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Abstract

Visual Place Recognition (VPR) is the ability to recognize a place by

providing a query image of an unknown location. The goal is to iden-

tify an image from a geotagged database of street-side imagery that

depicts the same location as the query. In outdoor environments, rec-

ognizing a place is challenging due to the visual differences between

query and database images. To develop a robust VPR method ca-

pable of handling environmental changes, the image representation

must possess high discrimination to distinguish relevant from non-

relevant features. However, the vast number of features between the

query image and the dataset image complicates the computational

process. The challenge here lies in finding an efficient way to repre-

sent images. The objective of this thesis is to present VPR methods

that are resilient to dynamic environmental changes while also be-

ing efficient in terms of reducing computational demands. To achieve

this goal, this dissertation explores how to create image representa-

tions that adaptively focus on specific image content. To this end, four

contributions are proposed. The first and second contributions con-

centrate on developing efficient representation methods for accurate

visual place retrieval and recognition systems. We propose methods

for reducing the computational cost of calculating similarity between

two vectors. As our third contribution, we suggest a hybrid feature

that remains robust in the face of environmental changes. Subse-
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quently, we extract valuable features from these hybrid representa-

tions to create an efficient VPR system. As our fourth contribution,

instead of compelling the algorithm to learn relevant and irrelevant im-

age examples, we propose a method that can predict unique features

by learning both relevant and non-relevant features in a data-driven

manner. In conclusion, the numerous experiments and analyses con-

ducted in this thesis yield quantitative and qualitative results that are

on par with the most advanced VPR and retrieval techniques.
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Chapter 1

Introduction

This chapter serves as an introduction to the thesis. The motivation

for investigating visual place recognition is discussed first. This is

followed by a problem description to engage the readers in the chal-

lenges of the problem solution. Following this, the research question

is expressed explicitly. Then, the thesis structure is supplied, as well

as a quick review of the contents of each chapter. Finally, there is a

list of publications and contributions.
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1.1 Context and Motivation

Imagine being a tourist in a new place and getting lost at night. You

are strolling about and trying to figure out where you are when you

come to a stop in front of a shop you visited the day before. If you can

identify that store, you will have a good idea of where you are and how

to get back to your lodging. By comparing what you are seeing now

to a memory of a specific place, your brain has effectively helped you

pinpoint your physical location in the world. In the same way, VPR

is the process of recalling a previously viewed location solely from

visual cues. To put it another way, VPR does a before-and-after com-

parison of images. For optimal performance, a generic VPR system

needs both a visual memory (or map) and the ability to generate local-

ization hypotheses based on recent observations. The ability to effi-

ciently and accurately recall previously viewed locations based on vi-

sual input alone has attracted a lot of interest in the fields of computer

vision and robotics because of its numerous important applications.

These include long-term robot navigation and autonomy [64], image

search based on visual content [124], location-refinement given hu-

man–machine interfaces [106], and asset-management using aerial

imagery [95].

The task of visual place recognition has been presented as an image

retrieval (IR) problem, in which images of the same location described

in a query image are retrieved from a geo-tagged image database.

Figure 1.1 shows the image retrieval steps to solve the place recog-

nition problem. However, in outdoor environments, appearance vari-

ability happens at radically diverse time scales, posing a significant

barrier for life-long VPR. Natural changes, such as time of day, weather

fluctuations, changing seasons, and vegetation growth all contribute

to cyclical appearance variations. In addition, human activities cre-
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ate more unexpected changes, such as construction activity, rapid

changes in traffic flow, and changing signs, facades, and billboards.

This requires a long-term VPR capable of reliably matching two im-

ages depicting the same location but with different appearances. Fig-

ure 1.2 shows examples of life-long VPR.

In real-time applications such as self-navigation, the VPR system

should be efficient and robust against environmental changes. To this

end, many approaches address this problem by improving image rep-

resentation methods [63, 8, 55]. The representation needs to be both

discriminative and efficient with regards to resources in order to create

an efficient visual place recognition system (e.g., fast search time).

However, most current VPR-related efforts do not provide a useful lo-

calization procedure. Very few papers create VPR-based techniques

for real-time applications, and even fewer do so in environments with

significant difficulties [94].

Figure 1.1: Image retrieval is a typical formulation for visual place
recognition. The known locations are stored in a database, and a new
image to be localized is referred to as a query. The location retrieval
process is divided into three logical stages. Image from [150].

The existence of irrelevant image segments or unrelated back-

ground elements typically limits the accuracy of VPR systems. Thus,

selecting informative features has been proposed for improving VPR
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Figure 1.2: An example of the same place images but different ap-
pearance during long-life. The image is from [34].

accuracy in challenging environments. However, the majority of the

proposed solutions require location-specific learning or database ex-

pansion, which are either inefficient or expensive. Moreover, time-

consuming computations, such as querying each database image

to find misleading or informative features, are insufficiently scalable

and, hence, less practical. As a result, these approaches fail to ad-

equately address the challenges presented by the changing nature

of databases due to objects such as people flow, growing trees, ve-

hicles, and billboards. Figure 1.3 shows dynamic objects in street-

level images as an example. Therefore, the problem of how to rec-

ognize similar places in long-term localization must be tackled differ-

ently. The work undertaken in this thesis aims to contribute efficient

visual place recognition methods for long-term localization.
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Figure 1.3: Examples of existing issues with street-level image-based
VPR. (a) depicts the obstruction of traffic flow. (b) Background occlu-
sions caused by people and trees. (c) New urban building develop-
ment and renovation. (d) The effect of photo shooting direction [152].

Figure 1.4: An example of features are extraction from street view
images [98].

1.2 Research Problems and Scope

The contributions in this thesis can be broadly categorised under the

following topics.

1.2.1 Image Representation for Visual Place Retrieval

In this thesis, we propose efficient visual retrieval techniques. VPR

should be discriminative and fast for real-time applications. Mobile

robots, for example, must traverse unknown environments from given

start coordinates to supplied goal coordinates. In such a situation,

robots should be ready to quickly change their plans when their under-
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standing of the environment changes. In general, many applications

have solved the VPR task as an IR problem [63], in which images of

the same location indicated in a query image are recovered from a

large geo-tagged image dataset. Creating reliable image representa-

tions is a major focus of image retrieval, as this allows the system to

acquire a metric (such as the Euclidean distance of feature vectors)

to determine whether or not the images are a good match. Another

challenge is that finding the geolocation in a large dataset requires

a fast image representation. A high level of recognition accuracy, for

instance, requires discriminating between numerous objects, such as

cars, trees, and people in a street-level image. To achieve efficient vi-

sual place recognition, retrieval methods will need to overcome these

obstacles.

Recent studies have shown that extremely high-dimensional descrip-

tors, like the Vector of Locally Aggregated Descriptors (VLAD), can

achieve high retrieval accuracy over a large- scale image dataset

[57, 63, 8, 50]. VLAD is used to create visual dictionaries and vectors

to represent features in images. VLAD defines an image by compar-

ing its local feature descriptors to a codebook that has already been

calculated. Typically, k-means clustering of the descriptors produces

a visual codebook. However, visual features have a dimensionality

that is not simple, and computing sample distances in a large image

collection is difficult. We focus on creating an accurate image retrieval

technique with reasonable calculation costs and a fast search time.

In this thesis, we also propose a method of learning image repre-

sentations with the goal of enhancing VPR. To compute the similarity

between vectors in VLAD, we randomly apply mini-batch k-means.

Because binarized VLAD permits fast Hamming distance computa-

tion and light storage of visual descriptors, we compress VLAD to bi-
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nary aggregated descriptors to improve search speed. Our research

shows that these enhancements improve visual place retrieval perfor-

mance over current state-of-the-art techniques.

1.2.2 Informative Feature Selection for Visual Place

Recognition

Since the environment’s appearance can shift suddenly and unex-

pectedly, scientists have spent a lot of time studying how to design

VPR systems that can keep working without breaking down. Since it

was found that not all image content is useful for VPR tasks, a lot of re-

search has been done in the area of feature selection. When it comes

to remembering familiar landmarks, a building’s window is far supe-

rior to a t-shirt or a set of wheels. Therefore, rather than relying on

the entirety of an image’s content to signify its meaning, Kim et al [63]

proposed that visual representations intelligently highlight useful re-

gions to boost similarity to the relevant images while suppressing the

regions that cause overlap with irrelevant images. Alternative meth-

ods have been proposed to selectively target local regions based on

their particular features [65, 55, 8]. However, all these methods focus

on improving the VPR performance in terms of robustness. Unfor-

tunately, all the existing methods require time-consuming computa-

tions, such as querying each database image to identify good or in-

formative features, that are not sufficiently scalable and are thus less

practical. While successfully matching different places under chang-

ing viewpoints and conditions remains the top requirement of a VPR

system, computational and storage needs should also be considered

to achieve the practical deployment of a VPR technique. In this thesis,

we propose using a hybrid feature set, which is a robust image rep-

resentation method to distinguish between relevant and non-relevant
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features in large datasets and challenging environments. We then re-

duce the number of hybrid features during similarity measurements by

predicting good features in the offline phase. Finally, instead of forc-

ing the algorithm to learn relevant and irrelevant images, we propose

a method that can predict unique features by learning non-relevant

features in a data-driven way. According to our research, these con-

tributions improve visual place recognition performance when com-

pared to baseline techniques.

1.3 Thesis Contributions

This dissertation has four contributions that have advanced the state

of the art in visual place retrieval and recognition. Our contributions

to this thesis are outlined in more detail below.

1- We use a geotagged image dataset to investigate VPR for an

image query. Low-cost image retrieval methods represent the image

contents as feature vectors. The Vector of Locally Aggregated De-

scriptors (VLAD) is a type of low-cost method that can be used for

visual place recognition. VLAD characterizes an image by compar-

ing its neighbourhood features to a precomputed dictionary. Descrip-

tors are typically clustered using k-means to create a visual code-

book. Unfortunately, visual features have a non-trivial dimensionality,

and computing sample distances in a large image collection is chal-

lenging. To create an efficient, low-cost image retrieval method, we

suggest using mini-batch k-means clustering to generate VLAD de-

scriptors (MBVLAD). The proposed MBVLAD methodology achieves

higher levels of retrieval accuracy than existing methods.

2- Our proposed method for representing images combines an
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aggregated binary descriptor – Oriented FAST and Rotated BRIEF

(ORB) – with an MBVLAD descriptor. When working with a large

database, however, the time and resources required to extract and

compare pairwise the local descriptors create a bottleneck, limiting

the efficiency of local feature matching between images. We de-

fine binary local features for the aggregation method to reduce the

cost of extracting, representing, and matching local visual descrip-

tors, thereby increasing the efficiency of local features. The search

accuracy (mAP) and search time (s) we measured in our experiments

demonstrate that our ORB-MBVLAD is significantly faster than other

state-of-the-art methods while maintaining high levels of accuracy.

3- Long-term environmental change is one of the biggest chal-

lenges for VPR systems. Identifying areas of focus is a useful strat-

egy for tackling this issue. Feature selection is an active area of study;

however, finding a strong image representation capable of discrimi-

nating unique features is challenging. Most of the features used are

hand-crafted, and they perform particularly well in visual localization

and location recognition tasks. However, it is challenging to select

what sort of features should be utilized to characterize locations, since

hand-crafted representation demonstrates superior awareness of a

place in rotational perspectives but struggles with particular surround-

ings (i.e., trees, buildings, or mountains). As deep learning networks

advance rapidly, it is becoming clear that learned features outperform

hand-crafted features in place recognition tasks. Unfortunately, this

is not a good use case for deep learning representations for select-

ing features in an outdoor setting, where conditions can shift when

going from day to night. By fusing traditional and deep learning ap-

proaches, we propose a hybrid feature method for representing im-
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ages with greater robustness. Furthermore, we select useful features

using our hybrid feature in a data-driven way. A comprehensive per-

formance comparison of different representation methods for select-

ing features for VPR was conducted. Our hybrid feature shows a sig-

nificant improvement compared with selecting features using a single

method for a VPR task.

4- In this thesis, we offer a unique VPR algorithm that is robust

against environmental changes. Obviously, outdoor environments

with moving objects like automobiles, people, and so on might con-

fuse location-based systems, but throwing out features that are de-

rived from moving objects in an image might be risky. At the same

time, using such features increases the computational cost of calcu-

lating the similarity between the input image and the reference im-

ages. We suggest learning to recognize confused features from data

and then using that knowledge to predict relevant features in a query

image before performing geo-localization. We demonstrate both quan-

titative and qualitative improvements over previous state-of-the-art

methods of VPR.

1.4 Thesis Outline

The works undertaken in this thesis is structured into seven chapters:

The work undertaken in this thesis is structured into seven chap-

ters: In Chapter 2, we explore the background and architecture of the

VPR system. The most current advancements in VPR and retrieval

are discussed, with an emphasis on place recognition in continuous

operations. After this, the problems with current VPR systems are
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summed up. This chapter provides the VPR and retrieval datasets as

well as assessment criteria for both systems. Chapter 3 introduces

the first contribution of this thesis, which is MBVLAD for visual place

retrieval. In this chapter, the solution to the retrieval system is pro-

posed. To represent images in an efficient way, the similarity distance

between two vectors was learned and described in a paper published

at ISSC in 2019, which was named the best student paper [5].

In Chapter 4, the second contribution is presented. An efficient

visual place retrieval system using Google Street View is proposed,

and most of this chapter was published at IMVIP in 2020 [2].

Chapter 5 provides a third contribution. A method for predicting

useful features is provided. Also, a new image representation method

that is a hybrid feature is presented. This work was published at ICDIP

in 2022 [4].

Chapter 6 presents an efficient VPR using useful features. In par-

ticular, we provide a novel method that uses predicted features from

relevant images to analyse the input image. The data-driven way to

generate features and learn classifiers is presented. This is the last

contribution to this thesis. Most of this chapter was accepted at CC-

GIV in 2022 [3].

In Chapter 7, we conclude our main contributions introduced in

this thesis and discuss the potential directions to be explored in fu-

ture work.

Finally, the appendices provide a number of supplementary re-
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sults generated by the methods proposed in this thesis.
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Chapter 2

Background and Related

Works

As a first step, this chapter introduces an overview of visual place

recognition strategies. After that, we show several methods of using

images to describe a place. Then, image representation methods

for visual place retrieval are described. Following that, we provide

efforts of similar kind in the field of visual place recognition. We then

go on to talk about a variety of research projects that address the

impact of changing environments on image retrieval and visual place

recognition. At long last, we cover the benchmark datasets for VPR

and retrieval and their respective assessment techniques.
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2.1 An Overview of visual place recognition

(VPR)

Because of the decreasing costs of cameras and the amount of sen-

sor data available, place recognition for visual localization is becom-

ing more popular in real-world applications [20, 25, 90, 128]. In this

context, each place may be represented by an image or series of

images, allowing a human, robot, or vehicle to locate itself by remem-

bering a known location from memory. As a result, place recognition-

based techniques in an outdoor environment must be robust and ef-

ficient under environmental changes to provide accurate location in-

formation. Solving the problem of where an image was taken under

environmental changes has emerged as a major research challenge

[50, 8, 63, 20]. Having to cope with fleeting or regionally pervasive

visual features is made more complicated by the fact that the look of

a place might vary drastically during the day [55]. The basic process

of a location recognition system is shown in Figure 2.1. In order to

understand each stage, please refer to the descriptions below.

- Inputs: Images and videos are the primary sources of informa-

tion for the whole system. Data preprocessing also includes trans-

forming raw data (such as a set of feature descriptors or an entire

image) into a more usable format for description or storage.

- Place describing: Places need to be defined in a manner that

makes them easy to remember and find again. There are two main

categories of visual place description methods: those that describe

just the selected sections of a scene and those that describe the full

area. With the goal of improving retrieval and recognition systems,
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Figure 2.1: Five main parts make up this overall strategy for a visual
place recognition system. The place description subsystem analyzes
incoming visual information. The module that can remember where
you’ve been stores the geotagged images. The current visual data
is compared with the database to see whether it matches any of the
recorded locations. Using the geotagged information from a previ-
ously visited location, the performance is able to precisely localize
itself by linking the location of the place to a returned or matched im-
age.

this thesis concentrates on the place describing phase. Given that it

is possible to extract features from and represent images during com-

putation in a manner analogous to a map, describing a place is the

most fundamental method of describing a particular environment. In

this method, image retrieval techniques are used for the primary pur-

pose of recognizing locations based on their outward appearance.

- Place remembering: In order to compare and get the extracted

descriptors, a location recognition system has to refer to a map. Re-

cent methods may be roughly categorized as either those that rely on

topological maps, metric maps, or geolocation databases. How a lo-

cation is remembered changes depending on the system’s intended

use. For the purposes of this thesis, we use a database of geotagged

images.
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- Place recognition: Matching new data with old information is

what happens during place recognition. Last but not least, the goal

of place recognition is to determine whether a certain place has been

visited before. Everybody knows that if two locations sound the same,

they must have been shot in the same place. Therefore, the funda-

mental goal of any location recognition system is to create a belief

distribution by matching visual input with historical information. You

may either use a single image or a collection of images to recognize

a location. In this thesis, we investigate the problem of localization

from a single image.

- Out-put: The output is the geo-tagged image from previously

visited areas to pinpoint its precise location during the place recogni-

tion process.

2.2 Visual Place Recognition Based on Con-

tent Based Image Retrieval

There are two main categories when it comes to recognizing places

in street-level input images: those that rely on image retrieval and

those that rely on 3D structures. Image retrieval-based methods esti-

mate the geo-location of a query image by comparing it to reference

images portraying the same place [63, 55, 8]. Our thesis fits within

this group. Combining these methods with others for visual location

detection, such as Seq-SLAM citation [22], makes for a powerful tool.

Another approach that may be used to estimate the location is to have

users vote on geo-location tags associated with local features in order

to get a more precise estimate than the location of the most compara-
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ble image in the database [146]. This is a computationally expensive

scenario because each local feature in the query image is checked

against the database for its closest nearby local feature. It is impor-

tant to keep in mind that none of these algorithms can determine the

precise camera posture of the question on their own.

The 3D structure-based methods frame the issue as a 2D-to-3D reg-

istration task using a 3D model built from images in a database [108,

49, 73]. These algorithms can do a full camera pose estimation based

on the query image. However, they are only practical in places where

there is a great concentration of reference images and they need con-

stant upkeep. While certain Convolutional Neural Networks CNNs

can be trained to anticipate the camera pose from an input image

[59], this approach has the same high maintenance cost as other ap-

proaches that encode 3D structure implicitly. There have been at-

tempts to combine the two methods in order to recreate the 6DOF

posture from the retrieved reference images. Using a map associ-

ated with the images in the database, [106] one of the first efforts

calculates the pose. To determine the camera’s position, Zhang and

Kosecka [148] utilize a pair of reference images. In order to accu-

rately forecast the pose of the query image, Sattler et al. reference

[110] recently suggested building a local 3D model from the selected

set of returned images.

The majority of the time, we tackle the problem of visual place recog-

nition as an image retrieval task. The success of this idea hinges

on our ability to create place-based visual representations. In this

subsection, we will quickly review the hand-crafted representations

used for this purpose before the advent of CNNs. As a city-scale im-

age retrieval task, we investigate the problem of visual place recog-

nition. Other than the obvious photometric and geometric differences
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between the query and reference images, the significant visual over-

lap with irrelevant images caused by ubiquitous visual features like

pedestrians, cars, billboards, and trees also presents a significant

challenge to visual place retrieval. Those massive attributes may

have an impact on the time and money required to perform computer

searches and analyses. Adaptive image representations are one way

we’ve been able to tackle these problems (chapters 3 and 4). To

further combat computational expense during image representation,

we use a data-driven strategy to reduce the total number of features

(Chapters 5 and 6).

