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Abstract
An Equivalent Linearization technique, termed an Equivalent Linearization Time and Ensemble Expectation (EL-TEE)
approach, is used to develop an alternative method for estimating the response of a nonlinear oscillator to a
combination of deterministic harmonic and random white noise excitation. The approach is based on applying
equivalent linearization and averaging over the time period of one harmonic excitation cycle. This gives a set of coupled
nonlinear equations that can be solved for the response averaged over time and across the ensemble. The primary
advantages of the proposed method are its computational speed, ability to return physically meaningful linearization
matrices and that it can be applied to a wide variety of nonlinearities. The method is applied to three example test
systems: the well-known single degree of freedom Duffing oscillator; a single degree of freedom system with a
displacement constraint imposing a discontinuous nonlinearity; and a multi degree of freedom oscillator with a
localized polynomial nonlinearity that has also been examined experimentally. It is shown that the response predicted
matches well with Monte Carlo results from direct time integration at a fraction of the computational cost, and the
method is capable of reproducing key results observed experimentally.
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Introduction

Many engineering vibration problems are approxi-
mated as systems that are either harmonically or ran-
domly excited. However, in reality many dynamic
systems are subjected to a combination of broadband
noise and harmonic excitation, for example floating
crane systems,1 turbine blades under turbulent flows,2

or energy harvesting devices.3

A variety of methods exist to predict vibration of
structures under purely harmonic or random excita-
tion. The commonly employed approaches are the
harmonic balance method (HBM)4 for harmonic
inputs and equivalent linearization,5,6 which is some-
times termed statistical linearization, for random exci-
tation. Current practice for examining the dynamic
behavior of nonlinear systems under combined excita-
tion involves the use of time domain integration
methods. However, this becomes prohibitively com-
putationally expensive when Monte Carlo approaches
are adopted to account for random loading.
Therefore there is a need to develop new methods
that can more efficiently predict the response of

nonlinear oscillators to combined harmonic and ran-
dom loads.7

This problem has been explored by various
researchers over the last 30 years. However, the litera-
ture in the field is rather disjointed, with many studies
existing as standalone works without further develop-
ment or wider application. Broadly speaking, the
existing approaches to tackle the problem can be
divided into two groups. The first group consists of
methods based on combining nonlinear deterministic
and stochastic dynamic analysis techniques to derive
coupled equations which are then solved for the
response quantities of interest. For example HBM
has been used alongside Gaussian closure,8,9
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stochastic averaging,10 and equivalent linearization.11

Spanos et al.11 use HBM to derive a set of equations
for the deterministic response component as functions
of the random response statistical moments.
Equivalent linearization, with the equivalent linear
matrices averaged over a harmonic loading period, is
then applied to the random response component, giv-
ing another set of equations involving the amplitudes
of the harmonic response and the statistical moments
of the random response. Combining these two sets of
equations leads to a set of coupled nonlinear algebraic
equations which can be solved for the two response
components. As well as with HBM, equivalent lineari-
zation has also been applied in conjunction with both
deterministic averaging12 and stochastic aver-
aging.13,14 The method of multiple scales15,16 is a per-
turbation analysis approach that has been employed
extensively to study nonlinear oscillators.17,18

Recently, a number of different studies have proposed
alternative or modified perturbation methods, such as
parameter splitting approaches19,20 and the homotopy
perturbation method,21–23 that have shown improved
performance for highly nonlinear oscillators under
harmonic excitation. For combined excitation, the
method of multiple scales has been employed in com-
bination with Gaussian closure24,25 deterministic aver-
aging26 and stochastic averaging,27 or on its own in
adapted forms for specific combined excitation prob-
lems.28,29 The primary drawback of the majority of
methods mentioned in the preceding section is that
they can be difficult to generalize and have only been
applied to highly specific and simple oscillators.

The second group of studies consists of Markovian
methods that have been developed to examine the
response probability density function. These works
involve obtaining solutions to the Fokker-Planck
Kolmogorv (FPK) equations, which are often,
although not always, derived via stochastic aver-
aging.3,30–35 Exact analytical solutions for the FPK
equations are available in a very limited number of
cases,36 however in general it is necessary to use more
computationally expensive numerical techniques,
such as cell mapping37 or path integration.38 The
computational cost and complexity of implementa-
tion can make these approaches unattractive.

While there is clearly a reasonable amount of liter-
ature proposing methods to predict nonlinear
response to combined excitation, many of the studies
are specific to the particular nonlinearity under exam-
ination. For example, in Refs.9,10,12,26,35 the methods
are presented specifically for the Duffing oscillator,
while Anh et al.13 and Manohar and Iyengar14 are
specific to the van der Pol oscillator. This means that
the proposed methods cannot be easily applied to
alternative nonlinearities, particularly for nonlineari-
ties that are not polynomial, like contact or friction
nonlinearities. The need for methods with such

flexibility has recently been identified by Kong and
Spanos, who have extended the method proposed by
Spanos et al.11 for application to systems with hys-
teretic nonlinearities.39 Another limitation of the
existing literature, also identified by identified by
Spanos et al.,11 is that many existing studies focus on
single degree of freedom systems.

Considering these limitations, the fundamental
aim of the work discussed in this paper is to develop
a computationally efficient method to predict the
response to combined excitation that can be readily
applied to oscillators with a variety of nonlinearities
and can be easily scaled to multi degree of freedom
systems. The method proposed for this purpose is
an equivalent linearization approach referred to as a
Time and Ensemble Expectation (EL-TEE) method.
The approach is based on defining a cost function
that averages across the ensemble of random
responses (as per equivalent linearization6) as well
as taking the average over the time period of a har-
monic loading cycle under ‘‘steady-state’’ condi-
tions, that is, once the deterministic component of
the starting transient has decayed. The formulation
proposed in this paper is different to that in Spanos
et al.11 and Kong and Spanos,39 as no distinction is
made between the deterministic and random
response components in the linearization. This
allows the equations to be formulated in such a way
that they return physically meaningful linearization
matrices, that can provide further insight into sys-
tem behavior. In contrast, the approach proposed in
Spanos et al.11 and Kong and Spanos,39 separates
the response into random and harmonic compo-
nents before linearizing. This provides an extra
degree of flexibility for the linearization, meaning in
theory it is a more accurate approach. However, it
does not return physically meaningful linearization
matrices.

By linearizing over time and across the ensemble, a
set of governing nonlinear equations is derived. These
can be solved simultaneously to find the response
averaged over time and across the ensemble. The pro-
posed approach is applied to three example systems
to demonstrate its applicability and versatility. Firstly
a numerical model of a single degree of freedom oscil-
lator with a cubic nonlinearity is examined, and the
results are compared to those from both time integra-
tion and linearization method proposed in Spanos
et al.11 and Kong and Spanos.391139 Once it is shown
that the performance of the two linearization
approaches is similar for this simple example, the
method proposed here is applied for two more com-
plex examples. Firstly for an oscillator with a discon-
tinuous ‘‘end-stop’’ nonlinearity; and then to perform
numerical simulation of an experimental test rig con-
sisting of a multi degree of freedom beam with a loca-
lized nonlinear stiffness.
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Derivation

Equivalent linearization – time and ensemble
expectation (EL-TEE) method

The equation of motion describing the response of a
nonlinear system with a velocity and displacement
dependent nonlinearity can be written as:

M€v+C _v+Kv+ fnl(v, _v)= p ð1Þ

where M, C, and K are the mass, damping, and stiff-
ness matrices respectively, fnl(v, _v) is the nonlinear
restoring force, p is the excitation and v is the
displacement.

