we
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Scenario Equation References

Discrete system Difference equations, Ch. 2
with tilt ⌧ Iterative numerical solutions Ref. [34,41]
compressive force G + ⌧(n � 1) for forces and displacements
resulting in compression �

Continuous Differential equation Ch. 3
approximation �00(u) = �4�(u) + �(u)

G(u)
p

1+�2(u)
Eqn (3.2)

compressive force G (u) = G + ⌧u numerical solutions Ref. [34]

For ⌧ = 0, � < 1 Differential equation Chapter 4
Approximation as �00 = 2�� 2

⇣
1 + 2

4

⌘
�3 Eqn (3.4)

reduced equation Jacobi function solutions Ref. [51]

Linear approximation Linear differential equation Sect. 3.3.2
For 0 < ⌧ ⌧ 1 �00 =

⇥
�4 + 1

G+⌧u

⇤
� Eqn (3.7)

Approximation by Whittaker equation Whittaker function solutions Ref. [35]

For 0 < ⌧ ⌧ 1, ⌧/G ⌧ 1 Linear differential equation Sect. 3.3.3
Approximation by �00 =

⇥
1
G

�
1� ⌧u

G

�
� 4
⇤
� Eqn (3.9)

Airy equation Airy function solutions

Table 3.1: Outline of the different scenarios, successive approximations, and differential
equations discussed in the text (see in particular Section 3.2), together with some relevant
references. Examples of profiles for Jacobi, Airy and Whittaker solutions are shown in
Fig 3.2.
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derive the differential equation in the presence of tilt as

�00(u) = �4�(u) +
�(u)

G (u)
p

1 + �2(u)
. (3.2)

In this “full continuum equation with tilt” the axial component of the (dimensionless)

compressive force G (u) varies linearly with position u, G (u) = G + ⌧u. Here G is the

magnitude of the compressive force (in the axial direction) at the (possibly elevated)

end (u = 0) of the chain of N spheres and ⌧ is the dimensionless tilt parameter. (In

the experiments, ⌧ is proportional to the sine of the angle of tilt; see Eqn (2.8).) We

note that for the case considered here there are only repulsive forces, so G (u), and in

particular G is never negative.

Eqn (3.2) is the central equation of the continuum model. We will examine its

solutions for the hard-wall boundary conditions �(0) = �(N) = 0 (which corresponds

to hard walls that are perpendicular to the cylindrical axis, see Figure 2.2) and given

values for compressive force at the upper (elevated) end, G, and tilt ⌧ .

Eqn (3.2) was previously only presented and analysed in this form for the case ⌧ = 0,

where Jacobi functions provide approximate solutions [51]. The presence of tilt (i.e. a

finite value for ⌧) leads to further (approximate) analytical solutions, now in terms of

Airy and Whittaker functions.

3.1.2 Compression

In contrast to our experimental set-up, where we fix compression by choosing the

distance between the two stoppers at the ends of the chain, here we compute profiles

for given tilt ⌧ and various values G, evaluating compression � from the profile �(u)

via a continuum formulation of Eqn (1.3):

� = N �

Z N

0

dup
1 + �2(u)

; (3.3)

see also Appendix A3.2.
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As with experimental data we can thus plot quantities of interest such as peak position

or peak height as a function of compression.

3.1.3 Numerical results

Before proceeding to analytic approximations, it is instructive to discuss numerical

results for solutions of the full equation, Eqn (3.2). The equation is solved numerically,

using Mathematica’s in-built shooting method, for the required boundary conditions

�(0) = �(N) = 0.

Numerical results for compression only

Figure 3.1(a) shows examples of profiles of �(u) for N = 10 in the absence of tilt

(⌧ = 0), computed for several values of the compressive force G. The profiles are

symmetric around the centre of the chain.

In the limit in which compression � ! 0 the peak height varies as �max ⇠ �1/2, with a

linear variation for higher values of compression (see Figure 3.9). The square-root

scaling may be understood as follows. For small �(u) we have � '
1
2

R N
0 �2(u)du (see

Eqn 4.5). Approximating �(u) as a triangular profile of peak height �max gives the

above scaling. We will return to this in the next chapter, when discussing analytical

solutions of a reduced equation in terms of scaled Jacobi functions.

Numerical results for compression and tilt

In Figure 3.1(b) we show that the presence of a finite tilt results in a shift of the peak

away from the centre of the chain (as seen in Figure 2.4). Starting at ⌧ > 0 and

increasing � > 0 results in the localised buckling peak forming away from the centre of

the system. The position of this buckling peak will shift slightly as � is increased, until

a critical value of �c is reached. Beyond this point, the single-peak structure requires

an extensive force G < 0 to be maintained, and instead collapses.

A similar outcome is reached if a structure of a given compression at ⌧ = 0 is tilted,

51



(a)

Increasing
Compression

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

u

�
(u
)

(b)

Increasing Tilt
Fixed Compression

Whittaker
Solution

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

u

�(u)

Figure 3.1: Results from numerical solutions of the full equation, Eqn (3.2), for a chain
of N = 10 spheres under compression. (a) Examples of profiles of �(u) in the absence
of tilt (⌧ = 0) for compressive forces in the range G = [0.185, 0.257], resulting in
compression � in the range from 0.1 to 0.6. (b) For fixed compression (here � = 0.1)
the introduction of a finite value of tilt leads to a shift of the peak away from the centre.
Shown as a red dashed line is the limiting case for the absence of a compressive force at
the top end, i.e. G = 0; this is the Whittaker solution, Eqn (3.12), which we will discuss
in Section 3.3.2.
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while adjusting the position of the top wall to maintain that compression. At a given

value of ⌧ = ⌧c(�), the structure will also require that G < 0, resulting in collapse of

the system to a doublet or zipper state. This �� ⌧ boundary is shown in Figure

3.7.

A detailed discussion of these cases will also be provided in Section 3.3, where we will

discuss them through the lens of the Airy and Whittaker functions.

3.2 Approximations of the full equation

The differential equation, Eqn (3.2), may be reduced by various reasonable

approximations, resulting in forms which have analytic solutions, as summarised in

Table 3.1. These provide insight into the properties of (numerical) solutions of

Eqn (3.2) for different ranges of compression and tilt (Section 3.4).

3.2.1 The case of small compression in the absence of tilt

We first consider the absence of tilt, ⌧ = 0, for which there is a constant compressive

force G (u) = G. Taylor expanding the square root in the denominator of the right

hand side of Eqn (3.2) to order �2, one obtains the reduced equation,

�00 = (G�1
� 4)��

�3

2G
. (3.4)

By making an appropriate change of variables, � = 2
q

m
2m�1(1� 4G)y , and

u =
q

(2m � 1) G
1�4G x this can be re-written in the form of the Jacobi differential

equation

y 00 = �(1� 2m)y � 2my 3, (3.5)

with 0 < m < 1. Its analytical solution y(x) = cn(x |m) is the Jacobi cn function [50],
p
m is called the (elliptic) modulus. We will discuss the details of the Jacobi solutions

in the next chapter, and explore how they describe the localisation effects and N

dependence of profiles under compression.
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3.2.2 Compression and tilt

In the case of finite tilt, ⌧ > 0, analytical solutions in terms of Whittaker or Airy

functions are available if one neglects the �2 term in the denominator of the square

root in the full equation, Eqn (3.2), and thus considers the linear equation

�00 =


�4 +

1

G + ⌧u

�
�. (3.6)

Whittaker equation

By introducing ũ = u + G/⌧ we put this in the form of

�00 =


�4 +

1

⌧ ũ

�
�. (3.7)

Equation (3.7) is a special case of the Whittaker Equation

d2w

dz2
=


1

4
�

k

z
+

(14 � µ2)

z2

�
w , (3.8)

for z = 4i ũ, µ = 1/2, k = 1/(4⌧), and renaming w as �.

Here we concentrate on the case G = 0 (i.e. ũ = u), corresponding to experiments in

which the upper end of the chain is not in contact with the wall. The exact solutions

of Eqn (3.7) for our boundary conditions can then be written in terms of Whittaker

functions, Mk,µ(z); see Section 3.3.2.

The Whittaker solution defines only a single solution for a given value of N (this gives

a prediction for the critical value of tilt, where G = 0, for that given N). In order to

explore the effect of tilt and compression on the system, we make a different

approximation which leads to the Airy equation, as discussed in the next section.
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Small tilt and a finite compressive force: Airy equation

For finite G and ⌧N/G ⌧ 1, we we may retain only the lowest order term in ⌧u/G in

Eqn (3.6), resulting in:

�00 =


1

G

✓
1�

⌧u

G

◆
� 4

�
�. (3.9)

By making a change of variable from u to an appropriately defined x (see Appendix

A3.3) and renaming � as y we obtain the familiar Airy equation,

y 00(x) = xy(x), (3.10)

which has analytical solutions in terms of the Airy Ai and Bi functions. In Appendix

A3.3 we derive the exact solutions of Eqn (3.9) in terms of these Airy functions; we

will discuss the properties of these solutions in Section 3.3.3.

3.2.3 The form of the analytical solutions

Figure 3.2 shows examples of the special functions used here, over an extended range.

One may choose as a solution (with hard wall boundary conditions) any range between

two zeroes (corresponding to the boundary conditions � = 0 at each end). These are

the ’higher modes of buckling’, analogous to those we discussed for Euler buckling in

Section 1.1. We will not address those higher modes here, in general they form for

much higher compressive forces and thus energies.

In the next section we explore the properties of the analytic solutions in terms of

Jacobi, Airy and Whittaker functions.

3.3 Properties of analytical solutions

Analytical solutions result in relationships between the experimental parameters

compression, tilt and the number of spheres, and the observed quantities peak position

and peak height. They also enable us to predict the critical value of tilt for sphere
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Figure 3.2: Examples of the analytic functions used in this work, shown over a wide
range. Only sections such as those displayed as red-dashed lines are of relevance here;
they fulfil the required boundary conditions, �(0) = 0 and �(N = 10) = 0.
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detachment (where G (0) = G = 0). Each of the analytical results offers a different,

limited perspective on experimental features.

Using Jacobi functions one arrives at the relation between peak height and compression

in terms of elliptic integrals. Using Airy functions establishes a relation between the

position of the profile maximum and tilt. Whittaker functions enable a prediction of

the critical value of tilt at which detachment of the spheres from the top wall occurs

for (low values of) fixed compression.

3.3.1 Compression only: Jacobi functions

For values of compression �  0.3, and in the absence of a longitudinal tilt force,

solutions of the full continuum equation are well approximated by scaled Jacobi

functions. An example of such a profile was already shown in Fig 3.2(a).

For the case of the hard wall boundary conditions considered here, i.e.

�(0) = �(N) = 0, the solution of the reduced equation in the absence of tilt (⌧ = 0),

Eqn (3.4), is given in terms of the scaled Jacobi cn function as

�(u) = �maxcn
⇣p

(G�1 � 4)/(2m � 1)(u � N/2)|m
⌘
, (3.11)

where the so-called modulus,
p
m, is related to the period of the Jacobi functions, and

thus N . The derivation of this solution, and a discussion of its properties, will be

discussed in the next chapter.

3.3.2 Whittaker functions and the critical tilt for detach-

ment

From experiments and numerical solutions for both the discrete system and the full

continuum equation (see Figure 3.1(b)) one finds that (for given compression �) there

is a critical value of tilt, ⌧c(�), beyond which the spheres detach from the upper

boundary, so that the compressive force there goes to zero, i.e.
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Figure 3.3: (a) Variation with tilt of the compressive force G = G (u = 0) at the “top
end” of the chain, for compression � = 0.1. Detachment of the chain corresponds to
G = 0, calculated numerically. (b) The variation of the critical value of tilt (where
G = 0) as a function of compression for the full numerical solutions of the continuum
equation with N = 10. The red square point at � = 0 corresponds to the analytic
prediction made for the Whittaker equation.
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G (u = 0) = G = 0.

As an example we show in Figure 3.3(a) the decrease of G (0) = G with tilt for

constant compression � = 0.10, as obtained from numerical solution of the full

equation, Eqn (3.2) for N = 10. The critical tilt for detachment is determined as

⌧c(0.1) = 0.0345. Its variation with compression is shown in Figure 3.3(b); we will

show below how the value of the critical tilt for the uncompressed system, � = 0, is

determined analytically using Whittaker functions.

We saw in Section 3.2.2 that for small � the full equation can be approximated by a

special case of the Whittaker equation, Eqn (3.7). For G = 0 and the boundary

condition �(u = 0) = 0 and a given value of �0(0) (which is chosen so to obtain a

specified compression) its solution is given by

�(u) =
�0(0)

4i
M i

4⌧ ,
1
2
(4iu), (3.12)

where M is the Whittaker function [52] and i is the unit imaginary number. (Here we

have used the property of the Whittaker function, d
duM i

4⌧ ,
1
2
(4iu)|u=0 = 4i .) An example

of this solution was shown in Fig 3.2(b).

The chosen value of tilt ⌧ in Eqn(3.12) uniquely determines the distance between the

zero of �(u) at u = 0 and its first zero at a positive value of u. Rephrased in the

context of this problem: for a given number N of spheres (requiring �(N) = 0 for our

boundary conditions) there is a well-defined critical value of tilt, ⌧c , for detachment

(i.e. G (u = 0) = G = 0 at ⌧c). This value can be determined (numerically) from

Eqn (3.12); an upper bound estimate is given by ⌧c < [3(N � 2)]�1 (as shown in

section 2.2.2).

For the case N = 10 the boundary conditions �(0) = �(10) = 0 are fulfilled for

⌧c = 0.0359. From Figure 3.3(b) we see that this is the critical value of tilt for

detachment at compression � = 0, i.e. ⌧c(� = 0) = 0.0359. For higher values of

compression, the value of tilt ⌧c is reduced; see Figure 3.3.
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Figure 3.4: Results from numerical solutions of the full equation, Eqn (3.2), for the
tilting of a chain under constant compression (� = 0.10). (a) The introduction of tilt
leads to a displacement, �umax , of the peak position away from the centre. (For N = 10
as shown here: �umax = umax � 5.) (b) Variation of peak height with tilt. In each case
the corresponding result of Whittaker theory is shown by a red square.

For values of tilt close to detachment, and for small values of compression, the

Whittaker solution serves as an analytic approximation of the numerical solutions of

the full equation. Figure 3.1(b) demonstrates this for the case of compression

� = 0.1.

The Whittaker solution also provides an estimate of both peak position and peak height

at the point of detachment. Figure 3.4(a) shows numerical results for the displacement

of the peak away from the centre as a function of tilt, at fixed compression � = 0.1, as

obtained from numerical solutions of the full equation, Eqn. 3.2. For small values of ⌧

this is linear in ⌧ . At the point of detachment the peak remains a finite distance away

from the bottom wall. Shown as a red square in Figure 3.4(a) is the peak displacement

of the Whittaker solution, Eqn (3.12), corresponding to the point of detachment.
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Figure 3.5: The peak height �max of the scaled Whittaker solutions, Eqn (3.12), varies
approximately as �2

max ' �. For small compression, �, this approximates the behaviour
of the full solution near detachment.

The variation of peak height, �max , as a function of tilt for fixed compression is shown

in Figure 3.4(b). This too converges to a finite value at the point of detachment,

which is well approximated by the Whittaker solution for this compression. The peak

height of a Whittaker profile scales as the square root of compression �, as shown in

Figure 3.5.