The fundamental pipeline of a visual place recognition system is shown

in Figure 2.2. Initial steps include transforming a raw image of the

place under investigation into a more quantifiable mathematical repre-

sentation (usually a feature vector). The feature vector is then used to

calculate the degree of similarity between the images in the database

and the ones in the query. Two images’ similarity score may be used

to determine whether they were taken in the same place. When the

score is over a certain threshold, the two images are deemed to be

a match. A significant part of VPR is the process of representing im-

ages. It is important to have a strong visual representation that can

accurately differentiate the relevant aspects when describing a place.

We provide image representation strategies for place retrieval in the

next section.

2.3 Image Representation Methods For Vi-

sual Place Retrieval

In this thesis, we focus on improving VPR and retrieval systems. Im-

age representation is an important step in describing a place. As we
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Figure 2.2: A basic pipeline of visual place recognition [150].

mentioned above, visual place recognition is the first step and should

describe a place in order to recognize it correctly. Methods of vi-

sual representation are used in order to accomplish this goal. Image

description, information retrieval, localization, 3D reconstruction, ma-

chine learning, and many other fields of research all have a stake in

the study of image representation.

The unique features of each image are codified by identifying its salient

aspects. These features are then utilized to build feature vectors or

image descriptors. In other words, the essential elements of each im-

age are extracted and combined into a single composite. Afterwards,

a comparison is made between the two image descriptors, often using

the L2 norm or the Euclidean distance method. Scores close to one

another reflect the degree of similarity between the two input images.

When the number of references to be compared is manageable, it

is also common practice to use the "closest neighbor" approach to

conduct a comprehensive comparison of the whole database. More

sophisticated approaches to data pre-processing and searching are

required for larger-scale applications.
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Image representation approaches contain two methods: traditional

methods and method-based learning. The traditional approaches are

also defined as hand-crafted features due to the characteristics of fea-

ture selection. Elements such as corners, borders, blobs, and ridges

give geometric information, whereas features such as color, pixel in-

tensity, texture, and contour provide low-level visual details. In the

following, we will provide a thorough presentation of each category.

2.3.1 Traditional Image Representation Methods For

Place Retrieval

Methods Based on Local Features

By making use of salient points or regions of interest, local-based ap-

proaches represent an image. Scale-Invariant Feature Transforms

(SIFT) [77] and Speeded Up Robust Features (SURF) [11] are the

methods dominating the early state. In 2011, Oriented FAST and Ro-

tated BRIEF (ORB) were introduced [107]. ORB builds on the well-

known FAST keypoint detector and the BRIEF descriptor. Both of

these techniques are attractive because of their good performance

and low cost. Also, a learning method for relating BRIEF features

under rotational invariance leads to better performance in nearest-

neighbor applications.

Bag of Words (BoW) techniques [118] are sometimes combined with

a visual dictionary to improve accuracy [117]. A visual vocabulary or

visual codebook (dictionary) of local feature repetitions is created as

part of the first step of the procedure. One common method of quan-

tization is the grouping of visual words with the use of an algorithm

like k-means clustering. A Vector of Locally Aggregated Descriptor

(VLAD) [57] is a variant of a Bag of Words (BoW) [118, 92] that adds a
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residual to each descriptor based on its cluster membership. In other

words, we may calculate the total of the differences between each

cluster’s assigned descriptors and the cluster’s centroid by matching

each descriptor to the cluster that has the closest instance of that de-

scriptor. The aggregated description for VPR is shown in 2.4.

The probabilistic FAB-MAP approach [23, 24] is the most well-known

in vision-based place recognition among the systems utilizing local-

based features; the system recorded the scene using more than 100,000

visual words and utilized them to sequentially track the current place.

For the purpose of closing the loop, researchers turned to the place

recognition technique, which basically means that our system recog-

nized previously visited locations based on the similarities between

the recorded visual words. Each had its own index for rarity, which

added to the overall scene’s uniqueness. Viewing invariance comes

from local features in most cases [78].

Figure 2.3: An example of local and global features methods. The
image is taken from [78].

Methods Based on Global Features

Globally-oriented strategies apply the methodologies to the whole pic-

ture rather than concentrating on specific regions. Histograms may

be used to describe the whole image, as in the case of color his-

tograms. In this scenario, the bins represent the dimensions of a
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Figure 2.4: An example of aggregated with clustering.

color space, and each pixel’s contribution to the histogram is deter-

mined by its value within that space. Another popular representa-

tion is the gradient histogram, which shows how gradient orientations

are distributed throughout a picture. A well-known example that has

been successfully used for person identification in photos is the His-

tograms of Oriented Gradients (HOG) descriptor [26]. However, they

are more resistant to photometric changes such as shifts in light due

to their holistic nature. An additional widely used descriptor, GIST,

was first introduced by Oliva and Torralba [96]. One of the best-

known global-based approaches is the GIST descriptor, which is a

low-dimensional holistic scene descriptor using the spatial envelope

features of a spectral representation. Compared to localized meth-

ods, globalized methods need less storage and processing power.

Many works have used these properties for location-based applica-

tions like large-scale location matching [31, 88, 89] and positioning

and navigation [134, 99, 116, 105].

Methods Based on Local and Global Features Combination

One alternative is to utilize a global descriptor to quickly narrow down

search results to relevant images before moving on to a more precise
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method, such as matching local characteristics, to confirm the rela-

tionship and ensure reliability. Omnidirectional cameras are used in

the localization technique presented by Goedemé et al. [44], which

involves the extraction of vertical column segments from each cap-

tured picture and their subsequent description using 10 distinct de-

scriptors. The localization procedure takes advantage of these neigh-

borhood descriptors, which have been clustered, by inserting them

into a kd-tree structure. The incoming query image is processed us-

ing a global computation of the same local descriptors applied to the

vertical structures, which is then utilized to quickly obtain candidates

for the loop. The next step in ensuring an accurate image match is

to apply a matching distance based on the column segments to the

image and each of the contenders. In the work [79], it is suggested

to combine the local visual characteristics FAST (Features from Ac-

celerated Segment Test) and CSLBP to create a robust and real-time

visual location identification system (Complete Center-symmetric Lo-

cal Binary Patterns). To implement omnidirectional vision-based lo-

cation identification for mobile robots, we employ bag-of-features and

support vector machines to analyze the provided key features. Ac-

cording to the findings of the experiments, the robot is capable of

accurate real-time place recognition with a high categorization rate.

By continually creating the convex hull from the retrieved SURF fea-

tures and measuring the relative magnitude between these features

that construct the convex hull, Wang and Lin offer a combined local

and global descriptor for omnidirectional pictures dubbed Hull Census

Transform (HCT) [133]. Then, we utilize this representation to identify

scene changes. Wang and Yagi [132] suggested a method for place

recognition that used edges, local features, and color histograms all

together. The Harris detector is utilized to produce edges and interest
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points, and SIFT [77] is used to describe interest points, enabling a

fully calculated, integrated image description process.

To sum up, local features have several advantages over global de-

scriptors. To begin, features may be used for more than just recogniz-

ing particular objects or places. Making maps, joining images, and re-

defining places all fall under the category of "place recognition." They

may be easily combined with metric information to enhance localiza-

tion tools. Additionally, keypoint-based methods are not as dependent

on camera pose since they are robust to changes in geometry. On the

other hand, global descriptions tend to be very subjective. High pho-

tometric and geometric invariance may be achieved by a compromise

reached by applying global descriptors to image segments rather than

the complete image. But when the dataset is large or the number of

extracted features is enormous, local and global descriptors both hit

a wall. The high computational and processing costs have a nega-

tive effect on efficiency. The third and fourth chapters are dedicated

to creating a way of representing images utilizing aggregated local

descriptors.

2.3.2 Methods Using Deep Learning

The primary difference between traditional and learning-based meth-

ods is that the latter rely on the system’s own internal mathematical

models developed over time for autonomous prediction and decision-

making. To learn, one must first be able to automatically recognize

and adapt to new situations based on the patterns they see in the

data. There are two main types of learning-based techniques: unsu-

pervised learning (clustering) and supervised learning (classification).

The former category includes popular techniques like k-means clus-

tering and the Gaussian Mixture Model (GMM), which require neither
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previous knowledge nor labeled data. Its goal is to discover latent

relationships among unlabeled data and organize it into meaningful

chunks. The latter uses Support Vector Machine (SVM) [46] exten-

sively to work on pre-defined picture classifications.

The convolutional neural network (CNN) is the most well-known deep-

learning approach, particularly for image-based problems. This model

was introduced in the 1990s, but it was not widely used until the

AlexNet model [67] was introduced, which set a new standard for

object classification over millions of data points. Two common tech-

niques are used to apply CNN to image retrieval and matching tasks:

(i) generating similarity functions and (ii) extracting features.

The AlexNet model [67] uses the Siamese model to discover the re-

lationship between the pairs of images it is given. CNN layer outputs

serve as descriptions for the resulting images. The AlexNet archi-

tecture is shown in Figure 2.5. Three fully connected layers and five

convolutional layers (conv1, conv2, conv3, conv4, and conv5) make

up the model (fc6, fc7, and fc8). Also, AlexNet has 600 million pa-

rameters and 650,000 neurons. Because of this, it is challenging to

understand their learning. It’s possible that further research is needed

on this issue. The field of visual place recognition is no exception to

the widespread adoption of CNN models.

With fewer parameters, SqueezeNet [54] (a compact CNN design)

achieves AlexNet-level accuracy [67] on ImageNet [28]. The SqueezeNet

architecture has been used in many applications, such as real-time

vehicle make-and-model recognition [70], searches for semantic seg-

mentation [113], and image classification [54]. The SqueezeNet de-

sign employs tactics like downsampling in the last few layers of the

network to keep activation maps for the convolutional layers wide

while decreasing the number of input channels from 3x3 filters to 1x1
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Figure 2.5: AlexNet’s [67] internal structure. Three fully connected
layers and five convolutional layers (conv1, conv2, conv3, conv4, and
conv5) make up the model (fc6, fc7, and fc8). That picture comes
from [47].

filters. An example of this is the Fire module, which employs a com-

bination of 1x1 and 3x3 filters in the expand layer and a series of 1x1

filters in the squeeze convolution layer. There are around 1,248,424

parameters and 4.85 MB of model space in the Fire module of the

SqueezeNet architecture (shown in 2.7). The architectural dimen-

sions are presented in Table 2.1.

Table 2.1: SqueezeNet architectural dimensions

Layer 1x1 1x1 3x3 Filter size Output shape
Input 224x224x3

Conv 1 7x7 2 111x111x96
Maxpool 3x3 2 55x55x96

Fire 2 16 64 64 55x55x128
Fire 3 16 64 64 55x55x128
Fire 4 32 128 128 55x55x256

Maxpool 3x3 2 27x27x256
Fire 5 32 128 128 27x27x256
Fire 6 48 192 192 27x27x384
Fire 7 48 192 192 27x27x384
Fire 8 64 256 256 27x27x512

Maxpool 3x3 2 13x13x512
Fire 9 64 256 256 13x13x512

Conv 10 1x1 1 13x13x1000
Global avgpool 13x13 1 1x1x1000

Softmax
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Figure 2.6: CNN framework based on the SqueezeNet. A single con-
volution layer (conv1), followed by eight Fire modules (fire2-9), and a
final convolution layer make up SqueezeNet (conv10).

Figure 2.7: The structure of the Fire module’s convolution filters. In
place of 3x3 filters, there are now just 1x1 filters. There are only so
many convolution filters available, and most of them are 1x1 filters
since they need nine times fewer parameters.

Though AlexNet and SequeezNet perform better on feature ex-

traction and classification tasks, they are not a good fit for VPR and

retrieval. Lighting and appearance variations might throw off visual

location identification techniques that rely on manually generated el-
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ements. Their success in difficult settings is highly dependent on the

robustness of such descriptions against changes in how things are

seen. To improve the feature extraction process, we use deep learn-

ing in Chapter 5.

The research article [22] presents a ConvNets-based approach to

place recognition by integrating the robust features learned by Con-

vNets with a spatial and sequential filter. Sünderhauf et al. [122] to

provide an innovative technique for recognizing locations based on

recent advancements in object identification technology and convo-

lutional visual features. The suggested NetVLAD architecture creates

a robust image descriptor for the aim of visual place recognition, as

shown in Arandjelovi’c et al. [8]. The authors of the study [8] create

a convolutional neural network architecture that can be trained from

beginning to end. The core of this design is a novel, generic VLAD

layer (NetVLAD). The layer may be easily plugged into any preexisting

convolutional neural network design and trained using standard back-

propagation methods. The CNN design using the NetVLAD layer is

shown in Figure 2.8. On the other hand, NetVLAD necessitates pick-

ing out both positive and negative samples for each training picture.

important for training a model with contrastive and triplet losses.

Figure 2.8: CNN architecture with the NetVLAD [8].
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2.4 Image Representation by Aggregation

of Local Features for Image Retrieval

A suitable mathematical description of each image is necessary in

order to determine if two images are comparable in terms of visual

content or whether they include the same object. In the last section,

we outline several of the most well-known methods for converting an

input image into a numerical descriptor.

Content-Based Image Due to the difficulty of local feature extraction

and matching, retrieval based on local features is computationally

costly. On the one hand, the cost of extracting [107, 38], express-

ing, and comparing local visual descriptors has been greatly reduced

by the newly suggested binary local features. But aggregation meth-

ods allow for compressing all the image’s obtained features into a

single meaningful descriptor, which greatly improves the speed and

scalability of image search. Recently, only a handful of studies have

merged these two lines of inquiry by providing aggregation methods

for binary local features, allowing users to reap the benefits of both

approaches. Our focus here is on binary local features, and we will

go through the most common aggregation techniques and how they

work.

2.4.1 The Bag of (Visual) Words and Binary Local

Features

Each image is represented as a collection of visual words in the Bag

of (Visual) Words (BoW) [118] by classifying the image’s local descrip-

tors according to a standard visual vocabulary. The visual vocabulary

is constructed by grouping the dataset’s local descriptors, maybe us-
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ing k-means. The cluster centers, or centroids, represent the visual

words of the vocabulary and are used to quantify the local descrip-

tors that were acquired from the images. Each local descriptor of an

image is assigned to its closest centroid, and the image itself is rep-

resented by a histogram of the frequency with which the visual terms

appear. The retrieval process makes use of text retrieval methods,

except that visual terms are used instead of text words and the query

image is processed as a disjunctive term query. The cosine similarity

measure is often used in combination with a word weighting system,

such as phrase frequency-inverse document frequency, to evaluate

the degree of similarity between any two images (tf-idf).

In order to include binary features in the BoW approach, a cluster

method is necessary that can deal with binary strings and Hamming

distance. The k-medoids [58] work well for this, but it takes a lot of

processing power to calculate the whole distance matrix between the

elements of each cluster. It was proposed in [46] that a k-majority

voting method be used to analyze a sequence of binary vectors and

find a collection of acceptable centroids that would act as the BoW

model’s visual words. To better match the binary features, the [151]

representation uses the median operation instead of the mean and

the Hamming distance rather than the Euclidean distance.

2.4.2 Vector of Locally Aggregated Descriptors and

Binary Local Features

Since binary vectors are a particular instance of real-valued vectors,

the VLAD technique [57] may be easily applied to binary local de-

scriptors. The k-means method may be used to construct the visual

vocabulary in this fashion, and the difference between the centroids

and the descriptors can be accumulated as usual. The BVLAD image
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signature, a variant of the VLAD image signature optimized for use

with binary features, was also developed using this approach as well

[130]. The BVLAD is a VLAD that has been binarized (by threshold-

ing) after being generated using power-law, intra-normalization, L2

normalization, and multiple PCA.

A visual vocabulary may be built by associating each binary descriptor

with the nearest visual word using the Hamming distance and a va-

riety of binary-cluster algorithms, including k-medoids and k-majority,

in a manner similar to BoW [38]. Calculating the residual vectors us-

ing binary centroids may provide less informative results. Using mini-

batch k-means [5], we propose to study this issue in Chapter 4.

2.5 Challenges and Key Strategies in Real-

world Place Recognition

The following difficulties may be encountered by sensors in real-world

application tasks such as navigation: These include, but are not lim-

ited to, the following: These include, but are not limited to, the follow-

ing: 1) varying visual appearances due to time fluctuations; 2) vari-

ous perspective variances for the same places; 3) discovering new,

unknown areas; 4) implications for efficiency and robustness when

applied to real-world settings. In this thesis, we use a retrieval task

to address the efficiency and robustness challenges that arise when

dealing with changes in visual appearance.

2.5.1 Appearance Change

A significant challenge in the field of place recognition is the phe-

nomenon known as "perceptual aliasing," which occurs when two or
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more locations provide visually identical data. There are two kinds of

visual changes that affect long-term place recognition:

- Conditional changes, changes in appearance due to factors like

lighting, weather, and the passage of time, are included in the cat-

egory of "conditional changes." Over time, this kind of change will

have a mostly visual impact.

- Structural changes, short-term and long-term navigational changes

in the structure, including dynamic items, geometric modifications,

and land form changes. Vision and LiDAR sensors are vulnerable to

interference, while radar is safe due to its ability to observe at a low

frequency. [53].

As mentioned in [150], place modeling, which employs conditional in-

variant features for stable place recognition, and belief generation,

which estimates place similarity based on the sequence of obser-

vations, are the two primary kinds of ways to cope with the afore-

mentioned appearance changes. As a result of recent advances in

computer vision [145, 107, 127], deep learning [115], and adversarial

learning [45, 153], place modeling-based PR methods [60, 103, 50]

have emerged. Tsintotas et al. present a vote technique to identify

probable loop closures inside a distributed database and a training

process to capture recurring scale-restrictive features in [127]. For

effective relocalization, Merrill et al. [83] integrate information from

many visual modalities to derive rich place recognition elements. A

region-based VLAD feature aggregation module is provided by Khaliq

et al. [60]. This module makes use of the pretrained AlexNet [67].

The accomplishments of region-based visual object recognition in-

spired the development of AlexNet for trustworthy local region fea-

ture extraction [67]. When it comes to improving the precision with

which computers can identify specific locations, Hausler et al. [50], a
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multi-scale patch feature fusion approach. The local features may be

aggregated across the feature-space grid using Hausler’s technique,

which is resilient to variations in environmental conditions. The afore-

mentioned approaches rely heavily on the pretrained model using ex-

isting datasets, which might restrict their performance. To achieve

competitive recognition performance without training, by combining

the traditional HOG [26] descriptor with the regional feature extrac-

tion and convolution matching technique, Zaffar et al. [145] provide a

training-free VPR solution. For the VPR task, Piasco et al. mention

[103] as a new modality that, if used correctly, may infer depth predic-

tion from the visual inputs; this modality is the visual CNN features.

This approach, however, depends on the presence of coupled image-

depth data. As a result, the quality of the dataset and the level of detail

in the images greatly affect localization performance and generaliz-

ability.

The most well-known sequence matching strategy for belief generation-

based PR is SeqSLAM, which was initially reported by Milford et al.

in [85]. SeqSLAM finds the best matches by aligning a pair of refer-

ence and query sequences, and it can accurately capture the con-

tinuous geometric similarities under conditional changes using even

the most conventional visual features, in contrast to traditional single-

frame-based place recognition methods like FAB-MAP [23] and Bag-

of-Words [40]. As of 2012, a sizable body of work has used the Se-

qSLAM method in order to enhance the precision of location iden-

tification [120, 10, 76, 140, 142, 19]. Stone et al.[120] combine the

SeqSLAM matching mechanism with skyline segments, which exhibit

improved condition-invariant behavior over rough pathways, to stabi-

lize place recognition ability on challenging terrain in changing en-

vironments. By adopting the Approximate Nearest Neighbor (ANN)
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to greedily scan the sequence in place of the standard burst-force

searching, the fast version of SeqSLAM developed by Siam et al.