Equation (1) can be linearized using an equivalent
linear system:

M€v+C _v+Kv+Ce _v+Kev+g = p ð2Þ

where Ce and Ke are equivalent linear damping and
stiffness matrices respectively and g is an offset term.
The error in the linearization, e, is defined as the
difference between equation (1) and it’s linearized
counterpart. Thus for the linearization described by
equation (2):

e [ fnl � Ce _v� Kev� g ð3Þ

The system is assumed to be excited by a stationary
random force plus a deterministic harmonic force of
period T and frequency O. To minimize the error in
the linearization, a cost function is introduced. This
cost function is defined as the mean over one excita-
tion period of the deterministic excitation component
(i.e. the time expectation) of the expected value (i.e.
the ensemble expectation, denoted E[. ]) of the sum of
squares of the error.

minimize :
1

T

ðT
0

E eTe
� �

dt ð4Þ

which is equivalent to:

minimize :
1

T

ðT
0

E e21 + e22 + . . . + e2n
� �

dt ð5Þ

where en is the nth element in the vector e, defined by
equation (3). As linearization is performed across the
ensemble and over time, the proposed approach is
described as a Time and Ensemble Expectation (EL-
TEE) method. The minimization is performed with
respect to each element of the equivalent stiffness
matrix, equivalent damping matrix and the offset
vector:

ðT
0

∂

∂Ke
i, j

E eTe
� �

dt=0 ð6Þ

ðT
0

∂

∂Ce
i, j

E eTe
� �

dt=0 ð7Þ

ðT
0

∂

∂gi

E eTe
� �

dt=0 ð8Þ

where Ke
i, j and Ce

i, j are the i, jð Þ elements of the
matrices Ke and Ce respectively and gi is the ith ele-
ment of the vector g. This gives the following lineari-
zation equations:

ðT
0

E fnlv
T

� �
dt=Ke

ðT
0

E vvT
� �

dt+Ce

ðT
0

E _vvT
� �

dt

+g

ðT
0

E vT
� �

dt

ð9Þ

ðT
0

E fnl _v
T

� �
dt=Ke

ðT
0

E v_vT
� �

dt+Ce

ðT
0

E _v_vT
� �

dt

+g

ðT
0

E _vT
� �

dt

ð10Þ

ðT
0

E fnl½ �dt=Ke

ðT
0

E v½ �dt+Ce

ðT
0

E _v½ �dt+g ð11Þ

These linearization expressions can be expressed as a
single system of equations

ðT
0

E zfTnl
� �

dt=

ðT
0

E zzT
� �

dt

KeT

CeT

gT

2
64

3
75 ð12Þ

where z is the vector:

z=
v

_v
1

8<
:

9=
; ð13Þ

The linearization matrices obtained by solving equa-
tion (12) can then be applied in equation (2) to calcu-
late the response of the equivalent linear system. This
is done by assuming that the response is stable such
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that both the response and excitation can be sepa-
rated into harmonic, zero-mean random and constant
components, termed vh, vr, and �v and ph, pr, and �p
respectively:

v= vh + vr +�v ð14Þ

p= ph + pr + �p ð15Þ

Using equations (14) and (15), equation (2) can be
rewritten as:

M €vh +€vrð Þ+ C+Ceð Þ _vh + _vrð Þ
+ K+Keð Þ vh + vr +�vð Þ+g= ph + pr + �p

ð16Þ

Taking expectations across the ensemble and then
separating the time independent and time varying
terms gives two equations:

M€vh + C+Ceð Þ _vh + K+Keð Þvh = ph ð17Þ

K+Keð Þ�v+g= �p ð18Þ

Equation (17) can be solved using the standard
steady-state solution for a harmonically driven oscil-
lator with ph =Phe

iOt and vh =Vhe
iOt (implicitly tak-

ing the real part):

vh iOð Þ= �O2M+iO C+Ceð Þ+ K+Keð Þ
� ��1

Ph

ð19Þ

where Ph and Vh are the complex amplitudes of the
harmonic excitation and response respectively.
Subtracting equations (17) and (18) from equation
(16) leaves the equation governing the random
response component:

M€vr + C+Ceð Þ _vr + K+Keð Þvr = pr ð20Þ

Standard frequency-domain linear random vibration
theory can be used to solve equation (20) and obtain
the cross-spectral density matrix of the random
response component. The covariance matrix of the
response can then be obtained by integrating each ele-
ment of this across all frequencies. Alternatively, if it
is assumed that the random excitation is Gaussian
white noise with a spectral density matrix S0, the cov-
ariance matrix of the random response component
can be obtained directly by solving the Lyapunov
Equation describing the response of a randomly
loaded oscillator5:

AVT +VAT = �G ð21Þ

where:

A=
0 I

� K+Keð Þ � C+Ceð Þ

� �
ð22Þ

where I is the identity matrix. V is the covariance
matrix of the random response component:

V=
E vrv

T
r

� �
E vr _v

T
r

� �
E _vrv

T
r

� �
E _vr _v

T
r

� �
" #

ð23Þ

and G is given by

G=
0 0

0 2pS0

� �
ð24Þ

This Lyapunov Equation approach avoids the need
for integration over frequency, thus improving com-
putational efficiency compared to the more generally
applicable spectral approach. Combining equations
(12), (18), (19), and (21) allows the response of the sys-
tem to be calculated by solving the nonlinear simulta-
neous equations:

E vrvr½ � E vr _vr½ �
E _vrvr½ � E _vr _vr½ �

� �
= Lyapunov A, Gð Þ ð25aÞ

Vh iOð Þ= �O2M+iO C+Ceð Þ+ K+Keð Þ
� ��1

Ph

ð25bÞ

�v= K+Keð Þ½ ��1 �p� gf g ð25cÞ

ðT
0

E zfTnl
� �

dt=

ðT
0

E zzT
� �

dt

KeT

CeT

gT

2
64

3
75 ð25dÞ

The Lyapunov Equation can be solved easily using
standard solvers, for example the inbuilt Lyap func-
tion in Matlab. The system of equations in equation
(25) can be solved using nonlinear solvers, such as the
fsolve function in Matlab. Furthermore, when
evaluating the expectations in equation 25(d), it can
be assumed that the random response component vr
follows a Gaussian distribution. It should be noted
that a general limitation of the equivalent lineariza-
tion technique is that when applied to systems with
Gaussian inputs the true, non-Gaussian, response dis-
tribution is approximated by a Gaussian distribution.

The root mean square value of the combined
dynamic displacement once the deterministic compo-
nent of the starting transient has decayed for degree
of freedom p can be shown to be:

vrms, p =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

h, p

2
+E vr, pvr, p

� �s
ð26Þ
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where Vh, p is the amplitude a of the harmonic displa-

cement component of the response, V iOð Þ, at degree
of freedom p and E yr, pyr, p

� �
is the p, pð Þ element of

the covariance matrix of random response E vrv
T
r

� �
.

The dynamic response will be offset by the constant
displacement component �vp.

It is worth highlighting that in equivalent lineariza-
tion of systems subjected to stationary excitation, it is
common to represent the equivalent stiffness and
damping matrices as the expected value of tangent
matrices5 such that:

Ke =E
∂f

∂v

� �
ð27Þ

Ce =E
∂f

∂ _v

� �
ð28Þ

These expressions are derived from the fact that for a
zero mean Gaussian random variable y, it can be
shown that40:

E yfT
� �

=E yyT
� �

E
∂f

∂y

� �
ð29Þ

However, for the combined excitation problem under
examination in this study, the response is not station-
ary, and the mean value changes over time with the
harmonic response. If, as before, the response is
assumed to consist of a zero mean random compo-
nent, a harmonic component and a constant offset
value, the expectation E zfTnl

� �
in equation (25d) can

be expanded as:

E zfTnl
� �

=E zhf
T
nl

� �
+E zrf

T
nl

� �
+E �zf

T

nl

h i
ð30Þ

Equation (29) can then be employed for the stationary
zero-mean component, E zrf

T
nl

� �
, such that:

E zfTnl
� �

=E zhf
T
nl

� �
+E zrz

T
r

� �
E

∂fTnl
∂zr

� �
+E �zf

T

nl

h i
ð31Þ

Therefore, while the ‘‘tangent matrix’’ simplification
may be useful algebraically, for the linearization per-
formed here it does not describe the complete solution
as it does for zero mean stationary problems.