3.3.3 Compression and tilt: Airy functions

The Airy function formulation is a generalisation of our previous approximations. We

now no longer assume that tilt ⌧ = 0, instead we assume that the quantity N⌧/G ⌧ 1.

It provides the following approximate solution of the full equation, for a given value of

⌧ :

�(x) = c1Ai(x) + c2Bi(x). (3.13)

Here the variable x is given by

x =

✓
⌧

G2

◆�2/3  1
G

✓
1�

⌧u

G

◆
� 4

�
, (3.14)
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Figure 3.6: For small values of both tilt ⌧ , and compression �, combinations of Airy Ai
and Bi functions reproduce the key feature of solutions of the full continuum equation,
namely displacement of the profile peak away from the centre, in response to the applica-
tion of tilt. (a) Profiles for �(u) in terms of Airy functions for fixed compression � = 0.1
and varying tilt ⌧ in the range (0, 0.0045) (for N = 10). (b) Peak displacement �umax

(as in Figure 3.4(a)), as a function of tilt for � = 0.1. Blue dashed line: result from the
full equation, Eqn (3.2). Red solid line: Analytical result involving Airy functions. (c)
Peak displacement as a function of compression for various values of tilt. Blue dashed
line from full equation, red solid line: Airy solution.
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and the constants c1 and c2 are determined from the boundary condition

�(0) = �(N) = 0, see Appendix A3.3.

Figure 3.6(a) shows examples of profiles �(u), obtained for a fixed values of

compression, and several values of tilt. For small values of tilt ⌧ the position of the

maximum varies linearly with ⌧ ; see Figure 3.6(b). (The linear variation for small ⌧ was

already seen in the numerical solutions of the full equation; see Figure 3.4(a)).

Eqn (3.9) (of which Eqn (3.13) is an exact solution) is linear in �, allowing for a simple

scaling of its solutions to obtain profiles corresponding to different values of

compression, �. The peak position is thus only dependent on tilt, but independent of

compression. This is shown in Figure 3.6(c) where we contrast this behaviour with that

of solutions of the full equation.

3.4 Phase diagram and energy

The results of our investigation can be presented in the form of a ’phase diagram’ with

axes tilt ⌧ and compression � (here we borrow the thermodynamic term,

characterising the regions in ⌧ �� space by the kind of structures that may be found

there). The phases that we identified are the straight chain (⌧c(� = 0)), the buckled

attached chain (G > 0), and detached states. All these are marked up in Figure 3.7 for

the case N = 10, together with an indication of the validity ranges of the various

analytical solutions for the profiles �(u).

Also indicated in the phase diagram is a straight line (corresponding to constant tilt,

⌧ = 0.25) leading from the point a (unbuckled tilted chain) to b (buckled chain, at the

point of detachment). Knowledge of the compressive force G(�) at the elevated end of

the chain as a function of compression, �, allows for the computation of the energy

difference between two states along that line using the work energy theorem,

E � ES =

Z �

0

G(�)d�. (3.15)
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Figure 3.7: Phase diagram representing the results of the continuum model (for N = 10)
in the plane of tilt ⌧ and compression �. The solid blue line demarcates a phase boundary
and is defined by G (0) = G = 0, i.e. detachment at the elevated end of the chain of
spheres. The area to the left of it corresponds to buckled structures, the area to its right
to collapsed structures. In the case of compression � = 0 (horizontal axis) the chain
remains unbuckled up to the value of critical tilt ⌧(� = 0) = 0.0359 which is given by
the Whittaker solution. Knowledge of G(�) along a vertical line enables the calculation
of the energy difference between any two states using the work energy theorem (for
example between the points a and b indicated on the diagram).

Figure 3.8(a) shows that G decreases with compression and vanishes at � ' 0.795 (for

tilt ⌧ = 0.025), corresponding to detachment. Numerical integration of G(�) using the

work-energy theorem, Eqn (3.15) results in the energy difference E � ES , as shown in

Figure 3.8(b).

An alternative route to evaluate this energy difference is as follows. The total energy of

a line of spheres has two contributions. Tilting the line away from the horizontal leads

to a gravitational energy; it is given by ES = ⌧N2/2, if the chain is straight. Buckling,

i.e. sphere displacement in the transverse direction results in a second contribution,

associated with the harmonic confining potential. This is analogous to the method

used to calculate energy in the discrete system, Eqn (2.10).

An equivalent formulation for total energy can also be derived for the continuous
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a)

b)

Figure 3.8: (a) Variation of G with compression �, for constant tilt ⌧ = 0.025 (corre-
sponding to the vertical red line on the phase diagram, Figure 3.7). Detachment occurs
at the intersection with the horizontal axis, � = 0.795. (b) Energy, relative to the
energy of a tilted straight chain, as function of compression for fixed tilt ⌧ = 0.025.
Dotted blue line: work-energy theorem, Eqn (3.15). For low values of � the energy can
also be expressed in the integral form of Eqn (3.16), see dashed yellow line.
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Figure 3.9: Variation of the peak height, �max , as a function of the compressive strain
(�/N) for tilt ⌧ = 0. Shown are the curves for N = 5, 10, 20, 50. The points indicated
by blue dots are the point at which the compressive force of the solution G = 0.25 (see
Appendix A1). Below this point, the variation of the peak height may be fitted with a
square root function prior to this point, after it the variation is approximately linear.

formulation. This is shown in Appendix A3.1, leading to:

E '
1

8

Z N

0

�2(u)

1 + �2(u)
du + ⌧

 Z N

0

udup
1 + �2(u)

!
'

�

4
�

⌧

2

Z N

0

u�2(u)du. (3.16)

This equation allows for the direct computation of the energy from solutions �(u) of

the full continuum equation, Eqn 3.2. Figure 3.8(b) shows this formula replicates the

linear increase in energy for low compression, i.e. solutions with small values of �. See

Figure 3.10.

3.5 Conclusions

The continuum model captures many of the fascinating details of this system, while

providing an insight into its more obscure properties. The model provides transparent

interpretations of the effects of localisation, N-dependence of quantities such as

energy, and the effect of tilt on a system. Its analytic approximations allow us to lean
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Figure 3.10: Variation of the energy as a function of compressive strain (�/N) for
N = 5, 10, 20, 50, ⌧ = 0, as calculated from Eq (3.16). The dashed lines represent the
leading term of �/4 given in Eq (3.16), demonstrating the efficacy of this approximation
when compressive strain (and thus �max) is small.

on established mathematical work to interpret these effects.

Our interpretation may be extended to experimental systems, such as the evolution of

ion crystals in linear traps (see Section 1.1). It has already been shown that the optical

and conductance properties is important depend heavily on the arrangement of these

structures [4]. Our simplified approach may be used as a baseline model for

characterising the change in structure as the confining potential of the trap is

weakened.

The approach, however, is limited by its breakdown at large buckling amplitude, which

entails transitions to the doublet state, where second-neighbour contacts arise.

Through other simulation methods, we are also aware of a dearth of other possible

solutions (see Chapter 2), however the continuum model may only access the ’ground

state’ structures: the symmetric structures in the case of no tilt, and the single-peak

tilted structures when ⌧ > 0. One may envisage an extension of the continuum model

to include such structures, however it would require reworking the original iterative

equations proposed in Chapter 2.
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Figure 3.11: Portraits of the three mathematicians whose work was discussed in this
chapter. (a) Carl Gustav Jacob Jacobi (1804-1851), a German mathematician most
famous for the development of his ’elliptic functions’, which find applications in the
cases of the pendulum, the Euler top and the Kepler problem. Here they find a new
use in describing the buckling profiles in the absence of tilt. We shall discuss these in
more detail in the next chapter. (b) Edmund Taylor Whittaker (1873-1956), an English
mathematician known for his work in mathematical physics and numerical analysis. He
is the eponym of the Whittaker function, which we discussed in this chapter. He also
has an Irish connection, having served as the Andrews Professor of Astronomy and the
Royal Irish Astronomer in Trinity College Dublin (1906-1912). (c) George Biddell Airy
(1801-1892), an English mathematician and astronomer famous for his work in planetary
dynamics and optics. We apply his Airy functions to our problem of a buckled line of
spheres under the action of compression and tilt. (Portraits and biographical details are
taken from Wikipedia: https://www.wikipedia.org)

In the next chapter, we will explore the approximation of Eqn (3.2) in the case of

⌧ = 0. This relates the continuum approach to the Jacobi equation, and its solutions

to the Jacobi elliptic functions. This approach gives a greater insight into the effects of

localisation and N-dependence for the case of the system under compression.
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4 Jacobi elliptic functions

Here we extend the analysis of the previous section, and provide a thorough exploration

of the role of Jacobi elliptic functions in describing the angle profiles of our buckled

structure. As we discussed in Section 1.1, Jacobi elliptic functions already feature in

the problem of elastic Euler buckling, making their appearance here worthy of further

investigation.

4.1 The ’reduced equation’ and Jacobi functions

Results obtained for the continuous formulation are a good approximation to those of

the original discrete problem, except at the limit of high compression �, and are readily

analyzed, which providing a “bird’s eye view” of solutions, for all N and �.

We may rewrite the key differential equation, Eqn (3.2), in terms of the angle profile

✓(u) (remembering that �(u) = tan ✓(u)),

d2 tan ✓(u)

du2
+ 4

✓
tan ✓(u)�

✓
1 +

2

4

◆
sin ✓(u)

◆
= 0. (4.1)

In the following the compressive force G exerted at both ends of the chain is

represented by the quantity 2, which is defined as

2 = G
�1

� 4. (4.2)

It may be positive or negative, so that the square root  may be real or imaginary.
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Again, we will limit our discussion to properties of solutions of Eqn (4.1) for the hard

wall boundary conditions (✓(u) = 0 at the two end points of the chain, at u = 0 and

u = N) which are imposed on our present experiments and discrete calculations.

By substituting � = tan ✓ and neglecting terms of order O(�5), Eqn (4.1) may be

reduced (see Appendix A3.1) to arrive at the following nonlinear differential equation

which we may call the reduced equation,

�00 = 2�� 2

✓
1 +

2

4

◆
�3. (4.3)

In Section 4.4 we show that its analytical solutions compare well with numerical

solutions of the full equation, Eqn (4.1), for sufficiently small values of compression.

(This is also the case for solutions of ✓00 = 2✓ � 2✓3, the reduced equation that we

had originally formulated [34].)

The reduced equation is one form of the Duffing equation [50], well known in the

theory of oscillations, where it serves as an analytically tractable approximation to a

wide range of dynamical systems including the non-linear pendulum, the forced

oscillations of beams and cables, as well as non-linear electrical circuits. In its most

general form the Duffing equation is given by

ẍ(t) = ��ẋ � �x � ↵x3 + � cos(!t),

in the absence of both a damping term (� = 0) and a driving force (� = 0) it can be

seen that the Duffing equation is equivalent to Eqn (4.3). The character of the

phenomena described by the Duffing equation depends on the non-linear term

��x � ↵x3. For � > 0 it describes an oscillator with a non-linear restoring force, while

for � < 0 it describes the dynamics of a point mass in a double well potential. In our

case this cross-over is governed by the value of 2, as we shall show in the following

section by plotting the phase portraits of both the full and reduced equations (i.e.

Eqn (4.1) and Eqn (4.3), respectively).
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While much of the analysis of the Duffing equation is directed towards understanding

dynamic properties, the present problem of a chain of hard spheres in a transverse

potential represents a realisation of the Duffing equation in a static system. It is well

recognised that the solutions of the Duffing equation are in terms of scaled Jacobi

functions, these functions are also an excellent approximations to the full differential

equation Eqn (4.1).

4.1.1 Properties of the reduced equation

Many of the general properties of the full equation, Eqn (4.1), and its reduced form,

Eqn (4.3), are obvious and well illustrated by their phase portraits shown in Figure 4.1.

These include symmetry under ✓ ! �✓ and u ! �u, periodicity (with an exception

noted below) and the dependence on the sign of 2. The key feature that can be seen

in the phase portraits as 2 goes from 2 < 0 to 2 > 0 is the transition from a system

with one stationary point to a system with two stationary points (the case of 2 = 0 is

intermediate between these two regimes).

For 2 > 0 the solution of the reduced equation has inflection points (�00 = 0)

wherever

� = 0, or ±

s
2

2(1 + 2/4)
. (4.4)

(In our case, ✓ (and thus �) is always positive.) For 2 < 0 the second type of

inflection point does not arise.

For the hard wall boundary conditions applied here, the solutions are symmetric about

the midpoint of the system. It is clear therefore that for 2 < 0, the relevant solution is

“cosine-like” (see Section 4.3, Figure 4.4, example G).

For 2 > 0 the solution develops a more or less prominent peak at the centre

(localization of buckling), see Figure 4.4, example C). This type of solution may extend

to infinity with exponential tails, ✓ ⇠ exp(±u), if the separation of the hard walls is

taken to the infinite limit.
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Figure 4.1: Phase portraits for both full equation Eqn (4.1) (left) and reduced equation,
Eqn (4.3) (right). (a) For 2 < 0 the trajectory orbits the stationary point at (0,0),
shown also for 2 = 0 in (b). For 2 > 0 (c) the trajectory may orbit either one or both
of the two stationary points at

⇣
arctan

⇣
±

q
2

2(1+2/4)

⌘
, 0
⌘
, depending on the boundary

conditions.
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The intermediate case  = 0 has solutions with second, third, and fourth derivatives at

the two edges, so that it takes a roughly triangular form (see Figure 4.4, example E).

In this case the following approximate relationship holds, � ⇡
4
3N

�1, where

compression � is computed using the expression given below (Eqn (4.5)).

4.2 Jacobi functions

While not entirely elementary the reduced equation does have analytic solutions in the

form of Jacobi functions. The solutions which are categorized in the following are for

the boundary condition ✓(0) = ✓(N) = 0 (and thus �(0) = �(N) = 0), thus requiring a

Jacobi function with real zeroes.

As an example, Fig 4.2 shows both the numerical solution of the full differential

equation and the analytical solution of the reduced equation (i.e. where tan ✓ is a

rescaled Jacobi cn function, to be derived below) corresponding to the calculation for

the discrete case as discussed in Chapter 2.

In the continuum formulation compression � is given by the integral

� =

Z N

0

(1� cos ✓(u)) du, (4.5)

where the integration has generally to be performed numerically for given ✓(u).

The reduced equation, Eqn (4.3), is only an approximation to the full one, but offers

many opportunities to develop the mathematics of its solutions, including bringing the

Jacobi functions into play. In doing so, we shall here restrict the analysis to the case of

hard wall boundary conditions with walls perpendicular to the axis: the treatment of

other boundary conditions entails the introduction of further Jacobi functions.

4.2.1 Notation for Jacobi functions

There are twelve different Jacobian elliptic functions whose primary definition is framed

in terms of the inversion of integrals. These functions are solutions of first and second
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Figure 4.2: Results for the continuum model applied to a system of ten spheres with a
compressive force G = 0.2435 (corresponding to 2 = 0.1068, Eq (4.2)). The solid line
is an accurate numerical solution for ✓(u) for the full continuum differential equation
Eq (3.2) under the same conditions. The dashed line is the analytical solution ✓ =
arctan� of the reduced equation, Eq (4.3), where � is the scaled Jacobi cn solution,
Eq (4.7), discussed in Section 4.2.2. Compression � is computed using Eqn (4.5). Also
shown are the data points for the corresponding discrete system.

order differential equations and it will be this aspect which concerns us here.

