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Summary 

Background:  

Frontotemporal dementia (FTD) computational imaging studies typically 

investigate group-level analyses of cortical or supratentorial radiological 

changes. This single-centre prospective multimodal neuroimaging study of 

FTD phenotypes: bvFTD, nfvPPA, svPPA, and C9orf72+ and C9orf72- ALS-FTD 

aimed to investigate (1) group-level analyses of subcortical and infratentorial 

regions and (2) single-subject analyses of grey and white matter changes. 

Methods: 

(1) Cerebellar cortical thickness, morphometry, fractional anisotropy (FA), 

axial diffusivity (AxD), radial diffusivity (RD), mean diffusivity (MD).  

(2) Thalamic nuclei volumetry, vertex, morphometry analyses.  

(3) Standard cortical thickness and ‘mosaic’ z-score based analyses 

(4) Standard diffusivity metrics and ‘mosaic’ z-score based analyses 

Results: 

In group-level analyses, there were FTD phenotype-specific cerebellar and 

thalamic signatures with selective involvement rather than global atrophy. 

The different imaging modalities offered complementary information. In 

single-subject analyses, the z-score based approach reliably detected FTD 

phenotype-specific cortical atrophy and white matter vulnerability patterns. 

These results were analogous to FTD-phenotype group-level analyses.  
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Lay Abstract 

Frontotemporal dementia (FTD) is a rare type of dementia. It can 

affect language, behaviour and memory depending on what part of the brain 

is involved. It can be difficult to diagnose, especially in the early stages of the 

disease. The correct diagnosis is important for individual patients and from a 

wider research perspective. This research study used advanced magnetic 

resonance imaging (MRI) scans to better understand the FTD brain imaging 

pattern. These images are mathematically analysed by computers to calculate 

the size, shape, density and water diffusivity of different areas within the 

brain. Our study focused on (1) evaluating of the thalamus and cerebellum - 

which are often under investigated in FTD, and (2) using novel methods to 

analyse individual patient brain scans in FTD subtypes. We found that 

advanced MRI imaging captures thalamus and cerebellar involvement in FTD, 

in a pattern that is unique to each FTD subtype. We also found that novel 

methods can be used to reliably interpret individual patients’ brain scans.  

 

 

  



    xvi 

Aims and Hypothesis of the Project 

Aim:  

• To characterise multimodal imaging signatures of the cerebellum and 

thalamus in frontotemporal dementia (FTD) phenotypes  

 

• To conduct and compare single-subject and group-level analyses of 

FTD phenotype-specific patterns of grey and white matter involvement 

 

Hypothesis: 

• There are FTD phenotype-specific cerebellar radiological profiles 

 

• There are FTD phenotype-specific thalamic nuclei radiological profiles 

 

• Single-subject analyses of grey and white matter in FTD phenotypes 

are analogous to well-described FTD phenotype group-level analyses. 

  



    xvii 

Value of Research 

This research project aims to use computational imaging to 

enhance our understanding of the specific imaging patterns described 

in frontotemporal dementia (FTD). From a patients’ perspective, this 

research has the potential to improve early accurate diagnosis. From a 

clinicians’ perspective, the improved characterisation of FTD-

associated imaging signatures may help to differentiate FTD subtypes 

and to differentiate FTD from other neurodegenerative disorders. 

From an academic perspective, diagnostic precision enables timely 

accurate recruitment into clinical trials. This is particularly important 

as we enter the therapeutic era of targeted molecular therapies for 

neurodegenerative disorders. The identification of affected brain 

regions that are unique to FTD subtypes have the potential to be 

included in future machine learning classification algorithms to 

enhance diagnostic accuracy on a wider scale. These imaging methods 

could also be used as an objective measure to quantify disease 

burden, monitor disease progression or track response to treatment. 
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1 The changing landscape of neuroimaging in 

frontotemporal lobar degeneration: from group-level 

observations to single-subject data interpretation 

1.1 Introduction  

The neuroimaging signature of frontotemporal lobar degeneration 

(FTLD) has been refined by robust computational imaging studies in recent 

years. This has led to the characterisation of phenotype- 1-16 and genotype-

associated 17-23 patterns of preferential anatomical involvement and 

trajectories of longitudinal progression. These findings have contributed 

important academic insights to our understanding of FTLD biology. However, 

the practical clinical utility of group-level observations is contingent on the 

reliable interpretation of individual MRI scans. In recent years, a multitude of 

classification models have been trialled to capitalise on group-level traits and 

categorise single-subject MRI data into diagnostic and prognostic subgroups.  

At a cohort level, grey matter (GM) analyses in FTLD readily detect 

cortical atrophy involving the medial-inferior orbitofrontal, anterior cingulate 

and anterior insular areas in the frontal lobes; the uncus, anterior, medial and 

lateral regions in the temporal lobes; and sometimes the lateral parietal lobes 

or cerebellum 1-3, 7-9, 11, 12, 24-34. Diffusion tensor imaging (DTI) typically captures 

widespread white matter (WM)  degeneration involving a multitude of 

commissural and long association tracts, such as the inferior fronto-occipital 

fasciculus, anterior temporal WM regions, anterior corpus callosum, bilateral 

anterior cingulate, uncinate, inferior and superior longitudinal fasciculus 8, 9, 11, 

13, 16, 28-30, 35-42. Subcortical GM analyses in FTLD reveal the selective 
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involvement of basal ganglia nuclei and limbic system structures 3, 7, 9, 30, 31, 39, 

43-49. Resting-state fMRI studies usually detect reduced salience network 

connectivity with the involvement of the fronto-insular, cingulate, striatal, 

thalamic and brainstem nodes 50-52. These relatively consistent findings serve 

as the foundation for the development of single-subject MRI classification 

models in FTLD.  