[114] may drastically reduce the searching time without compromis-

ing the localization accuracy. As this approach requires a precise esti-

mate at the outset, it can’t be used for large-scale global re-localization

initiatives. Yin introduces a global place recognition method based

on multi-resolution sampling, that can be used for both visual place

recognition (VPR) [140] and Linguistic Place Recognition (LPR)[142].

In order to achieve hierarchically global re-localization, Yin’s method

combines coarse-to-fine re-sampling with a particle-filter. This method

can strike a good balance between matching accuracy and efficiency,

and it can aid in providing near real-time global localization capability

in long-term navigation. Bampis et al. [10] propose a sequence bag-

of-words with a unique temporal consistency filter that can gain from

sequence matching while still maintaining real-time performance on a

tablet, as opposed to the burst-force searching through the difference

matrix used in SeqSLAM. A combination of a compact and sparse

neural network (FlyNet) with a continuous attractor neural network

(CANN) to capture the sequence of observations has been shown to

outperform SeqSLAM [19]. Also employing a temporal convolutional

network, Garg et al. [41] offer a global sequence descriptor that, when

combined with local sequence matching, allows for a hybrid location

recognition system.

2.5.2 Viewpoint Difference

One of the major obstacles to place recognition is that changes in

viewpoint may impair the identification capacity for all sensor modal-

ities. Observations made at the same location over time may reveal

different patterns, depending on the perspective. For over a decade,
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researchers have studied classic place recognition techniques like

bag-of-words [118] and the Vector of Locally Aggregated Descriptors

(VLAD) [57] to find ways to make the perspective difference more ro-

bust. However, the above techniques are incapable of handling ad

hoc variations in perspective or opposite orientations. As a result of

perspective effects, position-based place identification will consider

the resulting shifts in distribution to represent whole new locations.

The neural networks provided by Garg et al. [42] are semantically

aware, meaning that they can identify the same location when seen

from different perspectives. But this technique only works for reverse-

direction detection, whereas indoor or outdoor navigation often en-

counters arbitrary variances in the real world. The polar context pro-

jection used by Kim et al. [62, 61] provides a rotation-invariant de-

scriptor, and the combination of rotation-invariant network structures

is proposed by Li et al. [71] for a rotation-invariant place descriptor.

Using the orientation-equivalent feature of spherical harmonics, Yin

et al. [142] map LiDAR or 360-degree visual inputs to the spheri-

cal projections, which may be used for orientation-invariant location

identification. To take advantage of the translation-invariant feature of

top-down inputs and the orientation-invariant property of a spherical

view, Yin et al. [144] present a multi-perspective fusion-based LPR

based on dense local maps. The localization accuracy for the noisy

radar inputs is enhanced by the orientation-invariant RPR approach

presented by Suaftescu et al. in [39], which employs cylindrical con-

volutions, anti-aliasing blurring, and azimuth-wise max-pooling.

2.5.3 Generalization Ability

The capacity for generalization is indicative of the ability to recognize

locations in settings that are not immediately apparent. Since the
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same place can be shown in different ways, there is no limit to the

different ways the above place datasets can be put together. Even if

it were possible, it would be hard to get all of them at once. To accom-

plish widespread visual re-localization using conventional techniques,

FAB-MAP [23] constructs a Bag-of-Words (BoW) architecture. In or-

der to obtain matched images faster, iBoW-LCD uses an incremental

BoW technique based on binary descriptors. To identify loop closures

incrementally, An et al. provide FILD++ [6], which uses a hierarchical

small-world network. However, the following non-learning-based ap-

proaches have very limited generalization capacity, and robust perfor-

mance often requires precise parameter fine-tuning. Learning-based

place feature extraction approaches have seen increased interest in

recent years due to the advancement of deep learning-based feature

extraction [115, 52] and attention mechanisms [131]. For the VPR

challenge, Khaliq et al. [60] integrated the area of CNN features with

a differentiable NetVLAD [8] layer to facilitate generalization. Zhang et

al. [149] propose a Point Contextual Attention Network (PCAN) based

on the attention mechanism to enforce differential networks by giving

more weight to task-relevant information to improve the robustness of

LPR approaches. To enhance localization performance when faced

with occlusion and divergent viewpoints, new research by Kong et al.

[66] presents semantic graph-based location identification algorithms

that make use of graph matching. Similarly, Yin et al. [143] present

a parallel semantic feature encoding module that uses a divergent

place learning network to increase the reliability of place identifica-

tion by extracting the various kinds of semantics (tree, building, etc.).

Recently, Paolicelli et al. [97] integrated visual appearance and se-

mantic context using a multi-scale attention module for stable feature

embedding. In recent years, new loss measures have also been a big
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part of making location identification more accurate. As a common

measure, triplet loss is used by current place recognition algorithms

like [129, 8] to build query-positive-negative pairings by (based on

the Euclidean distance). In this approach, favorable references are

downplayed while negative ones are amplified from the beginning of

the inquiry through its conclusion. When training, Yin et al. [141] offer

a rotation triplet loss based on the triplet loss, which helps enhance

the model’s performance regardless of its orientation. In addition to

triplet loss, angular loss is often used as a learning location descrip-

tor. Furthermore, based on the aforementioned characteristic, Yin et

al. [143] established a divergence loss measure that may mandate

the place feature learning technique for distinct semantic structures

(e.g., trees, buildings, roads, etc.). As mentioned above, Li et al. [71]

approach place identification as a classification issue, ignoring the

aforementioned loss measures. Even when all of these methods are

taken into account, it is still impossible to make a system that can

recognize places in the real world, where there are an infinite num-

ber of ways that the environment and situations can change. Lifelong

education based on familiar landmarks might be the answer. Learn-

ing throughout one’s life (or "continuous learning") is meant to keep

one’s skills and knowledge current in the face of constant disruption.

Keeping the required candidate images inside the memory zones pre-

serves the Hidden Markov Model’s lifetime learning property [29]. The

graph-pruning-based approach for lifetime LiDAR SLAM provided by

Kurz et al. [69] may reduce vertices and edges to keep the graph size

manageable while repeatedly visiting the same places.
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2.5.4 Efficiency and Robustness

Robustness and efficiency are two qualities crucial to the success

of long-term localization in practical settings. The simplest location

matching method employs a frame-based re-localization strategy [87,

104], which may offer effective localization for stationary and tempo-

rary navigation tasks. In contrast, real-world applications are rife with

sudden shifts, gradual alterations in appearance over time, and re-

curring visual cues. The aforementioned constraints limit the utility

of place recognition methods that rely on a single frame. Sequences

that match [85] are preferable to single images because they increase

robustness to small-scale variations in the scene and decrease the

number of false positives caused by similarities between the images

themselves. The sequence-to-sequence (S2S) matching technique

used by SeqSLAM [85] and similar publications [101, 123] is a brute-

force approach. New learning-based algorithms [76, 140, 142, 19]

have improved location identification performance in long-term local-

ization tasks, building on the foundation laid by SeqSLAM. Match-

ing accuracy is improving, but the process is time-consuming and

not suitable for real-time applications. Particle filters, the estimated

world’s closest neighbors, and the Hidden Markov Model are only

a few of the strategies presented in [75, 114, 48] to boost SeqS-

LAM’s performance. It is possible that a huge number of reference

sequences might reduce the effectiveness of the methods. The use

of dynamic query sequences and binary descriptors by [126] and [9]

enhances SeqSLAM. The effectiveness of these techniques is ex-

tremely context-dependent, making them vulnerable to failure in dy-

namic, difficult settings. may strike a happy medium between match-

ing precision and efficiency, benefiting long-term navigation by way of

improved global localization accuracy. Bampis et al. [10] propose a
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sequence bag-of-words with a unique temporal consistency filter that

can gain from sequence matching while still maintaining real-time per-

formance on a tablet, as opposed to the burst-force searching through

the difference matrix used in SeqSLAM. A combination of a compact

and sparse neural network (FlyNet) with a continuous attractor neural

network (CANN) to capture the sequence of observations has been

shown to outperform SeqSLAM [19]. Similar to [19], Garg et al. [41]

also use a temporal convolutional network to produce a sequence

global descriptor, which may be used to build a hybrid location recog-

nition system by combining global matching with the local sequence

matching.

2.6 Data-Driven Notion of Useful Visual El-

ements for Place Recognition

Chapters 5 and 6 of our dissertation are inspired by Knopp et al. [65],

which improves the database by excluding traits that are a good match

only for locations far away. However, this method is not optimal for ex-

tremely big databases due to the refining cost, which grows quadrat-

ically with the size of the database. Alternatively, some approaches

generate distinct [46, 17, 136, 21] classifiers for each geographic lo-

cation, resulting in naturally weighted characteristics for each region.

However, a model has to be trained for each conceivable location

in the dataset if you use these methods. Our techniques are like-

wise examples of data-driven approaches. In contrast to previous

approaches, ours uses a robust representation mechanism to sepa-

rate important from irrelevant items in response to a single query.
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2.7 Visual Place Recognition Using Feature

Selection

The place recognition process might be muddled by the use of ob-

fuscating signals introduced by features taken from things that are

universal across geographies. Windows, fences, and trees all fall un-

der this category since they may be found in a wide range of places

and are clearly distinguished from one another. Attempts have been

made to use geotags in the database to choose attributes that are dis-

criminatory with respect to location. Schindler et al. [111] to created

a word tree with information specific to their geographic area. Doer-

sch et al. [30] look for geographic patches that are both common in

a given location and distinct from those in other regions, rather than

trying to identify characteristics that are particular to a single land-

mark. Even the post-processing phase of geometric verification used

by most retrieval methods to whittle down the candidate set may be

fooled by pervasive components. It is possible that the number of

inlier matches between a query and a non-related picture is greater

than that between the query and its related images due to ubiqui-

tous components. Generic structures with recurring patterns are of-

ten to blame. Addressing this issue, Sattler et al. [109] offer a feature

weighting approach that compares photographs on the shortlist with

their accompanying GPS-tags to discover and down-weight such ge-

ometric bursts.

Using a Global Positioning System (GPS) tag associated with a train-

ing query, [63] selects a collection of positive examples based on pho-

tos that are physically located within 50 meters of the tag. Geometric

verification is used to further narrow down the positive choices, given

that photos with the same GPS coordinates may be captured by just
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angling the camera in a different direction. In order to provide coun-

terexamples, the authors simulate the picture geo-localization proce-

dure inside the training batch, selecting as a negative candidate the

best image that was received at least 225 meters distant from the

GPS position of the training query at each iteration. The layout of

PBVLAD-based predictor features is shown in the referenced figure

2.9.

Figure 2.9: PBVLAD approach [63]. Given an input query image with
an unknown geo-location (a), MSER regions and SIFT keypoints form
bundled features, which are then represented by PBVLADs (b). Fea-
tures go through a pre-trained bank of SVMs that outputs binary pre-
dictions about a feature being “good” for geo-localization (c). Predic-
tions are accumulated to compute confidence scores for each feature
(d, left). Features with high scores are selected for geo-localization
(d, right). A retrieved geo-tagged image is shown in (e).

Our methods (Chapters 5 and 6) are explicitly trained to discrim-

inate geographically ubiquitous visual elements; they automatically

discover them and adjust their weights in our image representation.

2.8 Discussion

In this thesis, our goal is to propose efficient visual place recognition

methods. We apply the same logic to works whose distinguishing

features are [63, 8, 55, 43]. Prior to selecting features, we must first

identify robust image representation methods for determining which

features are relevant or not for an input image.

43



2.8.1 Mini-Batch VLAD for Visual Place Retrieval

To begin, we address the issue of computational expense caused by

the high dimensionality of visual features used in representation for a

visual place retrieval task. There have been a lot of studies written on

how to get better retrieval results. When it comes to encoding images

in a retrieval system, Jegou et al. [57] suggest a method known as

the Vector of Locally Aggregated Descriptor (VLAD). VLAD is based

on a vector representation of an image that aggregates SIFT [77] de-

scriptors using a locality criteria in the feature space. To fix the ineffi-

ciency of the VLAD retrieval system, the team developed HVLAD [32].

Growing the vocabulary from hundreds to hundreds of thousands of

words may improve search accuracy, but at the expense of a signif-

icant increase in computation cost when using flat quantization. To

strike a balance between the discriminability of the descriptors and

the computational complexity of the model, they suggest a hierarchi-

cal multi-VLAD. They built a tree-structured hierarchical quantization

(TSHQ) to speed up the VLAD calculation while dealing with a large

vocabulary. An approach for indexing the SIFT descriptors of discov-

ered SIFT [146] interest points in reference images is proposed by Za-

mire and Shah. The query image’s discovered SIFT descriptors are

used to pinpoint the tree’s location. Each query descriptor has a vote

for where its closest neighbor is located in the query image, allow-

ing for accurate localization. Kim et al. propose a Per Bundle Vector

of Locally Aggregated Descriptors (PBVLAD) for feature representa-

tion, wherein a vector of locally aggregated descriptors (VLAD) [63] is

used to characterize a maximally stable (MSER) [82] region based on

multiple scale-invariant features (SIFT) [77] detected in that MSER.

Unfortunately, huge datasets with many items, like street view, are in-

feasible for the currently available approaches, which all concentrate
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on increasing retrieval accuracy. As a first contribution, we look at

using mini batch k-means in VLAD [57] to address the dimensionality

issue with visual vectors. We provide a computationally cheap and

effective approach for retrieving images.

2.8.2 Aggregated Binary Local Features for An Effi-

cient Visual Place Retrieval System

The second main contribution of this thesis is the suggestion of using

aggregated binary local features to solve the issue of efficient image

retrieval. The study that comes closest to ours is on aggregating bi-

nary local descriptors for image retrieval [38], but it focuses on a differ-

ent aspect of the problem. In order to boost retrieval performance, the

authors of [38] investigate how aggregations of binary local features

interact with the CNN pipeline. As part of our contribution, we explore

the use of binary features with aggregated representation for visual

location retrieval as a means of lowering the cost of feature extraction

and representation. Furthermore, very high-dimensional descriptors

like the "bag of visual words" [118] and the Vector of Locally Aggre-

gated Descriptors (VLAD) vlad are required to get excellent retrieval

accuracy on such datasets. Retrieval challenges often include aggre-

gating VLAD [57] into smaller, more manageable descriptions. As a

result of the binarized VLAD’s efficiency in computing the Hamming

distance [38], we retransmitted the compressed to binary aggregated

descriptors. with the goal of improving retrieval accuracy for a mas-

sive image database.
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2.8.3 Predicting Good Features Using A Hybrid Fea-

ture For Visual Place Recognition

Visual geolocalization is a well-researched topic, and many studies

have been conducted. The closest research to ours, are the visual

geolocalization applications focusing on city-scale methods and us-

ing an image-retrieval technique to solve the problem [50, 8, 55, 63].

Basically, the image geolocalization process has two steps. One is

the feature extraction and representation step, and the second is com-

puting the similarity between input and image and reference dataset.

Many retrieval-based solutions use handcrafted methods for feature

extraction steps such as SIFT [77], which are robust against the vari-

ability between the input image and the reference dataset. Zamir and

Shah [146] constructed image representations using local invariant

features [77].However, SIFT is designed to to produce a huge num-

ber of descriptors for each data point, making a similarity search com-

putationally expensive. Feature aggregations such as the VLAD [57]

are performed to reduce the dimensionality of the descriptor vector

and confirm particular features that are most valuable for the visual

geolocalization task. Jegou et al. [57] introduced VLAD for an image

retrieval system. In VLAD, the final descriptor includes the difference

between a feature and the closest visual word to that feature. More-

over, the implied idea behind VLAD representation has inspired many

studies [63, 8, 5]. Kim et al. [63] Kim et al. introduced the per-bundle

VLAD (PBVLAD) approach. In PBVLAD, local SIFT features are dis-

covered inside MSER. Furthermore, Mini Batch VLAD [5] is an exten-

sion of VLAD [57] they applied to use mini-batch k-means clustering

between two vectors instead of using k-means clustering. Traditional

approaches such as VLAD[57], PBVLAD [63], Mini Batch VLAD [5]

and SIFT [146], on the other hand, are unable to capture higher-level
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structural information.

In comparison to traditional methods, deep-learning-based algorithms

have recently demonstrated promising performance in extracting fea-

tures in computer vision tasks. Deep learning is based on extracting

high-level features using multi-layer networks, which are more resis-

tant to changes in appearance. Sunderhauf et al. [?] used AlexNet

[67] to extract features from the ImageNet dataset. PCANet was pro-

posed by Xia et al [138]. for extracting features as picture descriptors.

Sun et al. [121] suggested a CNN-based point-cloud-based place

recognition task. Camara et al. [16]introduced a two-stage visual

place recognition system that encodes images using the activations

of multiple VGGNet layers. SequeezNet [54] is a neural network with

fewer parameters and a smaller size. Even if those methods are ex-

cellent, the networks utilized were built for picture classification tasks

and are not ideal for image geolocation tasks.

The models employed to extract these traits aren’t built to deal with

the drastic changes in the environment that are prevalent in visual

geolocation assignments. Deep-learning-based approaches such as

NetVLAD [8] and PatchNetVLAD [50] have demonstrated promising

performance in visual localization tasks. NetVLAD [8] is a VLAD

layer that is added to the end-to-end architecture. The convolutional

neural network (CNN) is cropped in the last layer, and we create a

new layer based on VLAD [8]. PatchNetVLAD [50] is a recently pro-

posed visual place recognition algorithm. PatchNetVLAD [50] obtains

patch features from the NetVLAD residuals and uses them to exploit

the local and global descriptors. Features are matched in Patch-

NetVLAD utilizing joint closest neighbors and geometric verification

using RANSAC. However, those methods are computationally expen-

sive, and when the number of features is lowered, consistent retrieval
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performance cannot be maintained.

To capitalise on both handcrafted and deep-learning methods, some

works have combined CNN descriptors with local detectors. In that

event, as in the VLAD method, features extracted are gathered into

a single descriptor. However, all convolutional and fully connected

representations are computationally expensive by requiring the large

number of parameters. In our current study, conversely, we concate-

nate the features after fusing the deep and handcrafted features to

overcome the limitation of computational cost in the previous repre-

sentations. We solve the problem by extract multiple patches using

pretrained deep learning representation combine with hand crafted

representation. To this end, we combined different methods of hand-

craft [77, 57, 63, 5] with two deep learning methods, AlexNet [67]

and SqueezeNet [54] for the feature extraction and representation

phases. Also, one advantage of our hybrid representation is effec-

tiveness when used with classifier, as we cast the geolocation prob-

lem as a classification task.

However, not all image content is useful or relevant for geolocaliza-

tion, and it requires the elimination of misleading information. To ad-

dress this problem, researchers have attempted tofeature selection

as a classification problem [63]. Other works have tried to dismiss

features appearing in multiple geographical places [61]. There has

also been work on feature selection for the tasks of image retrieval.

Conversely, to predict a useful feature for geolocalization on a city

scale, Kim et al. [63] have trained a bank of SVMs. Kim et al. [63]

employ geotagged images from social media platforms to generate

their own training data. Our work is closely related to that of Kim et

al. [63], but with different focuses. Similarly, Kim et al. [63] attempt to

predict useful features to find.the correct geolocalization, leading to
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improved performance in terms of robustness, we show in our Experi-

ment with making geolocalization performance more efficient in terms

of searching time.robustness and accuracy while reducing a range of

features.