Only four Jacobi functions satisfy differential equations which may be transformed into

the reduced equation, Eqn (4.3). These functions may be rescaled, as detailed below,

to give explicit analytic solutions of the equation. However, our present restriction to

hard wall (✓ = 0) boundary conditions further reduces the available function types to

two, which have zeroes. These are cn and sd , but these are related by a translation

(like the sin and cos functions), so that only one of them is required: we choose

cn.

There is a one-parameter set of cn functions, each being generally denoted by cn(x |m),

and the individual function is identified by m, where
p
m is called the modulus. It is

real for our purposes. The parameter m is related to the period of the Jacobi

functions, which is stated in terms of the complete elliptic integral of the first kind; see

Section 4.2.2.

By convention, m is restricted to the range 0 < m < 1. Elliptic functions with a value
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Figure 4.3: Examples of the Jacobi function cn(x ,m) for different values of the modulus
m1/2. Their shape varies smoothly between cos(x) (for m=0) and the hyperbolic secant,
sech(x) = 2

ex+e�x (for m = 1).

of m outside this range can be rewritten as other elliptic functions where m lies between

0 and 1. Hence the set of functions used here is that of cn(x ,m) for this range.

4.2.2 Jacobi function solution of the reduced equation

The Jacobi cn(x |m) function is a periodic even function with zeroes, and a maximum

of 1 at x = 0, see Figure 4.3. Its (real) period is 4K (m), where K (m) is the complete

elliptic integral of the first kind.

For the range 0 < m < 1 the function y(x) = cn(x |m) satisfies the differential

equation

y 00 = �(1� 2m)y � 2my 3. (4.6)

which is to be compared with the reduced equation. Matching the two forms,

Eqns (4.6) and our reduced equation (4.3), it is easily shown (see Appendix A4) that a

solution of Eqn (4.3) for given 2 (with 2 > �4 for finite positive compressive force

G) and satisfying the hard wall boundary conditions may be written as a scaled Jacobi

cn function,

�(u) = tan ✓(u) = �max cn(
p
2/(2m � 1)u|m), (4.7)
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The peak value �max of the variable � (at u = 0) is given by

�max =

r
m

(1 + 2/4)(2m � 1)
2 for 0 < m  1. (4.8)

The peak value of the corresponding angle variable ✓ (at u = 0) is

✓max = arctan�max . (4.9)

For �max (and thus ✓max) to be real, real values for  (i.e. 2 > 0) require m > 1/2,

while imaginary  (i.e. 2 < 0) requires m < 1/2, with  = 0 for m = 1/2. This

defines the solution space that we will explore in section 4.3, see Fig. 4.4.

As with other special functions, cn(x |m) (and thus ✓(u) (Eqn 4.7)) is readily called up

from, for example, Mathematica [53], as is the complete elliptic integral of the first

kind K (m). Examples were already shown in Figs. 4.2 and 4.3.; several more will be

shown in what follows.

For m = 1 and m = 0 the Jacobi functions simplify to more familiar forms, that is,

cn(x |1) = sech x and cn(x |0) = cos x , respectively. For m = 1 the solution, i.e. the

scaled Jacobi function �(u), is given by �(u) =
p

2/(1 + 2/4) sech
⇣p

2u
⌘
, for

2 > 0. In the limit m ! 0 (with 2 < 0) the solution �(u) asymptotes to

cos(
p
�2u) with a prefactor asymptoting to zero

(�(u) ! 0⇥
p

�2/(1 + 2/4) cos(
p
2u)). For the special case of m = 1

2 we have

�(u) = cn
�p

2u|12
�

(see Appendix A4).

In the continuum representation N is half the period of the scaled Jacobi function,

Eq (4.7) (for the rescaled variable u = x
p
(2m � 1)/2), and thus given by

N = 2K (m)

r
2m � 1

2
, (4.10)

where K (m) is the complete elliptic integral of the first kind. For the case N ! 1

(2
! 0, m 6= 1/2) the solution asymptotes to zero in the limits u ! ±1.
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In later sections we shall examine the variety of these solutions for hard wall boundary

conditions, an arbitrary number N of spheres and an arbitrary value of compression �,

which are the parameters defining a typical experimental measurement.

4.3 Solution diagrams

The solution space is rich in details, but the many parameters involved make it difficult

to comprehend. The graphical method introduced here offers a transparent way to

explore it.

Every solution for the specified boundary condition (�, ✓ = 0 at the end points, for N

spheres) must satisfy the reduced equation for some value of 2 (corresponding to the

compressive force) and, from the above, can be expressed as an appropriately scaled

Jacobi cn function, Eq (4.7), with squared modulus m. We will use the parameters, m

and 2, to label all of the solutions which they uniquely define when subjected to

scaling. This leads us to construct “solution diagrams”, with every solution (for the

stated boundary conditions) represented by a point. We have found it convenient to

use a nonlinear scale for 2 for graphical purposes, so that all values of 2 are captured

on the diagrams. Hence, instead of 2, we use

̂2 = 2/(1 + |2
|) (4.11)

when making these plots.

The form of such a diagram is shown in Figure 4.4. This 2
�m plane will be our

“playing field” in describing all of the different forms of solutions that can arise, and

their variation.

The requirement of having a real value for ✓max , Eq (4.9), leads to the identification of

forbidden regions, i.e. areas in the 2
�m plane for which no solutions exist (see section

4.2.2). Furthermore, the maximum angle ✓max , Eq (4.9), is basis of Figure 4.5. In the

original discrete system [34,43] this never exceeds ⇡/2 because additional contacts are
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Figure 4.4: Jacobi cn functions can be scaled to give solutions ✓(u) (Eq (4.7)) of the
reduced equation, Eq (4.3), between two values of u at which the boundary condition
is ✓ = 0. These solutions are qualitatively different in the two pink domains indicated
in the 2

�m “solution diagram”, where m1/2 is the modulus of the Jacobi function (̂
is defined by Eqn (4.11)). Typical profiles are shown for the points G, (-1/2, 1/4), and
C, (1/2, 0.95). Solutions at the boundaries have the following properties, A-B: ✓max

is finite and N infinite, except at the limits; ✓max is zero and N is infinite at A. The
intermediate solution at E, (0, 0.5), is given by the scaled Jacobi cn function of roughly
triangular form, cn(

p
2u|1/2). At F, (1/2,1), the amplitude diverges while the period is

zero.
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Figure 4.5: Contours of constant maximum angle ✓max , Eq (4.9). The dashed red
contour corresponds to ✓max = ⇡/2 (as given by Eq (4.12)), the region beyond this
contour cannot be realised in an experiment, but arises in the continuum formulation.
For m = 1 and 2

� 0 one obtains ✓max = .

formed beyond the limit of the theory. However, although there is no such limitation

inherent in the continuum formulation, nevertheless the contour defined by

mk2

2m � 1
=

⇡2

4
(4.12)

is to be regarded as representing the boundary beyond which the continuum model is

unphysical, and indeed it is not a good representation of the discrete system for

somewhat lower values of ✓max . As such we cut off all solution diagrams beyond this

contour as indicated by a dashed red line. For further discussion see Section 4.4.

Figure 4.4 shows sample solutions for both negative and positive values of 2, together

with the only solution at 2 = 0. Special forms (solution or absence of any finite

solution) are to be found on the various boundaries of the allowed regions.

As anticipated in Section 4.1.1, the solutions are qualitatively different in the two

allowed regions, as exemplified by those associated with the points G (for 2 < 0) and

C (for 2 > 0). The first type has no inflection points, while the second has inflection

points (at ✓ = arctan
p

2/2), giving rise to a localized peak.

In Figure 4.6 we show how the number of spheres N varies with m and 2, by plotting
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Figure 4.6: Contours of constant number of spheres N , up to N=15. All contours pass
through the point 2 = 0,m = 1/2. In the limit N ! 1, the contours coincide with
the vertical axis, i.e. 2 = 0 (c.f. Eqn (4.10)). The dashed red curve corresponds to
the contour ✓max = ⇡/2 beyond which the model is unphysical. In the limit m ! 1 we
find N ! 1 and for m ! 0 we have N !

⇡p
�2 , these limits are indicated in blue on

the diagram along with some computed values.

contours of N using Eqn (4.10). (The dependence of N (periodicity) on the values for

2 and m is also visible in the examples of Figure 4.4.) All of the contours pass through

the point m = 1/2, 2 = 0, so that the function cn(x |m) can be scaled to provide a

solution for 2 and any N . The contours asymptote to the m axis as N ! 1.

Figure 4.7 shows the variation of compression �, computed using Eqn (4.5) using

contours. These intersect the line m = 1.

An appropriate characteristic of a solution is its degree of localization. This may be

defined by

D(m,2) =

 Z +N/2

�N/2

✓(u)du

!2� 
N

Z +N/2

�N/2

✓2(u)du

!
, (4.13)

with N given by Eqn (4.10),

This participation ratio, used for example in the treatment of Anderson localisation in

solid state theory [54], answers the question: roughly speaking, over what proportion of

the spheres is buckling concentrated?
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Figure 4.7: Contours of constant compression �. The dashed red curve corresponds to
the contour ✓max = ⇡/2 beyond which the model is unphysical. In the case of the limit of
m ! 0 the compression is found to be zero, while in the case of m ! 1 the compression
is given by an integral which can only be computed numerically and we have indicated
some of these values in blue.

We may express D(m,2) in terms of the scaled Jacobi cn solutions, � = tan ✓

(Eqn (4.7)) as

D(m,2) = D�(m)

"
1�

2/3

(2m � 1)

 p
m(m � 1)

arcsin
p
m

+ 2m � 1

!#
, (4.14)

correct to order �3.

The participation ratio D� for the scaled Jacobi functions, defined as

D� =
⇣R +N/2

�N/2 �(u)du
⌘2

/
⇣
N
R +N/2
�N/2 �2(u)du

⌘
, can be computed analytically, and

depends only on the value of m,

D�(m) =
arcsin2

p
m

K (m) (E (m) + (m � 1)K (m))
. (4.15)

Here K (m) and E (m) are the complete elliptic integrals of the first and second kind,

respectively. The limiting values of D(m,2) are D(0,2) ' 0.8105 and D(1,2) = 0.

The case m = 1/2 requires 2 = 0, with D(1/2, 0) ' 0.7854. The participation ratio

as a function of m is shown in Figure 4.8.
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Figure 4.8: Localization measure (“participation ratio”) D(m) as a function of the square
of the modulus of the scaled Jacobi cn function (Eqn (4.15)).

A further measure of localization which can be expressed analytically also for the case

of the full differential equation, Eqn (4.1), is examined in the next Section.

4.4 Accuracy of the reduced equation

The previous sections described analytical solutions of the reduced equation, Eqn (4.3),

in terms of scaled Jacobi functions. Here we will introduce a quantitative measure to

assess how well the reduced equation approximates the full equation, Eqn(4.1). This

involves the introduction of an alternative measure of localization, in terms of a peak

width wp, which can be expressed analytically for both equations.

A peak width wp may be defined as

wp = 2

s
2✓max

�✓00(✓max)
, (4.16)

where ✓max is the peak, and thus ✓00(✓max) < 0. (The quantity wp simply corresponds

to the distance between the two zeros of an inverted parabola with maximum ✓max at

u = 0.) The merit of this definition lies in providing an analytical expression for

comparing solutions of the full equation to those of the reduced equation.

From the full equation, Eqn (4.1), we obtain

wp,full =
p

2✓max

✓
tan ✓max �

1

1 + 2/4

sin 2✓max

cos ✓max(1 + cos 2✓max)

◆�1/2

, (4.17)
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Scale

Figure 4.9: Contour plot showing an estimate of the difference between solutions for the
full equation and for the reduced equation. The contours are lines of constant values for
✏wp , Eq (4.19). Errors less than 10% are achieved for �0.6 < 2 < 0.1 and ✓max < 0.4,
approximately. The thick black lines show the variation of 2 as a function of ✓max ,
computed from Eqn (4.9), for six different values of the squared Jacobi modulus m.

while the reduced equation, Eqn (4.3), gives

wp,reduced = 2

s
2✓max

1 + ✓2max

⇥
arctan ✓max

�
2(1 + 2/4) arctan2 ✓max � 2

�⇤�1/2
. (4.18)

The relative difference in width wp, defined as

✏wp = |wp,full � wp,reduced |/wp,full , (4.19)

may then serve as an estimate of the error of the solutions of the reduced equation in

relation to the full equation, Eqn (4.1); ✏wp may be expressed analytically in terms of ✓0

and 2, using Eqns (4.17) and (4.18).

Figure 4.9 shows contours of constant error ✏wp . In line with our expectations the

relative error vanishes in the limit of ✓0,2
! 0, and thus of compression.
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4.5 Conclusions

Jacobi functions provide a full range of approximate solutions, easily evaluated and

visualized, minimizing numerical calculations, elucidating qualitative features, and

providing an accessible guide to the relationships of the several parameters

(N ,�,G0, ✓max , ...) that characterize the chain buckling.

The analysis presented here was confined to hard wall boundary conditions. Other

scaled Jacobi solutions arise when different boundary conditions are imposed, and some

of these should also be accessible to foreseeable experiments. Sloping the walls of the

pistons should induce different buckled structures, which could be described by other

members of the family of Jacobi elliptic functions.

We now move away from the continuum theory and the description of a line of hard

spheres held in confinement and under compression and/or tilt. We will now consider

systems of soft, elastic spheres in their place. While the system is not amenable to the

same analytic treatment as described in the previous two chapters, we will discuss

various methods of describing and simulating such systems in Part II.
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Part II

Soft Spheres
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5 Background theory: Simulating

bubbles and Morse-Witten the-

ory

The simulation of soft, elastic, deformable particles is a focal point in computational

physics and engineering. Understanding how these particles deform under the action of

external forces is important for comprehending phenomena in cell biology [55],fluid

dynamics [56] and materials science [57].

Our focus here will be to explore the techniques used to model soft, elastic particles.

Given the application of this work, we will focus on systems of bubbles. We will explore

three computational methods: the soft sphere model [58], the Surface Evolver

program [59] and finally we will introduce the implementation of the Morse-Witten

theory in three dimensions [44,60]. In the next chapter we will discuss how we

implement the latter theory in computer simulation.

We will focus on our usual system of a line of bubbles between two hard walls and

confined in a transverse harmonic potential. The system demonstrates many features

that are absent in the chain of hard spheres. Under an infinitesimal compression, the

linear chain is no longer unstable. Instead the linear chain remains stable until a critical

value of compression is reached. This critical value, and the predictions of the various

theories and simulations methods, will be discussed in this chapter.
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Figure 5.1: A bubble show in Kraków, Poland. Many of the interesting properties of
bubbles are on display here. Most interesting to us are the bubble shapes. We note that
the smaller bubbles are more spherical, while the larger bubbles show more deformations.
This corresponds to the Bond number of these bubbles, as defined in Eqn (5.2). Larger
bubbles, with larger Bond numbers, deform more under external forces. The smaller
bubbles are more easily able to maintain their spherical shape.