Machine-learning algorithms in neurodegenerative conditions typically 

use the best-performing set of MRI features rather than indiscriminately 

evaluating all available imaging measures that would unnecessarily add to the 

processing time without improving accuracy 53-57. Different combinations of 

structural and functional MRI metrics are typically tested to create the most 

accurate classification models. Machine learning strategies are typically 

divided into ‘supervised’ and ‘unsupervised’ learning approaches. 

Unsupervised models can uncover association patterns or data clusters 

without human intervention or feedback. Common approaches include 

clustering methods such as K-means clustering, hierarchical clustering 

algorithms, probabilistic clustering, and dimensionality reduction strategies 

such as principal component analysis or singular value decomposition (SVD).  

The benefits of unsupervised approaches lie in their ability of discovering 

naturally occurring data patterns previously unknown to researchers and the 

reduced workload associated with the preparation and labelling of training 

datasets. The main drawbacks of unsupervised methods include the large 

training data required, considerable computational requirements, and 

typically slower data processing due to model complexity 58. Supervised 

learning algorithms rely on meticulously labelled data to assign additional 
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inputs to specific categories based on regression or classification. Commonly 

used supervised models include linear regression, logistic regression, naïve 

bayes, support vector machines (SVM), decision trees, K-nearest neighbour 

algorithms, and random forests 59, 60. The term semi-supervised learning is 

used when only part of the input data has been expertly labelled. Several 

models provide a group-membership probability index. Such frameworks have 

been successfully applied to pre-symptomatic 61-64, early 54, 65 and established 

53, 66-69 cases of FTLD and have been shown to accurately differentiate FTLD 

from either established cases of AD or controls.  

In this review, we explore the use of MRI classification models in FTLD 

as the neuroimaging landscape shifts from descriptive studies to the 

development of precision imaging biomarkers. This has potential clinical 

significance such as the earlier confirmation of a suspected diagnosis or 

classification into prognostic categories. The accuracy of proposed machine-

learning approaches however has been largely tested on established FTLD 

cases and only more recently on pre-symptomatic or suspected cases.  

1.2 Methods 

A formal literature review search was conducted using the PubMed 

repository (last accessed on 11th February 2022). The following search 

strategy was used: ("Frontotemporal lobar degeneration"[Mesh] OR 

"Frontotemporal lobar degeneration" OR “frontotemporal dementia” [Mesh] 

OR “frontotemporal dementia” OR “frontotemporal degeneration” OR 

"Primary Progressive Aphasia” [Mesh] OR “behavioural variant 

frontotemporal dementia” OR “non-fluent variant primary progressive 

aphasia” OR “semantic-variant primary progressive aphasia” OR “FTLD” OR 
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“FTD” OR “bvFTD” OR “PPA” OR “nfvPPA” OR “svPPA”) AND ("Magnetic 

Resonance Imaging"[Mesh] OR “MRI” OR “diffusion tensor imaging” OR 

“functional MRI” OR “fMRI” OR “DTI”) AND ("Machine Learning"[Mesh] OR 

“classification” OR “accuracy” OR “deep learning” OR “support vector 

machine” OR “supervised machine learning” OR “unsupervised machine 

learning”). Pathological subgroups “tau” and “pTDP-43” were not included in 

the search strategy. Our search was limited to studies written in English that 

involved human subjects. All papers were screened by title and abstract and 

the full text of selected articles were then reviewed. The inclusion criteria 

included: (1) original research articles investigating single-subject classification 

of FTLD, bvFTD, PPA, nfvPPA or svPPA and (2) used classification features 

derived from structural or functional MRI only. We excluded studies that 

investigated other phenotypes such as corticobasal syndrome (CBS) and 

progressive supranuclear palsy (PSP). The reference lists of selected articles 

were also reviewed to identify additional relevant papers. 

1.3 Results 

This above search strategy yielded 283 papers, of which 40 articles 

were eligible. An additional 11 articles were identified by reviewing reference 

lists. A total of 51 studies were selected for systematic review (Figure 1; Table 

1). The identified papers are discussed under five main themes of: 

classification of symptomatic cases; classification of pre-symptomatic FTLD; 

stereotyped study limitations; technological advances; and practical 

applications.  



 

  

5 

Figure 1: A PRISMA flowchart for systematic review of MRI classification models in FTD 
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Table 1: A selection of MRI classification neuroimaging studies in cases of established, peri-diagnostic and pre-symptomatic FTD 
First author, 

year of 
publication 

Patient groups and 
cohort sizes 

Clinical criteria Symptom duration  Supporting pathological, 
radiological or CSF biomarkers 

Study design, mathematical model, 
validation 

Agosta et al, 
2015 70 
 

nfvPPA n=13 
svPPA n=13 
Controls n=23 

PPA – Gorno Tempini 2011 71 nfvPPA 2 years 
svPPA 3 years 

N/A Binary classification 
Random forest  
 

Bachli et al, 
202072 
 

bvFTD n=57 
AD n=29 
Controls n=116 

bvFTD – Rascovsky 2011 73 
AD – NIA-AA 2011 74 

- N/A Binary classification 
Principal component analysis 
Logistic regression 
Cross validation 

Bede et al, 
202175 

FTLD n=37 
ALS =214 
HC =127 

ALS – El Escorial 76 
bvFTD – Rascovsky 2011 73 

- N/A Artificial neural network framework; 
A multilayer perceptron model  
Data partitioned into:  
Training (68%) and testing sample (32%) 

Bisenius et al, 
201777 

nfvPPA n=16 
svPPA n=17 
lvPPA n=11 
Controls n=20 

PPA – Gorno Tempini 2011 71 
 

nfvPPA 2 years 
svPPA 4 years 
lvPPA 4 years 

N/A Multi-class classification 
Whole-brain and ROI SVM 

Bouts et al, 
201853 
 

bvFTD n=23;  
AD n=30;  
Controls n=35 

bvFTD – Rascovsky 2011 73 
AD – NIA-AA  2011 74 

bvFTD 60 months 
AD 35 months 

N/A Binary classification  
Elastic net regression  
Cross-validation  

Bron et al, 
201765 

FTLD n=33;  
(bvFTD n=12; nfvPPA n=4; 
svPPA n=10; PPA n= 2; 
unclassified n=5) 
AD n=24 
Controls n=34 

bvFTD – Rascovsky 2011 73 
PPA – Gorno Tempini 2011 71 
AD – NIA-AA 2011 74 

- N/A Multi-class classification  
Linear SVM 
Cross-validation 

Canu et al, 
201754 

bvFTD n=27 
AD n=62 
Controls n=48 

bvFTD – Rascovsky 2011 73 
AD – NIA-AA 2011 74 

bvFTD 4 years 
AD 4-years 

[18F] FDG PET-CT  
bvFTD (n=24); AD (n=38). 
 