Finally, it is also necessary to point out how the
derivation presented above differs from that proposed
by Spanos et al.,11,39 which for simplicity is termed
the ‘‘Spanos Method’’ in this paper. The linearization
presented in equation (2) makes no distinction
between the random and deterministic response com-
ponents; this is only introduced in equation (14) after
the linearization matrices are derived. In contrast, in

the Spanos Method, these two response components
are treated separately. First order HBM is performed
to examine the harmonic response, with the expected
value of the nonlinear force represented using a
Fourier expansion. Equivalent linearization averaged
over a harmonic loading period is then performed to
examine the random response component. This leads
to a set of coupled equations. Separating the harmo-
nic and random components relaxes the constraint of
having a single linearized system and therefore in
principle the Spanos Method can return a smaller
error than the approach proposed in this paper.
However, as the random and harmonic responses are
treated separately, the linearization matrices obtained
for Equivalent Linearization are the ‘‘tangent
matrices’’ and essentially correspond to the second
term in equation (31). This means these matrices do
not have a physical meaning as they do not consider
the impact of harmonic response, that is, they don’t
include the first or third term in equation (31). This
contrasts with the approach proposed here, where no
distinction is made between response components
and physically meaningful linearized natural frequen-
cies and damping rations are obtained. These can give
further insight into the response of the system. The
differences between the two approaches are demon-
strated through application to a single degree of free-
dom (SDOF) Duffing oscillator in the following
section.

Application to a SDOF Duffing oscillator

To practically apply the EL-TEE approach presented
in Section 2, the expressions involving the function
fnl, which describes the nonlinearity, need to be evalu-
ated. To demonstrate the versatility of the method,
this is carried out here for three example systems, the
first of which is the widely studied SDOF Duffing
oscillator with a cubic nonlinearity. The nonlinear
restoring force is given by:

fnl= lv3 ð32Þ

To apply the EL-TEE approach to the Duffing oscil-
lator, it is necessary to evaluate the linearization coef-
ficients in equation (25) specifically for this
nonlinearity. Firstly, it can be shown that E f _v½ �=0.
This is as expected given that the nonlinearity is inde-
pendent of velocity and there is no additional damp-
ing or energy dissipation, hence Ce =0. The
equivalent linear stiffness is given by equation (25d)
and for a SDOF systems requires the evaluation of

the integrals
ÐT
0

E fnlv½ �dt and
ÐT
0

E v2
� �

dt using the nonli-

nearity defined by equation (32). In Appendix A this
is shown to be:
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Ke =
l 3

8V
4
h +3 E v2r

� �� �2
+3V2

hE v2r
� �	 


E v2r
� �

+ 1
2V

2
h

ð33Þ

where Ph and Vh are the amplitudes of the harmonic
excitation and response respectively. In the derivation
of this expression it is assumed that the random
response component follows a Gaussian distribution.
Therefore, the linearization for a Duffing oscillator is
defined by the coupled nonlinear simultaneous
Equations:

E v2r
� �

=
pS0

2zvnM K+Keð Þ ð34aÞ

Vh iOð Þ= Ph

�OM+ iOC+ K+Keð Þ ð34bÞ

Ke =
l 3

8V
4
h +3 E v2r

� �� �2
+3V2

hE v2r
� �	 


E v2r
� �

+ 1
2V

2
h

ð34cÞ

It is useful to examine equation (34) in the three limit-
ing cases of no nonlinear force (l=0), purely random
excitation (Ph =0) and purely harmonic excitation
(S0 =0). Firstly, when l=0, the nonlinear stiffness
Ke is equal to zero and the system of equations
reduces to two uncoupled expressions describing the
response of a linear system, as expected.

Secondly, for purely random excitation, that is,
Ph =0, equation (34b) leads to Vh =0. In turn, this
leads to Ke =3lE v2r

� �
. This is the same as the solu-

tion obtained from Equivalent Linearization for a
Duffing oscillator subjected to random excitation.5

Finally, for purely harmonic excitation, where
S0 =0, equation (34a) gives E v2r

� �
=0. Thus, equa-

tion (34) reduces to:

vh iOð Þ= Ph

�OM+ iOC+ K+Keð Þ½ � ð35aÞ

Ke =
3

4
lV2

h
ð35bÞ

Equation (35a) is the standard equation for obtaining
the amplitude of harmonic response for a system with
stiffness K+Keð Þ. Equation (35b) describes the value
for the effective stiffness of a Duffing oscillator when
linearized over one load cycle, and is the same as the
effective stiffness derived using the first order HBM.41

Another point of interest for this limiting case of
purely harmonic excitation relates to the challenge of
obtaining converged solutions across a range of exci-
tation frequencies, particularly when the nonlinearity
leads to jump-like behavior. This issue is discussed in
the following section.

Example application to harmonic excitation
& solution scheme

Figure 1(a) to (c) compare the steady-state RMS dis-
placement response obtained from the EL-TEE method
defined by equation (25) for purely harmonic excitation
with the results of Time Integration. This is shown for
three oscillators; a linear system where l=0, a system
with a softening nonlinearity where l= � 0:003 and a
hardening nonlinearity where l=0:04. All oscillators
are assigned unit mass and stiffness (leading to unit cir-
cular frequency, i.e. vn =1) and a damping ratio of
5% (i.e. z =0:05). This choice of parameters is illustra-
tive, leading to backbone curves that include jump phe-
nomena but which do not exhibit chaotic behavior
under harmonic excitation.

In Figure 1(a) to (c) the RMS displacement is
shown as a function of normalized excitation fre-
quency O=vn, with the hollow circles showing the
results of time integration and the stars showing the
results obtained from the proposed equivalent lineari-
zation approach. The proposed EL-TEE method
matches well with the results of time integration. The
EL-TEE approach does not consider initial conditions
and therefore returns the two possible solutions in the
unstable region, where the response is dependent on
initial conditions. This contrasts with time integra-
tion, which considers a single scenario with specified
initial conditions (at rest for the example in Figure 1)
and which therefore only returns one solution for each
harmonic excitation frequency. Consequently, there is
a clearly defined jump between the two solution
branches for time integration, whereas the proposed
simply identifies the two possible solutions. In this
sense, the output of the proposed method is similar to
the results obtained from the first order HBM, albeit
without the third (unstable) intermediate solution that
can be obtained from that method. This is demon-
strated in Figure 1(d), which shows the same case as
Figure 1(c) but using HBM and including the unstable
part of the solution.

The nonlinear equations of equation (34) are
solved using the fsolve function in Matlab,
which employs an iterative Newton Raphson
scheme. To begin iteration a good initial guess for
the solution is required. Therefore, for each change
of excitation frequency, the solution for the previ-
ous excitation frequency is used as the initial guess.
In order to generate the equivalent linearization
results shown in Figure 1, the calculation is carried
out by initially moving from ‘‘left to right’’ on the
frequency axis, that is, increasing the frequency of
harmonic excitation, until convergence fails, at
which point the calculation is carried out ‘‘right-to-
left,’’ that is, decreasing the frequency of harmonic
excitation.