2.8.4 Efficient Visual Place Recognition System by

Predicting Unique Features

Although geolocation is used to select related street-view images,

there is no visual match ground truth in this sample.Positive and neg-

ative samples of images captured with a geotag reader are used for

training. NetVLAD [8] uses a learnable layer based on VLAD [57]

to aggregate local descriptors and allocate them to cluster centers.

Using context-aware feature reweighting and effective hard negative

mining, CRN [55] chooses the best contexts for localization. Utiliz-

ing a self-supervised approach based on image-to-region similari-

ties, SFRS [43] uses the NetVLAD infrastructure. The algorithm is

able to locate challenging positive images with the use of these com-

monalities, which create soft labels. A patch-based local descrip-

tor approach, Patch-NetVLAD [50] reorders the top 100 results from

NetVLAD. Multiple studies [63, 8, 55] have shown that training with

negative examples forced by these approaches results in accurate

localisation. However, there is no theoretical basis for the claim that

eliminating negative traits would result in subpar localization accu-

racy.

In addition, the calculation involved in determining if two features are

comparable is an issue for all of these approaches. In contrast to

previous approaches, we predicted unique features by selecting fea-

tures from negative cases during an offline phase. We were able to

minimize the number of features while maintaining accurate image
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recognition using this method. The retrieval phase is completed with

enough precision and at a reasonable computational cost.

2.9 Visual Place Recognition and Retrieval

Datasets

2.9.1 Visual Place Retrieval Datasets

In our research, we focus on geolocating and retrieving images on

a challenging outdoor environments, so we consider datasets that

cover only one city. Visual place retrieval is evaluated using standard

benchmark datasets such as the Oxford5k 1 ,and Paris6k 2 datasets.

These benchmark datasets are very small. For instance, the 55 query

images of 11 instances each that were included in the first releases

of the Oxford5k and Paris6k datasets in 2007 and 2008 respectively

are still frequently utilized today. Both datasets only include images

from one city, therefore their findings may not apply to other areas

[135]. While there are other single-city imagery datasets, such as

Rome 16k3, San Francisco Landmarks 4; 24/7 Tokyo(not avalible on-

line) and Paris500k 5, these datasets are not freely available for public

use. The datasets mentioned thus far are summarised in Table 2.2.

1https://www.robots.ox.ac.uk/ vgg/data/oxbuildings/
2https://www.robots.ox.ac.uk/ vgg/data/parisbuildings/
3https://sites.google.com/site/greeneyesprojectpolimi/downloads/datasets/rome-

landmark-dataset
4https://exhibits.stanford.edu/data/catalog/vn158kj2087
5https://www.vision.rwth-aachen.de/page/paris500k
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Table 2.2: Geotagged, city-scale datasets for visual place-retrieval
[135].

Dataset name Year Landmarks Test Index Annotation
Oxford 2007 11 55 5k manual
Praise 2008 11 55 6k manual

Rome 16k 2010 69 1k 15k geotag+sfm
San Francisco 2011 - 80 1.7m street view

24/7 Tokyo 2015 125 315 1k smartphone
Paris500k 2015 13k 3k 501k manual

2.9.2 Visual Place Recognition Datasets

Season, perspective, and lighting all play a role in the variety of datasets

offered by the academic community in the field of visual place recog-

nition. In general, there aren’t a lot of databases that can be used

for accurate visual geo-localization. In this section, we identify the

datasets that will be useful for evaluating and contrasting different

kinds of visual geo-localization methods. There are several datasets

for city-scale surroundings that may be downloaded from websites

like Flickr, Panoramio, and Google Street View.

Google Street View Dataset

The Google Street View Dataset 6 introduced by Zamir and Shah

[147] includes 102k images that were collected in a completely auto-

mated way from the Google Street View website, mostly in the cities

of Pittsburgh, Pennsylvania, and Orlando, Florida. There are com-

plete 360-degree panoramas in this collection, with around 12 me-

ters separating adjacent spots. Each placemark in the database is

represented by five images: four from the side and one from above.

This dataset simply includes the image and its coordinates; no other

6http://crcv.ucf.edu/projects/GMCPG eol ocal i zati on/
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Figure 2.10: An example of panorama image from Google Street View
[147].

information, such as the ground truth, is provided.

IM2GPStestsets

Six million geo-tagged images were downloaded from the Flickr site

and used to train the IM2GPS [51] method developed by Hays and

Efros citeim2gps. The test sets, which each consist of a few hundred

images, may be seen in their entirety on the website. 7

Pittsburgh 250k

In the field of visual geo-localization, the Pittsburgh 250k dataset [8] is

often used as a standard. It has 250k Google Street View screenshots

that were downloaded to it. 24k requests for images from Street View

at various times of day and years. You must make a special request to

access this dataset. Pittsburgh 250K, comprised of 254,064 images

from GSV, was utilized to create the geotagged reference dataset.

Images were shot in 10,586 distinct spots, mostly in Downtown Pitts-

burgh, with a 640x480 pixel resolution. Images were shot from two

different heights and angles at each location: floor level (0 degrees)

and 30 degrees above the ground.

7http://graphics.cs.cmu.edu/projects/im2gps/
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Tokyo 24

The Tokyo 24 [125] dataset presents significant difficulties. Daytime

Google Street View images make up the bulk of the 76k included in

the collection. The 315 images included in the query were all shot with

either low or very high lighting. Further, access to this data collection

is restricted and must be requested.

2.9.3 Geo-tagged Image Collection

As we see in the preview section, there is a paucity of available data

sources for the task of visual geo-location. Datasets tend to cover

more than just the one city, and some of them are not freely avail-

able, or do not include GPS tags. Our work in this thesis requires a

geotagged dataset of images covering the same geolocation as the

reference dataset [147]. We therefore propose to collect own geo-

tagged images from social media platforms. The output can be di-

vided into two categories: 1) Flickr Images, and 2) Metadata. The

metadata includes information such as photo IDs, titles, bookmarks,

comparisons, designs, and the photographer. Textual information (ti-

tle, symbol, description) is provided by the user, but location data is

provided in two ways: 1) by in-camera GPS receiver, 2) by internet

services.

Our geotagged dataset contains 720 images that can be used for

training, and 100 images for testing. The images can be used for

many computer vision tasks such as place retrieval, visual place recog-

nition, and image classification. The images include street-level im-

ages taken from multiple perspectives, at different but nearby loca-

tions. Our collected images cover cityscape views, major buildings,

and outdoors landmarks in Pittsburgh, PA. The Flicker API allows im-
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Figure 2.11: A set of images from our collection of geotagged images
from Flicker API

.

Figure 2.12: Distribution of the area in Pittsburgh city, PA that covered
the same area in Google Street View Dataset. [147]

ages to be selected by tag. For example, we can search by objects,

places and buildings such as lamp-post, pizza, church, etc. For our

dataset, we searched by GPS tag, using geo-location (latitude and

longitude) from the Google Street View Dataset provided by Zamir

and Shah [147]. Figure shows the distribution of the covered area

in Pittsburgh, PA from [147], that we used the same GPS tags for

searching about images.

The search returned many duplicate images, which we removed.

Finally, we manually reviewed the obtained images in order to re-

move all images that did not meet the content criteria, e.g. indoors

shots, lacking buildings, too abstract, or otherwise inappropriate for
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describing the actual place. The resulting dataset comprises relevant

images with approximate location tags in their filenames. Note that

images used for testing have manually verified GPS-tags. For more

details about collecting images and implementation details, see the

Appendix.

2.10 Evaluation methodology

2.10.1 Evaluation metric for visual retrieval

Average Precision (for each query) and Mean Average Precision (for

all query) are the most widely used in content baaed image retrieval

field. If the retrieval method as a solution of recognition task, ROC

curve and AUC are applioed as the measure. They also reflect both

precision and recall information. In our research, we follow the same

evaluation method in [63, 8]. They used Mean Average Precision and

ROC curve to evaluate the accuracy for retrieval method.

2.10.2 Evaluation metric for visual place recognition

For our assessments, we use the standard evaluation as [63, 8, 55,

43, 50]. If at least one of the best N images returned by the search is

within d =25 meters of the query, then the localization is considered

accurate. The proportion of properly localized queries over all values

of N is called the recall@ N .
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Chapter 3

Mini-Batch VLAD for Visual

Place Retrieval

This chapter includes the first contribution to this thesis. In terms

of improving the efficiency of a visual place recognition system, this

chapter investigates the visual place retrieval of an image query us-

ing a geotagged image dataset. Then, we compare and visualize

the results of our proposed method (Section 3.3). We also compare

popular approaches proposed in the literature that tackle the visual

place recognition problem using traditional extraction solutions (Sec-

tion 3.4). Most of this chapter was taken from our paper, "Mini-Batch

VLAD for Visual Place Retrieval" [5].
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3.1 Introduction

3.1.1 Motivation

The availability of images with their geolocations, coupled with addi-

tional information (e.g., text, time stamp,etc.), has led to many appli-

cations such as object geo-localization [68] and flood monitoring [1].

However, many images lack accurate (or any) GPS information; for

instance, tweets often include GPS information about where people

tweet, but pictures posted in a tweet may have no GPS tag. In order

to recover lost GPS information, Bulbul et al. proposed to query the

Google Street View image database [13].

In general, the pipeline for recognizing a certain place using a single

visual query has three successive steps. This pipeline is applicable

to large datasets, such as city-scale First, regions are located in the

query image. Second, descriptors are generated over these selected

regions in order to provide an accurate representation of the query

image. Finally, this representation is matched against geotagged im-

ages in the reference dataset, and the GPS information of the re-

trieved reference is obtained for the query image (see chapter 2)).

Local Scale Invariant Feature Transform (SIFT) [77] has been used to

describe interesting parts of images with powerful features. SIFT is

also robust to photometric and geometric changes [72, 146]. There-

fore, SIFT has an important role in image retrieval. The Vector of

Locally Aggregated Descriptors (VLAD) [57] have been shown to be

powerful local features for image geo-localization and retrieval. VLAD

represents an image as a single fixed-size vector using K-means clus-

tering. The issue, however, with VLAD is the dimensionality of visual

features and the computational load of sample distances in a large

image dataset.
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3.1.2 Contribution

In this chapter, we propose instead to learn VLAD by using mini batch

k-means clustering [112] (MBVLAD). One of the local features that

can be used for image place retrieval and recognition is the Vector of

Locally Aggregated Descriptors (VLAD). VLAD describes an image

by comparing its local feature descriptors to a previously computed

codebook. Generally, a visual codebook is generated from k-means

clustering of the descriptors. Among the works aimed at improving

local feature descriptors for visual place recognition, Kim et al. [63]

propose PBVLAD as a novel method to locally integrate SIFT features

detected with a Maximally Stable Region (MSER) blob [82]. Per Bun-

dle Vector Agregated Locally Vector (PBVLAD) is the name of the

descriptor. The purpose behind this descriptor is to find a robust local

feature descriptor against geometric and photometric changes. Each

MSER is described by VLAD based on multiple features detected in

the region. As an accumulation of variance between the descriptors

that are allocated to the visual word and the centroid, a sub-vector of

the PBVLAD was proposed. In fact, this processing takes place on

each image patch, which is time-consuming when computing VLAD

descriptors for large datasets.

In this chapter, our goal is to design an accurate image retrieval method

with affordable computation expenses. We focus on the dimension-

ality of visual features, which is not trivial, and the computational load

of sample distances in a large image dataset, which is challenging.

We propose to use mini-batch k-means clustering to compute VLAD

descriptors (MBVLAD). In particular, we try to improve local feature

descriptors for visual place retrieval by using an alternative cluster-

ing algorithm. We adopt the mini batch k-means algorithm that was

proposed by Sculley [112], to compute VLAD [57]. The mini batch k-
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means algorithm outperforms the original k-means algorithm on large-

scale datasets by lowering computation costs and data processing

time.

3.2 Design

3.2.1 Mini Batch Vector of Locally Aggregated De-

scriptors (MBVLAD)

In this section, we will discuss how to use mini-batch k-means clus-

tering in feature-based visual place retrieval. The pipeline of feature-

based visual place recognition entails three stages: First, select a

single query image with an unknown location as an input. Second, ex-

tracting features using SIFT keypoints. The final stage is to compute

a vector representation using the k centroids to match the database.

Figure 3.1 depicts the proposed pipeline used in this paper. The fol-

lowing sections discuss each pipeline stage in detail.

3.2.2 Mini-batch K-means

Our goal is to retrieve images using parts of an input image for geo-

localization. One challenge of feature learning is the scale of the

dataset. In the case of learning from a city dataset, the computa-

tional load is very high. Here we propose a Mini Batch Vector of Lo-

cally Aggregated Descriptors (MBVLAD). The key idea is to aggregate

features using a vector with a fixed size and to learn the vocabulary

words using the mini-batch K-means clustering algorithm. In this way,

we reduce computational load, and it is still convenient to use stan-

dard distance measures to retrieve relevant images.

The concept of a mini batch k-means algorithm was proposed by Scul-
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ley [112], in two iterative steps. The first step is to form a mini-batch by

taking samples randomly from the dataset, and then each sample in

the mini-batch is assigned to its nearest centroid. In the second step,

the centroids are updated as the mean over their associated samples

in the mini batch. These two steps are then repeated for several iter-

ations. It should be kept in mind that the number of iterations used in

the mini batch k-means algorithm affects clustering quality: the more

iterations used in the mini batch k-means algorithm, the better the

clustering result quality. See the algorithm for more details 1.

Figure 3.1: Our proposed pipeline to process a input (query) image.

Algorithm 1 Mini batch k-means clustering.
Given k, mini-batch size m,iterations t , dataset X
Initialize each c ∈C with an x picked randomly from X v ← 0
for i = 1 → t do

S ← b
for x ← S do

d [x] → f (C , x) //Cache the center nearest to x
end
for x ∈ M do

d [x] ← c // Get center for this x temporary
v[c] ← v[c]+1 // Update per-center counts
η← 1

v[c] // Get per-center learning rate
c ← (1−η)c +ηx // Take gradient step

end
end
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Figure 3.2: Mini K-means Clustering.

3.2.3 Vector of Locally Aggregated Descriptors (VALD)

The original VLAD approach [57] builds a codebook dictionary C =

{c1,c2, . . . ,ck } from m Ê k feature vectors in the reference dataset. To

generate the dictionary, a k-means clustering algorithm is used. For

an image having m descriptors I = {x1, · · · , xm}, the VLAD coefficient

Vi is computed by accumulation over these descriptors in cluster ci :

Vi =
∑

x∈I /q(x)=ci

x − ci (3.1)

where q(x) is the cluster associated with x.

The final VLAD representation is a concatenation v = {v1, . . . , vi , . . . , vk }

followed by L2 normalization v : v/∥v∥→ ṽ . Thereafter, VLAD encodes

features by computing the residuals [7], and the residuals are stacked

together as vector v . In this study, we propose to replace the set of

centroids inferred by k-means ci algorithm [112] with cmi the cluster

centers from mini batch k-means. When generating the dictionary,

a mini batch k-means algorithm is applied. Clustering input data are

unnormalized SIFT descriptors before adding them into mini batches.

When the dictionary is generated, two normalizations are applied to

compute the final VLAD. First, the power law normalization Vu is ap-

plied: for u = {1, . . . ,K d}, Vu = si g n(Vu)|Vu |α [57]. Then L2 normaliza-
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tion is used.

The similarity grouping is performed by distance measurement.

We apply Euclidean distance to compute the similarity metric. When

searching for the closest VLAD vector, the one with the lowest Eu-

clidean distance is selected.

The dimension of MBVLAD can be reduced when searching for the

nearest neighbor by using Principal Component Analysis (PCA). We

fit PCA in offline mode and then transform all MBVLAD feature vectors

in the dataset. PCA is performed on subvectors vi derived from each

visual word ci . We generate a coarse vocabulary of 128 visual words

(16,384-dimensional MBVLADs in raw form). Thereafter, some major

components are used to reduce the dimensionality of VLAD vectors

using 128 visual words.

Figure 3.3: VLAD method.

3.3 Experimental Assessment

3.3.1 implementation deatails

We implement our method using Python 5.3. Local features that were

extracted by using OpenCV (Open Source Computer Vision Library)

[12]. In our experiment, we set the maximum number of iterations

over the complete dataset to 100 and the size of the mini batches m
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to 500,000. Typically, the VLAD vector size is kxd-dimensional. In

our experiment, k ranges from 16 to 128 and d is 128.

3.3.2 implementation detset

For standalone MBVLAD descriptor evaluation, the Oxford building

dataset [102] was used. It is usually called the Oxford 5K. It consists

of several image subsets, assembled together by an image quality

measure (mainly the percentage of represented object visibility), with

each image set partition labeled as {g ood ,ok,ug l y,bad}. Additional

images placed in query subset served as the query test set. However,

we used the entire dataset to compute the visual dictionary to get the

best possible distribution for the calculation of the cluster centroids

while clustering.

3.3.3 Experimental results

Performance is evaluated using the mean average precision (mAP),

which is the mean of the average precision scores for each query.

We evaluate the proposed descriptor MBVLAD on Oxford building

datasets (Sec. 2.9) and obtain good mAPs compared to the state of

the art for uncompressed descriptors (Sec. 3.3.3), compressed de-

scriptors (Sec. 3.3.3). The robustness of our approach to the choice

of centroids is evaluated in paragraph 3.3.3.

On Uncompressed VLAD

Table 3.1 shows the image retrieval performance of uncompressed

VLAD [57] and PBVLAD [63], HVLAD [32] and MBVLAD (our). VLAD

vectors are typically k by d-dimensional.We use d = 128 in all ex-
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periments. The adapted method has a significant improvement over

other methods in terms of improving local feature descriptors. Com-

paring with PBVLAD, our method increases the retrieval performance

for image geo-localization by 11%. Figure 3.6 shows examples of our

successful retrieval images with high accuracy (true-retrievals / total-

images).

Table 3.1: Comparison of the mean Average Precision (mAP) per-
formance of several (uncompressed) VLAD signatures evaluated on
the Oxford dataset. Note that, by applying VLAD [57], the result is
changed every time when computing the codebook. All the results in
this table show the highest result achieved.

Descriptor # Vocabulary mAP
VLAD[57] 128 0.33

PBVLAD[63] 128 0.36
HVLAD[32] 128 0.40

MBVLAD(Our) 128 0.47

Figure 3.4 shows the mAP in graphical form. The greater the

area under the curve, the higher the reported mAP metric. The curve

is generated by applying step-by-step thresholding to the prediction

scores. The overall mAP score is 0.47 when we calculate the precision-

recall curve. The mini-batch algorithm is more robust to the noise

introduced by the random selection of initial centroids, and retrieval

performance is not affected.

On PCA compressed VLAD

Table 3.2 shows the retrieval performance of MBVLAD on the Ox-

ford5k dataset, before and after the dimensionality reduction using

PCA (k= 128, 64, 32, 16, 8). MBVLAD achieves 0.47, which outper-

forms other feature selection approaches in the literature.
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Table 3.2: Retrieval performance of (our MBVLAD) on the Oxford
5k dataset [102], before and after the dimensionality reduction us-
ing PCA (128 vocabulary size). The performance is measured by the
mean Average Precision (mAP). Note that we only compare our re-
sults with the PBVLAD method because they computed their results
after the dimensionality reduction in their work [63].