CSF:  bvFTD (n=9), AD (n=24). 

Binary classification  
Random forest   
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First author, 
year of 

publication 

Patient groups and 
cohort sizes 

Clinical criteria Symptom duration Supporting pathological, 
radiological or CSF biomarkers 

Study design, mathematical model, 
validation, symptom duration profile 

Canu et al, 
201978 

nfvPPA n=29 
svPPA n=15 
lvPPA n=15 
Controls n=38 

PPA – Gorno Tempini 2011 71 
 

nfvPPA 3 years 
svPPA 4 years 
lvPPA 3 years 

[18F] FDG PET-CT: nfvPPA 
(n=12); svPPA (n=10); lvPPA 
(n=10) 
 
CSF:  nfvPPA (n=12); svPPA 
(n=7); lvPPA (n=8) 

Binary classification  
Random forest   
Logistic regression 
 

Cajanus et al, 
201879 

bvFTD n=50 
Reference group: 

FTLD n=154 
AD n=537 
LBD n=61 
SMC n= 359 

bvFTD – Rascovsky 2011 73 
 

bvFTD 3 years Genetics: C9orf72 testing in all 
(n=50), and confirmed in n=17 

Multi-class classification  
Disease state index 

Chagué et al, 
202080 

bvFTD n=39 
Early onset AD n=34 
Late-onset AD n=49 
Depression n=24 

bvFTD – Rascovsky 2011 73 
AD – IWG-2 2007 81 
Depression – DSM-V 2013 82 

bvFTD 3 years 
EOAD 3 years 
LOAD 3 years 
Depression 6 years 

CSF in all cases (n=146) 
 

Binary classification 
SVM 
Cross-validation 

Chow et al, 
200883 

bvFTD n=16 
PPA n=14 
Controls n=30 

FTLD – Neary 1998 84 - Pathology: bvFTD (n=6), PPA 
(n=4); Criteria not specified. 

Binary classification 
Logistic regression 

Davatzikos et 
al, 200885 
 

FTLD n=12 
(bvFTD n=8, svPPA n=1; 
PPA n=2; CBS n=1) 
Controls n=49 
AD n=37 

FTLD - McKhann 200186 
AD-  NINCDS-ADRDA 1984 87 

FTLD 4 years 
AD 4 years 

N/A Binary classification  
Non-linear SVM 
Cross-validation  

Donnelly-
Kehoe et al, 
201988 

bvFTD n=44 
Controls n=60 

bvFTD – Rascovsky 2011 73 
 

- [18F] FDG PET-CT: in some 
cases, details not specified 

Binary classification 
Random forest classifier  
Feature selection 
Linear SVM 
Cross-validation 
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First author, 
year of 

publication 

Patient groups and 
cohort sizes 

Clinical criteria Symptom duration Supporting pathological, 
radiological or CSF biomarkers 

Study design, mathematical model, 
validation, symptom duration profile 

Du et al, 
200689 

FTLD n=21 
AD n=24 
Controls n=25 

FTLD – Neary 1998 84 
AD-  NINCDS-ADRDA 1984 87 

- N/A Binary classification 
Logistic regression 

Egger et al, 
202090 

FTLD n = 30 
AD n = 30 
LBD n = 30 
Controls n = 30 
Reference group 

Controls n=360 

Not specified  - [18F] FDG PET-CT in all cases Binary classification 
ROI and automated z-score based analysis 

Feis et al, 
201962 
 

Pre-symptomatic 
mutation carriers (n=55):  

MAPT n=8;  
GRN n=35; 
C9orf72 n=12 
Controls n = 48 
 

bvFTD – Rascovsky 2011 73 
PPA – Gorno Tempini 2011 71 
ALS – Ludolph 2015 91 
 

- Genetics: FTLD pathogenic 
genetic mutations in all cases 

Binary classification  
Elastic net regression  
Cross-validation  
Pre-symptomatic subjects 
 

Feis et al, 
201963 

Pre-symptomatic 
mutation carriers (n=55):  

MAPT n=8 
GRN n=35 
C9orf72 n=12 
Controls = 48 
 

bvFTD – Rascovsky 2011 73 
PPA –Gorno Tempini 2011 71 
ALS – Ludolph 2015 91 
 

- Genetics: FTLD pathogenic 
genetic mutations in all cases 

Binary classification  
Elastic net regression  
Cross-validation  
Pre-symptomatic and peri-diagnosis subjects 

Feis et al, 
202064 

Pre-symptomatic 
converters n=7 
Pre-symptomatic non-
converters n=35 

bvFTD – Rascovsky 2011 73 
PPA –Gorno Tempini 2011 71 
ALS – Ludolph 2015 91 
 

- Genetics: FTLD pathogenic 
genetic mutations in all cases 

Binary classification  
Elastic net regression 
Cross-validation  
Pre-symptomatic and peri-diagnosis subjects  

Frings et al, 
201492 

bvFTD n=15 
AD n=14 
Control n=10 
 

bvFTD – Rascovsky 2011 73 
FTLD – Neary 1998 84 
AD – NINCDS-ADRDA 1984 87 

- Genetics: C9orf72  n=3 Binary classification 
Logistic regression 
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First author, 
year of 

publication 

Patient groups and 
cohort sizes 

Clinical criteria Symptom duration Supporting pathological, 
radiological or CSF biomarkers 