5.1 Bubbles

Bubbles have been an object of fascination for people of all ages and at all levels of

scientific literacy. They are associated with youth and playfulness (as seen in the work

of artist Jean Simeon Chardin), but also with melancholy. The fleeting lifetime of a

bubble alludes to the transience of life [61].

We shall leave such musings to artists and philosophers, however, as in the scope of

this thesis we are interested in a bubble’s shape (i.e. the surface defined by the liquid

film) and its response to forces applied to it. The bubble’s captivating spherical shape

is due to the interplay between the bubble’s surface tension, �, and the difference

between internal and external pressures. This is elegantly summarised by the equation

of local equilibrium for a bubble surface, the Laplace-Young equation [62]:

�C = �p, (5.1)
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where � is the bubble’s surface tension, C is the total curvature of the interface, and

�p = pinternal � pexternal , the difference in internal/external pressures. If the pressure

difference and surface tension are constant across the bubble surface, this defines the

spherical shape we expect.

In the scope of this thesis, we shall assume that the bubble’s internal gas is of low

density and incompressible. As a consequence of this assumption, the internal pressure

and volume of our bubble will be constant throughout. The external pressure, however,

may vary due to contacts with other bubbles and/or surfaces, or due to a pressure

gradient induced by gravity. In these cases the local curvature and therefore the bubble

shape will change.

To characterise a bubble response to these contacts and/or pressure gradients we shall

use the Bond number (or Eötvos number) [63], defined as:

Bo =
�⇢gR2

0

�
. (5.2)

Here �⇢ is the density difference between the between the density of the internal and

external media of the bubble, R2
0 is the equivalent spherical radius of the bubble and

again � is the surface tension. The Bond number defines the relative importance of

surface tension forces to external forces (in this case gravitational). For bubbles with a

low Bond number, surface tension dominates and the bubbles tend to maintain their

spherical shape; bubbles with larger Bond numbers are relatively unaffected by surface

tension effects. Intermediate values indicate some balance between the two factors,

which may be non-trivial to interpret. See Figure 5.1 for a classic illustration of the

effect of Bond number on bubble shape.

The Laplace-Young equation may be solved numerically to calculate the profile of a

bubble under the action of external forces [46], however the method is not amenable to

systems containing multiple bubbles. Thus approximate models or numerical simulation

are used to model the behaviour of systems of multiple bubbles. We shall briefly
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discuss two of those here: The soft sphere model and the Surface Evolver.

5.2 The soft sphere model

In the soft sphere model (sometimes referred to as the Durian model [58]), soft

particles are not deformable but instead maintain their spherical shape under applied

external forces. Instead, these spheres are permitted to overlap with each other and

boundaries. Overlaps are resisted with a Hookean force, with overlap �ij for two spheres

of the same diameter defined as:

�ij = |Ri � Rj |� D, (5.3)

where |R| are the centre positions and D is the sphere diameter. As the interaction

between particles is modelled like a Hookean spring, the energy associated with this

overlap is then defined to be:

E 2
ij =

1

2
k�2ij , �ij  0, (5.4)

and zero otherwise, where k is an analogue to a Hookean spring constant. The

advantages of such a model is its ease of computation, and that the choice of

parameter k may be chosen to match experiment (for two contacting monodisperse

bubbles, for example, it is often related to the surface tension [64]). However, the

model has shortcomings in that it does not capture the non-local deformation of the

soft particles due to applied forces.

We have already applied this model in previous sections to probe the stability of

structures of hard spheres, Chapter 2. This was done by choosing a value of k that is

much larger than the strength of the harmonic confining potential, so that the bubbles

are approximately hard.

90



5.3 The Surface Evolver software

Developed in the 1990s by Ken Brakke, the Surface Evolver has become a ’workhorse’

for modern soft matter physics [59,60]. It is an interactive program, aimed for studying

surfaces whose shapes are governed by surface tension and other energies.

Surface Evolver is designed to create and manipulate complex 2D and 3D geometries,

making it valuable for studying surfaces, interfaces, and structures in different

dimensions. Users can define the geometry of surfaces by specifying vertex coordinates,

edge lengths, and surface curvatures. The level of refinement of the tesselation of the

surfaces may be specified, allowing for a high degree of accuracy.

One of the central features of Surface Evolver is its ability to minimize the total surface

energy of a given configuration. It employs variational methods to iteratively adjust the

geometry of the surfaces to reach a state of equilibrium, where the surface energy is

minimized. This is particularly useful for simulating the behavior of liquid-gas

interfaces, soap films, and other surface-related phenomena. It supports a wide range

of physical models and boundary conditions, allowing users to simulate various

phenomena involving surface tension, gravity, capillarity, and more. This flexibility

enables modelling a broad spectrum of real-world problems accurately, such as soap

bubbles [59], foams [60], emulsions [65] , and the behavior of biological

systems [55].

Surface Evolver offers tools to help users visualize and analyze their simulations. This

includes features for plotting surface properties, tracking interface evolution, and

generating graphical representations of simulated systems. It is also extensible, and

interfacing with other software tools and data analysis packages is

straightforward.
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5.4 Morse-Witten theory

Surface Evolver and other similar simulation methods struggle when the size of

contacts is small relative to the size of a bubble. In these cases, the tesselating faces of

the Surface Evolver structure are comparable to the size of the contact faces, causing

numerical problems. Therefore models such as the soft sphere model are often used.

This model is not without its limitations, however. The soft sphere model defines an

exclusively pairwise force between bubbles, which is not the case in many bubble

structures [66]. The soft sphere model also makes use of a free parameter, the spring

constant of the repulsive force between overlapping spheres, which is usually fitted to

match with experimental data. This limits the predictive power of the model.

Here we will examine a theory first proposed by Morse and Witten [44] and extended to

systems of multiple bubbles by Hoehler and Weaire in [60]. This theory begins with the

Laplace-Young equation as presented in Eqn (5.1), and produces a linearised theory

which is exact in the limit of small forces and deformations. Here we shall present the

derivation as proposed in [60], and examine its predictions as compared with Surface

Evolver and directly solving the Laplace-Young equation. In the next chapter we shall

discuss how it may be implemented in a simulation of multiple bubbles.

To explain the derivation of the Morse-Witten model, we return to the problem

proposed in the original paper [44], that of a single bubble pressed against a plate by

buoyancy.

5.4.1 A single bubble buoyed against a plate

We shall proceed using dimensionless quantities, lengths are normalised by R0 (the

natural spherical radius of the bubble, for this case we shall consider only monodisperse

systems, see Appendix A7 for a discussion about the effects of polydispersity), energies

are normalised by �R2
0 and forces by �R0. We then may write dimensionless pressures

P , z coordinate Z and curvature C (thus far we have used small letter to denote
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Figure 5.2: A cross-section of a 3D Morse-Witten bubble profile. The original spherical
shape of the bubble (of radius 1) is shown as a dashed blue line, the deformed Morse-
Witten profile is shown in black. Also shown is the ’cap’, in red, used to account for the
logarithmic divergence of the Morse-Witten profile. The distance from the centre of the
mass of the bubble to the cap, 1 + Xc , is given by Eq (5.10).

dimensionless quantities, however in this section we defer to the notation presented

in [60,64] where the dimensionless quantities are referred to with capital letters).

In the presence of a buoyancy force, there is a pressure difference across the height of

the bubble. Thus the Laplace-Young equation, Eqn (5.1) becomes:

C = �P0 + 2 + BoZ , (5.5)

where �P0 is the pressure difference across the height of the bubble and Bo is the

Bond number as defined in Eqn (5.2).

We now refer to Figure 5.2. We note that the structure is axially symmetric around the

z-axis, thus we may describe the bubble surface profile with a single polar angle in

spherical polar coordinates, placing the origin of the coordinate system on the centre of

mass of the bubble.

Thus we write the equilibrium profile as:
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R(✓) = 1 + �R(✓). (5.6)

By linearising Eqn (5.5) with respect to �R(✓), an expression for �R(✓,Bo,�P0) can

be found [60]. �P0 may be found from the volume conservation constraint, noting

that �R(✓,Bo) must average to zero across the bubble surface. This gives the

expression for �R(✓) as:

�R(✓) = 3Bo(1/2 + 4/3 cos ✓ + cos ✓ log(sin2(✓/2))). (5.7)

However, we may note that the force exerted on the bubble by the contact with the

surface may be written as:

F = ��⇢
4⇡

3
R3
0

1

�R0
= �4⇡Bo/3. (5.8)

Thus we write the deformation of the bubble surface in terms of this force by

substituting into Eqn (5.7):

�R(✓) = �FG (✓), (5.9)

where G (✓) is a Green’s function which depends only on the angle ✓.

Notably this Green’s function, and thus the function �R(✓) diverges at the ✓ = 0. The

point force is "covered up" by a plane which sits tangentially on the bubble around the

divergence, defined as a circular liquid film for ✓ < ✓c . For ✓ � ✓c , �R(✓) defines the

profile. This cap does slightly increase the bubble volume, however this has shown to

be negligible for small values of F [64]. This cap is represented by the red line in

Figure 5.2. Note that the choice to place the plane of contact tangential to the bubble

profile sets the contact angle between the bubble and the surface to zero.

Although the logarithmic divergence is "covered" by this cap and does not feature in
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the bubble profile, it forms an important part of the expressions for force and energy.

Most notably, when considering the distance between the centre of mass of the bubble

and the point of contact (Xc in Figure 5.2), which is given as follows:

Xc =
1

24⇡
(5 + 6 ln(F/8⇡)) F , (5.10)

the logarithmic term features. This interaction law is thus softer than the Hookean

interaction used in models such as the soft sphere model, consistent with other

analytical approaches. Also we note here that a positive displacement Xc means the

bubble surface is compressed at the contact. It is also possible to have an extensive

force, such that Xc < 0, and this case is discussed in Appendix A5.

Eqn (5.10) has an exact inverse given in terms of the Lambert function, or the product

logarithm [52]. This multivalued function has the property that for any complex

numbers z ,w , then wew = z if and only if w = Wk(z), where k is some integer. This

makes the Lambert function useful for solving equations with logarithmic terms. In this

case, as we deal exclusively in real numbers, we need only consider the W�1 branch.

This then gives the inverse of Eqn (5.10) as:

F =
4⇡X

W�1(e5/6X/2)
. (5.11)

The energy associated with the deformation at the contact may be obtained from the

Work-Energy theorem, considering the work done as the force is increased from 0 to its

equilibrium value as in Eqn (5.8). This results in the expression:

E =
F 2

8⇡
(�4⇡/3� ln F + ln 8⇡), (5.12)

noting again the logarithmic dependence on F .

Given its origin from a linearisation of Eqn (5.1) with respect to �R(✓), the
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Morse-Witten theory is only valid in the limit of small deformations, becoming exact as

F ! 0. We demonstrate this accuracy in Figure 5.3, where we compare the predictions

of Surface-Evolver, the Laplace-Young equation and Morse-Witten theory for the shape

of a bubble held under a plate by buoyancy, as a function of Bond number. We note

that Surface-Evolver is not capable of calculating the shape as Bo ! 0, however in this

limit the Morse-Witten theory agrees with the direct numerical solution of

Laplace-Young exactly. Thus we believe that Morse-Witten theory is well-suited to

’filling the gap’ of Surface-Evolver when it comes to considering structures that have

bubbles subject to small deformations. This is most obviously the case for simulating

foams of air and water, where the foam is ’wet’, i.e. the volume fraction of the liquid is

high [67]. In this case the bubbles of the foam are approximately spherical with only

small deformations, the limit where Surface Evolver is not effective. The soft sphere

model may be used in this case, but it has been shown that it incorrectly predicts many

physical characteristics of the foam [68].

To apply the Morse-Witten theory to such structures, or indeed the chain-like structures

which are the focus of this thesis, we must consider how to implement a bubble with

multiple contacts - which may be with other bubbles or boundary surfaces.

5.4.2 A single bubble with multiple contacts

We will now address the question of how to describe a bubble held in mechanical

equilibirum by external forces, in the absence of buoyancy. We refer again to the review

article [60], where this problem was addressed.

They propose a linearised theory, where solutions �R(✓,�) for each force (with each

force compensated by a pressure gradient, like buoyancy), may be added together to

produced the complete bubble profile. Given the condition of mechanical equilibrium,

when these profiles are combined the net pressure gradient on the bubble will be zero;

equivalent to a bubble in mechanical equilibrium in the absence of a pressure gradient.

The compensating pressure gradients are a construction for this problem, and do not
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Figure 5.3: A comparison between the Laplace-Young equation, Surface Evolver and
Morse-Witten theory for a single bubble buoyed against a plate. Here we plot the aspect
ratio, i.e. the maximal extension of the bubble perpendicular to the plate h divided by
the maximal extension of the bubble in a plane parallel to the plate w . We note that as
Bo ! 0, the Morse-Witten model agrees with the Laplace-Young equation exactly. In
this limit, Surface Evolver cannot accurately resolve the structure due to the shrinking
contact area. Also included are some experimental points, in red with error bars (taken
by Ali Irannezhad), to give context for these theoretical predictions. These measurements
were made for a bubble under a flat plate, using the same parameters as those discussed
in Figure 5.4.
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feature in the final result.

For this linearised approach we must assume that in general that the contact points are

far away from each other on the bubble surface, i.e. that the angle between contacts is

greater than the sum of their ’capping’ angles, ✓c . Otherwise the logarithmic

divergence of the Green’s functions in the vicinity of the contacts will interfere with the

overall profile.

Employing all of this, therefore, we may write:

R(✓,�) = 1�
X

i

FiG (✓i), (5.13)

where ✓i is the angle between the vectors between the centre of mass, R(✓,�) and the

contact fi .

If we consider the displacement of the bubble surface at a contact, i , we may more

explicitly see the form of a bubble-bubble interaction:

Xi =
1

24⇡
(5 + 6 ln(Fi/8⇡)) Fi �

X

j 6=i

G (✓ij)Fj , (5.14)

where ✓ij is the interior angle between contacts i and j . Here we see that there is a

’local’ term, a deformation caused by the force acting at contact i . However, for each

contact point j 6= i there is also a contribution to the displacement: a non-local term.

This form of a non-pairwise interaction has been observed between multiple bubbles in

experiment [66], and is a feature of the Morse-Witten model.

Unlike Eqn (5.10), Eqn (5.14) does not have an analytic inverse. In the next chapter

we will discuss a numerical method for determining the forces f from the displacements

x . We also note that this equation only holds for the case of monodisperse bubbles in

contact, due to the fact that all quantities are normalised by the bubble radius R0. An

extension to the case of bubbles of different size in contact is presented in Appendix

A7 (this was also discussed in [60], however we note that there is an error in the
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equations presented there for polydisperse bubbles).

5.5 Lines of soft spheres

We now return to the familiar set-up discussed in Part I of this thesis: a line of spheres,

held in a transverse harmonic potential, confined between two hard walls. We now ask

the question, what is the expected behaviour of a line of bubbles under compression

and how does it compare to the system of hard spheres?

Firstly, we now modify our original definition of compression (Eqn (1.3)) to account for

the possible non-spherical shape of our bubbles:

� = (2NR0 � L)/2R0, (5.15)

where L is the distance between the two hard walls, and R0 is the equivalent spherical

radius of the bubbles in our system. Again, we also define the related compressive

strain ✏ = �/N .