This ‘‘left-to-right right-to-left’’ approach is the
reason two possible solutions are found for frequen-
cies in the unstable region for the nonlinear cases.
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More advanced continuation methods (e.g. Von Groll
and Ewins 42) have the potential to improve the con-
vergence performance, but that is beyond the scope of
the present investigation.

Quantifying the relative strength of random and
harmonic loading components

For cases of combined excitation there is no obvious
way to directly compare the strength of Gaussian
white noise and harmonic excitation. This is because
in the time domain, the root means square (RMS)
value of white noise is theoretically infinite, while in
the frequency domain the spectral amplitude of har-
monic excitation is theoretically infinite. Therefore, it
is proposed to compare the two excitation compo-
nents via the resulting response of a linear oscillator.
The root mean square (RMS) response of a harmoni-
cally driven single degree of freedom oscillator at the
resonant frequency can be shown to be:

Vh, rms =
Ph

2
ffiffiffi
2
p

zMv2
n

ð36Þ

where Ph is the amplitude of the harmonic excitation,
z is the damping ratio and vn is the natural frequency
of the system. The RMS response to random white
noise excitation is given by:

vr, rms=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pS0

2zM2v3
n

s
ð37Þ

Where S0 is the constant value of spectral density
measured in N2/(rad/s). A new term, aresp, is defined
as:

aresp[
vr,RMS

Vh,RMS
ð38Þ

Meaning that:

aresp =
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pS0zvn

p

Ph

ð39Þ

Therefore aresp is the dimensionless ratio of the
response of a linear oscillator to Gaussian excitation
to the response to harmonic excitation at the natural
frequency. This provides a metric to quantify the rela-
tive strength of the two excitation components applied
to a specific oscillator. However, as it depends on the
viscous damping ratio and natural frequency, values
for oscillators with different properties are not consis-
tent and cannot be directly compared, in other words
applying the same combined excitation to different
oscillators results in a different aresp value. This issue
van be overcome if the constants, 2, p, and z, are
removed from equation (39) (implicitly choosing

(a) (b)

(c) (d)

Figure 1. Comparison between results from EL-TEE and time integration for a Duffing oscillator subjected to harmonic excitation:
(a) linear system l = 0, (b) softening nonlinearity l = � 0:003, (c) hardening nonlinearity l = 0:04. Comparison with results from
HBM (d) hardening nonlinearity l = 0:04.
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z = 1=4p). This means it need not explicitly repre-
sent the ratio between the response of a linear oscilla-
tor to the two excitation components. The numerator
now becomes the RMS of the random load, if the
white noise is band limited to between 0 and the natu-
ral frequency vn. Likewise, dividing the denominator
by

ffiffiffi
2
p

gives the RMS of the harmonic excitation com-
ponent. Therefore, a separate, more versatile, para-
meter a, can be defined as the ratio between the RMS
values of the random excitation component (with a
cut off frequency vn) and the harmonic excitation
component:

a=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2S0vn

p

P
ð40Þ

This term is employed throughout this paper to quan-
tify the applied combined excitations.

Application to combined excitation

Figure 2 and Supplemental Figure 1 show the effect
of harmonic excitation frequency, O, on the steady-
state RMS displacement response for Duffing oscil-
lators with hardening (l = 0:04) and softening
(l = � 0:003) nonlinearity respectively. As in the
previous section, both oscillators are assigned unit
mass and stiffness and a damping ratio of 5% (i.e.
vn =1, z = 0:05). The oscillators are subjected to
combined unit amplitude harmonic excitation and
white noise excitation with constant spectral density
of S0= 0.05N2/(rad/s). This corresponds to an a

value of 0.32, as defined by equation (40). To pro-
vide benchmark results for comparison, a set of
Monte Carlo time-domain simulations is carried out
using 30 different random load time histories at each
harmonic excitation frequency. The steady-state
RMS displacement for each Monte Carlo realization

is estimated over 50 harmonic excitation periods
once the deterministic component of the starting
transient has decayed.

Results from time integration (hollow circles) are
compared with the proposed EL-TEE method (stars).
Firstly, over most of the range of excitation frequen-
cies for both the hardening and softening case these
RMS values obtained from the proposed equivalent
linearization method are similar to the mean values
obtained from the Monte Carlo time integration,
showing that the method works well. Secondly, the
computation times for both approaches are also pre-
sented in the Figure 2 and Supplemental Figure 1;
where the equivalent linearization approach is
approximately four orders of magnitude faster than
the Monte Carlo time integration employed.

As in the case of harmonic excitation discussed
previously, the equivalent linearization solution
returns two solution branches which, for the harden-
ing nonlinearity, results in a region where the upper
branch is not seen in the time integration simulations.
Figure 2 also shows that for frequencies near the
jump phenomena (b’1:3) the time integration results
show intermediate values, giving a smoother transi-
tion than the sudden jump seen in Figure 1(c). This is
because the jump frequency is not deterministic in the
presence of a random loading component. For purely
harmonic excitation, the jump occurs at a clearly
defined frequency. However, in the presence of ran-
dom excitation this jump can occur over a range of
frequencies, meaning that near the jump frequency
the RMS response for some realizations corresponds
to the upper branch and some to the lower branch.
Thus, the average value lies between the two stable
solutions.

In terms of computational time the proposed EL-
TEE method is substantially faster than Monte Carlo
time domain integration. For example, in the

Figure 2. Comparison of the response of Duffing oscillator with hardening nonlinearity (l = 0:04) to combined harmonic and
random excitation (a = 0:32) calculated using time integration and the proposed Time-and- Ensemble Expectation Equivalent
Linearization (EL-TEE) method.
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generation of Figure 2 the proposed equivalent linear-
ization method takes approximately 1.8 s to obtain
results for all harmonic excitation frequencies exam-
ined. Performing time integration, with 30 Monte
Carlo realizations at each of the 120 excitation fre-
quencies considered, required over 10,000 s.
Therefore, the proposed method provides a reduction
in computational time of four orders of magnitude in
the examples above. It is acknowledged that it may
be possible to improve time integration speed through
use of a faster integration algorithm, such as
Newmark Beta,43 or through more optimal selection
of analysis parameters such as the time step and dura-
tion. However, it is clear that the proposed method is
significantly more computationally efficient.

Figure 3 shows how the linearized natural frequen-
cies, veq, of the systems examined above change with
harmonic excitation frequency. Equivalent linear fre-
quency represents the frequency of the equivalent lin-
ear oscillator that is used to approximate the
nonlinear system, and can be calculated using the
mass and linearized stiffness as:

veq=

ffiffiffiffiffiffiffi
Keq

M

r
ð41Þ

The equivalent linear frequency of a linear oscillator
(l=0) is also shown. It can be appreciated that, as
expected, the equivalent natural frequency of the lin-
ear system stays constant at the natural frequency
(i.e. vn =1 rad=s), while the equivalent frequencies of
the softening and hardening oscillators are less than
or greater than vn respectively. The impact of the
random excitation on linearized natural frequency is
evident in the frequency range away from the reso-
nant peak, particularly for the system with hardening
nonlinearity, which behaves like an oscillator with
vn’1:2 rad=s in this excitation frequency range.
Similarly, an equivalent damping value could be

extracted for a dissipative system, although this is not
relevant for the non-dissipative Duffing oscillator
considered here. The ability to extract this type of
information offers the possibility of more physical
insight into system behavior and is the primary
advantage of the EL-TEE approach over the alterna-
tive Spanos Method discussed in the next section.