Study design, mathematical model, 
validation, symptom duration profile 

Hu et al, 
202193 

FTLD n=1250 
AD n=1314 
Controls n=1535 

Not specified  - N/A Binary and multi-class classification 
Deep-learning based network 
Data augmentation model 
Independent validation 

Kim et al, 
201994 

FTLD n=143 
AD n=50 
Controls n=146 

bvFTD – Rascovsky 2011 73 
PPA –Gorno Tempini 2011 71 
AD – NIA-AA 2011 74 
 

FTLD 3 years 
svPPA 3 years 
nfvPPA 3 years 
AD 4 years 

Amyloid PET scan:  
18F-florbetaben 
18F-flutemetamol 
 

Binary classification 
Principal component analysis 
Linear discriminant analysis 
Cross-validation 

Klöppel et al, 
201567 
 

FTLD n=39 
AD n=361 
LBD n=23 
Controls = 586 

FTLD – Neary 1998 84 
AD – NIA-AA 2011 74 
LBD – McKeith 2005 95 
 

- [18F] FDG PET-CT: 
details not specified 

Multi-class classification  
Linear SVM  
 

Koikkalainen 
et al, 201668 
 

FTLD n=92 
AD n=223 
VD n=24 
LBD n=47 
Control n=118 

FTLD – Rascovsky 2011 73, Neary 
1998 84 
AD – NIA-AA 2011 74, NINCDS-
ADRDA 1984 87 
VD – NINDS-AIREN 96 
LBD – McKeith 1996, 2005 95, 97 

- CSF: details not specified  Multi-class classification  
Disease State Index classifier 
Cross-validation 

Kuceyeski et 
al, 201398 

bvFTD n = 18 
AD n = 18 
Controls n = 19 

FTLD – Neary 1998 84 
AD - NINCDS-ADRDA 1984 87 
 

- N/A Linear discriminant analysis 
Loss in connectivity (LoCo) score 

Ma et al, 
202099 

FTLD n = 434 
AD n=459 
Controls n=1063 

Not specified  - N/A Multi-class classification 
Generative adversarial neural network  
Cross-validation 

Manera et al, 
2021100 

bvFTD n=145 
Controls n= 370 

bvFTD – Rascovsky 2011 73 
 

Validation cohort 
bvFTD 5 years 

Genetics: FTLD pathogenic 
genetic mutations in  n= 75 

Binary classification 
Random forest classifier 
Independent validation 

McMillan et 
al, 201229 
 

FTLD n=50 
AD n=42 
 

bvFTD – Rascovsky 2011 73 
PPA –Gorno Tempini 2011 71 
AD – NIA-AA 2011 74 
CBS – Clinical criteria 2007 101 

FTLD 3 years 
AD 3 years 

CSF: n=92 Binary classification  
Logistic regression  
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First author, 
year of 

publication 

Patient groups and 
cohort sizes 

Clinical criteria Symptom duration Supporting pathological, 
radiological or CSF biomarkers 

Study design, mathematical model, 
validation, symptom duration profile 

McMillan et 
al, 2013 

FTLD-TDP n=25 
FTLD-tau n=10 

N/A FTLD-TDP 3 years 
FTLD-tau 3 years 

Genetics: C9orf72 n=12;  
GRN n=7; MAPT n=3 
 
Pathology: FTLD TDP-43 (n=6); 
FTLD tau (n=7),  MacKenzie 
2010 102 and 2011 103criteria 

Binary classification  
Logistic regression 
Eigenanatomy 
Cross validation 
 

McMillan et 
al, 2014104 
 

FTLD n=72 
AD n=21 

bvFTD – Rascovsky 2011 73 
PPA –Gorno Tempini 2011 71 
CBS – Armstrong 2013 105 
PSP – NINDS-SPSP 1996 106 

FTLD 4 years 
AD 3 years 

CSF: n=93 
 
Genetics or FTLD pathology, 
MacKenzie 2010 102 (n=11) 

Binary classification  
Linear regression 
Cross-validation  

Meyer et al, 
201769 

bvFTD n=52 
Controls n=52 

bvFTD – Rascovsky 2011 73 
 

bvFTD 4 years Genetics: FTLD pathogenic 
genetic mutations in n=4 

Binary classification  
Linear SVM  

Möller et al, 
20157 
 

bvFTD n=24 
AD n=32 
Controls n=37 

bvFTD – Rascovsky 2011 73 
AD – NIA-AA 2011 74, NINCDS-
ADRDA 1984 87 

bvFTD 50 months 
AD 40 months 

N/A Binary classification  
Discriminant function analyses 
Cross-validation  

Möller et al, 
2016107 

bvFTD n=51 
AD n = 84 
Controls n = 94 

bvFTD – Rascovsky 2011 73 
AD – NIA-AA 2011 74 and NINCDS-
ADRDA 1984 87 
 

Training set: 
bvFTD 45 months 
AD 37 months 
Prediction set: 
bvFTD 41 months 
AD 55 months 

N/A Binary classification 
SVM 
Discriminant functional analysis 
Cross-validation 
 

Moguilner et 
al, 2018 108 

bvFTD n=35 
Controls n=49 
 

Not specified - N/A Binary classification 
SVM 
K-nearest neighbour 
Cross-validation 

Moguilner et 
al, 2021109 

bvFTD n=96 
AD n=103 
Controls n=101 

Not specified  - N/A Binary classification  
Gradient boosting machine classifier 
(XGBoost) 
Independent and cross validation  
 



 

 

11 

First author, 
year of 

publication 

Patient groups and 
cohort sizes 

Clinical criteria Symptom duration Supporting pathological, 
radiological or CSF biomarkers 

Study design, mathematical model, 
validation, symptom duration profile 

Muñoz-Ruiz et 
al, 201249 

FTLD n = 37 
AD n = 46 
Progressive MCI n = 16 
Stable MCI n = 48 
Control n = 26 

FTLD – Neary 1998 84 
AD – DSM-IV-TR 1994 110 
MCI – Clinical criteria 1997111 

- Pathology: FTLD TDP-43 (n=9), 
AD (n=4); criteria not specified. 
 