We refer back to the experimental work done by Weaire et al. in [41], and as discussed

in Section 1.3. Immediately it is obvious that the system bears more in common with

the Euler buckling problem, see Section 1.1. Unlike the chain of hard spheres, the

chain of bubbles is not rendered instantly unstable under an infinitesimal compression.

In fact, the linear chain remains the preferred structure until a critical value of

compression, �c , is reached.

After this point, the structure moves into the zig-zag pattern familiar from the hard

sphere case. It demonstrates a similar tendency to buckle locally, before reaching the

doublet state. This doublet state once again remains stable under compression, until

the transition to the zipper state occurs. Beyond this point, the structure moves into a

3-dimensional configuration similar to that of the hard sphere system. This evolution

can be seen in Figure 1.10.

99



This is most easily understood by examining systems of 1, 2, and 3 bubbles under

compression. Experimental results for these small systems are shown in Figure 5.4,

obtained using the experimental method described in Section 1.3. There we plot the

maximal extension of the bubbles in the direction perpendicular to the cylindrical axis

as a function of the distance between the two hard walls. We note that initially, the

increase in width is independent of the number of bubbles; this is more evident in

Figure 5.4 (b), where the width is plotted as a function of compressive strain. It is only

at the point where buckling occurs that the differences between the 2 and 3 bubble

system become obvious.

In Appendix A6 we present a derivation of analytic expressions for the width of these

small-N bubble systems, using Morse-Witten theory as the model for bubble-bubble

interaction. It is possible to derive analytic curves for the expected width profiles as a

function of Bond number. A representative comparison between experimental results

and these analytic curves are shown in Figure 5.5. We will employ these expressions in

the next chapter, where we will use it as a test case for simulations of Morse-Witten

bubbles in 3D.

5.6 Conclusion

We have briefly discussed modern methods of simulating bubbles experiencing small

deformations: the Soft Sphere model, the Surface Evolver and Morse-Witten theory.

The advantages of Morse-Witten theory are apparent here, as it conforms exactly to

solutions of the Laplace-Young equation in the limit of low Bond number; the region

where Surface Evolver struggles to converge satisfactorily. Morse-Witten theory also

captures non-pairwise interactions between bubbles, which the Soft Sphere model does

not capture.

Moving to our familiar system of bubbles held in a harmonic confining potential,

squeezed between two walls, we find that theoretical predictions of Morse-Witten

correspond well to experimental findings. Morse-Witten accurately predicts the increase
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(a)

(b)

Figure 5.4: (a) Photographs and experimental data obtained for systems of 1, 2, 3
bubbles, measured by Ali Irannezhad. Here we show a plot of the maximal width as a
function of the distance between the two pistons (these images are obtained from the
experimental system discussed in Section 1.3). These experiments were performed with
aqueous solutions of SDS at the critical micelle concentration (cmc). This was done to
ensure an accuracte measurement of surface tension, and thus Bond number. Measured
value of surface tension: 34.3 ± 0.1 mN/m (measured at 24 degrees Celsius). Tube
diameter 2r = 15.6 ± 0.03mm, bubble diameter D = 2R0 = 3.727mm, and thus ratio
of bubble to tube diameter is ' 0.24. The Bond number of these bubbles, as defined
in Eqn (5.2), is Bo = 0.993. (b) shows the width of these structures as a function
of the compressive strain, defined as in Eqn (5.15), showing that the increase in width
before buckling is independent of the number of bubbles. Note that the compressive
strain may be negative for this experimental system, this is due to the fact that even
when uncompressed by the walls, the bubbles are extended due to their contact with the
surface of the cylinder, so the natural length of their linear arrangement is longer than
2NR0 (Eqn (5.15)). See Appendix A6 for more details.
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Figure 5.5: Here we plot the dimensionless increase in width as a function of the com-
pressive strain for the 2 bubble system. The experimental data, in blue, is the same
as presented in Figure 5.4. The red curves represent the analytic prediction of Morse-
Witten theory, as derived in Appendix A6. Here the critical value of strain, where
buckling occurs, is estimated from the experimental data: it is the only free parame-
ter in the Morse-Witten curves. The discrepancy between the Morse-Witten prediction
(which predicts a critical value ✏c ⇡ 0.25) and the experimental result is attributed to
the relatively large Bond number of the bubbles in experiment, Bo = 0.993.
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in width of the system during the compression phase, and also correctly predicts the

form of the buckling. There is a discrepancy in the predicted critical value of

compression at which buckling occurs, but that can be attributed to the large value of

the Bond number in the experiment; constructing bubbles with lower Bond number is

difficult.

This simplified system will now be used as the test case for numerical simulations of

Morse-Witten bubbles. In the next chapter we will discuss how Morse-Witten theory

may be used to construct an algorithm to find structures of Morse-Witten bubbles in

mechanical equilibrium. The two-bubble case presented here will be used as a test case

for that simulation.
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6 Chains of Morse-Witten bubbles

under compression: Simulation

We now consider the same confining set-up as in Part I, spheres held in line between

two pistons due to the action of a transverse, harmonic confining potential. In this case

however, we shall consider bubbles. We note that now the bubbles do not buckle

immediately under small compressions, rather the entire chain will ’squeeze’ first, before

moving into our familiar structures demonstrating localised buckling (similar to the

process of Euler buckling discussed in Chapter 1.1). We will model these elastic bubbles

using the aforementioned theory of Morse-Witten, both through the implementation of

a simulation and full analysis of the simplest case, the two bubble system.

6.1 Morse-Witten simulation

Previously, Morse-Witten simulations have been limited to the 2D case [64] or the case

where structures are highly ordered [45]. In both cases periodic boundary conditions

were used. In this case we will implement a simulation of the 3D Morse-Witten model,

where the bubbles are confined within a cylindrically symmetric potential. To begin

with, we shall concern ourselves with finding systems in mechanical equilibrium. We will

use simulated annealing to determine minimum energy structures for given parameters,

such as chain length and the strength of the harmonic confining potential.

A flowchart demonstrating the iterative scheme to find equilibrium can be seen in

Figure 6.1. A more detailed description of each step follows.
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Figure 6.1: A flowchart of the iterative approach used for finding Morse-Witten structures
in mechanical equilibrium.

The iterative approach

Initialising the bubbles

The initial input is loaded from a file listing the position of the bubble centres. Here we

take advantage of the fact that Morse-Witten theory needs only the positions of the

centres and the contacts in order to calculate the profile of a bubble. Thus the problem

can be reduced to considering the positions of these centres and contacts. It is at this

point that the parameters of the confining potential are also defined.

Calculating fi

This represents the most computationally expensive step of the algorithm. Given the

foam network, with its centre and contact points, we can calculate the displacements

at ci ,j directly. However, the corresponding fi exerted by this contact point on its

parent bubbles must be calculated by inverting Eqn (5.14), reminding ourselves:

xi =
1

24⇡
(5 + 6 ln(fi/8⇡)) fi �

X

j 6=i

G (✓ij)fj ,
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we note that this is a nonlinear matrix equation, containing a term with log(f ), and

must be solved algorithmically. Such a method was proposed in the review article of

Hoehler and Weaire [69], and is what we implement here.

We can make an approximation of fi using a variety of methods. The most

straightforward is to use the ’Durian’ model of soft bubbles, where the force fi is

proportional to the overlap of the equivalent spherical bubbles associated with this

contact (see Section 5.2). We call this approximation f̃ . Substituting f̃i into only the

logarithmic term of Equation 5.14 produces an equation which is now linear in f , and

can be solved using standard methods in Python [70].

This produces a solution for f , which we call f̃ ⇤. We can now set f̃i = f̃ ⇤i , and solve the

linearised version of Equation 5.14 again. In the case of small deformations, i.e. the

true value of fi is small, this algorithm converges to f̃ = f , the true value of the

solution. This is implemented by calculating the residual vector between successive

iterations. Once the magnitude of the residual vector falls below a defined threshold

value, the algorithm is considered to have converged, and the result used as the

solution to Eq (5.14).

Moving bubble centres

After calculating the net force f ,on a bubble’s center, we also compute the force, fp

due to the bubble’s position in the potential field, which may be zero. This force is

added to the net force. Then, we update the bubble center’s position by moving it

towards the net force direction. To prevent oscillations near equilibrium, we apply a

dynamic damping term that scales inversely with the number of iterations. However,

it’s important to note that this method may not always eliminate oscillations close to

equilibrium, as we will discuss later.

Updating Contact Points

After the movement of bubble centres, contact points may be created or destroyed. In

alternative models, such as the soft sphere model, it is sufficient to check that the
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distance between two bubble centres is less than the bubble radii to determine the

validity of a contact.

In this simulation of Morse-Witten bubbles, we use the fact that the forces are small

and that the bubbles are approximately spherical (and therefore the caps on contacts,

✓c are small enough), to justify checking the bubble extensions along their

centre-centre lines to determine contacts. This would not be the case where f is large

and bubble deformations are significant. Given that forces of these magnitudes are

beyond our accepted range of validity of the Morse-Witten model (f < 1), we will not

account for this effect here. A more sophisticated algorithm for determining bubble

contacts is proposed in the Outlook chapter of this thesis.

In addition to the condition of mechanical equilibrium of the bubble centres, it is also

necessary to determine mechanical equilibrium with respect to the contact points, i.e.

that the forces across a contact are balanced, fi ,j = fj ,i . Unlike the soft-sphere model,

the non-pairwise nature of the Morse-Witten interaction means that this contact point

may not be at the midpoint of the centre-centre line between bubbles. We assume that

in equilibrated structures that the contact does lie on the centre-centre line. This may

not always be the case, and we will address this problem in the Outlook chapter of this

thesis.

Therefore, after the validity of a contact has been determined, the contact point is

moved along the centre-centre line until the equilibrium position is found, using

Eqn (5.14).

Sum of |F | and Convergence

Using the updated positions of the bubble centres and contact points, the net force f

of each bubble is calculated and summed. The criterion for convergence for this

algorithm is mechanical equilibrium, and so when this quantity falls below a pre-defined

threshold value (usually |ftot | ⇡ 10�8), the system is considered to have converged

(assuming the condition of mechanical equilibrium across contact points is also
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satisfied). Examples of converged structures, and plots of the magnitude of the net

force as a function of equilibration step, are shown in Figure 6.4.

Determining structures of lowest energy

There is, of course, no guarantee that this iterative approach will produce

minimum-energy structures, and thus the discovered structures may not correspond to

those found in experimental systems. To account for this, we implement an annealing

process in addition to the iterative method. Once an equilibrium structure is found, the

positions of the centres within that structure are ’kicked’ by some displacement s,

proportional to a temperature parameter T . The structure is then re-equilibrated, and

may or may not return to the original result. After this, the annealing step is repeated,

with T decaying after each successive iteration.

Given a sufficient number of iterations, we expect to find one or more different

structures. Each of these structures is in equilibrium, with Morse-Witten theory

satisfied. Therefore the energies of each structure can be calculated and compared,

and a minimum energy structure can be determined.

Another method for this was recently proposed by D. Weaire, based on approaches to

similar problems in molecular dynamics. Unlike the annealing process detailed above,

where the bubble centres are displaced in order to explore the energy landscape, the

proposed method varies the forces acting on the bubble centres while maintaining their

positions. The forces are then chosen such that the structures are of minimum energy,

then the position of the centres are moved such that the Morse-Witten equations are

satisfied.

The advantage of this approach would be that each step of the equilibration method

would correspond to an equilibrium Morse-Witten structure, albeit with constructed

forces used to hold the structure in equilibrium. This means that, analogously to

molecular dynamics simulations, calculated quantities such as the total energy of the

system could be measured at each step of the equilibration process [71].
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We have implemented this method, but have found it more involved and slower to find

the equilibrium structures. It has been more practical to use the annealing method.

However, this approach could be used in future applications of the Morse-Witten

model, and may even be more appropriate to use in the case of systems such as bulk

foams, where the minimum energy equilibrium configuration may not be so

obvious.

Visualisation

Once equilibrated, our structures are stored in the JSON format [72] containing the

positions of the centres, the positions of the contacts, and the forces associated with

each bubble centre. This information can be straightforwardly loaded into the

open-source 3D CG Technology software, Blender [73]. There we may represent our

structures in two ways. Firstly we may plot the profiles R(✓), as defined by the

Morse-Witten model.

However, we may also take advantage of the fact that the Morse-Witten bubbles are

completely defined by the positions of the centres, the position of the contact points,

and the forces associated with those contacts. This means we may represent the

structure as a ’force network’ (previously implemented for the 2D Morse-Witten foam

in [64]). Here the bubble centres are represented as small bubbles, and a contact

between bubbles is represented by a connecting bar. The radius of this bar is

proportional to the magnitude of the force associated with that contact. We will use

both visualisation methods in the results section of this chapter.

6.2 Tests

Here we will describe the evolution of two extremely simple systems: the case of two

and three Morse-Witten bubbles held between two pistons in the usual transverse

harmonic potential. These two examples will demonstrate the usefulness of the

annealing approach, as well as verifying the iterative method with analytic
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(a) (b)

Figure 6.2: (a) A rough schematic of two Morse-Witten bubbles held between two
pistons and confined by a transverse, harmonic potential. Indicated are the length of
the chain and width of the system, the two quantities used to characterise the buckling
arrangement. (b) A visualisation of two Morse-Witten bubbles held between two pistons
using Blender, see Section 6.1 for more details. Clearly visible are the deformations of
the bubbles away from their spherical shape.

Morse-Witten results.

To start with, we shall test the simplest system of two bubbles held between two

pistons (represented by flat surfaces). This system demonstrates the usefulness of the

annealing approach most simply. The linear structure is always mechanically stable,

however we expect there to be a critical value of compression � (where we define

compression as in Eq (5.15)) at which the linear chain is no longer the energetically

favourable solution, and in experiments, one would see the movement from the linear

chain to the buckled structure.

We may derive analytic expressions using Morse-Witten for the 2-bubble system,

expressing the maximal transverse width of the system as a function of compressive

strain (�/N). We can also express the critical value of strain as a function of the ratio

of the surface tension (a measure of the hardness of the bubbles) and the spring

constant of the confining potential kp. These expressions are given below, and their

derivation may be found in Appendix A6.

The initial increase in width is given by:

w = 2

✓
1�

✏

W�1(�✏/2)

◆
, (6.1)

where W�1 is the -1 branch of the Lambert function (or product log) [74].
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We may also write an expression for the critical value of strain using the Morse-Witten

equations, here written in terms of the ratio kp/�, a measure of the stiffness of a

Morse-Witten bubble against the strength of the confining potential:

✏c =

✓
1�

�

kp
fc (Bo, �/kp)

◆
. (6.2)

And finally, we can also derive an expression for the width as a function of ✏ for

✏ > ✏c :

�! =
1

w(✏ = 0,Bo)

⇣
w(✏c ,Bo) + 4

p
�✏(1� ✏)

⌘
,�✏ = ✏� ✏c . (6.3)

A comparison of these theoretical curves and the results found from simulation are

shown in Figure 6.3. They are found to be in good agreement for a range of values of

the confining potential kp.

6.3 Results

Simulations of chains have been run for systems containing up to 40 bubbles, at

compressions ranging from � = 0 to approximately � = N � 2. We show examples of

structures for N = 9 in Figure 6.4.