Application of the Spanos method to the Duffing
oscillator

This section applies the Spanos et al. Method pro-
posed in Spanos et al.11 and Kong and Spanos39 for
the same scenarios examined in Section 3.3. For a
SDOF system with zero-mean excitation, and assum-
ing the random excitation component is white noise,
the coupled equations of the Spanos Method can be
written as:

�O2Mvc+OCvs+Kvc+
2

T

ðT
0

E fnl½ �cosOtdt�pc=0

ð42aÞ

�O2Mvs�OCvc+Kvs+
2

T

ðT
0

E fnl½ �sinOtdt�ps=0

ð42bÞ

E v2r
� �

=
pS0

2zvnM K+K�ð Þ ð42cÞ

K�=

ðT
0

E
∂ fnl � E fnl½ �ð Þ

∂vr

� �
dt ð42dÞ

where harmonic excitation and displacement is writ-
ten as a sum of sine and cosine terms such that:

Figure 3. Equivalent Natural Frequencies for linear (l = 0), softening (l = � 0:003) and hardening (l = 0:04) Duffing oscillators
subjected to combined harmonic and random excitation (l = � 0:32).
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ph = pc cosOt+ ps sinOt ð43Þ

vh = vc cosOt+ vs sinOt ð44Þ

Analytical solutions for the integrals in equation (41a
and b) and for K� are derived in Appendix B:

2

T

ðT
0

E fnl½ � cosOtdt= l
3

4
v3c +

3

4
vcv

2
s +3E v2r

� �
vc

� �

ð45Þ

1

T

ðT
0

E fnl½ � cosOtdt= l
3

4
v3s +

3

4
v2cvs +3E v2r

� �
vs

� �

ð46Þ

K�=3l
v2c + v2s

2
+E v2r

� �� �
ð47Þ

Thus, by combining equation (42) and equations
(45)–(47), for a SDOF Duffing oscillator subjected to
combined harmonic and white noise random excita-
tion, the coupled equations for Spanos Method can
be written as:

�O2Mvc +OCvs +Kvc

+ l
3

4
v3c +

3

4
vcv

2
s +3vcE v2r

� �� �
� fc =0

ð48aÞ

�O2Mvs � OCvc +Kvs

+ l
3

4
v3s +

3

4
v2cvs +3vsE v2r

� �� �
� fs =0

ð48bÞ

E v2r
� �

=
pS0

2zvnM K+K�ð Þ ð48cÞ

K�=3l
v2c + v2s

2
+E v2r

� �� �
ð48dÞ

Comparing equations (34) and (48), it can be seen
that, unlike the Ke term in equation (34c), the K� term
in equation (48d) does not represent the complete
nonlinear stiffness; the terms derived from the inte-
grals in equation (42 a and b) also contribute to cap-
turing the effect of the nonlinearity. This can be easily
appreciated by noting that for the case of purely har-
monic excitation K� does not impact the harmonic
response in equation (48a and b), but still returns a

(meaningless) value of
3l v2c + v2sð Þ

2
.

Figure 4 and Supplemental Figure 2 show the
results obtained for a Duffing oscillator analyzed via
the Spanos Method. The system examined are the
same as in Figure 2 and Supplemental Figure 1. As
before, both systems are subjected to combined unit
amplitude harmonic excitation and white noise excita-
tion with constant spectral density of S0=0.05N2/
(rad/s), or a=0:32, and results from the Spanos
approach (squares) are compared to the EL-TEE
results and benchmark Monte Carlo Time Integration
simulations.

For both the hardening and softening case these
RMS values obtained from the Spanos approach are
similar to the mean values obtained from the Monte
Carlo time integration. Broadly, the results are also
very similar to those obtained using EL-TEE in
Figure 2. However, some minor differences are worth
highlighting. Firstly, for the softening nonlinearity
(Supplemental Figure 2), the Spanos approach
returns converged solutions in the upper branch for

Figure 4. Comparison of the response of Duffing oscillator with hardening nonlinearity (l = 0:04) to combined harmonic and
random excitation (a = 0:32) calculated using time integration, the proposed EL-TEE method and the Spanos Method.
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harmonic excitation frequencies in the range 0.7–0.8
rad=s that are not obtained with the proposed EL-
TEE approach. Secondly, comparing the hardening
nonlinearity results in Figure 4, the Spanos approach
appears to give a slightly better approximation of the
mean Monte Carlo Time Integration response in the
rising branch for harmonic excitation frequencies in
the range 0.8–1.3 rad=s. This increased accuracy can
be attributed to the extra degree of flexibility resulting
from the separation of the harmonic and random lin-
earization coefficients.

The computation times are approximately twice as
slow for the Spanos Method (1.27 s compared to
2.67 s for the softening case and 1.8 s compared to
3.68 s for the hardening case), illustrating the slight
trade-off between accuracy and complexity between
the two approaches. However, the difference is small
in absolute terms and computation times are still
approximately four orders magnitude faster than the
Monte Carlo time integration employed. Overall, it
can be concluded that while the Spanos Method may
be slightly more accurate in some cases, the loss in
accuracy associated with using the EL-TEE approach
proposed here is small. Given that performance is
shown to be comparable to the Spanos approach,

and it may be beneficial to obtain physically meaning-
ful linearization matrices, the performance of the EL-
TEE method for more advanced examples is explored
in the following sections.

Application to an oscillator with
discontinuous nonlinearity

To demonstrate the versatility of the proposed EL-
TEE approach, the method is also applied to a single
degree of freedom oscillator with a pair of flexible
end-stops with symmetric clearance which restrict the
displacement of the mass, as illustrated in Figure 5(a).
This gives the discontinuous nonlinear restoring force
shown in Figure 5(b).

This piecewise nonlinearity is described by the
equations:

fnl = ks v+ bð Þ v\ � b

fnl =0 � b\ v\ b

fnl = ks v� bð Þ v. b

ð49Þ

where ks is the nonlinear contact stiffness and b is the
clearance between the end-stops. It is possible to
derive a piecewise analytical solution to the integralÐT
0

E fnlv½ �dt and a solution for
ÐT
0

E v2
� �

dt. These allow

an analytical expression for the equivalent stiffness
matrix to be obtained, as derived in Appendix C:

Ke =
2ks

V2
h
2Ot2�sin 2Ot2ð Þ�2Ot1 + sin 2Ot1ð Þð Þ

4O +E v2r
� �

t2 � t1ð Þ+ Vhb cos Ot2ð Þ�cos Ot1ð Þð Þ
O

	 

E½v2r �T+ 1

2V
2
hT

ð50Þ

The nonlinear resorting force described by equation
(49) is a function of both the harmonic and random
response components, that is, fnl vð Þ= fnl(vh + vr).
The challenge in developing an analytical

(a) (b)

Figure 5. (a) Schematic of the system under examination and (b) the nonlinearity of the system.
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representation of Ke for a discontinuous nonlinearity
is defining when v. b given the presence of a random
response component. In other words, given that v is
partly random, it is impossible to say which of the
three piecewise equations in equation (49) is applica-
ble at any instant. In order to overcome this issue, it
is assumed that the nonlinear restoring force can be
approximated as function of the harmonic response
only, that is, fnl vð Þ’fnl(vh). This is a limitation, but is
deemed a reasonable approximation as vh is the
ensemble average of v. This assumption allows the
analytical solution for Ke presented in equation (50)
to be developed, where t1 and t2 are the times in a
harmonic response cycle where vh = b.

As before, the oscillator examined is assigned unit
mass and stiffness and 5% damping. The nonlinear
parameters are chosen to be ks =2 and b=3. The
oscillator is subjected to combined excitation with unit
harmonic amplitude and S0 =0:03, that is, a=0:25.