Genetics: FTLD pathogenic 
genetic mutations in n=3 

Binary classification 
Regression 
 

Raamana et 
al, 201466 
 

bvFTD n=30 
AD n=34 
Control n=14 

FTLD – Neary 1998 84 
AD - NINCDS-ADRDA 1984 87 
 

- N/A Multi-class  classification  
Dimension reduction & Non-linear SVM 
Cross-validation 

Staffaroni et 
al, 2020112 

Pre-symptomatic 
mutation carriers n=127: 

C9orf72 n=54 
GRN n=37 
MAPT n=36 

Controls n=383 

Not specified  - Genetics: FTLD pathogenic 
genetic mutations in n=127 

Binary classification  
Logistic regression 
Cross-validation 

Tahmasian et 
al, 2016 113 

FTLD n=20  
(bvFTD n=11; nfvPPA n=5; 
svPPA n=4) 
AD n=20 

N/A bvFTD 7 years 
nfvPPA 4 years 
svPPA 6 years 
AD 5 years 

[18F] FDG PET-CT in all cases 
 

Binary classification  
SVM 
Cross validation 

Tong et al, 
2017114 

FTLD n = 92 
AD n = 219  
DLB n = 47 
Vascular n = 24 
SMC n = 118 

FTLD – Rascovsky 2011 73, Neary 
1998 84 
AD – NIA-AA 2011 74, NINCDS-
ADRDA 1984 87 
DLB - McKeith 2005 95 
VD – NINDS-AIREN 96 

- CSF: details not specified  Multi-class classification 
RUSBoost 
Feature selection 
SVM 
Random forest  
K-nearest neighbours 
Cross-validation 

Torso et al, 
2020115 

FTLD n=96 
(bvFTD n = 30; svPPA n = 
41; nfvPPA n = 25) 
Controls n=84 

bvFTD – Rascovsky 2011 73 
PPA –Gorno Tempini 2011 71 
 

- N/A Binary and multi-class classification 
K-nearest neighbours 
Feature selection 
Principal component analysis 
Cross-validation 
 



 

 

12 

First author, 
year of 

publication 

Patient groups and 
cohort sizes 

Clinical criteria Symptom duration Supporting pathological, 
radiological or CSF biomarkers 

Study design, mathematical model, 
validation, symptom duration profile 

Torso et al, 
2021 116 

svPPA n=31 
bvFTD n=37 
nfvPPA n=30 
PSP n=47 
CBS n=39 
Controls n=87 
 

bvFTD – Rascovsky 2011 73 
PPA –Gorno Tempini 2011 71 
PSP – Höglinger 2017 117, Litvan 
1996 106 
CBS – Armstrong 2013105 

- Pathology: PSP n=5; CBS n=3; 
Criteria not specified  
 

Binary and multi-class classification 
Linear discriminant analysis 
Feature selection 
Principal component analysis 
 

Vemuri et al, 
2011118 

FTLD n = 47 
AD n = 48 
LBD n = 20 
Control n =120 

Dementia – DSM-IV 110 
FTLD – Neary 1998 84 
CBS –  Boeve 2003 119 
AD - NINCDS-ADRDA 1984 87 
LBD - McKeith criteria 2005 95 

- Pathology: in all cases - FTLD-
TDP43 n=47, MacKenzie 2006 
120, 2010 102; AD n=48,  NIA-
Reagan Institute 1997 121; LBD 
n=20, McKeith 2005 95 

Multi-class classification 
Differential-STAND  
 

Vernooij et al, 
2018122 

FTLD n = 15 
AD n = 21 
MCI n = 6 
Controls n = 4915 

bvFTD – Rascovsky 2011 73 
AD – NIA-AA 2011 74 
 

FTLD 2 years 
AD 2 years 
MCI 1 year 

CSF: details not specified  Binary classification 
K nearest neighbour 

Wang et al, 
2016123 
 

bvFTD n=55 
AD n=54 
Control n=57 

bvFTD – Rascovsky 2011 73 
AD - NINCDS-ADRDA 2007 81 

bvFTD 5 years 
AD 3 years 

Pathology: bvFTD (n=13); AD 
(n=9); criteria not specified.  

Multi-class classification  
Naïve Bayes classification  
Cross-validation 
 

Whitwell et al, 
2012124 

FTLD n=14 
Atypical AD n=14 
Typical AD n=14 
Controls n=20 
 

FTLD – Neary 1998 84 
AD - NINCDS-ADRDA 1984 87. 
CBS –  Boeve 2003 119 
Aphasic dementia – Caselli 
1993125, Josephs 2008126 
 

Typical AD 3 years 
Atypical AD 3 years 
FTLD 4 years 

Pathology: in in all cases - AD – 
NIA-Reagan Institute 1997 121; 
FTLD – Mackenzie 2010102; CBD 
– Dickson 2002 127 
 

Binary classification 
Atlas based parcellation using ROI GM 
volumes 
 

Wilson et al, 
2009128 

PPA n = 86 
(nfvPPA n = 32; svPPA n = 
38; lvPPA n = 16) 
Controls n = 115 
 

nfvPPA - Neary 1998 84 
svPPA – Neary 1998 84 
lvPPA - Gorno-Tempini 2008 129 

nfvPPA 4 years 
svPPA 5 years 
lvPPA 3 years 

N/A Binary classification 
Linear SVM 
Cross-validation 
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First author, 
year of 

publication 

Patient groups and 
cohort sizes 

Clinical criteria Symptom duration Supporting pathological, 
radiological or CSF biomarkers 

Study design, mathematical model, 
validation, symptom duration profile 

Young et al, 
2018130 

Pre-symptomatic FTLD 
n=123 (C9orf72 n=39; 
GRN n=62; MAPT n=22) 
 