Methods Full(16384 ) (8192) (4096) (2048) (1024)
PBVLAD [63] 0.36 0.36 0.33 0.26 0.21

MBVLAD (ours) 0.47 0.44 0.40 0.43 0.39

Figure 3.4: The curve shows the mean average precision for our pro-
posed method (MBVLAD).

Sensitivity to initial centroids

When the visual dictionary is generated again, the initial centroids

from the mini batch k-means algorithm can be different every time.

Table 3.3 shows the mAP for five runs, leading to an average mAP of

0.444 with a standard deviation of 0.0152. Significant improvement

is observed in comparison with the state of the art (see Tab. 3.1 for

comparison).
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Figure 3.5: The curve shows the mean average precision for VLAD
[57].

Table 3.3: Retrieval performance of (our) after generating the visual
dictionary for five times.

Run Times # Vocabulary D mAP
1st 128 16384 0.47
2nd 128 16384 0.44
3r d 128 16384 0.43
4th 128 16384 0.44
5th 128 16384 0.44

3.4 Conclusion

In this chapter, we address the problem of finding visual places in a

city area using a query image. We propose a mini-batch VLAD de-

scriptor with the goal of improving the performance of a visual place

retrieval system under the challenges of geometric changes. Com-

pared with the original K-means clustering approach, MBVLAD has

a significant improvement in image retrieval accuracy. The fact that
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Figure 3.6: Example results (uncompressed MBVLAD): Query im-
ages (left) with different sizes, (right) Top 20 retrieved images using
our proposed MBVLAD [5].

clustering output is not deterministic and is influenced by initial cen-

troids is a major challenge for the k-means algorithm. From experi-

ments, we find that the mini-batch version is more robust to the ran-

domness of initial cluster centroids as well as significantly reducing

computational load.
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Chapter 4

Aggregated Binary Local

Features for An Efficient

Visual Place Retrieval System

In the second contribution, we apply an aggregated binary descriptor

(Oriented FAST and Rotated BRIEF (ORB)) with a Mini Batch Vector

of Locally Aggregated Descriptor [2] for visual place retrieval. Most of

this chapter is published at IMVIP 2020 [2].
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4.1 introduction

4.1.1 Motivation

The majority of currently available retrieval systems (like SURF [11]

and SIFT [77] ) depend on local visual characteristics and approxi-

mate closest neighbor search techniques to locate relevant results.

Descriptors of local visual features are compared or searched for be-

tween individual images. Due to the inefficiency of comparing each

descriptor separately, these approaches are best used with very small

datasets. In order to cut down on the expense of extracting and

matching local visual descriptors, researchers have begun using bi-

nary local descriptors like (BRISK and ORB) [38]. The extraction of

binary descriptors is substantially faster and more compact than that

of non-binary ones [38].

Vector of Locally Aggregated Descriptors (VLAD) [57] is a widely-

used technique for aggregating local features. Each visual word’s

residual distance from its cluster center is calculated using VLAD. Al-

though VLAD [57] is characterized by non-binary features like SIFT

[77], the cost of extracting and aggregating local descriptors remains

significant. VLAD is one of the most time-tested approaches to lo-

cation detection and image retrieval. The descriptor, a relatively one-

dimensional vector, is meant to characterize the whole image. The ex-

traction of D-dimensional descriptors from affine-invariant detections

leads to the construction of a visual vocabulary, which is then clus-

tered into k centers. When searching an image with n local descrip-

tors, the residual from each descriptor to each cluster center must be

determined. The residual is then aggregated across clusters and con-

verted into kD-dimensional vectors. The original Euclidean distance

is used to evaluate all image vectors [57].
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To enhance visual place retrieval, in the previous chapter, we formally

introduced MBVLAD [5]. The central concept of MB-VLAD is to learn

vocabulary words using a mini-batch k-means clustering technique

and to aggregate features using a vector of fixed size. This reduces

the amount of work needed to find relevant images, and yet it’s still

easy to utilize already familiar distance metrics. Principal Component

Analysis (PCA) is used to minimize the number of parameters.

In this section, we present an approach to improve the efficiency of

the retrieval system in locating the desired visual place within a large

database.

4.1.2 Contribution

In the previous chapter, we showed that our proposed MBVLAD [5]

is considerably computationally expensive with a large and confusing

dataset such as street view images. The problem may come from the

computational processing during similarity measurement. To over-

come this limitation, we propose to aggregate binary local features

that apply Hamming distance. By conducting basic binary compar-

isons between pixels, binary features may be retrieved rapidly. These

processes are relatively computationally inexpensive, and it has been

demonstrated that binary feature extraction is faster than gradient-

based local feature extraction. In this chapter, binary features are

combined into a single vector to achieve efficient image representa-

tion by using MBVLAD [5]. To accommodate the fact that binary fea-

tures are composed of sequences of bits, min batch k-means cluster-

ing has used Hamming distance in place of the more typical Euclidean

distance. The computational load of representing an image is light-

ened by techniques like feature extraction and quantization. In order

to evaluate the computational efficiency of our proposed method, we
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compared the results with non-binary methods such as MB-VLAD [5]

and SIFT [146]. The datasets used are Google Street View datasets

[147] and Oxford 5K datasets [102]. Our experimental results mea-

sured with search accuracy (mAP) and search time (s) show that

our ORB-MBVLAD is significantly faster with good search accuracy

(mAP) compared to our MBVLAD and the other state-of-the-art meth-

ods.

4.2 Design

4.2.1 Aggregated binary local descriptor ORB-MB-

VLAD

In this section, we describe how to aggregate a binary descriptor us-

ing mini-batch k-means clustering in feature-based visual place recog-

nition. The feature-based visual place recognition pipeline consists of

three stages: First, as an input, a single query image with an unknown

location is queried. The second step is to extract local features using

Oriented FAST and Rotated BRIEF (ORB) keypoints [107]. To match

the database, the final stage is to compute a vector representation

using the k centroids [5]. The proposed pipeline used in this chapter

is depicted in Figure 4.1. Each pipeline stage is discussed in detail in

the sections that follow.

4.2.2 Oriented FAST and Rotated BRIEF (ORB).

Oriented FAST and Rotated BRIEF (ORB) were first presented in

2011 by E.Rublee et al. [107]. ORB [107] is based off of two other

popular tools: the FAST keypoint detector and the BRIEF description.
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Figure 4.1: Our proposed Aggregated binary local descriptor ORB-
MBVLAD method [2]. (a) The query image. (b) Extracting local binary
features using Oriented FAST and Rotated BRIEF (ORB) [107]. (c)
Aggregated local binary features descriptor using [5]. (d) Retrieved
most similar geo-tagged images to (a) as a result.

Both methods are appealing due to their high efficiency and inexpen-

sive price tags. The ORB algorithm starts by finding the position of

the key points by FAST and then selecting the N best points. After

that, it adds the direction of the points in intensity centroids. Finally,

binary descriptors are extracted by BRIEF, and low-correlative pixel

blocks are found by the greedy algorithm.

FAST(Features from Accelerated and Segments Test)

For each pixel in an array denoted by i , FAST calculates the average

brightness of the 16 pixels in a concentric circle around i . The pixels

inside the circle are then sorted into one of three categories (brighter

than i , darker than i , or the same as i ). In order to determine if a given

pixel is a keypoint, we look at the surrounding pixels and choose the

ones that are significantly darker or brighter than i if there are more

than 8. Therefore, the fast-revealed keypoints inform us where to look

for the image’s edges to be determined.

Multiscale and orientation components are missing from FAST fea-
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tures. In order to do this, the orb method uses a multiscale image

pyramid. A multiscale depiction of a single image, an image pyramid,

consists of successive images of progressively lower resolution. The

image is downsampled at each level of the pyramid. After the pyra-

mid is constructed, the fast method is utilized to identify important

landmarks in the image. ORB is successfully identifying keypoints

at each scale, allowing it to pinpoint their locations. In this sense,

ORB exhibits some scale invariance. Assign each keypoint an ori-

entation, such as left or right-facing, depending on how the intensity

levels change around that keypoint after it has been found. Using the

intensity centroid, Orb can detect subtle variations in brightness. The

intensity centroid makes the assumption that a corner’s intensity is

not centered and uses the resulting vector to deduce its direction. To

begin, a patch’s moments are defined as:

mi q =∑
x,y

xi y q I (x, y) (4.1)

We can determine the orientation of corners by using the intensity

centroid of an image patch:

C = (
m10

m00
,

m10

m00
) (4.2)

From the center of patch to centroid the angle is given by:

at an2(
m10

m00
,

m10

m00
) = at an2(m01,m10) (4.3)

After calculating the patch’s orientation, To get rotation invariance, we

may apply a canonical rotation and then calculate the descriptor.

74



BRIEF(Binary robust independent elementary feature)

In order to represent an object, BRIEF takes all of the keypoints found

by the fast approach and transforms them into a binary feature vec-

tor. The integers 1 and 0 make up a binary feature vector, sometimes

called a binary feature descriptor. Put simply, a feature vector, a string

ranging in size from 128 bits to 512 bits, is used to represent each in-

dividual keypoint.

To make the descriptor more robust against high-frequency noise,

Figure 4.2: Binary features vectors in ORB [107].
.

BRIEF first applies a Gaussian kernel to the image for smoothing.

Once that’s done, choose any two adjacent pixels within a certain

distance of that landmark. A pixel’s surrounding area is defined by

a square patch whose width and height are specified in pixels. The

first member of each random pair is selected from a Gaussian dis-

tribution with a stranded deviation or spread of sigma centered on

the keypoint. The second member of the random pair is drawn at

random from a Gaussian distribution with mean zero and standard

deviation sigma/2, where sigma is the standard deviation of the dis-

tribution. Bits are assigned to 1 if the first pixel is brighter than the

second and 0 otherwise. Once again, BRIEF picks a random cou-

ple and gives them value. For a 128-bit vector, rapidly repeat this

procedure 128 times using the same keypoint. To sum it up, you
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should generate a vector like this for each of the image’s landmarks.

However, ORB uses RBRIEF since BRIEF is not rotationally invariant

(Rotation-aware BRIEF). ORB aims to implement this feature without

slowing down BRIEF’s performance.

4.2.3 Mini Batch Vector of Locally Aggregated De-

scriptor (MBVLAD).

For the aggregated phase, we use the extension of VLAD [57]. Vec-

tor of Locally Aggregated Descriptor represents an image by a sin-

gle fixed-size vector using k-means clustering. In [5], we previously

proposed learning VLAD by using mini batch k-means clustering to

retrieve a place from geotagged dataset. Mini Batch VLAD approach

[112] builds a codebook dictionary C = c1,c2, . . . ,ck from mk feature

vectors in the reference dataset. To generate the dictionary, a mini

batch k-means clustering algorithm is used. For an image having m

descriptors I = x1, . . . , xm, the VLAD coefficient Vi is computed by ac-

cumulation over these descriptors in cluster ci . The combination and

L2 normalization that make up the final VLAD representation. After

that, VLAD uses the residuals to encode the features. Then, the resid-

uals are stacked together as vector v . In MBVLAD [5], they used the

set of centroids inferred by mini batch k-means algorithm with cmi as

the cluster centers. Input data clustering begins with the use of binary

descriptors, which are then used to combine data in small batches.

When generating the dictionary, we use two normalizations to calcu-

late the final VLAD.
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4.3 Experimental Assessment

4.3.1 implementation details

Local features. For binary local features retrieved using OpenCV

(Open Source Computer Vision Library), we utilized ORB [107] in the

experiments. Up to 2,000 individual local features were discovered in

each image.

Visual Vocabulary. In order to construct the VLAD representations,

mini-batch k-means clustering techniques [112] were utilized to gen-

erate the visual vocabularies. Mini-batch k-means was used on the

binary features by first transforming them into real-valued vectors.

VLAD. To do this, we employed MBVLAD [5], our visual information

retrieval system, to calculate several encodings of the local feature.

Each of these representations has a common parameter, denoted by

the number K. It is the same as the total amount of "centroids" (visual

words) in an MBVLAD [5]. We also employed principal component

analysis (PCA) to lower the dimensionality of the VLAD. We use the

same inference from [5] in our experiment, limiting the total number

of iterations on the dataset to 100 and increasing the size of the mini

batches m to 500000. The usual dimension of a VLAD vector is kd.

The value of d=128 was used for this experiment.

4.3.2 Evaluation dataset

We applied ORB with Mini Batch VLAD on the image retrieval bench-

mark Oxford 5k dataset [102] and Google Street View Dataset[147].

The Average Precision (AP) score is calculated for each of the five

searches for a landmark in the Oxford 5K dataset [102]. The mean Av-

erage Precision (mAP) score is calculated by averaging these scores

(among 55 query photos). related landmark text tags. The connected
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ground truth answers 55 questions. We ran 5 searches on each of

the 11 landmarks. In order to assess the efficiency of feature combi-

nations at scale, we employed a large geotagged dataset in a chal-

lenging environment [147].

4.3.3 Experimental results

To quantitatively assess the results, we follow the same evaluation in

[146, 63, 38]. We compare the results with the state-of-the-art meth-

ods VLAD [57], PBVLAD [63], NetVLAD [8] and MBVLAD [5]. The

results are shown in Table 4.1. Note that we repeat our experiment

six times because we used k-means clustering, which has the unsu-

pervised nature of clustering. The average values of precision are ap-

plied. The performance is evaluated by the mean Average Precision

(mAP). The precision defines the relevant image retrieved numbers in

response to a query image (number of relevant images retrieved / to-

tal number of images retrieved). For query images, we select images

from the test dataset randomly. A visual vocabulary of 16 words and

128 vocabulary sizes is applied for all methods in both datasets. All

methods are evaluated without dimensionality reduction. For search-

ing time (s), the average response time (s) (retrieval time per query)

for each method was calculated. As can be seen in Table 4.2, the

suggested aggregated binary descriptor technique yielded faster re-

trieval performance. Our ORB-MBVLAD averages a retrieval time of

0.076 seconds on the Oxford 5k dataset [102] and 0.521 seconds on

the Google Street View image dataset [147].

We use a line chart to graphically represent numerical data as de-

scriptive statistics. The goal of the line charts is to graphically repre-

sent the distribution of numerical data, to highlight differences across
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approaches, and to demonstrate how close our methods are to state-

of-the-art algorithms. Line charts show that NetVLAD [8] achieves

the best search accuracy for both datasets; however, it is the slowest

method time compared with others. Our proposed method came in

second in terms of search accuracy, with a mAP 0.49 on the Oxford

5K dataset.

Table 4.1: Several techniques were put to the test on the Oxford 5k
dataset [102], and their results were compared in terms of their mean
Average Precision (mAP).

Method mAP time(s)
VLAD 0.33 0.364

PBVLAD 0.36 1.173
NetVLAD 0.51 1.255
MBVLAD 0.47 0.414

ORB-MBVLAD (Our) 0.44 0.076

Table 4.2: Several techniques were put to the test on the GSV dataset
[147],and their results were compared in terms of their mean Average
Precision (mAP).

Method mAP time(s)
VLAD 0.27 0.944

PBVLAD 0.32 1.384
NetVLAD 0.58 1.171
MBVLAD 0.41 0.722

ORB-MBVLAD (Our) 0.49 0.521

4.4 Conclusion

In this chapter, we offer a technique for efficiently retrieving visual lo-

cations by combining binary features. The suggested technique sig-

nificantly improved computing speed while losing just a little accu-

racy as compared to state-of-the-art methods. This was because the
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Figure 4.3: Comparison with state-of-the-art. The mAP perfor-
mance of Ours ORB-MBVLAD compared to VLAD [57], PBVLAD [63],
NetVLAD [8] and MBVLAD [5] on Google Street Veiw dataset [147].

Figure 4.4: Comparison with state-of-the-art. The mAP perfor-
mance of Ours ORB-MBVLAD compared to VLAD [57], PBVLAD [63],
NetVLAD [8] and MBVLAD [5] on Oxford dataset [102].

binary feature itself included a trade-off between accuracy and pro-

cessing performance. In addition to that, the suggested technique

surprisingly outperformed the MBVLAD method, which also used the

same representation method, in terms of both accuracy and comput-

ing efficiency. Finally, we anticipate that the proposed method will
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Figure 4.5: Time needed for computation. For the GSV dataset [147],
the mAP is shown against the time it takes to analyze a single query
image.

Figure 4.6: Time needed for computation. For Oxford dataset [102],
the mAP is shown against the time it takes to analyze a single query
image.

be able to replace the VLAD method in many computer vision tasks

where fast image representation is a requirement.
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Chapter 5

Predicting Relevant Features

Using A Hybrid Feature For

Visual Place Recognition

In the previous chapters, we made improvements in the retrieval tech-

niques by using MBVLAD and ORB-MBVLAD [5, 2]. However, when

the dataset gets larger, those techniques suffer from having to dis-

criminate between features from relevant and non-relevant images.

Also, the processing time is very expensive because of the huge num-

ber of features. In this chapter, we present our proposed method us-

ing a new feature for the extraction and representation phases called

a hybrid feature. In the first section, we discuss the motivation and

contributions. Then, the design of the proposed method is described.

The implementation assessment section shows that we achieve com-

petitive results compared with other baseline methods. Also, our

results show a significant improvement when using hybrid features

rather than handcrafted models or deep learning methods individu-

ally. Finally, we conclude this chapter. Most of this chapter is pre-

sented at [4].
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5.1 Introduction

5.1.1 Motivation

Visual geolocalization is an important topic in computer vision with

numerous applications, including navigation [147] and 3D reconstruc-

tion [74]. This study investigates the issue of visual geolocalization

at the urban scale. Indirect visual geolocalization approaches take

visual geolocalization as an image retrieval issue and are one possi-

ble solution. A common goal of indirect visual geolocalization tech-

niques is to choose an image in a reference dataset that most closely

matches an input image. For many years, visual geolocalization tasks

have relied heavily on Content Based Image Retrieval (CBIR) mod-

els that use manually-crafted features [146, 147, 63]. Using a neural

network, modern visual geolocalization techniques display images in

an embedding space that accurately depicts the proximity of their lo-

cations and may be utilized for retrieval. However, the vast majority

of studies on visual geolocalization tasks have only covered a local-

ized, neighborhood-sized region. To this end, we have focused our

studies on large-scale (e.g., cities). The high quantity of geo-tagged

images needed for retrieval and recognition, however, poses a chal-

lenge when it comes to figuring out how to put them to good use in

the context of training. In the state-of-the-art, most works use the

technique of triplet loss learning for training [8, 50]. Those works use

negative examples across the training database [8]. This way is ex-

pensive in terms of computing. Some works train only small sam-

ples of images. This can reduce the training timebut they still result

in less effective use of the data. Other works [63, 55, 8] use hand-

crafted methods and cast the problem as a classification task. They

use both positive and negative samples of training. However, in this
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way, the training can work effectively, depending on the quality of the

image representation. The representation should not only be robust

against photometric and geometric changes but also have a high dis-

criminative level. We approach the work of solving the image geolo-

calization problem as a classification task [63, 55]. In this task, image

representation is an important phase. Kim et al. [63] proposed using

handcrafted representations to extract features. Their work is good

in scale and rotation for recognizing a place, but they achieve mini-

mally accurate results when the dataset is large due to appearance

changes between the input image and the reference dataset. In the

last decade, deep learning representations have been successfully

used in many computer vision applications, especially image classifi-

cation [67]. Because of the multi-layer networks on CNNs that help to

extract high-level features from the input image, deep-learning rep-

resentation methods can extract more comprehensive features. In

this way, extracted features using deep learning methods make rep-

resentation more robust, especially for appearance changes. How-

ever, most of the deep learning representations are suitable only for

image classification tasks and not for retrieval and recognition tasks.