Figure 6 shows the change in the RMS displacement
response with excitation frequency for this example sys-
tem. Results from the proposed EL-TEE method are
compared to the mean value across 30 Monte Carlo
time integration realizations. Again, there is generally a
good match between the two methods, though differ-
ences are apparent in several places. Firstly, as with the
Duffing oscillator in the previous section, the equiva-
lent linearization approach returns two solution
branches, while the time integration results show the
jump between branches occurring over a range of fre-
quencies, illustrated by the average values across the
realizations lying between the two branches.
Furthermore, there are some differences between
results when excitation frequency is approximately
equal to 0:8 rad=s. These arise from the assumption,
discussed above, that fnl vð Þ’fnl(vh). In this region of
excitation frequencies the harmonic response amplitude
is slightly less than b, meaning fnl vhð Þ=0. However,
the additional random response component means that

in reality there is some nonlinear behavior. This is
observed in time integration, but is not captured by
equation (50), leading to the difference in predicted
response between the two approaches. The assumption
appears to be reasonably valid across the remaining
excitation frequencies examined.

Application to a 3 DOF oscillator &
comparison with experimental results

Finally, the proposed EL-TEE approach is also
applied to an experimentally tested multi-degree-of-
freedom nonlinear oscillator. The experimental sys-
tem, shown in Figure 7, consists of a cantilever beam
clamped at one end, with magnetic constraints at the
free end creating a nonlinear system. An electromag-
netic shaker is used to apply load to the system, while
an accelerometer is used to measure the response.

Impulse response tests were carried out with the
magnetic constraint removed to obtain the natural fre-
quencies and damping ratios of the beam. Details of
the estimated parameters are provided in Supplemental
Table 1.

The relationship between displacement and force
was examined to quantify the nonlinearity created by
the magnetic constraint. This was done by measuring
both the beam acceleration, using an additional accel-
erometer, and magnetic force, using force sensors, at
the constraint points. This is shown in Supplemental
Figure 3. The measured acceleration was integrated
twice to evaluate displacement, allowing the force-
displacement relationship to be plotted. As shown in
Figure 8, a cubic polynomial, f=c1x+ c2x

2 + c3x
3,

was fitted to the force-displacement relationship to
quantify the nonlinearity. The coefficients obtained
from this fitting process are also shown.

Once the system is adequately characterized, the
proposed equivalent linearization approach can be

Figure 6. Comparison of the response of an oscillator with discontinuous end-stop nonlinearity to combined harmonic and
random excitation (a = 0:25) calculated using time integration and the proposed EL-TEE method.
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applied by modeling the oscillator as a three degree of
freedom system, as illustrated in Figure 7. An analyti-
cal expression for the equivalent linear stiffness
matrix for such a system with a localized polynomial
nonlinearity at degree of freedom 3, subject to com-
bined harmonic and random excitation, is derived in
Appendix D.

A first set of experiments were performed by sub-
jecting the system to purely harmonic excitation of
amplitude 1, 2, and 5N at frequencies ranging from
20 Hz to 50 Hz, exciting the first mode of the system.
The experiments were performed for 50 harmonic
loading cycles for each harmonic excitation fre-
quency, with a sampling rate of 2 kHz. Figure 9 com-
pares the RMS acceleration response from these
experiments with the corresponding value calculated
using the proposed EL-TEE approach. The proposed
method captures the general key trends well, includ-
ing the nonlinear jump behavior observed for the 5N
load amplitude case. However, there are also some
differences between the experimental and analytical
results; in particular the peak values are slightly dif-
ferent. These differences are most likely due to inac-
curacies in the characterization of the system and do
not represent a problem with the proposed method.

A second set of experiments was performed by
applying combined harmonic and random excitation.
The frequency of the harmonic excitation ranged
between 20Hz and 50Hz with an amplitude of 5N.
Zero mean white noise random excitations with con-
stant spectral densities, S0, equal to 2 3 10�5 N2s and
1 3 10�4 N2s, corresponding to a=0:02 and
a=0:04 respectively, were applied. Figure 10 com-
pares the RMS acceleration response at the measure-
ment position obtained experimentally and calculated
numerically for these cases. A similar plot for the case
of purely harmonic excitation (a=0) is also shown for
comparison. Slight differences between the numerical
and experimental results can be seen in the peak value
of RMS response. As before, these can be attributed to
inaccuracies in the characterization of the system.
However, the main features observed experimentally
are reliably predicted using the EL-TEE method.
Additional random excitation leads to increased RMS
response, with this increase being more noticeable away
from the resonance peak. This trend is noted for both
the experimental and numerical results. Furthermore,
for both the experimental and analytical cases the
strength of the random loading component appears to
have no impact on the frequency where the response
‘‘jumps’’ from high to low. This may be due to the
experimental limitations of the current test rig where
larger values for a were not possible.

Conclusion

A new method has been developed to calculate the
response of nonlinear oscillators to combined random
and harmonic excitation. The method is based on apply-
ing equivalent linearization across the ensemble of ran-
dom responses and averaging over a single harmonic
loading period, and is referred to as an Equivalent
Linearization Time-and-Ensemble Expectation approach
(EL-TEE). The performance of the proposed EL-TEE
approach is examined for three nonlinear systems,
demonstrating its wide applicability. Firstly, a single

Figure 7. Photograph and schematic of experimental setup.

Figure 8. Nonlinearity of the experimental system showing
fitted polynomial and coefficients.
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degree of freedom Duffing oscillator is assessed, where
the method is shown to be capable of reproducing the
results of Monte Carlo Time Integration with several
orders of magnitude reduction in computational cost. It
is also demonstrated that performance is comparable to
an alternative analysis approach recently proposed by
Spanos et al.11,39 Secondly, a single degree of freedom
system with end-stops providing a discontinuous nonli-
nearity is examined, with the proposed approach again
shown to compare well with Monte Carlo time integra-
tion. Finally, the method is applied to a multi degree of
freedom cantilever beam with a localized smooth nonli-
nearity at the tip of the beam, for which experimental
results were obtained from a laboratory test rig. Results
from the equivalent linearization matched the key fea-
tures of the experimental results well. The primary bene-
fits of the proposed EL-TEE approach compared to
others in the literature are the computational speed, abil-
ity to return physically meaningful linearization matrices
and the adaptability to various nonlinearities and multi
degree of freedom systems.
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Appendix A

Evaluation of Ke for SDOF Duffing oscillator

For the case of a single degree of freedom system with
zero-mean excitation and response and symmetric
nonlinearity, the equivalent linear stiffness, given by
equation (25d) reduces to:

Ke =

Ð T
0 E fnlv½ �dtÐ T
0 E v2½ �dt

ðA:1Þ

An analytical solution requires evaluation of the inte-
grals in both the numerator and denominator. Firstly,

looking at
ÐT
0

E fnlv½ �dt:

ðT
0

E fnlv½ �dt=
ðT
0

E lv3v
� �

dt ðA:2Þ

ðT
0

E fnlv½ �dt= l

ðT
0

E v4
� �

dt ðA:3Þ

E v4
� �

can be evaluated by breaking down v into har-
monic and random components:

ðT
0

E fnlv½ �dt= l

ðT
0

E vr + vhð Þ4
h i

dt ðA:4Þ

ðT
0

E fnlv½ �dt=
ðT
0

E v4h+v4r +4v3hvr+4vhv
3
r +6v2hv

2
r

� �
dt

ðA:5Þ

Noting that vr is a zero mean Gaussian random vari-
able allows the statistical moments of the random
response component vr to be written as:

ðT
0

E vr½ �dt=0 ðA:6Þ

ðT
0

E v2r
� �

dt=E v2r
� �

T ðA:7Þ

ðT
0

E v3r
� �

dt=0 ðA:8Þ

ðT
0

E v4r
� �

dt=3 E v2r
� �� �2

T ðA:9Þ

Similarly, as vh is a sinusoid, the integrals over one
period of oscillation can be written as:

ðT
0

E vh½ �dt=0 ðA:10Þ

ðT
0

E v2h
� �

dt=
1

2
V2

hT ðA:11Þ

ðT
0

E v3h
� �

dt=0 ðA:12Þ

ðT
0

E v4h
� �

dt=
3

8
V4

hT ðA:13Þ

Where Vh is the amplitude of vh. Using equations
(A.6)–(A.13), equation (A.5) can be simplified to:

ðT
0

E f vð Þv½ �dt=l
3

8
V4

hT+3 E v2r
� �� �2

T+3V2
hE v2r
� �

T

� �

ðA:14Þ
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Now examining the denominator in equation (A.1),
ÐT
0

E v2
� �

dt. Again, response can be broken down into harmonic

and random components:

ðT
0

E v2
� �

dt=

ðT
0

E vr + vhð Þ2
h i

dt ðA:15Þ

ðT
0

E v2
� �

dt=

ðT
0

E v2r + v2h +2vhvr
� �

dt ðA:16Þ

As before, the Expectations and integrals in equations (A.6)–(A.13) can be used to simplify equation (A.16) giving:

ðT
0

E v2
� �

dt=E v2r
� �

T+
1

2
V2

hT ðA:17Þ

Substituting equations (A.14) and (A.17) into equation (A.1) and simplifying leaves:

Ke =
l 3

8V
4
h +3 E v2r

� �� �2
+3V2

hE v2r
� �	 


E v2r
� �

+ 1
2V

2
h

ðA:18Þ

Appendix B

Evaluation of K� and integrals for Spanos Method applied to SDOF Duffing oscillator

Application of the Spanos Method for the Duffing oscillator in Section 2.4 requires the evaluation of the integrals
in equation (42a and b) and the K� term in equation (42d).

Firstly, examining the integral 2T
ÐT
0

E fnl½ � cosOtdt. The nonlinear force for a Duffing oscillator is given in equation

(32). Therefore, the integral becomes:

2

T

ðT
0

E fnl½ � cosOtdt=
2

T

ðT
0

E lv3
� �

cosOtdt ðB:1Þ

Separating the response component into random and harmonic parts, assuming a zero mean response and expand-
ing gives:

2

T

ðT
0

E fnl½ � cosOtdt=
2

T

ðT
0

E l v3h + v3r +3vhv
2
r +3v2hvr

� �3h i
cosOtdt ðB:2Þ

Evaluating the expectations for the various terms:

2

T

ðT
0

E fnl½ � cosOtdt=
2

T
l

ðT
0

v3h +3vhE v2r
� �� �

cosOtdt ðB:3Þ

Noting that, as per equation (43), vh = vc cosOt+ vs sinOt, and then expanding and evaluating the integrals gives:
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2

T

ðT
0

E fnl½ � cosOtdt= l
3

4
v3c +

3

4
vcv

2
s +3E v2r

� �
vc

� �
ðB:4Þ

Similarly, the integral 2
T

ÐT
0

E fnl½ � sinOtdt can be evaluated as:

1

T

ðT
0

E fnl½ � sinOtdt= l
3

4
v3s +

3

4
v2cvs +3E v2r

� �
vs

� �
ðB:5Þ

The expression for K� is given by equation (41d) as:

K�=

ðT
0

E
∂ fnl � E fnl½ �ð Þ

∂vr

� �
dt ðB:6Þ

Which for the Duffing nonlinearity becomes:

K�=

ðT
0

E
∂ lv3 � E lv3

� �� �
∂vr

� �
dt ðB:7Þ

Again, noting that v= vr + vc cosOt+ vs sinOt, expanding, taking expectations and derivatives leaves:

K�=

ðT
0

l 3E v2r
� �

+3v2ccos
2Ot+3v2s sin

2Ot+6vsvc cosOt sinOt
� �

dt ðB:8Þ

Evaluating the integrals leaves:

K�=3l
v2c + v2s

2
+E v2r

� �� �
ðB:9Þ

Appendix C

Evaluation of Ke for end-stop nonlinearity

This piecewise nonlinearity is described by equation (49):

fnl= ks v+ bð Þ v\ � b

fnl=0 � b\ v\ b

fnl= ks v� bð Þ v. b

ðC:1Þ

The Equivalent Stiffness term for a single degree of freedom system is given by equation (A.1). To evaluate this, it

is necessary to evaluate
ÐT
0

E fnlv½ �dt in a piecewise manner:

ðT
0

E fnlv½ �dt=
ðt2
t1

E ks v+ bð Þv½ �dt+
ðt4
t3

E ks v� bð Þv½ �dt ðC:2Þ

Looking at the first piecewise section, which occurs between times t1 and t2:
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ðt2
t1

E fnlv½ �dt=
ðt2
t1

E ks v+ bð Þv½ �dt ðC:3Þ

This can be rearranged as:

ðt2
t1

E fnlv½ �dt= ks

ðt2
t1

E v2 + bv
� �

dt ðC:4Þ

As per equation (14), v can be divided into harmonic and random components. It is assumed the mean displace-
ment, �v is 0. Applying this to equation (B.4), expanding and taking expectations gives:

ðt2
t1

E fnlv½ �dt= ks

ðt2
t1

v2hdt+

ðt2
t1

E v2r
� �

dt+ b

ðt2
t1

vhdt

0
@

1
A ðC:5Þ

Evaluating these integrals:

ðt2
t1

E fnlv½ �dt= ks
V2

h 2Ot2 � sin 2Ot2ð Þ � 2Ot1 + sin 2Ot1ð Þð Þ
4O

+E v2r
� �

t2 � t1ð Þ+ Vhb cos Ot2ð Þ � cos Ot1ð Þð Þ
O

� �

ðC:6Þ

where Vh is the amplitude and O is the frequency of the harmonic excitation. As discussed in the body of the paper,
the values of t1 and t2 can be approximated by assuming that they follow the ensemble average of v, which is the
harmonic response component vh. This is a limitation, but is deemed a reasonable approximation based on the
ensemble average. Thus:

t1 =
1

O
sin�1

b

Vh

� �
ðC:7Þ

t2 =
T

2
� t1 ðC:8Þ

Similarly, the second piecewise section can be evaluated as:

ðt4
t3

E fnlv½ �dt= ks
V2

h 2Ot4 � sin 2Ot4ð Þ � 2Ot3 + sin 2Ot3ð Þð Þ
4O

+E v2r
� �

t4 � t3ð Þ � Vhb cos Ot4ð Þ � cos Ot3ð Þð Þ
� �

ðC:9Þ

where t1 and t2 can be approximated as:

t3 = t1 +
T

2
ðC:10Þ

t4 = t2 +
T

2
ðC:11Þ

Combining equations (C.6)–(C.11), it can be shown that:
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ðT
0

E fnlv½ �dt=2ks
V2

h 2Ot2 � sin 2Ot2ð Þ � 2Ot1 + sin 2Ot1ð Þð Þ
4O

+E v2r
� �

t2 � t1ð Þ+ Vhb cos Ot2ð Þ � cos Ot1ð Þð Þ
O

� �

ðC:12Þ

The expression for the denominator in the equivalent stiffness term defined in equation (A.1) is the same as for the
Duffing oscillator:

ðT
0

E v2
� �

dt=s2
vrT+

1

2
V2

hT ðC:13Þ

Thus:

Ke =
2ks

V2
h
2Ot2�sin 2Ot2ð Þ�2Ot1 + sin 2Ot1ð Þð Þ

4O +E v2r
� �

t2 � t1ð Þ+ Vhb cos Ot2ð Þ�cos Ot1ð Þð Þ
O

	 

s2
vrT+ 1

2V
2
hT

ðC:14Þ

Appendix D

Evaluation of K̂
e

for a 3 DOF oscillator with polynomial nonlinearity

The system under consideration is a 3 DOF oscillator, excited at DOF 1 with a localized nonlinearity, described
by a third order polynomial, at DOF 3. The equivalent linear stiffness matrix can be calculated from by equation
(25d):

K̂
e
=

ðT
0

E FTfnly
T

� �
dt

2
4

3
5 ðT

0

E yyT
� �

dt

2
4

3
5
�1

ðD:1Þ

where F is a matrix of mode shapes and y is a vector of displacements in modal coordinates. Development of an

analytical expression involves the evaluation of two integrals. Firstly,
ÐT
0

E FTfnly
T

� �
dt is examined. In the case

under examination, the nonlinearity is localized to degree of freedom 3.

fnl=

0

0

f3

8><
>:

9>=
>; ðD:2Þ

f3 = c2v
2
3 + c3v

3
3 ðD:3Þ

If two modes are considered, pre-multiplication by FT to convert to modal coordinates gives:

FTfnl=
f1
1 f1

2 f1
3

f2
1 f2

2 f2
3

" # 0

0

f3

8><
>:

9>=
>;=

f1
3f3

f2
3f3

( )
ðD:4Þ

where fp
q refers to the value of qth mode shape at degree of freedom q. Thus the integral

ÐT
0

E FTfnly
T

� �
dt can be writ-

ten as:

ðT
0

E FTfnly
T

� �
dt=

ðT
0

E
f1
3f3

f2
3f3

( )
y1 y2f g

" #
dt=

ðT
0

E
f1
3f3y1 f1

3f3y2

f2
3f3y1 f2

3f3y2

" #
dt ðD:5Þ

This means that in matrix index notation the (i, j) element of the matrix
ÐT
0

E FTfnly
T

� �
dt can be written as:

20 Proc IMechE Part C: J Mechanical Engineering Science 00(0)



ðT
0

E FTfnly
T

� �
i, j
dt=

ðT
0

E f
p
3f3yq

� �
dt ðD:6Þ

Equation (D.6) is written in modal coordinates, but in equation (D.3)f3 is calculated in terms of natural coordi-
nates. Displacement at degree of freedom 3 in natural coordinates is obtained as:

v3 =f1
3y1 +f2

3y2 ðD:7Þ

Thus, the nonlinear restoring force is given as:

f3 = c2 f1
3y1 +f2

3y2
� �2

+ c3 f1
3y1 +f2

3y2
� �3 ðD:8Þ

This can be expanded as the summation:

f3 = c2
X
m

X
n

fm
3 ymfn

3yn + c3
X
p

X
q

X
s

f
p
3ypf

q
3yqf

s
3ys ðD:9Þ

where all summations are performed over all the modes considered. Substituting equation (D.9) into equation
(D.6) gives:

ðT
0

E FTfnly
T

� �
i, j
dt=

ðT
0

E fi
3 c2

X
m

X
n

fm
3 ymfn

3yn + c3
X
p

X
q

X
s

f
p
3ypf

q
3yqf

s
3ys

 !
yj

" #
dt ðD:10Þ

For clarity, the summations are addressed separately in the following equations. Firstly, looking at the square part
of equation (D.10):

ðT
0

E fi
3c2

X
m

X
n

fm
3 ymfn

3yn

 !
yj

" #
dt=

X
m

X
n

c2f
i
3f

m
3 fn

3

ðT
0

E ynymyj
� �

dt ðD:11Þ

By breaking down y into harmonic and random components, expanding, evaluating the various expectations and
assuming the mean displacement is zero, it can be shown that this term reduces to zero.

Thus equation (D.10) reduces to just the summation corresponding to the cubic term:

ðT
0

E FTfnly
T

� �
i, j
dt=

ðT
0

E fi
3 c3

X
p

X
q

X
s

f
p
3ypf

q
3yqfs

3ys

 !
yj

" #
dt ðD:12Þ

ðT
0

E FTfnly
T

� �
i, j
dt=

X
p

X
q

X
s

c3fi
3f

p
3f

q
3f

s
3

ðT
0

E ypyqysyj
� �

dt ðD:13Þ

Again, y can be broken down into harmonic and random components and expanded. The expectations and inte-
grals given in equations (D.14)–(D.18) allow further simplification:

E yr½ �=0 ðD:14Þ

ðT
0

E yh½ �dt=0 ðD:15Þ
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ðT
0

yh, pyh, qyh, syh, jdt=
YpYqYsYjT

8
cos up + uq � us � uj

� �
+2cos up � uq

� �
cos us � uj

� �� �
ðD:16Þ

Where Yp is the amplitude and up is the phase angle of yh, p, and likewise for the other subscripts.

E yr, qyr, j
� � ðT

0

yh, ryh, sdt=E yr, qyr, j
� � YrYjT

2
cos ur � uj

� �
ðD:17Þ

E yr, qyr, ryr, syr, j
� �

=E yr, qyr, r
� �

E yr, syr, j
� �

+E yr, qyr, s
� �

E yr, ryr, j
� �

+E yr, qyr, j
� �

E yr, syr, r½ � ðD:18Þ

Application of equations (D.14)–(D.18) leads to the analytical solution to the integral
ÐT
0

E yqyrysyj
� �

dt:

ðT
0

E yqyrysyj
� �

dt=
YqYrYsYjT

8
cos uq + ur � us � uj

� �
+2cos uq � ur

� �
cos us � uj

� �� �
+E yr, qyr, r

� �
E yr, syr, j
� �

+

E yr, qyr, s
� �

E yr, ryr, j
� �

+E yr, qyr, j
� �

E yr, syr, r½ �+E yr, pyr, q
� � YsYjT

2
cos us � uj

� �
+

E yr, pyr, s
� � YqYjT

2
cos uq � uj

� �
+E yr, pyr, j

� � YsYqT

2
cos us � uq

� �
+E yr, qyr, s

� � YpYjT

2
cos up � uj

� �
+E yr, qyr, j

� � YpYsT

2
cos up � us

� �
+E yr, qyr, j

� � YpYsT

2
cos up � us

� �
+E yr, jyr, s

� � YpYqT

2
cos up � uq

� �
ðD:19Þ

From equation (D.19) an analytical solution for the (i, j) element of
ÐT
0

E FTfnly
T

� �
dt can be obtained:

ðT
0

E FTfnly
T

� �
i, j
dt=

XN
p=1

XN
s=1

XN
q=1

c3f
i
3f

q
3f

r
3fs

3

ðT
0

E ypyqysyj
� �

dt ðD:20Þ

This is the first term in required for the calculation of the equivalent stiffness matrix in equation (D.1). The second

term required,
ÐT
0

E yyT
� �

dt,is more straightforward to calculate. Breaking down the modal response into random

and harmonic components, expanding and taking expectations allows the (i, j) element of
ÐT
0

E yyT
� �

dt can be writ-

ten as:

ðT
0

E yyT
� �

i, j
dt=

ðT
0

yh, iyh, jdt+

ðT
0

E yr, iyr, j
� �

dt ðD:21Þ

Evaluating these integrals gives:

ðT
0

E yyT
� �

i, j
dt=

Yh, iYh, jT

2
cos ui � uj

� �
+ E yr, iyr, j

� �
T ðD:22Þ

Using equations (D.20) and (D.22) for the numerator and denominator respectively, the Equivalent Linear stiff-
ness matrix for the system under examination to be calculated via equation (D.1).
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