Symptomatic FTLD n=49 
(C9orf72 n=24; GRN 
n=14; MAPT n=11) 
 
Controls n=141 
 
AD with 3T MRI n=793. 
(AD dementia n=117; late 
MCI n=164; early MCI 
n=243; significant 
memory concern n=86) 
 
AD with 1.5T MRI n=576. 
(AD dementia n=122; late 
MCI n=274) 
 
Controls n=104 

Not specified - Genetics: FTLD pathogenic 
genetic mutations in n=172 
 
CSF biomarkers: in AD cohorts 

Binary and multi-class  classification  
Subtype and stage inference (SuStaIn) 
Cross-validation 

Yu et al, 
2021131 

Test dataset: FTLD n=47 
(bvFTD n=19; svPPA 
n=12; nfvPPA n=2; not 
specified n=14); AD n=47 
Controls n=47  
 
Validation dataset: FTLD 
n=50 (bvFTD n=20; svPPA 
n=10; nfvPPA n=10; not 
specified n=10); AD n=50 

bvFTD – McKhann 2001  86, 
Rascovsky 2011 73. 
PPA - McKhann 2001 86, Gorno-
Tempini 2011 71. 
AD – NIA-AA 2011 74, NINCDS-
ADRDA 1984 87. 

- N/A Binary classification  
AD resemblance atrophy index 
Frontotemporal dementia index 
Independent validation 
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First author, 
year of 

publication 

Patient groups and 
cohort sizes 

Clinical criteria Symptom duration Supporting pathological, 
radiological or CSF biomarkers 

Study design, mathematical model, 
validation, symptom duration profile 

Zhang et al, 
2013132 

FTLD n=25; (bvFTD n=13; 
svPPA n=6; nfvPPA n=6) 
Controls n=19 

FTLD - Neary 1998 84 bvFTD 6 years 
nfvPPA 4 years 
svPPA 7 years 

N/A Binary classification 
Logistic regression 
Cross-validation 
 

Zhou et al, 
2010 50 

bvFTD n=12 
AD n=12 
Controls n=12 
 

FTLD -  Neary 1998 84 
AD - NINCDS-ADRDA 1984 87 
 

bvFTD 4 years 
AD 4 years 
 

Amyloid-β ligand PIB-PET: 
bvFTD n=4, AD n=5 
 
Pathology: bvFTD n=1;  
Criteria not specified. 
 
Genetic: FTLD GRN n=1; GRN 
and MAPT tested in some cases 
  

Binary and multi-class classification  
Linear discriminant analyses 
Cross validation (n=36) 
Independent validation (n=4) 
 
 

Zhutovsky et 
al, 2019133  

bvFTD n=18 
Neurological diagnoses 
n=28 
Psychiatric diagnoses 
n=27 

bvFTD – Rascovsky 2011 73 
AD – NIA-AA 2011 74 
LBD -  McKeith 2005 95 
VD – NINDS-AIREN 96 
Psychiatric disorders - DSM-IV 110 

- Genetics: C9orf72 tested in all 
cases; MAPT, GRN, PSEN1 and 
APP tested in some cases 
 
[18F] FDG PET-CT  
details not specified 
 
CSF: details not specified. 

Binary and multi-class classifications 
SVM 
Cross-validation 
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1.3.1 MRI classification models in symptomatic FTLD 

1.3.1.1 Models using GM features alone distinguish clinical subtypes 

accurately in a research setting 

Group-level observations consistently described phenotype- 10, 134-138 

and genotype-specific 17-22, 139, 140 patterns of preferential GM cortical 

involvement that are relatively well preserved on longitudinal follow-up. MRI 

classification models are derived from these principles, using whole-brain or 

region of interest (ROI) analyses to examine individual scans. These machine 

learning algorithms are typically first trained on well-characterised cohorts 

and subsequently tested in two-class or multi-class settings. This whole-brain 

approach has been tested in differentiating FTLD from other 

neurodegenerative disorders or FTLD subtypes. An early MRI classification 

model used voxel-based analyses to categorise individual subjects based on 

spatial patterns of atrophy 85. It achieved an averaged 84.3% diagnostic 

accuracy in distinguishing AD from FTLD. The orbitofrontal and right 

entorhinal cortex were identified as the best discriminating regions 85. Whole-

brain SVM classifications discriminate PPA subtypes with varying levels of 

accuracy: svPPA versus lvPPA (95%); svPPA versus nfvPPA (78%); and nfvPPA 

versus lvPPA (55%). ROI SVM classifications selected features that overlapped 

with regions of brain atrophy detected by group-level observations. In this 

study, both methods of SVM classification were comparable 77. The selective 

appraisal of disease-specific regions is further evaluated in later studies. It is 

often used to narrow down the available input variables to the most relevant 

ROI and imaging metrics.  
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The targeted assessment of the left medial frontal region in bvFTD and 

the left anterior temporal region in PPA using ROI approaches can reliably 

distinguish these phenotypes from controls with a diagnostic accuracy of 87% 

and 91% respectively 83. Similar results were achieved in a study interrogating 

frontal, temporal, insula and basal ganglia ROIs to differentiate bvFTD from 

controls achieving a  diagnostic accuracy of 84.6% 69. While these studies 

demonstrate methodological feasibility, it is important to recognise that it is 

neither clinically nor radiologically challenging to differentiate established 

FTLD cases from healthy controls. Accordingly, these methods have also been 

tested in distinguishing FTLD from other neurodegenerative disorders, mostly 

AD, which is more representative of the diagnostic dilemmas of clinical 

practice. Combined morphometric and ROI analyses of the lateral ventricle 

achieved a correct classification rate of 0.73 in differentiating FTLD from AD 49. 