In some cases, fully connected representation is used in visual place

recognition tasks. To make robust methods in the presence of oc-

clusions that lack invariance in translation and scale, this represen-

tation is computationally expensive due to the large number of pa-

rameters required. We offer a novel image representation approach

that can extract several patches from an image as a solution to the is-

sue of high computational costs in deep learning representation. This

increases the discriminative power of image representation without

requiring a huge set of parameters. We do this by combining both

machine learning and hand-crafted features. A combination of hand-
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crafted and deep learning features gives a new feature. This hybrid

feature outperformed an individual feature in some computer vision

applications [91, 137]. In this work, we apply hybrid features to the

task of image geolocation and compare the results with individual fea-

tures. To our knowledge, this is the first time a hybrid feature set has

been used for a visual geolocalization task.

5.1.2 Contributions

Our contributions are as follows: (1) We propose an accurate visual

geolocalization method that is also effective on a large city scale. Our

method can predict good features during the training phase. Not all

features can go through the geolocation process. Only features with

a high confidence score can be used for the geolocation process. In

this way, we achieved good accuracy results, reduced the computa-

tional cost, and reduced the number of features compared with base-

line methods. (2) We propose a hybrid image representation method

for image geolocation systems. Our results show that using the hy-

brid feature is better by reducing the computational cost during the

representation phase with no need to add more parameters.

5.2 Design

5.2.1 Predicting good features from a hybrid method

We aimed to implement an accurate image geolocation system. To

get an accurate result, we should have a robust system against geo-

metric and photometric changes that is highly discriminative in large

datasets. Our proposed method is a data-driven method that pre-
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Figure 5.1: (a) input image with no GPS tag. (b) extract feature from
input image by using hand crafted and deep learning methods. Then,
concatenate features of both methods to get hybrid features set (c).
(d) hybrid features go through a bank of SVMs to calculate confidence
score CS. Selected features only use for geolocation process. (e)
Output is most similar image with GPS.

.

pares the data (features) offline. Figure 5.1 shows our proposed

method in the query phase. The input (query) is an image with an un-

known GPS. The second step is feature extraction, which is applied

by a combination of handcrafted and deep learning models. These

two models are combined by concatenating the corresponding fea-

tures, the result is a hybrid feature. The hybrid feature then goes

through a bank of SVM classifiers that already created offline. We

then compute the confidence scores of each feature. If a feature has

a high score, it is selected as positive (relevant); if not, it is selected

as negative. Finally, only the selected features used for computing

similarity between the query image and the reference image in the

geolocalization process.
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5.2.2 Extraction features using the hybrid method

Features play an important role in the image geolocation system; they

represent the interesting objects in the street sides of an image. In our

pipeline, two types of features are used for extraction: handcrafted

features and deep features from CNNs We apply SIFT, VLAD, PB-

VLAD, MBVLAD for handcrafted, and AlexNet and SqueezNet for

deep local features.

Handcrafted model

We use a variety of handcrafted methods to extract local features from

handcrafted models. To create a hybrid feature, we applied each ap-

proach once with AlexNet [67] and once with SequeezNet [54].

Scale-invariant feature transforms For image feature extraction,

SIFT [77] has been proposed. It converts a single image into a large

number of feature vectors. The outcome of the Gaussian function

difference is used in scale space. Candidate points with low contrast

and edge response points along an edge are removed. Localized crit-

ical points are allocated dominant orientations. The important spots

will be more stable for recognition and matching as a result of these

actions. By evaluating pixels surrounding a radius of the key position

and resampling local picture orientation planes, SIFT descriptors re-

silient to local affine distortion are generated.

Vector of Locally Aggregated Descriptor (VLAD) is a well-known

technique for recognizing locations and retrieving images [57]. The

descriptor is a low-dimensional vector whose purpose is to serve as a

feature for the entire image. D-dimensional descriptors are extracted

from affine-invariant detections. Then they were clustered into k cen-

ters to create a visual vocabulary. From each descriptor, the residual

for each cluster center is calculated. After that, the residual is added
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together for each cluster, resulting in k D-dimensional aggregate vec-

tors. The Euclidean distance metric is used to compare all vectors in

the images.

Per-Bundle VLAD (PBVLAD) [63] combines a packaged VLAD with

maximally stable external regions (MSER). In other words, MSER was

used to identify areas, followed by SIFT feature descriptions within

the detected regions. Then, each region/bundle was described as a

fixed-sized VLAD.

Mini Batch VLAD. (MBVLAD) [5]is an extension of VLAD. The local

feature descriptors are extracted from an image using a dictionary in

the original VLAD. The dictionary is built using a k-means clustering

method; in MBVLAD [5], the clustering method is used to generate a

dictionary using a mini-batch k-means. The mini-batch k-means ap-

proach [112] distributes small batches of a fixed size in a random or-

der. The clusters are updated with each new sample until they reach

convergence.

Deep Learning Methods

This framework can be supported by any type of CNN, such as the

well-known AlexNet [67]. The task describes feature extraction using

AlexNet [67] and SqueezeNet [54] as two instances. Deep learning

model.

AlexNet. AlexNet [67] ] is an 8-layer deep convolutional neural net-

work. The network was trained with over 1 million images from the

ImageNet database. It learned abundant feature expressions from a

wide range of images on the network. The image input size for the

network is 227x227.

SqueezeNet. SqueezeNet architecture [54], is a small architecture

of CNN. It has few parameters and achieves the same accuracy as
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AlexNet [67]. This architecture is trained on ImageNet. SqueezeNet

architecture follows a strategy of replacing 3x3 filters with 1x1 filters.

Moreover, it preserves large activation maps by downsampling late in

the network [54]. Then these strategies are packed into a fire module

that has a set of 1x1 filters in the squeeze convolution layer and a mix

of 1x1 and 3x3 filters in the expand layer. The parameters are about

1,248,424, with a model size of 4.78 MB. In our method, we remove

the final softmax layer for both AlexNet and SqueezeNet, as we do

not want to classify features by them.

Figure 5.2: Our offline phase. We extract features from training im-
ages that collected from Flicker API. Each query image from the train-
ing images, has 100 retrieved images from reference dataset. Set
ground truth and false positive images by taking the advantage of
geotagged labels.Positive and negative features set depending on
the difference between feature in ground truth and feature in false
positive. If the difference is greater than 0.8, the feature is assigned
as positive; otherwise, it is negative.

.

5.2.3 Feature Selection Technique

After extracting features and feature concatenation, we got a new fea-

ture called a hybrid feature. A hybrid feature is a combination of both

handcrafted and deep features. In our offline phase, a bank of SVMs
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Figure 5.3: Given a set of clusters K , we train a linear SVM classifier
as Kim et al. [63]. (a) all features from each training image. A linear
model is trained on each cluster in a closed loop. Each classifier uses
the firings in its cluster as new positive data for training. We applied
iterative hard mining to treat the complexity.

.

was created, which includes positive and negative features. We use

SVM with a hard margin to make the relevant and non-relevant fea-

tures linearly separable. In the feature selection step, hybrid features

is classified as positive or negative by computing the confidence score

C S. Features with high weight will only be used for the visual geolo-

cation process. In this way, we got a good accuracy while using a few

numbers of features. This helps with computational costs and search

time as well.

5.2.4 Learned Classifier in Offline Phase

Our goal is to predict positive and negative features by training a lin-

ear support vector machine (SVM) classifier offline. In the previous

works, this step was used on input images in query time, and the

weight vector is applied as a new query image representation. How-

ever, the computational cost will be very expensive because predic-

tion features require training a new classifier for each query. Hence,

we follow other works that learn classifiers for each place in the database
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offline [63, 55, 8].

In this section, we first introduced how we automatically generate

training data (features) for a learning classifier. Then, a bank of SVM

classifiers is introduced.

Generate features We generate features automatically for each im-

age in Reference dataset R for learning a classifier task. We collected

new geotagged images S from social media platform which has the

same GPS locations in each image in reference dataset R. Given x is

an image descriptor for each image x in the reference dataset R. The

representation is a hybrid feature h. Our goal is to learn Fi which i∗

= ar gi maxFi (g ) To generate training features for learning classifiers,

we first rank the top 100 images for each image in S by computing the

similarity with images in R. Also, we use geometric verification [36]

to identify the correct location between R images and images from

S. We employ the geotags to build the False positive Rn images and

ground truth images Rp for each image i . The False-positive set Rn

is images that are in the ranking images and far away from the loca-

tion of image i . The ground truth set Rp is images near given GPS

location. Figure 6.2 shows the offline phase. For this purpose, we col-

lected 720 Flickr geotagged images as our training image set S. The

training images S cover the same region as the reference images R

[147]. Next, we follow the same process as Kim et al. [63, 55]; for

each image in the training dataset S, we define positive images from

the reference dataset Rp if the image is within 50m of the given GPS

location and passes geometric verification by using RANSAC with re-

spect to S. To verify negative images Rn, we take the reference im-

age with the smallest distance to query image in the training dataset

S, which is about 225m from the given GPS location which is about

225m from the given GPS location. After feature training, we real-
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ized that some features in different objects appear in the same class.

That is because a single classifier applied to a large dataset affects

the appearance variation. To To solve this problem, we create a bank

of SVM classifiers [63] and apply the bottom-up clustering technique.

The idea is to get clusters of positive and negative examples that are

most consistent between labels and appearances. Also, in each clus-

ter, we obtain a trained bank of linear SVM classifiers.

We feed features obtained from input (query) images into the bank

of linear SVM classifiers in the query pipeline. We figure the confi-

dence score CS to predict the useful features prior to the geolocal-

ization process. In simple terms, we follow some works that used

the discriminativeness technique of the classifier [63]. We define the

discriminativeness of a feature as the ratio of the number of firings

on its cluster to the number of firings on the entire training set. We

consider all SVM scores above 1 to be firings. As a result, we keep

only the features with high confidence scores for the visual geolocal-

ization task [63]. Figure 5.3 shows the training of SVM classifiers in

the offline phase.

5.3 Implementation Assessment

5.3.1 Implementation details

The work was implemented on a workstation outfitted with a 32GB

RAM, i7 CPU running on twelve threads, 144GB of swap memory, and

a Titan Xp GPU. Python 3.5 is used as the development environment.

We run a rough vocabulary of 128 visual words and 16,384 dimen-

sions through our constructed models for VLAD, PBVLAD, and MB-

VLAD. We use a visual vocabulary of 16 terms as well. Pre-trained

93



Table 5.1: Quantitative evaluations using evaluation metrics: recall
@1 and @5. All results show the performance of the evaluation
dataset from Google Street View that was provided by [147]. The re-
sults applied to the reference dataset from [147] that includes street
view images from Pittsburgh City. Higher values are better with Re-
call @1 and @5 metrics. Note that the results were within 25 and 15
meters.

Methods 25m 15m
R@1 R@5 R@1 R@5

SIFT [146] 43.26 48.46 40.11 44.81
PBVLAD [63] 65.17 68.39 62.71 65.33
NetVLAD [8] 78.58 75.63 72.25 72.08

PatchNetVLAD [50] 67.54 70.28 65.25 67.42
Our SIFT 53.60 50.33 49.85 49.21
Our VLAD 56.76 57.34 54.77 51.89

Our PBVLAD 59.43 56.12 56.52 54.10
Our MBVLAD 62.74 62.15 60.81 59.04
Our AlexNet 64.53 63.10 61.38 60.77

Our SequeezNet 65.42 64.95 62.49 61.25
Our Hybrid SIFT+AlexNet 66.20 65.41 63.40 63.11

Our Hybrid SIFT+SqueezNet 66.47 66.13 65.51 64.06
Our Hybrid VLAD+AlexNet 67.02 66.58 65.80 65.21

Our Hybrid VLAD+SqueezNet 68.48 67.71 65.86 65.15
Our Hybrid MBVLAD+AlexNet 70.42 69.43 67.17 66.22

Our Hybrid MBVLAD+SqueezNet 78.40 74.32 72.51 71.13

Table 5.2: Quantitative evaluations using evaluation metrics Recall
@1, Recall @5, and Recall @10. All results show the performance of
the evaluation dataset from the Pittsburgh 30k dataset [8], and the re-
sults for all methods within 25 meters. The performance applied to the
reference dataset is from [147] that covered Pittsburgh city. Note that
NetVLAD and PatchNetVLAD trained using different datasets [50],
and the reference dataset is not the same as our methods.

Method Recall @1 Recall @5 Recall @10
SIFT (2010) [146] 32.02 34.33 37.62

PBVLAD (2015) [63] 40.26 44.72 46.81
NetVLAD (2016)[8] 83.5 91.3 94.0

PatchNetVLAD (2021) [50] 88.6 94.5 95.9
Our MBVLAD+AlexNet 65.54 69.38 70.21

Our MBVLAD+SqueezNet 78.16 79.63 80.94
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models in deep learning use Keras and TensorFlow to create AlexNet

and SqueezeNet architectures. Here, we get rid of the very last soft-

max layer that was ever employed for classification.

5.3.2 Evaluation dataset

The reference image set R is a Google Street View dataset obtained

by Zamir and Shah [147]. Each image in this dataset is labeled with

GPS and compass coordinates, and all images were taken in outdoor

environments under similar physical conditions. In our experiment,

the reference dataset size comprises approximately 27,500 images

covering only Pittsburgh, PA. We partition the dataset into 23,500,

2,000, and 2,000 images for training, validation, and testing, respec-

tively.

We compare our methods with different state-of-the-art visual geolo-

cation methods, including: SIFT [146], VLAD [57], PBVLAD [63],

NetVLAD [8], and PatchNetVLAD [50]. Moreover, we test our pro-

posed method by applying different feature extraction methods: SIFT

[77], VLAD [57], PBVLAD [63], MBVLAD [5], SeqeezeNet [54], and

AlexNet [67]. Furthermore, we test our method using our hybrid fea-

tures: SIFT+AlexNet, SIFT+SeqeezeNet, VLAD+AlexNet ,VLADSe-

qeezeNet, MBVLAD+AlexNet, and MBVLAD+SeqeezeNet.

5.3.3 Experimental results

We use the standard visual geolocation evaluation technique [63, 8,

50] to provide a numeric assessment of the obtained data. It is often

accepted that recall is the most discriminatory metric. Typically, an
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image retrieval system will choose the top k (where k is an integer

between 1 and 10) choices and then check to see whether any of

them are within a localization tolerance. Therefore, we test our ap-

proaches using a variety of top recall values and within a couple of

error thresholds. The mean estimate error is used in conjunction with

the Recall@N metric to determine the accuracy. If one assessment

is within 25 meters and the other is within 15 meters of the query lo-

cation, we consider the geolocalization to be successful. The recall

method is used for the top five and the top one. To determine whether

an image is in the top-1 score, we look to see if it is the first prediction.

For the top-5 score, we look to see whether the target image is among

the five most likely predictions. To test the efficacy of our suggested

approach, we use two data sets.

The initial collection of data consists of two thousand images cap-

tured from Google’s Street View service [147]. Table 2 displays the

numerical outcomes as determined by the assessment criteria Recall

@1, Recall @5, and Recall @10. The Pittsburgh 30k dataset cited

by [8] was used for all analyses.

The numerical results of our methods against several benchmark lo-

calisation solutions – SIFT [146], VLAD [57], PBVLAD [63], NetVLAD

[8] and PatchNetVLAD [50] – are shown in Table 1. Our proposed

method Hybrid MBVLAD+SequeezNet shows competitive results com-

pared with the rest of the methods. On the other hand, as shown

in table 5.1, our solution incorporating Hybrid methods outperforms

the solution using individual methods: handcrafted models or deep

learning methods. Moreover, the quantitative metrics show that our

methods and all the state-of-the-art methods improve when the error

threshold is greater. This indicates that all methods still have diffi-

culty retrieving an accurate target image in terms of its very close
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geolocation to the query image. Table 5.2 shows the numerical re-

sults measured by using evaluation metrics Recall @1, Recall @5,

and Recall @10 of the state of the art compared with our best hybrid

methods, MBVLAD+AlexNet and MBVLAD+SeqeezNet. All results

were evaluated on the dataset from the Pittsburgh 30k dataset [8].

Moreover, the results for all methods were within 25 meters. In this

table 5.2, NetVLAD and PatchNetVLAD are trained using different

datasets, and the reference dataset also differs from our method and

the rest of the state of the art. In conclusion, NetVLAD is outper-

formed by the other methods in 5.1 and 5.2, due to the strong dataset

that the network trained on.

We also use a line chart to graphically represent numerical data.

The goal of the line charts is to graphically represent the distribution

of numerical data, to highlight differences across approaches, and

to demonstrate how close our methods are to state-of-the-art algo-

rithms. In 5.4, we show the performance of our prediction method

when using traditional representation methods. We compare our re-

sults with other VPR methods that used traditional methods such as

SIFT [77] and PBVLAD [63]. Figure 5.5 shows the Recall@N perfor-

mance of our prediction feature method when deep learning represen-

tation methods are applied. The figure also shows the comparison of

our performance with other VPR methods, those using deep learning

NetVLAD [8] and PatchNetVLAD [50]. In figure 5.6, the chart indi-

cates that our predicting method uses traditional, deep learning, and

hybrid representation methods. Finally, figure 5.7 shows the effective-

ness of our proposed method by comparing different hybrid features.
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Figure 5.4: Comparison with state-of-the-art. The Recall@N per-
formance of traditional representation methods (SIFT [146] and PB-
VLAD [63] compared to our representation methods (traditional meth-
ods with good feature predictions). All results show the performance
of the evaluation dataset from pittsburgh 30k dataset [8], and the re-
sults for all methods within a 25 meter.

.

Figure 5.5: Comparison with state-of-the-art. The Recall@N per-
formance of deep learning representation methods (NetVLAD [8]
and PatchNetVLAD [50] compared to our representation methods
(AlexNet [67] and SequeezNet [54] methods with good feature pre-
diction). All results show the performance of the evaluation dataset
from pittsburgh 30k dataset [8], and the results for all methods within
a 25 meter.

.

5.4 Conclusion

We introduce a new visual geolocalization method at a large city scale.

Our method is a data driven method that can reduce the number of
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Figure 5.6: Comparison of the Recall@N performance of our predict-
ing method when using the traditional method SIFT [77], deep learn-
ing representation methods (our AlexNet and our SequeezNet), and
our hybrid models. All results show the performance of the evaluation
dataset from pittsburgh 30k dataset [8], and the results for all meth-
ods within a 25 meter.

.

Figure 5.7: Comparison of the Recall@N performance of our predict-
ing method when using several hybrid methods. All results show the
performance of the evaluation dataset from pittsburgh 30k dataset [8],
and the results for all methods within a 25 meter.

.

features prior to the geolocation process by predicting relevant fea-

tures during training time. In the image representation phase, we rep-

resent images with a hybrid feature set that incorporates handcrafted

and deep-learning models. We show that our method improves over

the state-of-the-art results for visual geolocalization and reduces the

computational cost. We evaluate the effectiveness of our approach
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as it relates to accuracy. We achieved good accuracy while reduc-

ing the number of features. Also, our results show an improvement

compared with the use of only handcrafted models or deep learning

methods.
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Chapter 6

Efficient Visual Place

Recognition System by

Predicting Unique Features

This chapter will present the last contribution to this thesis. This chap-

ter is structured as follows: First, an introduction is provided, describ-

ing concerns and shortcomings with the then-current state-of-the-art.

Following that, we describe our method, including the dataset, our

method structure and training pipeline, and all training specifics. Fol-

lowing that, our approach is evaluated in comparison to the state-of-

the-art. Finally, we provide a conclusion that discusses the method’s

weaknesses and limits, as well as prospective enhancements. Note

that most of this chapter was published in [3].