An often-used parameter to characterise structures, most usually in the study of

granular materials [75] or the study of foams [76], is the valence number. This is

simply the average number of contacts per bubble, which we will present here as a

function of the compression of the chain Z (�). An example of the variation of this

quantity for a system of 40 bubbles is shown in Figure 6.5. On this figure we have also

marked the regions of compression in which our defined kinds of structures occur

(focussing on the linear, zig-zag, doublet and zipper structures, see Figure 1.11).

Initially Z plateaus as the structure remains in the linear to zig-zag phase and bubbles

only maintain a nearest neighbour contact. Then there is a narrow region of
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Figure 6.3: A comparison of the theoretical curves given by Eqs (6.1),(6.2) and (6.3) for
varying values of the strength of the confining potential k , and we find them to be in
good agreement with the simulation results, in particular at low values of Bond number
where Morse-Witten theory is most accurate. We notice that Eq (6.3) holds up until
the point indicated by a vertical line. At this point, each bubble makes contact with
the opposite piston and forms what we call the doublet structure. The increase in width
beyond that point is approximately linear.
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compression at which the doublet forms. Similar to the linear chain, the doublet

structure remains stable under a small range of compressions, until it forms the

beginning of the zipper structure.

The region of the ’zipper’ is actually a heterogeneous mix of a zipper and zig-zag

structure. As compression increases, the value of Z also increases as bubbles join the

zipper structure. The structure then becomes a homogenous zipper structure at a

value of Z = (4N � 2)/N (where the subtraction of 2 accounts for the fact that the

bubbles in contact with the wall have one fewer contact than those in the zipper

structure).

Beyond this point, the zipper structure twists into a 3D structure, and each bubble

gains additional contacts as compression increases. This is accompanied by sharp

increases of Z (�) close to the maximal compression, as bubbles also make contact

with the confining walls.

This matches the expected behaviour of our system, however we still lack the ability to

make a detailed comparison with other methods. Methods such as the Surface Evolver

or soft sphere model could be used, but Surface Evolver struggles with determining the

topological rearrangements of the bubbles under compression, and the soft sphere

model does not capture many of the essential features of the system.

Currently, our best comparison is with the test-case system discussed in the previous

section, where we also have access to experimental data. As we showed in the previous

chapter, our analytic results do match the experimental data, and these are consistent

with our experimental results. Thus we claim that the results of the simulations

presented here are broadly accurate. Methods for more detailed comparisons with

experiment will be detailed in the Outlook chapter of this thesis.

Unconverged structures

Similar to the case of 2D Morse-Witten structures [64], the 3D simulations often run

into problems with convergence. Currently our systems are limited in scale to
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Figure 6.4: Examples of the Blender renders and force networks for chains of two different
lengths, both containing 9 spheres: (a) � = 2.7 and (b) � = 6.2. (a) shows a planar
structure, a portion of the ’zipper’ structure as discussed in Section 1.3. (b) shows a 3D
structure.

Figure 6.5: A plot of the average number of contacts per bubble, Z , as a function of
compression, for a chain of N = 40 bubbles, kp = 0.25. Initially Z remains at 2, through
the compression phase and the zig-zag phase. The formation of the doublet is clearly
visible, then Z continues to increase as more bubbles join the ’zipper’ structure (Figure
1.11). The continuing increase of Z represents the compression of this structure, as well
as the beginning of the twisting. Eventually, Finally, Z increases again as bubbles form
additional contacts as the twisting increases. The categorisation of these 3D structures
is the subject of ongoing work.
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approximately N = 50 bubbles, which is a significant obstacle to progressing work on

this topic. While we will propose some methods for correcting this issue in the

Outlook, it is instructive to examine the nature of a non-convergent run to explain the

difficulties.

A plot of the net-force of each bubble, and the resulting structure, for a system of

N = 12,� = 4 is presented in Figure 6.6. We allow the simulation to run for half a

million iterations, demonstrating that this is not an issue of computational time. As

can be seen, some of the forces on bubbles enter an oscillatory behaviour (such as that

in green), oscillating between two values of f at a rate of per iteration. However two

bubbles make the majority of the contribution to the unbalanced force, settling at

around f = 10�1. These two bubbles are also indicated on the force network

diagram.

In spite of the dynamic dampening implemented, these oscillations do not diminish

with iteration number. It is for this reason that we believe the non-convergent results

are due to contact loss/gain, where structures may be losing or gaining contacts at a

rate close to once per iteration. This constant changing topology makes obtaining an

equilibrium structure difficult.

Visually inspecting the structures reveals no obvious abnormalities (other that in the

case of Figure 6.6, it is unlikely to be the minimum energy structure for this value of

compression). Thus we conclude that the approach is mostly correct and finds

structures which are close to mechanical equilibrium relatively quickly (again in the

example in Figure 6.6, it settles into this oscillatory behaviour in less than 20% of the

total equilibration time), but cannot fully equilibrate due to the changing topology.

This is as much a physical problem as a numerical one, and we will propose methods

for ameliorating it in the Outlook.
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Figure 6.6: An example of an unconverged simulation for N = 12,� = 4. Here we plot
the contribution of each bubble to the total net force separately, represented by different
colours in the figure on the left. We note that two bubbles, given by the red and yellow
curves, are primarily responsible for the non-convergence, and are highlighted in the force
network diagram shown on the right. The oscillatory behaviour of the non-convergent
simulations can clearly be seen. Visually there are no obvious abnormalities with this
structure, other than the fact that it is unlikely to be the minimum energy structure for
this value of compression. We will propose methods for ameliorating these issues with
non-convergence in the Outlook chapter.
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6.4 Conclusion

Although much of this work is still in a preliminary stage, the method shows great

promise in its ability to accurately simulate and visualise structures of Morse-Witten

3D bubbles. Here we have proposed an algorithm to find structures of 3D

Morse-Witten bubbles, focusing on the system of bubbles confined along the axis of a

cylindrically symmetric, harmonic confining potential. We have noted the transitions

between linear, planar and three-dimensional structures and verified the output of the

simulation with analytical expressions.

The issue of non-convergent simulations is a pertinent one, however we believe it

requires a rethinking of the physics of the problem, rather than a total reinvention of

the simulation method. We will propose methods of improving the simulation method

in these cases. However, as previously noted, we believe that even ’unconverged’

solutions may provide interesting data, given that they are indeed close to the true

equilibrium structure.

The ability of the Morse-Witten theory to fully describe a structure of bubbles using

only a contact network diagram makes it attractive for problems beyond the scope of

those presented here. In particular, it would be useful for the description of foams close

to the "jamming point" [67]. In that case, the foam has a low enough liquid volume

fraction such that the bubbles in the foam are ’kissing’, i.e. making very small contact

areas with each other. Work has been done in simulating such foams with Surface

Evolver [59], and other similar simulation methods, but methods such as Surface

Evolver do not allow for zero contact angle. We believe that this simulation approach

to Morse-Witten, provided that the issues are addressed, would be a good fit for this

problem.
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7 Outlook

We have presented a thorough analysis of our proposed model: a line of spheres

confined by a transverse harmonic potential and axially two hard walls. We first

examined the structures formed by hard spheres in our system. We extended the

original iterative equations proposed in [43] to include the longitudinal force of

tilt.

We then extended those iterative equations to a contiuum approach, replacing the

discrete parameters of the original system with continuous functions. The resulting

differential equation was explored numerically, and we solved it analytically in various

limiting cases. In particular, we focussed on the Jacobi elliptic functions, which

appeared both in the compression-only systems as well as the problem of Euler

buckling.

We extended the model to include soft spheres, determining the critical points where

structural transitions occur for different models of bubbles. We then applied

Morse-Witten theory to the problem, simulating 3D structures using an algorithmic

approach to find structures in mechanical equilibrium.

We will now present a number of avenues in which the work presented in this thesis

may be extended. We will start with extensions to the continuum model approach, and

then discuss how the 3D Morse-Witten simulation may be extended.
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Figure 7.1: Here we plot a variety of solutions to Eqn (4.1). We show the absolute value
to as to compare with the original single-peak positive solution. Here we match the
slope of the solutions at the � = 0 boundary. These solutions still satisfy the required
boundary conditions �(0) = �(N) = 0, but it is unclear how these solutions correspond
to the physical system.

7.1 Extensions to the continuum model

Higher buckling modes

Analogously to the Euler buckling problem (Section 1.1), we expect there are higher

buckling ’modes’ that are solutions to the key differential equation, Eqn (4.1), but have

internal zeroes. The periodic nature of the analytic solutions (see Figure 3.2) certainly

suggests so. An example of one of these solutions, �(u), with internal zeroes is shown

in Figure 7.1.

It is unclear how to interpret such solutions. An underlying assumption of the iterative

equations (Eqn (2.5), Eqn (2.6)) is that the displacements and angles yn, �n are

assumed to be positive. Interpreting the negative values of �(u) in this case requires

further analysis.
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Figure 7.2: It is possible to vary the value of the boundary angle, �(0), by modifying the
experimental method detailed in Section 1.3. Here the originally straight boundaries are
replaced with sloped stoppers, influencing a more uniform zig-zag profile. Although the
stoppers pictured here are parallel, they do not necessarily need to be. Image credited
to Ali Irannezhad.

Varying boundary conditions

An assumption throughout the thesis is that the boundary conditions �(0) = �(N) = 0

hold for these solution profiles. However, the reality in experiment is that this initial

angle can be varied. An experimental example of this is shown in Figure 7.2, where the

boundary angles of the experiment (using the experimental method detailed in Chapter

1.3) are varied through the use of slanted pistons. We briefly proposed this idea in

Chapter 4, as a possible application of the other members of the Jacobi elliptic

function family, see Figure 7.3.

7.2 Morse-Witten 3D Software

Improvements to be made to the software

The largest issue facing the current implementation of the Morse-Witten model is that

of scalability. Currently the iterative implementation has poor scaling with N , the

number of bubbles in the system, with computation time going with ⇡ O(N2). This is

primarily due to the exhaustive search done for contact gain and/or loss at each

iterative step.

Aside from computation time, however, there is also the issue of large N systems not

terminating satisfactorily when each bubble has > 2 contacts associated with it.
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Figure 7.3: Here we plot the Jacobi elliptic functions cn, sn, dn, only one of which was
used in 4. These other functions may be used to model solutions to the reduced equation,
Eqn (4.3), with varying boundary conditions. This corresponds perhaps tilting the pistons
of an experimental system, no longer having them perpendicular to the cylindrical axis
of symmetry. This figure was reproduced from [77].

Currently, we believe this issue stems from the naive contact checking procedure which

does not account for possible bubble deformation. Leaving aside equilibrated structures

for now, where the deformations are generally small, there is no guarantee that the

forces acting on a pair of bubbles will remain sufficiently small such that the

assumption that the contact point lies on the centre-centre line will hold.

A suggestion made by Reinhard Hoehler, during discussions about the 3D Morse-Witten

theory, for a more sophisticated contact checking algorithm is detailed in Figure 7.4.

The bubble surface at the point which lies along the centre-centre line could be

approximated as a paraboloid, and a new contact created if the paraboloids of a bubble

pair intersect. Such a process would be able to capture contacts that would be made

between bubbles with larger deformations, and would almost certainly be necessary if

the software were to be extended to a polydisperse system of bubbles.

It is unclear at the moment whether this more advanced check of contacts is worth the

computational expense incurred. It is a possibility that such spurious contacts may be

the cause of the failure of systems with N > 20 to converge.
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Figure 7.4: A cross-section of two Morse-Witten bubbles which are in contact, but a
naive check of the extensions along the line between their centres (indicated in light grey)
would fail to capture the contact. The plane of the cross-section is defined by the centres
of the bubbles and their true contact point, in red. The method suggested generates
the light blue curves, which are parabolic approximations to the bubble surface on the
centre-centre line. This contact-check then checks if the parabolic curves intersect, and
determines the contact point to be at their intersection if so. In the 3D case, these
approximations are paraboloids rather than parabolic curves.

Modelling monolayer structures using the Morse-Witten soft-

ware

Bubble "rafts", a single layer of bubbles floating on top of a liquid, offer a practical

and visual framework for understanding the structural principles of crystals [78] or 2D

materials [79]. In this analogy, each bubble within the raft represents an individual

particle or atom within a crystalline lattice. The critical aspect is the regular and

repeating pattern of these bubbles, which closely mirrors the highly ordered atomic

arrangement found in crystals. By observing and manipulating the bubble raft, one can

gain insights into fundamental concepts of crystallography.

This model is particularly helpful for illustrating the concepts of crystal symmetry, unit

cells, and crystal planes. The symmetrical patterns evident in the bubble raft can

effectively convey the fundamental principles of crystal symmetry, which underlie the

diverse crystal structures found in nature. Additionally, bubble rafts can be intentionally
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disrupted to simulate defects or irregularities found in real crystals, offering a tangible

way to explore imperfections like vacancies, dislocations, and grain boundaries.

From our simulations, we may assemble these bubble rafts by setting the confining

walls of the system to be slightly less than a single bubble diameter apart. Such

systems are often realised experimentally to study quasi-2D foams. Here we refer to

these structures as monolayers.

The application of these monolayer structures may adapted and expanded to include a

variety of other scenarios, one notable example being the task of determining the

ground state arrangement for N mutually repelling charges on a plane, which are

confined by a harmonic potential. Several interaction potentials - like the well-studied

Coulomb interaction, the Yukawa interaction, or the Logarithmic potential - have been

rigorously scrutinised to understand their role in charge arrangement. Despite the

multitude of interaction potentials examined, there’s a surprising regularity in the

resulting patterns. Particularly for a small number of charges, N , the charges tend to

assemble into highly symmetric configurations that are often identical, irrespective of

the specifics of the interaction. The geometric features of these equilibrium structures

and their associated energies have been extensively cataloged.

A selection of such minimum energy structures for a given monolayer of Morse-Witten

bubbles are shown in Figure 7.5. The deformable nature of these particles gives rise to

interesting arrangements, and we believe this work could be further expanded to be

compared with work on 2D materials [80] or mathematical studies of

packing [81].

7.3 Simulating foams using Morse-Witten theory

Foams have numerous applications in our daily lives, from the frothy head of a beer or

the lather of shampoo to the insulating properties of foamed materials in construction.

Developing accurate simulation techniques that can capture these bubble packings is

essential to gain insights into foam behavior and optimize foam-based processes in
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Figure 7.5: Visualisations of the minimum energy arrangements of monolayers of Morse-
Witten bubbles with N = 3� 10. Not pictured here are the confining pistons, which lie
in the plane of the page and have been removed for visual clarity (though the effect of
the contact they form with the bubbles is represented by the ’dimple’ of the logarithmic
divergence of the Morse-Witten bubble). These structures closely resemble those formed
by particles which interact through some long range repulsive interaction, such as the
Coulomb or Yukawa potentials.

various industries, ranging from food production to materials science. Accurate

simulations are indispensable for advancing our understanding of foam systems and for

designing more efficient and tailored applications in both research and industry.