The volume of the temporoparietal cortex has also been identified as a 

discriminating region between FTLD and AD 124. The involvement of the 

subcortical regions, specifically loss of GM volume in the caudate, resulted in 

an accuracy of 79% in differentiating bvFTD from AD 92. Similar GM-based 

multi-class classification models were piloted using SVM 133, discriminant 

function analyses 107, and z-score based approaches 90. GM data were also 

interpreted in step-wise hierarchal classification trees 94 first evaluating 

dementia versus controls, then FTLD versus AD, followed by behavioural 

versus language variant, and finally differentiating svPPA versus nfvPPA. The 

overall classification accuracy of this hierarchical classification tree was 75.8%. 

A number of alternative GM-based classification approaches have been 
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trialled including the definition of disease-specific indices such as the ‘AD 

resemblance atrophy index’ 131. Despite the success of MRI classification 

models using only GM variables in discriminating FTLD from controls, subtypes 

and other neurodegenerative disorders, the limited pathological studies have 

shown that GM imaging metrics alone does not reliably determine the 

underlying FTLD molecular mechanism in vivo 141. 

Many of these models achieve high diagnostic accuracy in pre-selected 

research samples 66, 68  but do not perform as well in a real-life clinical samples 

67. A multi-class classification study suggested that lateral ventricle 

displacement could discriminate bvFTD from AD or controls with an AUC 

0.765 66. Three-way classification models were gradually developed into multi-

class classification models to mirror clinical dilemmas. Structural metrics were 

appraised with regards to their discriminatory power between FTLD versus AD 

versus DLB versus vascular dementia versus healthy controls 68. This model 

evaluated volumetry, morphometry, tensor-based morphometry (TBM), ROI-

based grading, and vascular burden measures and relied on manifold learning. 

A continuous probability index was generated for each diagnostic label. An 

overall classification accuracy of 70.6% was achieved, and sample-size-

adjusted balanced accuracy of 69.1%. It performed considerably better than 

visual MRI ratings. This method was most sensitive at detecting vascular 

dementia (96%), followed by controls (82%) and then AD (74%). It was least 

sensitive at detecting DLB (32%) because of the relative lack of specific 

imaging findings. FTLD was often misclassified as AD because of similar medial 

temporal lobe atrophy in 21% of cases 68. This seems to be dependent on the 
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phenotype because relative sparing of the hippocampus and medial temporal 

lobes in atypical non-amnestic AD has been identified as a discriminating 

feature from FTLD 124. In their current form, these approaches are laborious 

for routine clinical use, but show promise for optimisation for more viable 

clinical applications. For example, the combination of the two best-performing 

discriminatory features (vascular burden measure and ROI-based grading) 

yielded to a relatively high sample-size-adjusted balanced accuracy of 67.7% 

68. These approaches have been tested on ‘real-world’ samples, but exhibited 

reduced classification performance 67. Despite achieving an AUC >0.9 in the 

training set, a multi-class MRI-based classification model relatively 

underperformed when tested in a sample from a general memory clinic 

(AUC = 0.76 for AD; AUC = 0.78 for FTLD; AUC = 0.97 for controls; and AUC=0. 

55 for LBD) 67. A number of innovative models have been recently trialled that 

offer good classification accuracy in multi-class setting 79, 93, 99, 114, 118, 130, 133.  

One of the advantages of novel machine-learning frameworks is that in 

some models, such as artificial neural networks, categorical and continuous 

variables may be incorporated and many ML models can readily 

accommodate additional non-imaging data, such as clinical measures or other 

biomarker variables. The added value of clinical neuropsychological measures 

to structural MRI data has been consistently demonstrated 72, 123. The 

diagnostic accuracy of a bvFTD vs. control classification model improved from 

88% (81% sensitivity, 92% specificity) to 91% (79% sensitivity, 96% specificity) 

with the addition of clinical measures of semantic fluency 100. A multimodal 

model incorporating GM imaging and neuropsychological measures yielded 
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maximal classification accuracy rates for bvFTD (0.91) 72. Similarly, the 

diagnostic accuracy of a binary, nfvPPA vs. svPPA classification framework was 

enhanced from 90.4% to 96.2% with addition of clinical language parameters 

128. In contrast, a classification model using neuropsychological data 

exclusively was deemed more accurate than relying on volumetric MRI data in 

a two-class bvFTD vs AD model (62.4% vs. 51.4%) and three-class bvFTD vs. AD 

vs. control model (68.1% vs. 54.2%) 123. In addition to clinical measures, the 

combination of quantitative imaging measures with visual inspection is 

thought to enhance diagnostic accuracy 80, 122. 

1.3.1.2 The incorporation of WM variables into MRI ML models enhances 

classification accuracy 

Similar to cortical GM patterns, group-level observations consistently 

describe distinctive phenotype- and genotype-specific patterns of progressive 

WM degeneration 7, 9, 14, 15, 36, 40, 41, 136, 142. The computational distinction of 

FTLD from subtypes or other neurodegenerative disorders may be challenging 

based on exclusively GM variables because of overlapping patterns of atrophy 

68. The addition of WM variables or the appraisal of WM metrics alone may 

offers superior discriminatory power 7, 28, 29, 54, 98, 115, 132. In FTLD there is early 

loss of frontal predominant WM integrity 7, 13 with significantly reduced FA in 

the corpus callosum 29 and uncinate fasciculus 54 perhaps preceding GM 

atrophy 143, 144. The chronology of radiological changes and the hierarchy of 

imaging metric sensitivity are hugely important for the development of 

diagnostic protocols 145. A study of MRI classification of FTLD using GM and 

WM imaging metrics identified novel whole-brain cortical diffusion measure 
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PerpPD - principal diffusion component projected onto the place 

perpendicular to the cortical profile – as the best-performing single feature in 

binary classification compared with controls and multi-class classification 

amongst FTLD subtypes 116. In addition to whole-brain analyses, disease-

specific regions have also been independently investigated. An MRI 

classification model using DTI ROI analyses of superior longitudinal fasciculi 

accurately distinguished pathological subtypes (96% specificity and 100% 

sensitivity) with significantly more WM degeneration observed in FTLD-tau 

compared to FTLD-pTDP43 141. This is considerably better than the 

aforementioned GM-only classification model 141.  