101



6.1 Introduction

6.1.1 Motivation

To perform higher-level tasks like planning and navigation, a robot

must always have an accurate assessment of its location and orien-

tation in relation to the environment. VPR approaches typically pre-

sume that the appearance remains constant from the moment the

map (reference) is produced until the time the robot needs to locate

itself. However, as the robot’s operating life span expands, the look

of the environment changes. This presents a significant difficulty for

VPR approaches since the basic premise of static appearance is bro-

ken owing to constant changes in the environment, such as weather,

time of day, building sites, upgrading of facades and billboards, and

so on.

A prominent way to deal with environmental change resilience is to

demand the selection of positive and negative examples for each

training image [8, 55, 43]. Positive and/or negative examples are pre-

sented to the model for each training sample. The two target points

mandate that the learned representation for the training sample is

near that of positive instances and distant from that of negative ex-

amples, according to a metric. A positive example in the context of

VPR is an image of the same location as the training sample, whereas

a negative example is an image of a different location. The cutting-

edge research forces the system to learn examples of both positive

and negative. However, only a few studies propose avoiding learn-

ing from negative examples by removing them from the reference

dataset.

By doing selection features by taking advantage of GPS data, CRN

[55] and PBVLAD [63] proposed that the collection of positive exam-
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ples be defined as images that are within 50 meters of the training

query’s GPS tag. Given the possibility of taking photos from the same

GPS coordinates while pointing the camera in different directions, the

positive candidates are narrowed using geometric verification. For the

negative examples, the authors replicate the picture geo-localization

procedure inside the training batch, and for each iteration, they select

the top retrieved image that is at least 225 meters distant from the

GPS position of the training query as a negative candidate. The neg-

atives are likewise selected at random from the batch. Unfortunately,

the substantial amount of time required to compute the similarity be-

tween each feature in the training image and all reference datasets

is its bottleneck. In NetVLAD, for each training sample, the selection

takes into account all of the negative cases. A simple calculation of

all negatives is impractical because it would have each query doing

a forward pass on all database images. Furthermore, many negative

instances would have a small impact on the decision, so analyzing

them would be a waste of time.

Even though recent algorithms [63, 8, 55] demonstrate that forcing

the methods to train negative examples leads to correct localization,

they are not supported by any fundamental theory in which removing

negative features can lead to bad localization. In this chapter, our

goal is to propose a VPR method by avoiding confusing features and

evaluating its performance in terms of robustness and efficiency.

6.1.2 Contributions

We improve on the method of the state of the art to better deal with

the problem by proposing a method for automatically selecting such

"mismatching features” and demonstrate that removing them from the

query image can significantly improve the place recognition perfor-
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mance. To this end, we predict good features by taking advantage

of GPS tags prior to the geolocalization process. In this way, we dis-

criminate against images to find the place correctly while reducing the

number of features. In addition, we propose a new dataset based on

images collected from the social media platform. We split the dataset

for training and testing. To generate features automatically, we use

training set and test set images to evaluate the robustness of our

method with hard images.

6.2 Design

The goal of Visual Place Recognition is to find the same place in a

large geotagged dataset of outdoor images where a given query im-

age has an unknown GPS. To that end, each feature in the query

image should be compared to each feature in the reference dataset’s

images. We propose modifying this task so that the number of fea-

tures in the query image is reduced before computing similarity. In

particular, we use GPS data to predict good features and learn from

positive and negative examples. The problem then becomes iden-

tifying the confusing features and avoiding their use without affect-

ing learning image discrimination. Another challenge is that, despite

minimizing the number of features, the proposed method should be

efficient. In other words, performance should be improved while re-

ducing the cost of computational and time-consuming tasks. In the

following sections, we go over our method in significant detail.

6.2.1 overview method

Generally, following the success of current place recognition systems

[8, 50], we recast location recognition as image retrieval. The query
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image with an unknown location is used to visually search a large geo-

tagged image database, with the locations of top-ranked images used

as possibilities for the query’s location. This is often accomplished by

creating a function f that serves as the "image representation extrac-

tor," producing a fixed-size vector f given an image Ii (I i ). The function

is used to extract the representations for the complete database Ii ,

which can be done offline, and the query image representation f (q),

which may be done online. The visual search is conducted by locating

the database picture that is the closest to the query, either exactly or

by rapid approximation nearest neighbor search, by ordering photos

based on the Euclidean distance d(q,Ii) between f(q) and f(Ii) (Ii). In

our method, we input an image, and after extracting features from the

image, we compare the similarity score between positive and nega-

tive features in the bank of SVMs that have already been built offline.

If a feature has a high score, it will only be used for the final step,

which is computing the similarity between the positive feature on the

query image and all reference dataset images. By doing this, we use

only a small number of features, which reduces the computational

cost in the online phase.

6.2.2 Problem Formulation

Visual Place Recognition methods use image retrieval techniques.

Indeed, image retrieval is a "learning-to-rank" challenge, which is a

type of learning image descriptor that properly depicts similarity from

the perspective of a distance function. For representation learning

via ranking, selecting positive p+ and negative examples p− for each

training image q is required. The method requires that the learned

representation for the training sample be close to that of positive ex-

amples p+ and far from that of negative ones p+. In Kim et al. and
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3048	
features

Reference	
dataset

(a)	Query	image

(b)	Feature	extraction	and	representation

(c)	Feature	prediction
(d)	Feature	selection

(e)Geo- location	process
(f)	Output	geo-tagged	image

Figure 6.1: our proposed method. (a) An input image with unknowing
GPS tag. (b) features extracted from the input image. (c) A bank
of SVM classifier with positive and negative features. (d) Computing
confidence score if high the feature labelled as positive, else negative.
(e) Positive features only used for geo-location process. (f) The output
image with geo-tag.

Figure 6.2: Examples of non-unique objects found by finding local
features in the original image.

NetVlad, the VPR models are trained by feeding q, p+ and p−. p+.

The positive examples are obtained by ranking all images from the

reference dataset I within a small geographical distance from query

q and taking images with the highest visual similarity. All negative

images p− are far away from the query q geolocation. In selecting

the positive and negative examples, the goal is to learn a distance
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function d. The distance d(q,p+) between the training query q and

the positive will be smaller than the distance d between the query q

and all negative images. To minimize the distance, In our proposed

method, we modify this by ranking the list of mismatching images M

with the query image. The negative examples are 50 meters away

from the query image. If the feature from q has a high similarity score

with the feature from M, the feature is labeled as negative. otherwise,

positive.

6.2.3 Automatic generating features

Locations in city-street image collections contain a substantial quan-

tity of features on objects such as trees or road markers, which are

not useful for identifying a specific location because they occur often

around the city. This is a big issue since such features clog the vi-

sual word vectors and can generate substantial ambiguity between

various locations. This section focuses on automatically finding such

locations in order to remedy this issue. To do this, we exploit the fact

that an image of a certain site should not match well with other im-

ages from distant locations.

For each image i in the training dataset Iq that is already collected

from social media platforms, the top n "confusing" images were re-

trieved from the geotagged database It . This is accomplished by

retrieving top-matched images using the feature matching similar-

ity equation. We exclude images at places closer than (parame-

ter) meters from I to guarantee that the retrieved images do not in-

clude the same visual scene. Feature matching equation f (pq , Ir ) =
maxM(pq , pr ), similarty equation si m(Iq , Ir ) = sumpq f (pq , Ir ) After we

get the top n mis-matching images, we want to automatically gen-

erate positive/negative examples of features using just their related
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GPS tags. Rather than making assumptions about what features are

good and bad for geo-localization, we want to automatically identify

them using available data. This allows us to adjust our strategy to dif-

ferent geographical locations. Features with a high matching score

will be labeled as negative features; others will be positive. If similar-

ity between features in a training image has a high matching score,

the feature will be labeled as a negative feature. Otherwise, it will be

positive. This accounts for both user-supplied geo-tag inaccuracies

and the fact that huge, symmetric buildings are frequently visible from

long distances. If similarity between features in a training image has

a high matching score, the feature will be labeled as a negative fea-

ture. Otherwise, it will be positive.

After feature training, we realized that some features in different ob-

jects appear in the same class. That is because a single classifier

applied to a large dataset affects the appearance variation. To solve

this problem, we create a bank of SVM classifiers [63] and apply the

bottom-up clustering technique. The idea is to get clusters of positive

and negative examples that are most consistent between labels and

appearances. In each cluster, we obtain a trained bank of linear SVM

classifiers ready to be used for prediction in the online phase. Refer

to Chapter 3 for detailed details on the training dataset collection.

6.2.4 Online phase

Our proposed method is shown in Figure 6.1. First, query image q

extracted features by using a hybrid feature. A hybrid feature is a com-

bination of two image representation methods used for visual place

recognition tasks. We applied using SqueezeNet [54] and VLAD [57].

In the offline phase, we first rank the mis-matching images with each

query image based on their similarity. We make sure no image is
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Figure 6.3: Detection of place-specific confusing features. Left is the
query image, Features in each database image are matched with fea-
tures of similar images at geospatially far away locations (illustration
of matches to only one image is shown). Right image from reference
dataset and detecting points. Note that we spilt the image to four parts
to illustrate how detect confusing features.

Figure 6.4: In original image (a) frequently mismatched to similar im-
ages of different places shown in (b).

similar to the query or at the same GPS distance. We then compute

features to define positive and negative examples by computing fea-

ture scores. If the score is low with images in the ranking, then it is

labeled as negative; otherwise, it is positive. In this way, we reduce

the computational process by computing only the score in negative

examples. After we get positive and negative features, we cluster

them as groups. Then learn SVM to prepare features for online use.

To create a bank of SVMs for predicting features for query images,

training is done offline. Following the work of Kim et al. [63], we solve
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the problem of including such category-level place analysis in the cur-

rent framework to further improve the place recognition performance.

6.3 Experimental Assessment

We provide quantitative and qualitative evaluations to validate our

method, and our solution predicts good features for the geolocation

process by ranking mis-match images and minimizing the similarity

distances between q and p−. The Recall@N metric is applied to eval-

uate all datasets, and a query image is correctly localized if at least

one of the top N images corresponds to the ground truth. To visualize

the results, we first modify the value of N and then compute the re-

call as the percentage of successfully localized query images. For all

datasets, including Pittsburgh 250k, Google Street View, and Flickr

images, we define an accurate localization as one that falls within 25

meters of the usual ground truth.

6.3.1 implementation details

The entire project is carried out on a workstation equipped with an i7

CPU with six cores (12 threads), 32GB of RAM, 144GB of swap mem-

ory, and a Titan Xp GPU. Python 3.5 is the development software.

The parameters employed on handmade approaches in the extrac-

tion phase are: a coarse vocabulary of 128 visual words and 16,384-

dimensionality; and a visual vocabulary of 16 words. Other large

codebases and libraries used were OpenCV [12] (for image-related

operations) and Scikit-learn [100] (for scientific computations). The

AlexNet and SqueezeNet architectures are implemented by Keras

and TensorFlow. We eliminate the last softmax layer used for classi-

fication jobs because we only utilize it for extraction. Each image has
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a resolution of 640x480 pixels.

Evaluation matrecs. We follow the standard evaluation procedure

[8, 63]. The localization is deemed correct if at least one of the top N

retrieved images is within d =25 meters from the query. Recall@ N

is the percentage of correctly localized queries for different values of

N .

Figure 6.5: Qualitative Outcomes. This is evidence that the sug-
gested approach successfully recovers the corresponding reference
image. Example retrieval results on Flicker. The Flicker images
match example is particularly challenging, with severe viewpoint shift,
occlusions and objects at the street sides such as cars, people. From
left to right, query image, and then retrieved results. Green and red
borders indicate correct and incorrect retrieved results, respectively.

6.3.2 The state of the art algorithms for comparison

6.3.3 Evaluation dataset

We trained our method using Pittsburgh 250k. We used the corre-

sponding training and validation sets for this dataset, namely, the

Pittsburgh 250K training and validation set. The datasets collectively
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cover a wide range of perspective- and appearance-changing situ-

ations, due in part to major differences in the collecting technique,

such as cars and general crowdsourcing. Different times of day, var-

ied weather, and seasonal changes produce specific looks. Further-

more, we test our method with three datasets. Pittsburgh 250k test,

Google Street View dataset, and images from Flickr. More details

about datasets are in Chapter 2.

6.3.4 Evaluation tools

Numerical metrics: To quantitatively assess the results, we follow

the same evaluation as in [8, 55, 50]. Three recalls are used. r1,

r5, and recall 10. To quantitatively assess the visual geolocation re-

sults, we followed the standard visual geolocation evaluation proce-

dure [63, 8, 50]. The recall metric is often used as the most discrim-

inative metric. It is typical for an image-retrieval system to choose

the top-k (1 <= k <= 10) ranked candidates and evaluate whether any

of the candidates lie within a tolerance radius for localisation. Thus,

we evaluated our methods with different levels of recall and within the

error threshold. In this case, the accuracy was computed by means

of the estimation error, the distance between the true geolocation of

the query image and the predicted one using the Recall@N metric.

We considered the geolocalisation successful if it was within 25 me-

ters, and another evaluation was within 15 meters, in the vicinity of its

true location. We applied recall for the top 1, top 5, and top 10. For

the top-1 score, we checked if the target image was the first one of

the predictions. For the top-5 score, we checked if the target image

was one of the top five predictions, meaning the five with the highest

probabilities. For the top-10 score, the system checked whether the

target image was one of the top ten predictions with the highest prob-
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abilities.

Descriptive statistics: We use a line chart to graphically represent

numerical data. The goal of the line charts is to graphically repre-

sent the distribution of numerical data, to highlight differences across

approaches, and to demonstrate how close our methods are to state-

of-the-art algorithms.

Significance analysis: To analyze the effectiveness of our method,

we compare it with the following variations: 1) Instead of a positive

feature selection, the geolocation technique employs a hard negative

one. 2) Both negative and positive features are selected in the geolo-

cation process. We further study the robustness of our approach to

the choice of image representations. We applied some traditional and

deep learning representations for the extraction phase and compared

our method’s performances each time. Furthermore, we analyze our

strategy in terms of computing time requirements to assess its effi-

ciency. We compare our method to other state-of-the-art methods by

determining the number of queries that each method can handle per

second. In addition, we compare our method with various feature se-

lections and compute the time and performance requirements. We

also evaluate our method in terms of an algorithm’s time complexity

as a function of its input size. In particular, we measure how the tem-

poral complexity of an algorithm increases with increasing input size.

To do this, we apply an asymptotic time analysis calculation.

Qualitative analysis: We offer visual evaluations. The results are

shown to demonstrate the query images and the accurate retrieval

for clarity. If the output image is correct, the outcome should be a

green border; otherwise, a red border. This makes the comparison

precise and straightforward.
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Table 6.1: Quantitative evaluations using evaluation metrics: Recall
@1, @5 and @10. All results show the performance of the evaluation
dataset from the Pittsburg 250k dataset that was provided from [8].
Higher values are better with each Recall @N metrics. Note that the
results are within 25 meters.

Methods R@1 R@5 R@10
NetVLAD 86.0 93.2 95.1

CRN 85.5 93.5 95.5
SFRS 90.7 96.4 97.6

PatchNetVLAD 88.7 94.5 95.9
Ours 89.1 94.6 96.3

Table 6.2: Quantitative evaluations using evaluation metrics: Recall
@1, @5 and @10. All results show the performance of the evaluation
dataset that was provided by our collection dataset from social media.
Higher values are better with each Recall @N metrics. Note that the
results are within 25 meters.

Methods R@1 R@5 R@10
PBVLAD 68.1 70.3 70.9
NetVLAD 77.5 78.2 80.3

CRN 73.2 73.8 74.2
SFRS 75.1 76.4 78.6

PatchNetVLAD 75.3 77.3 79..1
Ours 77.3 78.6 80.9

Table 6.3: Quantitative evaluations using evaluation metrics: Recall
@1, @5 and @10. All results show the performance of evaluation
dataset from Google Street View dataset that provided from [146].
Higher values are better with each Recall @N metrics. Note that the
results within 25 meters.

Methods R@1 R@5 R@10
PBVLAD 50.5 58.4 60.1
NetVLAD 70.9 75.6 78.2

CRN 68.2 61.7 65.9
SFRS 70.1 74.5 78.7

PatchNetVLAD 69.4 74.1 76.7
Ours 71.3 76.2 80.1
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Table 6.4: Quantitative evaluations using the evaluation metric Recall
@1 for our ablation studies. All results show the performance of the
evaluation dataset from the Pittsburg 250k dataset that was provided
by [8]. Higher values are better with each Recall @1 metric. Note
that the results were within 25 meters. Other evaluations for other
datasets and Recall @N, see Appendix.

Methods R@1 R@5 R@10
P+ selected 89.1 94.6 96.3
N− selected 58.3 59.1 62.4
Selected all 75.9 77.5 79.1

Figure 6.6: Qualitative Results. In these examples, our proposed
method successfully retrieves the matching reference image, while
CRN and PatchNetVLAD produce incorrect place matches.

Figure 6.7: Comparison with state-of-the-art. the Recall@N perfor-
mance of Ours (predicted) compared to NetVLAD, CRN, SFRS, and
PatchNetVLAD on the Pittsburgh 30k test dataset.
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Figure 6.8: Comparison with state-of-the-art. the Recall@N perfor-
mance of ours (predicted) compared to PBVLAD, NetVLAD, CRN,
SFRS, and PatchNetVLAD on our collected Flicker images.

Figure 6.9: Comparison with state-of-the-art. the Recall@N perfor-
mance of ours (predicted) compared to PBVLAD, NetVLAD, CRN,
SFRS, and PatchNetVLAD on our collected Flicker images.

6.3.5 Experimental results

Quantitative Evaluation:

To evaluate the performance of a VPR model, the model must accu-

rately recognize/localize a query image location. Different evaluation

approaches might be employed depending on how the place is recog-

nized. The query image is successfully localized for outdoor VPR if it

occurs near a defined GPS threshold where the image was captured.

The numerical results of the Recall metric with different levels and
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Figure 6.10: Comparison with our different selections. the Recall@N
performance of Ours selected compared to negative selected and all
selected positive and negative on the Pittsburgh 30k test dataset.

Figure 6.11: Time spent processing a single query image (x-axis) and
R@1 (y-axis) is shown below for the Pittsburgh 250k dataset.

within 25 meters are shown in Tables ?? , Table 6.2, and 6.3, along

with line charts revealing many statistical details. The purpose of the

line charts is to visualize differences among methods and to show

how close our methods are to the state-of-the-art algorithms.

The numerical results of our method against several benchmark lo-

calisation solutions NetVLAD [8], CRN, SFRS, and PatchNetVLAD

[50] – are shown in Table??. All the methods were evaluated with

the Pittsburgh 250k dataset, and we used R@1, R@5, and R@10 as
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Figure 6.12: Time spent processing a single query image (x-axis) and
R@1 (y-axis) is shown below for the Pittsburgh 250k dataset.

Figure 6.13: An asymptotic analysis for the time complexity of our
algorithm with selection and non-selection when the input size in-
creases.

reported by the authors.

Our method outperforms the best performing VPR methods, NetVLAD,

CRN, and PatchNetVLAD, on average by 3.1, 3.6, and 0.4, respec-

tively. However, SFRS achieves better performance; this comes at a

high computational cost ( 10 times slower than our best-performing.

The line charts in the figure illustrate the Recall calculated by varying

N in our approaches and other baseline methods.