It has been proposed that foams could be modelled as a collection of soft, elastic

particles, and that Morse-Witten theory may be employed to study them. In particular,

this is useful near the so-called "jamming transition", where contact forces between

bubbles are small and bubbles are approximately spherical. To probe this possibility, we

have employed the simulation method detailed in Chapter 6, however we have replaced

the cylindrically symmetric confining potential with a spherically symmetric one. This

has allowed us to study structures which we may expect to find in the interior structure

of a bulk foam. An example of such is shown in Figure 7.6. This is just the beginning

of applying this simulation method to foams, and we hope to extend its application in

future work.
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Figure 7.6: An example of a simulation of a unit cell of an FCC foam done within a
spherically symmetric confining potential. In this example, the external bubbles of the
FCC structure are subject to a harmonic restoring force which acts to move them towards
the origin. The upper plot shows the interior bubble and the deformation it experiences
due to the action of the exterior bubbles in the cell.

Applying BlenderPhotonics for optical simulations

Monte Carlo photon simulations are sophisticated computational methods employed to

emulate the behavior of photons when they interact with substances. These

simulations are grounded in principles of probability and ray optics, enabling them to

meticulously trace the journey of individual photons as they traverse through a medium

and engage with objects or particles [82,83].

In these simulations, each photon’s path is determined through random sampling,

taking into account probabilities associated with various possible interactions such as

absorption, scattering, and reflection. These probabilities are derived from

physics-based models that describe how photons behave in different materials and

under varying conditions.

Recently, a package has been developed for Blender which integrates these simulations

into the Blender environment. BlenderPhotonics is a Blender add-on that integrates

3-D tetrahedral mesh generation and mesh-based Monte Carlo photon simulations into
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the Blender environment. The add-on supports three key workflows: converting 3D

Blender objects into labeled tetrahedral meshes and triangular surfaces, converting

volumetric images from NIfTI files into labeled tetrahedral meshes, and defining optical

properties and light sources for Monte Carlo photon simulations. Users can perform

these tasks with a single click on the graphical user interface.

BlenderPhotonics [84] leverages Blender’s intuitive computer-aided-design (CAD)

interface to combine interactive 3D shape creation and editing with advanced modeling

capabilities. This integration enables users, including those with limited experience, to

easily create complex domains and perform sophisticated optical simulations,

particularly in biophotonics applications [85].

Given the visualisation of our 3D Morse-Witten structures in Blender, we believe that

this could be a useful application of this program in order to probe the optical

properties of our bubble structures. Interpreting bubble structures using optical

methods is essential for determining structures within bulk foams and monitoring foam

coarsening [86]. A future application of these 3D Morse-Witten structures could

therefore be applying these simulation techniques to probe the optical parameters of

bubble structures.

Attractive forces between bubbles: Hanging bubble chains

The transverse confining potential has been a key element of both the experimental

and theoretical work done in this thesis. However, it could be asked, how do bubbles

arrange themselves in the absence of confinement? Can structures be formed from the

balance of forces due to surface tension and gravity?

The idea of ’hanging’ bubble chains is not a new one, and one can even obtain a

Guinness World Record for chains of exceptional length (at time of writing the record

stands at 87!) [7]. Such structures have been modelled experimentally by the group,

and presented by photographer Kym Cox as an art exhibition [13].

Work has been done by the group, using Surface Evolver, to model these structures.
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Figure 7.7: Hanging bubble chains. A photo of an experimentally produced example
on the left, produced by bubbling air through a narrow tube. The weight of the liquid
pulls the resulting bubbles down, assembling the chain shown here. On the right, a
Surface Evolver simulation of the same structure. The Surface Evolver structure was
generated by comparison with a topologically similar structure that was in a cylindrical
confinement. Here the structure is maintained due to the balance between the forces of
surface tension and gravity - no confining potential required.

An example of some of these structures is shown in Figure 7.7.

Of course, the addition of an attractive component to the Morse-Witten model could

also assist in the other areas of physics where colloidal chains appear. In nanoscience,

the assembly of chains of Janus particles [87] or patchy particles [88], which

demonstrate a combination of repulsive and attractive interactions depending on their

relative orientations, form an important part of the development of

nano-machines.
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A1 The discrete system: Uniform

zig-zag

If periodic boundary conditions are applied to a finite chain (with even sphere number)

then a simple solution is provided by a sphere arrangement where all transverse

displacements are identical. This corresponds to ✓n = ✓ and Fn = F for all values of n.

We refer to this as the uniform zig-zag structure.

From the discrete iterative equations (Section 2.2) we obtain the following relationship

between transverse forces (displacements) F and compressive forces G , for this

structure

F = 2G sin ✓. (A1.1)

The geometry of the zig-zag structure results in sin ✓ = 2F , i.e. G = 1/4 for the

compressive force between contacting spheres, independent of the value of

compression. The longitudinal component of this force, G0 is thus given by

G = G cos ✓ =
1

4
cos ✓. (A1.2)

The compressive force at each end of the chain, thus decreases with compression, since

compression leads to an increase in the angle ✓. This implies the instability of the

uniform zig-zag structure.
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A2 Non-dimensional quantities for

the experimental system

In our experiments with hard spheres the restoring transverse force is provided by the

curvature of the cylinder, see Fig A2.1. Transverse displacement Y of a sphere of mass

m is opposed by a gravitational force (2Ymg/(DT � T )) [1� 4(Y /(DT � D))2]
�1/2

'

(2Ymg/(DT � T )) (1 + 2(Y /(DT � D))2), where DT and D are cylinder and sphere

diameter, respectively. The maximum displacement is about D/2 (doublet structure)

and we thus obtain 2(Y /(DT � D))2 ' 0.08 ⌧ 1. The restoring force is thus

approximated linear in displacement Y with a force constant kp of

kp = 2mg/(DT � D). (A2.1)

In a cylinder tilted by an angle ↵ against the horizontal, a sphere exerts a longitudinal

force mg sin↵ on its contacting neighbouring (in the direction of tilt) sphere. As in our

modelling of the discrete system we introduce ⌧ as a non-dimensional tilt variable

via

⌧ = mg sin↵/(kpD). (A2.2)

Inserting for kp (Eqn A2.1) we obtain

⌧ =
1

2

✓
DT

D
� 1

◆
sin↵. (A2.3)
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Figure A2.1: Diagram showing the geometry of the hard spheres held against the curved
surface of the tube, which can be used to relate the physical dimensions of the system
to kp, the (approximate) spring constant of the confining potential. (See also [51]).
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A3 The continuum model

A3.1 Transition to the continuous formulation

In a continuum description both the angle ✓ (or �) and the transverse force F are

functions of a continuous variable u. The approximate continuum representation of the

iterative relations, Section 2.2, may then be obtained as follows, where for the

simplicity of the argument we initially set ⌧ = 0.

Using the first of the iterative equations Eqn (2.6), we obtain

yn + yn+1 = G(�n+1 + 2�n + �n�1). (A3.1)

Re-expressing the left hand side using the second iterative equation, Eqn (2.5), results

in
�np
1 + �2

n

= G(�n+1 � 2�n + �n�1) + 4G�n, (A3.2)

where �n = tan ✓n.

The term in brackets on the r.h.s. may be identified as a central difference

approximation of the second derivative of a continuous function �(u) with respect to a

continuous variable u, evaluated at u = n. A continuum formulation of this equation is

thus given by

�00(u) = �4�(u) +
�(u)

G
p

1 + �2(u)
, (A3.3)

G is the compressive force exerted at both ends of the chain.
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As in the discrete formulation, the presence of tilt makes the compressive force

between contacting spheres a linear function of the sphere number. We thus replace

the constant G by

G (u) = G + ⌧u, (A3.4)

to arrive at

�00(u) = �4�(u) +
�(u)

G (u)
p

1 + �2(u)
. (A3.5)

We will call Eqn (A3.5) the full continuous equation with tilt. This is the differential

equation that is the basis of the continuous description used here.

A3.2 Compression and energy in the continuous

formulation

It remains to develop corresponding expressions for compression � and energy E , for a

given profile �(u). Compression in the discrete representation is given by Eqn (2.7); in

the continuous formulation (with � = tan ✓) this translates into

� =

Z N

0

(1� cos(arctan�(u))) du =

Z N

0

�
1� (1 + �2(u))�1/2

�
du. (A3.6)

For �(u) ⌧ 1, consistent with the approximation that is the general basis of the

continuous formulation, we obtain

� '
1

2

Z N

0

�2(u)

1 + �2(u)/2
du '

1

2

Z N

0

�2(u)du. (A3.7)

An expression for the energy of a solution �(u) of the continuum equation requires an

integral formulation of Eqn (2.2). Similar to the transition from �n to �(u) we

introduce a continuous function F (u) with respect to a continuous variable u, which

corresponds to Fn when evaluated at u = n. Using the linear interpolation

F (u + 1/2) ' 1
2(F (u) + F (u + 1), together with the original iterative relationship
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Eqn (2.6) we obtain an approximate expression for the displacement F (u + 1/2) in

terms of �(u),

F 2(u + 1/2) '
1

4

�2(u)

1 + �2(u)
. (A3.8)

Using the expression for the total energy in the discrete case, Eqn (2.10), we can write

its equivalent for the continuum formulation as

E =
1

2

Z N

1

F 2(u)du+⌧

 Z N

0

udup
1 + �2(u)

!
'

1

8

Z N

0

�2(u)

1 + �2(u)
du+⌧

 Z N

0

udup
1 + �2(u)

!
.

(A3.9)

We note that for the case of the straight chain (�(u) = 0 for 0  u  N) this

expression reduces to Es = ⌧N2/2, i.e. the same expression as in the discrete case

(Eqn (2.10)).

For �(u) ⌧ 1, and correct to order �2, we thus obtain

E '
�

4
+

⌧

2

✓
N2

�

Z N

0

u�2(u)du

◆
, (A3.10)

where we have used Eqn (A3.7) for compression �.

If we approximate �(u) by a triangular profile, Eqn (A3.10) can be evaluated to give

the following expression for Eb, i.e. the energy difference between straight and buckled

chain,

E � Es '
�

4
(1� 2⌧N), (A3.11)

to lowest order in compression � and tilt ⌧ .

A3.3 Relation to the Airy equation

To study the variation of the displacement peak for small compression, �, we found it

sufficient to consider a linearisation of the full equation, Eqn(A3.5), in both � and

⌧ ,

�00 =


1

G

✓
1�

⌧u

G

◆
� 4

�
�. (A3.12)
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By introducing a linear change of variables from u to x via

x =

✓
⌧

G2

◆�2/3  1
G

✓
1�

⌧u

G

◆
� 4

�
, (A3.13)

and renaming � = y we can rewrite this linearised reduced equation as

y 00(x) = xy(x). (A3.14)

This is the Airy differential equation which has analytical solutions in terms of the Airy

Ai and Bi functions,

y(x) = c1Ai(x) + c2Bi(x) (A3.15)

with constants c1 and c2.

We want to find a solution �(u) which is zero at the two endpoints u = 0 and u = N .

Expressed in terms of y(x) this corresponds to (from Eqn (A3.13)) y(x1) = y(x2) = 0,

with

x1 =

✓
⌧

G2

◆�2/3  1
G
� 4

�
, x2 =

✓
⌧

G2

◆�2/3  1
G

✓
1�

⌧N

G

◆
� 4

�
. (A3.16)

It remains to fix the constants c1 and c2 in Eqn A3.15. From the boundary condition

y(x1) = 0 we obtain

c2/c1 = �
Ai(x1)
Bi(x1)

= �
Ai(x2)
Bi(x2)

, (A3.17)

and we can thus write the solution y(x), Eqn (A3.15), as

y(x) = c1

✓
Ai(x)�

Ai(x1)
Bi(x1)

Bi(x)
◆
. (A3.18)

The constant c1 can be expressed in terms of compression, �, as follows.
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For � ⌧ 1 compression, �, is given by Eqn (A3.7) as

� =
1

2

Z N

0

�2(u)du = f (⌧ ,G)

Z x2

x1

y(x)2dx , (A3.19)

with the prefactor f (⌧ ,G) = 4� 1
G (1� ⌧N

G )

2( ⌧
G2 )

1/3 . For our Airy function solution, Eqn (A3.15),

this integral over y(x)2 can be computed analytically to result in

� = f (⌧ ,G)
�
y 0(x2)

2
� y 0(x1)

2
�

(A3.20)

Compression is thus expressed in terms of the slopes y 0(x) at the two endpoints, x1, x2.

Using our solution for y(x), Eqn (A3.18), this results in

� = c21 f (⌧ ,G)

"✓
Ai 0(x2)�

Ai(x1)

Bi(x1)
Bi 0(x2)

◆2

�

✓
Ai 0(x1)�

Ai(x1)

Bi(x1)
Bi 0(x1)

◆2
#
,

(A3.21)

and thus provides an expression for the constant c1 in terms of compression �, tilt ⌧ ,

compressive force G and sphere number N . We can revert from y(x) to �(u) via

Eqn (A3.13) and thus have obtained an analytical solution of the linearised reduced

equation with tilt, Eqn (A3.12), in terms of these parameters; see Fig 3.6. (Note that

from experimenting with Mathematica we find that (for given N) not all pairs of (⌧ ,G)

lead to solutions which fulfill the boundary conditions y(x1) = y(x2) = 0, with x1, x2

defined in Eqn (A3.16).)
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A4 Rescaling Jacobi functions

We will show that a solution �(u) which satisfies the reduced equation, Eqn 4.3, can

be expressed in terms of a Jacobi function y(x) = cn(x |m) for appropriately rescaled

variables. Back-substitution then results in the angle profile ✓(u) = arctan�(u).

We proceed by introducing real constants c1 and c2, whose value remains to be

determined, and set ✓ = c1y and u = c2x . The second derivative of � with respect to

u is thus given by d2�
du2 = c1

c22

d2y
dx2 .

In the new variables y(x) the reduced equation, Eqn 4.3, is re-written as
c1
c22

d2y
dx2 = 2c1y � 2c31y

3. This results in our key equation for further analysis,

d2y

dx2
= 2c22y � 2c21c

2
2y

3. (A4.1)

In this rescaled equation the y 3 term features with a minus sign. This rules out 8 of

the 12 Jacobi functions.

Eqn (A4.1) is solved by the Jacobi cn(x |m) function if we set c21c22 = m and

2c22 = 2m � 1. Solving for c21 and c22 we obtain c22 = 2m�1
2 and

c21 = m2

(1+2/4)(2m�1) .

Using � = c1y and x = u/c2 from above yields our scaled Jacobi cn solution �(u) of

the reduced Eqn (4.3),

�(u) = tan ✓(u) =

s
m2

(1 + 2/4)(2m � 1)
cn

 r
2

2m � 1
u

����m
!
, (A4.2)
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with 2 > �4, as discussed in Appendix A3.1.

We have 0  m  1, this requires 2 < 0 for m < 1/2 and 2 > 0 for m > 1/2.

m = 1/2 can only lead to a solution for 2 = 0 (division 0/0).

Limiting cases:

m ! 0 : tan ✓(u) !
p
m
p

�2/(1 + 2/4) cos(
p
�2u)

m = 1
2 : tan ✓(u) = cn

�p
2u|12

�

m = 1 : tan ✓(u) =
p

2/(1 + 2/4)sech
⇣p

2u
⌘

Here the case for m = 1
2 can be obtained by setting

q
m2

(1+2/4)(2m�1) = 1 and

2

2m�1 = 2, from which it follows that m = 1
2 and 2 = 0.