Moreover, Table 6.2 contains quantitative comparisons of our pro-
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posed method and the baseline methods on Google Street View test

datasets. Note that all results shown in Table 6.2 are provided by

our templates. Our proposed method also yields competitive perfor-

mance compared to alternative systems that utilize positive and neg-

ative examples of local features such as PBVLAD, CRN, and SRFS.

Our method achieves higher results in R@N with an average of How-

ever, NetVLAD shows an improvement in performance, with average

recalls of only 0.2 compared with our proposed method. On the other

hand, our methods achieve better results in terms of computational

cost, as the figure shows. Our method yields 0.0 better performance

on average compared to PatchNetVLAD, despite a reduction in the

number of local feature matchers.

In Table 6.3, our proposed method achieves the best performance,

especially noticeable when considerable appearance differences are

encountered in unseen environments, which are not normally em-

ployed for training procedures. The dataset from the social media

image collection is used. Our method shows an improvement in the

recall @N compared with NetVLAD. Note that all results shown in Ta-

ble 6.3 are provided by our templates.

To analyze the effectiveness of our proposed method, we compared it

with different types of feature selection. We evaluate the performance

using negative features p− only in the test phase. Before the geolo-

cation process starts, the hard negative features in the query image

compute the silimarties with the features in the reference dataset. The

results in Table 6.4 show that the score is very low compared to the

other selection processes. In addition, selecting all features to com-

pare their similarity with all features in the reference dataset achieves

better results than only negative selection. However, choosing both

takes more time than choosing either positive or negative only. In gen-
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eral, selecting only positive features achieves better results in terms

of recall and time. The figure shows the comparison between the

three selection types in time computation.

Figure 6.13 shows the running time of our proposed method by apply-

ing asymptotic time complexity. We measure asymptotic time analy-

sis using our method when selecting only relevant (positive) features

and compare it when using all features. However, we have two al-

gorithms with different running times. To determine which method is

better, we measure asymptotic time complexity by focusing on the

growth of the running time with increasing input size. As a result,

figure 6.13 shows that our algorithm for selecting relevant features

requires less time than our algorithm for using all features.

Qualitative Evaluation: Figure 6.5 demonstrates that the proposed

method effectively retrieves the associated reference image. The

Flicker image match example is particularly difficult because of the

extreme viewpoint shift, occlusions, and things like automobiles and

people on the street sides. Correct and incorrect findings are shown

by green and red borders, respectively.

While CRN and PatchNetVLAD provide inaccurate location matches

in Figure 6.6, our suggested technique successfully finds the corre-

sponding reference image. CRN [55] and PatchNetVLAD [50] suffer

from selecting the positive objects because the number of features in

query images is huge.

6.4 conclusion

A contribution to visual place recognition has been made in this chap-

ter, showing comprehensive quantitative and qualitative evaluations

with leading state of the art visual place recognition methods. In par-
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ticular, first, we show that the forcing method to learn or train negative

examples does not improve performance. In contrast with the VPR

methods, we train our method by removing the negative features from

the query image prior to the geolocation process. Furthermore, we

have demonstrated that place recognition performance for challeng-

ing real-world query images can be significantly improved by auto-

matic prediction and suppression of spatially localized groups of con-

fusing non-informative features in the query image. Confusing fea-

tures are found by matching places spatially far on the map—a nega-

tive supervisory signal readily available in geo-tagged databases. We

have also experimentally demonstrated that the method recognizes

the place from hard environment changes by querying images taken

from the social media platform. Finally, we improve on the method of

the state of the art to better deal with efficient problems by predicting

good features by taking advantage of GPS tags before localizing the

palce. In this way, we discriminate images to find the place correctly

while reducing the number of features.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Our research aimed to address the problem of how to recognize a

place efficiently using only visual information in difficult environments.

In reviewing research related to this problem, we identified particular

gaps related to this research goal. We now list the main contributions

made to our work.

- Mini-Batch VLAD for Visual Place Retrieval.

We investigated the visual place retrieval of an image query by uti-

lizing a geotagged image dataset. For an efficient visual place re-

trieval system, the visual descriptors need to be discriminative. One

of the high-dimensional descriptors that may be employed for accu-

rate visual retrieval is the Vector of Locally Aggregated Descriptors

(VLAD). VLAD describes the images by comparing an image’s lo-

cal feature descriptors to a previously computed codebook. Typi-

cally, a visual codebook is created by utilizing k-means to cluster the

descriptors. However, determining sample distances in a large im-

age collection is challenging due to the complexity of visual features,

which is not straightforward. In order to develop an efficient image
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retrieval method with little computational expense, we suggested em-

ploying mini-batch k-means clustering to produce VLAD descriptors

(MBVLAD). The proposed MBVLAD methodology beats state-of-the-

art methods in retrieval accuracy.

- Efficient Visual Place Retrieval System Using Google Street

View.

For the purpose of representing images in visual place retrieval, we

proposed an aggregated binary descriptor with high-dimensional de-

scriptors (MBVLAD). Local features allow it to successfully match lo-

cal features across images; however, when huge databases are em-

ployed, the expense of extracting and comparing the local descriptors

pairwise becomes a bottleneck. By aggregating binary local features,

we may lower the cost of extracting, representing, and matching local

visual descriptors, improving the efficiency of local features. Based on

search accuracy (mAP) and search time (s), our experiments showed

that our ORB-MBVLAD is much faster and has better search accuracy

(mAP) than the other state-of-the-art approaches.

- Predicting relevant features using a hybrid feature for visual

geolocation system.

Environmental change over a long-term life is one of the VPR sys-

tem’s most difficult challenges. The study of feature selection has

received a lot of attention to solve this challenge. Finding a robust

image representation that can handle the features of discrimination is

tough. The majority of the features are handcrafted and have been

shown to be extremely effective in visual place recognition. However,

as hand-crafted representation exhibits superior recognition of a loca-

tion in rotating perspectives but suffers from particular surroundings

(i.e., trees, buildings, or mountains), it is challenging to choose what

kinds of attributes should be employed to define places. With the
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fast advancement of deep learning networks, it is clear that learned

features beat handcrafted features in place recognition tasks. In this

thesis, we propose a hybrid feature as a robust image representation

that can be used to distinguish relevant and non-relevant features.

Additionally, a lot of features came from this phase, which reduced

the efficiency of VPR when calculating similarity. In order to solve

this problem, we used our proposed hybrid feature and the selecting

features approach to predict useful features in a data-driven way. In

conclusion, a thorough performance evaluation of various represen-

tation techniques was done. Compared to selecting features using a

single method, our hybrid feature showed a significant improvement.

We conducted extensive experiments and analysis that show quanti-

tative and qualitative competitive results over the leading state of the

art methods of visual place recognition.

- An Efficient Visual Place Recognition System by Predicting

Unique Features.

We improved on the state-of-the-art method to better deal with this

problem by proposing a method for automatically selecting such "mis-

matching features" and demonstrating that removing them from the

query image can significantly improve the place recognition perfor-

mance. To this end, we predicted good features by taking advantage

of GPS tags prior to the geolocalization process. In this way, we dis-

criminated against images to find the place correctly while reducing

the number of features. In addition, our method provided increased

accuracy with lower computational times. Extensive quantitative and

qualitative experiments show competitive results as compared with

the leading state of the art in visual place recognition.
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7.2 Future Work

There are various areas to be explored in the future to extend and

overcome the limitations of the methods presented in this thesis.

- Complex Scene Retrieval Using Semantics

In Chapters 3 and 4, we have taken into account reasonably well-

defined retrieval situations where the ground-truth for a particular query

is easily specified. In future research, however, we want to look into

the complications that occur when the inquiry has a nuanced seman-

tic meaning and the ground truth is only partly reliable. Take, for ex-

ample, the query picture of a vehicle and a guy on a spooky, rain-

soaked street. At first, it’s not evident what the picture has to offer

the user. Interactions from the user, including useful feedback or a

bounding box, may aid in locating the target object(s). In order to an-

swer complicated questions, current approaches use scene-graphs,

which include first isolating each object and then parsing the result

into a graph consisting of the identified items and their interactions

[56, 139].

To further establish a link between the graph and the pictures, a graph

inferencing technique is used. Therefore, the photos with the most

similar spatial arrangements and linked components would be awarded

the highest similarity ratings. In chapters 5 and 6, when a difficult

scenario is shown, we’d want to look into several options for captur-

ing its essence. Instead of recognizing each object independently

and expressing the image as a graph, we aim to represent the image

as a whole and detect frequently occurring visual concepts through

a data-driven approach. This may involve chunks of objects, their

coarse spatial configuration, and elements of the background. The

visual parts that make up these concepts need to be tightly related

to one another in order to reduce the amount of work required of the
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user. Users need a representation that can be broken apart so they

can choose which parts of the image to show.

- Investigating Scene-Category-Aware Place Recognition

One of the difficulties with visual location recognition is scalability.

In real time, we cannot do a similarity check on every image in the

collection. By knowing the scene’s semantic category, we may nar-

row the search field considerably. If we know that we are looking at a

school, storefront, or building, for example, we may narrow the search

to only include those images in the database that have a similar sit-

uation. However, semantic information may also be used to solve

the issue of fluctuating appearance over time, which is another chal-

lenge in place recognition. In spite of cosmetic alterations, semantic

data remains intact. When the seasons change, the physical look of

a tree may alter drastically, yet the tree’s underlying semantic cate-

gory stays the same. Understanding this change, the trained models

we provide in Chapters 5 and 6 of this study exclude fleeting visual

components (such as trees, automobiles, and people strolling about)

as irrelevant to the place recognition task. But if the important visual

features have changed, like if a building’s facade has been redone,

our methods might not work unless there is a lot of overlap with how

it looked before.
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Appendix A

Image Representation

Methods Using Three

Dimentional Information for

Visual Place Recognition

In chapter 2, we explore the image representation methods for visual

place retrieval and recognition. One of the representation methods

that can be used for visual place retrieval is three-dimensional infor-

mation.

A.1 Image Representation Methods Using

Three Dimentional Information for VPR

The visual domain may be used to describe locations using a 2D

model (instead of creating a geometric-model), and this can be aug-

mented with metric data. Therefore, a two-dimensional (2D) image

that includes metric data may be treated as if it were three-dimensional

(3D). It is possible to infer distances in meters using stereo cameras.
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Structure-from-motion algorithms, such as those used in MonoSLAM

[27], LSD-SLAM [18], and ORB-SLAM [87], allow monocular cam-

eras to infer metric information. In order to boost the efficiency of lo-

calization strategies based on place recognition, some publications

in the literature have turned to 3D (three-dimensional) data. Fast

Appearance-Based Mapping (FAB-MAP) is improved upon by include

the 3D spatial distribution of visual words [23]. Similarly, [14] uses vi-

sual words and 3D information from stereo sequences to accomplish

accurate place recognition. Extracting robust 3D PIRF (Position In-

variant Robust Feature) points from sequential images and odometry,

Morioka et al. [86] offer a SLAM navigation system that is successful

even in congested surroundings. The authors of the study [35] offer

a variation of SURE, an interest point detector and descriptor for 3D

point clouds and depth images, and show how it may be used to iden-

tify semantically unique locations within buildings. In addition, they

showed that a bag-of-words technique works very well for recogniz-

ing locations utilizing SURE features. In order to increase the regular-

ity and dependability of appearance-based loop closure, the authors

of the paper [80] describe a new system called CAT-SLAM (Continu-

ous Appearance based Trajectory SLAM), which combines sequen-

tial appearance-based place recognition with local metric pose filter-

ing. In [81], we offer CAT-Graph, a version of CAT-SLAM that, in ad-

dition to merging visual appearance and local odometry data, also

fuses data from many trips to the same site into a topological graph-

based description of interior settings. It illustrates that, with limited

resources (computing time and memory), loop closure detection in a

dense urban setting may achieve performance that is three times bet-

ter than FAB MAP at 100 accuracy. According to Cadena et al. [15]

presents a stereo vision-based framework for location identification
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that uses a bag-of-words model to find potential loop closures and

a Conditional Random Fields-Matching (CRF-Matching) technique to

confirm them. When compared to methods that rely just on epipolar

geometry, this matching method’s utilization of 3D information offered

by the stereo images makes it far more efficient.

The paper [14] provides a method for recognizing places in camera-

based SLAM systems. It takes into account both the visual features

and the geometric properties of places of interest in the images. Loop-

closing hypotheses are created rapidly using an appearance method

based on the bag-of-words approach. Experiments with both indoor

and outdoor data demonstrate that the suggested approach achieves

high recall while maintaining high accuracy (i.e., no false positives)

(fewer false negatives). Sensor information from supplementary de-

vices, including RGB-D cameras, is used by a wide variety of other

systems [33].
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Appendix B

Place Match Techniques in

Visual Place Retrieval and

Recognition

Visual place recognition can be divided into two categories: 1) meth-

ods based on single image matching; 2) methods based on sequence

matching. In this thesis, we only focus on the single image matching

technique. In the following, we provide an overview of methods based

on single image and sequence matching.

B.1 Matching Methods based on single im-

age

It has been common practice to consider a place as a single image

when doing visual place recognition. The foundation of the method is

the compilation of images captured offline by a moving machine. It is

then possible to obtain the one that is most like the one being used

at the moment. It’s possible to attribute the same origin to disparate

locales if their similarities are great enough. Visual similarity retrieval
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(VPR) requires that for each image in the test set, a matching image

be found in the reference set. Geo-locating an image involves match-

ing its coordinates to those of an image of the same location that was

pulled from a database as a starting place (map). Matching the visual

features of the current scene image to those of training images from a

database is a key step in many visual localization approaches based

on place recognition [78].

For visual localization, FAB-MAP [23] stands out as a pioneer-

ing picture matching approach. The paper suggests using a bag-

of-words image retrieval approach to find a image that most closely

resembles the present scene’s look. Training involves calculating the

uniqueness of each word in a bag-of-words model that employs SIFT

or SURF features for image description. A Chow Liu tree, which is

the maximum-weight spanning tree of a directed network of co oc-

currences of visual words, is calculated from a set of training data to

approximatively represent the probabilities of visual words. In order to

solve the perceptual aliasing issue, FAB-MAP takes into account not

only the similarity between two places in terms of the number of visual

words they share, but also the rarity of those words. However, when

doing large-scale appearance-based localization, Knopp et al. [65]

only take into account matches to individual images in the database,

rather than the linear combination of bag-of-feature vectors. Match-

ing a single image is a simple and fast method for recognizing a cer-

tain location. Place identification with a single image, however, may

be impacted by changes in lighting and moving objects when robotic

systems work in bigger, uncontrolled areas and for longer periods of

time (e.g. cars or pedestrians).
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B.2 Image Matching Methods Based on Se-

quence Matching

The visual appearance of each location was assumed to remain con-

stant during the length of the trial, a simplification that was commonly

made implicitly in early place recognition systems. This assumption,

however, has rapidly been shown to be incorrect as robotic systems

work in ever-larger and longer-lasting uncontrolled settings. The rela-

tive topological structure of an environment becomes increasingly es-

sential and appearance-based location matching becomes less trust-

worthy when the look of an environment is changing. Sequences of

images may be utilized to match locations in spite of variations in light-

ing, weather, or visibility [85], as opposed to estimating the similarity

between a single position in two images. Even if the lighting and ob-

jects (cars and trees) in sequence A have changed over the course

of the two weeks between sequences A and A’, matching based on

sequence is still able to correctly identify the location.

SeqSLAM (Sequence Simultaneous Localization and Mapping)

[85] is a more recent approach that incorporates the concept of match-

ing locations by focusing on sequences rather than individual images.

The first step in the SeqSLAM procedure is to create a matrix that

compares the training picture sequence to the local query (testing)

image sequence. Without extracting keypoints from images, simi-

larity is measured by summing up the differences between contrast-

enhanced versions of low-resolution images. The place recognition

score is the greatest normalized sum of the similarity scores along

the prescribed constant velocity pathways (alignments between the

query sequence and database sequence images) in the matrix. Us-

ing this sequence matching strategy dramatically enhances location
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recognition reliability. As long as the right position is more similar

than a wrong site, the sequence-based technique can work consis-

tently under these circumstances. This is because it does not rely on

the image comparison phase to ensure 100 accuracy. sequence filter

can determine the route if it occurs often enough [84].
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Appendix C

Geo-tagged image collection

In chapters 5 and 6, we need a geo-tagged dataset that contains im-

ages with geographical tags for training features. There is no dataset

that covers the same geographic area as Google Street View dataset

zamir2014image. So, we collect our images from free social media

platforms. In the following, we explain the collection in more detail.

C.1 Images from Flicker API

Our geotagged images contains 720 images that can be used for

training, and 100 images for testing. The images can be used for

many computer vision tasks such as place retrieval, visual place recog-

nition, and image classification. The images include street-level im-

ages taken from multiple perspectives, at different but nearby loca-

tions. Figure illustrates a set of images for the same location but

different perspectives views.

Our collected dataset covers cityscape views, major buildings, and

outdoors landmarks in Pittsburgh, PA. Figure presents an example

of our collected dataset. The Flickr API allows images to be se-

lected by tag. For example, we can search by objects, places and

buildings such as lamp-post, pizza, church, etc. For our dataset, we
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Figure C.1: An example of using Google Map Platform to verify the
GPS tags.

searched by GPS tag, using geo-location (latitude and longitude) from

the Google Street View Dataset provided by Zamir and Shah [147].

C.2 Implementation details

To collect geo-tagged images from Flicker API, we should first request

for API key access from the website. For collecting the photos, Python

3.5 is used. The Flicker API should install by pi p i nst al l f l i ckr api .

The python code for searching and collecting the photos shows in

Figure C.2. At the end, all images collected in one folder. Each image

has a tag like image number-longitude-latitude.jpg. We also verify any

coordinates using Google Map Platform. 1, see Figure C.1.

1https://developers.google.com/maps/documentation/javascript/examples/geocoding-
reverse
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Figure C.2: A screen shot of the python code used for collecting the
images from Flicker API.
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Appendix D

Fast Nearest Neighbor Search

In this dissertation, we have concentrated on representing an image

using aggregated approaches, where visual similarity is measured

by the distance in the embedding space. Computing the distance

between the query and all images in the database is computation-

ally intensive and frequently impractical. Numerous efforts have been

made to improve scalability via the use of tree-search, hashing, and

quantization, among other techniques. Unless otherwise noted, the

strategies discussed in this section may be utilized in conjunction with

the methods we suggest.

D.1 Indexing using Vocabulary Tree

When applied to an inverted index, the vocabulary tree [93] allows for

a fast closest neighbor search for representations of a bag of visual

words [119]. Each node in a vocabulary tree represents a distinct

word in a visual language, making it a hierarchical quantizer. On the

other hand, the inverted index is a data structure that associates vi-

sual words with the image indexes that include those words. It takes

O(KL), where K is the number of centroids per level and L is the tree

depth, to assign a query image’s locally derived features to a visual
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word through the vocabulary tree. For each visual word in the query

image, the inverted index increases the number of co-occurring words

for the list of images returned. This aids in the rapid locate similar im-

ages.

D.2 KD-Tree

Via a vector representation, a KD-Tree [37] locates near-neighbors

using a tree search. At first, a tree is built by recursively dividing the

database in half along one of the k feature dimensions at the median,

and continuing to do so until the partitioning conditions (the number of

data points or the greatest distance between the points at the node)

are met. It’s like taking the concept of a binary tree and expanding it to

k dimensions. The tree is explored in a recursive manner using depth-

first search for a particular query image. In the leaf pile, a leaf will

discover its closest neighbors when it is picked up. If a new neighbor

is discovered, the distance between the neighbors is recalculated,

and a new bounding box is drawn. If the bounding box does not cover

a portion of the sub tree, then that portion of the sub tree is skipped.
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