A4.1 Relevance to the pendulum

The reduced equation, Eqn (4.3), is also relevant to the theory of the mathematical

pendulum. The pendulum equation for the angle of displacement y(t) from the vertical

is

ÿ(t) = �!2
0 sin y(t), (A4.3)

where !2
0 is the angular frequency for small amplitude oscillations (i.e. the case of the

harmonic oscillator). An exact solution for all amplitudes may be expressed in terms of

Jacobi functions, but various transformations are required to derive this. An

intermediate approximation can be applied using

sin y ' y � y 3/6, (A4.4)

resulting in

ÿ(t) = �!2
0y

2(t) +
!2
0

6
y 3(t). (A4.5)
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This equation may be treated in the manner of Section 4.2.2 to derive a Jacobi

solution of the following form:

y(t) = y0 cd

 
!0

r
1�

y 2
0

12
t
���

y 2
0

12� y 2
0

!
(A4.6)

with initial displacement y0 = y(t = 0).

The period of this solution, T = 2⇡
!0
(1 + y2

0
16 +O(y 4

0 )) agrees with that of the

mathematical pendulum up to order y 2
0 .
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A5 Morse-Witten theory: Surface

tension measurements

Although the presentation of the Morse-Witten theory in the main text focuses on the

action of compressive forces on bubbles, it has been shown that the model also works

for extensive forces, such as the case of the pendant drop [46].

Previous work on this idea resulted in a method of estimating surface tension of drops

by only taking two measurements of the drop, based on the theory of Morse-Witten.

The expression in its simplest form is as follows:

� =
�⇢g ln 2

24

(Lx + Ly )3

|Lx � Ly |
. (A5.1)

Where �⇢ is the density difference between the droplet and external media, g is

acceleration due to gravity, Lx is the maximum equatorial width of the drop, and the

Ly is the maximal perpendicular from that width (See Figure A5.1).

Since this work, this formula has been applied to measure the surface tension of

honey [89] and water droplets [90], and in metallurgy [91].

Our group, with thanks to Jennifer Quirke, was able to produce high quality images of

water droplets. Using these images from both a Digital Single Lens Reflex camera

(DSLR) and a Tensiometer, the formula was applied to find the estimated surface

tension. The results are shown in Figure A5.2.
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Figure A5.1: A pendant drop of millipore water hanging from a nozzle with width 2.08mm
(thanks to Jennifer Quirke for this image). A bounding box is defined (in red) which sets
the measurements Lx , Ly . The nozzle width w is used to define the conversion between
pixels and mm.
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Figure A5.2: Predictions of the surface tension of a droplet of water taken from DSLR
and Tensiometer images. The horizontal blue line represents the prediction made by
standard experimental methods for measuring surface tension from a droplet profile. Of
note is the improvement in agreement as the needle size is increased - an effect of the
sensitivity of Eqn (A5.1) on the measurement of the parameters Lx and Ly .
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Figure A5.3: A photo of the Trinity College Dublin pitch drop experiment (image credit
Jennifer Quirke). At time of writing the experimental apparatus is available to view in
the Library, and the current drop would be expected to break off around 6 years from
now.

The issues raised in [46] persist in that, even with the correction factors proposed in

that paper, the accuracy of the measurement has a large bearing on the resulting value

of surface tension.

The method could be of use in situations such as the famous ’pitch drop’ experiments,

pictured in Figure A5.3. These long-running experiments, one of which is located in

Trinity College Dublin (in the main Library at the time of writing), consist of funnels

full of pitch (bitumen) , the viscosity of which is estimated to be two million times

greater than that of honey. The pendant drop shape that develops could be used to

make an estimate of the surface tension of the pitch, provided high enough quality

photographs were available.
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A6 Analytic expressions for buck-

led lines of bubbles

Let F be the force acting on a bubble due to contact with the other bubble. The

bubble centres are a distance L apart. We will call the angle between the line of

contact and the axial direction is called ✓, the buckling angle. In equilibrium there is a

balance of transverse forces exerted on a given bubble, i.e. the forces F sin ✓ and the

transverse restoring force kp
L
2 sin ✓, where kp is the spring constant of the confining

potential,

F sin ✓ = kp
L

2
sin ✓. (A6.1)

Let the interaction between the spheres be governed by a generic function F = F (L)

which depends on the distance L between bubble centres. From Eqn (A6.1) we

obtain

F (L) =
kpL

2
(A6.2)

This equation defines a value for L which is independent of the buckling angle ✓, which

w call Lc (the distance between sphere centres associated with a buckled

arrangement).

The balance of axial forces exerted on a bubble, where Fw is the force due to the

bubble-wall contact, is given by

Fw = F cos ✓, (A6.3)
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Figure A6.1: A schematic of two bubbles in a buckled structure between two hard
walls. Here we represent Morse-Witten contact as overlaps (these will be related to the
displacements at the contacts xi). This diagram forms the basis of the approach used
in Section A6

resulting in

Fw =
kp
2
Lc cos ✓. (A6.4)

Now let us consider the straight chain, i.e. ✓ = 0. Initially the distance between the

two centres is some distance L, which must be determined and depends on the force

law. As compression increases, the value of L is expected to decrease up until a critical

value is reached. At this point, the system will buckle, and is described by a finite

angle ✓ (which depends on compression), and a constant bubble separation Lc .

From Eqn (A3.7)) compression � is given by

� =
2W (Bo)� Lchain

W (Bo)
(A6.5)

where W (Bo) is given by Eqn (12), i.e. the width of an bubble held under a plate by

buoyancy. (In models where bubbles do not deform under applied force, or where there

is no contact with a confining surface, W (Bo) = 2R0)
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The chain length Lchain is given by

Lchain = (W (Bo) + 2X0) + (W (Bo) + 2X1) cos ✓, (A6.6)

where X0 < 0 is the deformation of a bubble at the bubble wall contact and X1 < 0 is

the deformation at the bubble-bubble contact, with Lc = W (Bo) + 2X1.

We introduce the dimensionless quantities x0 = X0/(R0) and x1 = X1/(R0) and

re-write the chain length of the buckled chain as

Lchain = (W (Bo) + 2R0x0) + (W (Bo) + 2R0x1) cos ✓. The compressive strain is then

given by

✏ = 1�
Lchain

2W (Bo)
= 1�

1

2

✓
(1 +

2R0x0
W (Bo)

) + (1 +
2R0x1
W (Bo)

) cos ✓

◆
. (A6.7)

In the unbuckled state (✓ = 0) this reduces to

✏ = �
R0

W (Bo)
(x1 + x0) . (A6.8)

.

In order to progress we need to relate X1 and X0 to each other. This will depend on

the model of bubble interaction. In the next section, we shall apply Morse-Witten

theory to this general approach.

Application of the Morse-Witten model

Let us again consider the experimental system where we have a pair of bubbles trapped

under the top of a cylindrical tube by buoyancy. These bubbles are then compressed by

two pistons.

For two contacting bubbles held under a flat plate by buoyancy, the displacement

X = xR0 at the bubble-bubble contact and the centre-to-centre distance L between
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those two bubbles are related by

L = W (Bo)(1 +
2R0

W (Bo)
x1), (A6.9)

where x = x(fb), as it depends on the magnitude of the buoyancy force.

The contact displacement–force relationship (Eqn (5.14)) in the Morse-Witten model

for a bubble with three contacts (bubble-piston, bubble-bubble and bubble-top plate) is

given by

xi(fi) =
1

24⇡

✓
5 + 6 ln(

fi
8⇡

)

◆
fi � G (⇡ � �)fj � G (⇡/2)fb, (A6.10)

where fi ,j are non-dimensional forces, fi ,j = F/(�R0). G is the Green’s function. � is

the buckling angle (see Figure A6.1). The buoyancy force due to the contact with the

top plate is:

fb =
4⇡
3 ⇢gR

3
0

�R0
=

4⇡

3
Bo. (A6.11)

In the following we will consider the system before the onset of buckling, i.e. a linear

chain where the angle � is 0. In this case fi = fj = f We thus have

G (⇡ � �) = G (�⇡) = 5
24⇡ , and G (⇡/2) = �

1
8⇡ resulting in

x(f ) =
1

4⇡
f ln

✓
f

8⇡

◆
+

fb
8⇡

(A6.12)

We can invert this equation to obtain f (x) using the Lambert function W�1,

f =
4⇡x � fb/2

W�1(x/2)
(A6.13)

We rewrite Eqn (A6.9) in terms of x and use the generic force relationship from

Eqn(A6.2) to express the bubble centre-to-centre distance L in terms of the contact
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force F . This results in

x = L/(2R0)�
W (Bo)

2R0
=

2F

2R0kp
�

W (Bo)

2R0
, (A6.14)

i.e.

x(f ) =
�

kp
f �

W (Bo)

2R0
. (A6.15)

Inserting Eqn (A6.12) for x(f ) results in the following equation which can be solved

numerically using Mathematica to obtain a solution for fc

W (Bo)

2R0
+

f

4⇡

✓
ln

f

8⇡
� 4⇡

�

kp

◆
+

fb
8⇡

= 0 (A6.16)

It is now possible to relate this solution to the ratio �/kp, a measure of the ’hardness’ of

the bubbles relative to the strength of the transverse confining potential. We find that

in the case of of bubbles trapped under the curved surface of a cylinder, we have:

�/kp =
DT
D � 1

4/3⇡Bo
, (A6.17)

(see Appendix A2), thus:

W (Bo)

2R0
+

f

4⇡

✓
ln

f

8⇡
�

3

Bo

✓
DT

D
� 1

◆◆
+

Bo

6
= 0. (A6.18)

The addition of the Bo/6 term is due to the contact with the top plate.

The length of the buckled chain is given by Eqn(A6.6). Below the critical compressive

strain for buckling the displacements at the bubble-wall and the bubble-bubble contacts

are identical, x0 = x1, ✓ = 0, and we obtain Lchain = 2(W (Bo) + 2X ). From the

compression � = �4X/W (Bo) we obtain for the compressive strain

✏ = �
2x

w(Bo)
, (A6.19)

where we have introduced x = X/R0, and w(Bo) = W (Bo)/R0 is as can be obtained
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from Eq (A6.8).

The compressive strain for buckling is thus given, from Eqn(A6.15), by

✏c =

 
w(Bo)

2
�

DT
D � 1

4/3⇡Bo
fc (Bo,DT/D)

!
2

w(Bo)
. (A6.20)

A6.1 Buckling in the Morse-Witten Bubble chain

Up to the onset of buckling the displacements/forces at bubble-bubble and bubble-wall

contact were identical, x1 = x2. We know from our general treatment of buckling in

the previous section that the centre-centre distance of the two contacting bubbles is

independent of the buckling angle ✓.

The displacement of the bubble-wall contact is given by

x0(f1, f2, ✓) =
1

24⇡

✓
5 + 6 ln(

f0
8⇡

)

◆
f0 � G (⇡ � 2✓)f1 � G (⇡/2)fb. (A6.21)

Its ✓-dependence is only via the Green’s function G (⇡ � 2✓), which for small buckling

angles can be approximated by a constant, G (⇡ � 2✓) ' G (⇡) = 5/(24⇡). We can

thus also treat x0 as a constant just above the buckling onset, and maintain

x0 = x1 = xc also for ✏ > ✏c .

Eqn (A6.7) is then readily re-written in terms of ✓ as

✓ = arccos

✓
1� 2✏� xc

1 + xc

◆
, (A6.22)

where xc is value at buckling. From Eqn A6.8 we obtain xc = �✏c , and thus

✓ = arccos

✓
1� 2✏+ ✏c

1� ✏c

◆
. (A6.23)
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From Figure A6.1 we see that the width of the buckled structure ⌦ is given by

⌦ = W (✏c ,Bo)+(R0(1+xc)+R0(1+xc)) sin ✓ = W (✏c ,Bo)+2R0(1�✏c) sin ✓. (A6.24)

As we have seen above, compression of a straight chain leads to an increase in bubble

width, i.e., W (✏c) > D.

Using the identity sin arccos x =
p
1� x2, and Eqns (A6.23) and (A6.24) we

obtain:

�! =
1

w(✏ = 0,Bo)

0

@w(✏c ,Bo) + 2(1� ✏c)

s

1�

✓
1� 2✏+ ✏c

1� ✏c

◆2
1

A , (A6.25)

valid for ✏ � ✏c . This simplifies to:

�! =
1

w(✏ = 0,Bo)

⇣
w(✏c ,Bo) + 4

p
�✏(1� ✏)

⌘
,�✏ = ✏� ✏c . (A6.26)

.
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A7 Polydispersity in Morse-Witten

theory

Although contacts between bubbles of differing sizes has been studied and

implemented in 2D [64,92], the theory has not been extended to three dimensions

( [60] attempted to do so, but we note that the equations as presented in that article

for polydisperse Morse-Witten bubbles is incorrect). Here we will generalise the

approach detailed for contacts between bubbles with different radii.

We start with a generalisation of Figure 5.2, where we will write our quantities

dimensionfully by multiplying by the bubble radius Ri , noting that we no longer have a

common R0 for all bubbles. Thus we find the expression for the displacement at the

contact Xc is given by:

Xc = Ri(✓c) cos(✓c)� Ri , (A7.1)

where ✓c is the capping angle for the bubble, as shown in Figure 5.2. We will

substitute for Ri(✓c) using Eq (5.14):

Xc = Ri(1� fG (✓c) cos(✓c)� 1), (A7.2)

where f = F/�Ri . Assuming the force is small, as is usual for Morse-Witten bubbles,

we will expand the Green’s function to order ✓2, resulting in the simplified Green’s
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function:

G (✓) ⇡ �
1

4⇡
(11/6� 2✓2/3 + log ✓2/4). (A7.3)

This results in the simplified form of Eqn (A7.2):

Xc/Ri =
f

24⇡
(11� 4✓2 + 6 log(✓2/4))� ✓2/2. (A7.4)

It can be shown, however, that for a Morse-Witten bubble f / ✓2c (this can be done by

considering the pressure across the circular cap). Thus we shall drop the ✓2 term from

the calculation, as multiplication by the prefactor f would result in a term of order f 2,

which may be neglected in this linearised theory.

For the case of two bubbles in contact, with radii R1 and R2, we must consider the

disjoining pressure [93] across their contact:

Pd = 1/2

✓
2�

R1
+

2�

R2

◆
. (A7.5)

Considering the forces across their caps, we may write:

F = Pd⇡✓
2
c,iR

2
i = ⇡(✓c,iRi)

2/2

✓
2�

R1
+

2�

R2

◆
. (A7.6)

In this calculation we assume that, as the bubbles are in contact, their capping surfaces

have the same area. Thus (✓c,iRi)2 is the same for i = 1, 2. We can then relate the

capping angle to F with:

✓2c,i =
F

⇡Ri�(R
�1
1 + R�1

2 )
. (A7.7)

Now we may rewrite the expression for the displacement at the contact, xi = Xi/Ri , in

terms of this capping angle.
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xi = f /24⇡

✓
11 + 6 log

✓
F

4⇡Ri�(R
�1
1 + R�1

2 )

◆◆
�

F

2⇡Ri�(R
�1
1 + R�1

2 )
. (A7.8)

Rewriting fi = f /�Ri and simplifying, we find the displacement at the contact in terms

of fi :

xi = fi/4⇡

✓
11/6�

2R1R2

Ri(R1 + R2)
+ log

2R1R2fi
4⇡Ri(R1 + R2)

◆
. (A7.9)

Which reduces to the monodisperse expression when R1 = R2 = R0.
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