Multimodal MRI classification models using both GM and WM indices 

are proving superior in the classification of FTLD subtypes 70, 78. A multimodal 

nfvPPA-svPPA classification model using axial diffusivity (AxD) of the left 

inferior longitudinal fasciculus and uncinate fasciculus and cortical thickness 

of the left temporal pole and inferior frontal gyrus-pars opercularis achieved 

AUC 0.91 70. The selected features mirror the expected phenotype-specific 

regions of GM atrophy 1, 3-6, 10, 11, 14, 24, 27. and WM degeneration 14, 15, 41, 142 that 

are described in group-level analyses. The addition of clinical language 

parameters adds further value and is sufficient to differentiate svPPA from 

nfvPPA and lvPPA. The multimodal model using clinical language parameters, 

left inferior parietal cortical thickness, DTI metrics of the genu of the corpus 

callosum, and left frontal aslant tract accurately differentiate nfvPPA versus 

lvPPA (AUC 0.94) 78. It is notable that DTI imaging variables contributed higher 
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classification accuracies to each PPA variant compared with controls 

compared to cortical thickness measures 78.  

This multimodal approach of combined GM and WM variables has also 

enhanced the classification of FTLD from other neurodegenerative disorders, 

particularly AD 29. The appraisal of regional GM atrophy (precuneus, posterior 

cingulate and anterior temporal region) and DTI measures (corpus callosum) 

achieved an AUC of 0.938 in the differentiating FTLD from AD, with 87% 

sensitivity and 83% specificity 29. These observations laid the foundation for 

data-driven volumes-of-interest (VOI) analysis of the left parietal cortex, 

bilateral precuneus and body of the corpus callosum achieving classification 

AUC = 0.874, with 89% sensitivity and 89% specificity 104. Early WM 

involvement in FTLD and the cortical predominance of AD-associated 

radiological changes continue to be reflected in other multimodal MRI 

classification models. The combined interpretation of cortical thickness (right 

and left inferior parietal, right temporal pole, right precuneus, left isthmus 

cingulate) and DTI measures (FA, AxD, RD and MD of the right uncinate 

fasciculus and FA of the genu of the corpus callosum) yielded to accuracy 

values of 0.82, specificity of 76%, and 96% sensitivity 54. Given the 

distinguishing subcortical grey matter signatures, subcortical grey matter 

metrics should also be incorporated in multi-class classification schemes. A 

multiparametric MRI classification model evaluating cortical GM variables, 

WM integrity measurements and hippocampal volume correctly classified 67-

75% of bvFTD, 81-100% of AD and 97-100% controls 7. Thus far, the evidence 

favours the combination of GM and WM metrics in distinguishing FTLD from 
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AD, but these observations need to be rigorously tested in a multi-class 

setting and validated in real-life, peri-diagnostic cohorts. 

1.3.1.3 The addition of fMRI variables may offer additional classification 

benefits 

Functional MRI (fMRI) probes the hypothesis of selective network 

failure 50, 51. FTLD is characterised by decreased salience network and 

increased default mode network connectivity at a group-level 50, 51, 146, 147. 

These functional abnormalities may precede clinical manifestations or 

structural abnormalities 23, 148. The inclusion of fMRI variables analysing 

disease-specific regions may improve the accuracy of classification models 88. 

A preliminary study demonstrated that a novel non-linear weighted symbolic 

dependence metric (wSDM) may be the optimal method of fMRI analysis 

rather than standard linear connectivity metrics. This method revealed 

reduced salience network connectivity that correctly classified bvFTD from 

controls 108. Using different fMRI analysis methods, the combination of 

salience and executive network metrics accurately differentiate bvFTD from 

controls (mean accuracy = 86.43%, AUC = 0.91, sensitivity = 86.45%, specificity 

= 87.54%). The divergent functional connectivity patterns have also been used 

to differentiate FTLD from other neurodegenerative disorders, particularly AD 

where the inverse pattern of enhanced salience network and attenuated 

default mode network is described 50-52, 113, 147. MRI classification models using 

combined index of salience and default mode network connectivity correctly 

classify bvFTD from AD and controls in binary and multi-class settings 50, 109. 
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This classification ability was sustained in a subset of clinically ambiguous 

cases 50. 

Recent studies have investigated the additional diagnostic value of 

voxel-based arterial spin labelling (ASL). It is a non-invasive fMRI sequence 

that readily captures cerebral perfusion patterns 149. Multimodal MRI 

classification models have tested this technique in combination with GM 89 or 

WM 65 metrics. The addition of ASL did not improve binary FTLD-control 

classification 65, 89. It resulted in a modest improvement in differentiating FTLD 

from AD (AUC 0.84 vs 0.72; p=0.05) and in the three-way classification of 

FTLD-AD-control (AUC 0.90 vs 0.84; p=0.03)65. Hypoperfusion of the parietal 

lobe and posterior cingulate gyrus favours the diagnosis of AD. The 

discrimination between FTLD and AD is further improved when the anterior-

to-posterior gradient of mass and perfusion are considered, with potential to 

achieve AUC 0.94.89. The performance of this classification model is 

comparable to previous studies in the two-class setting 66, and slightly 

improved in the three-class setting 66. Despite only marginal benefits, these 

exploratory studies have shown that the incorporation of additional non-

structural imaging data may offer classification benefits 65. 

The pursuit to discover the best-performing multiparametric MRI 

classification model was further explored in a landmark study that tested a 

multitude of structural and functional imaging variables to accurately 

distinguish bvFTD from controls or AD 53. This model was trained using a small 

number of established cases of sporadic FTLD. The combination of GM 

density, FA and resting state fMRI indices differentiated bvFTD from controls 
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with an AUC of 0.922. This model evaluated key anatomical regions including 

the anterior thalamic radiation, corticospinal tracts, inferior longitudinal 

fasciculus and hippocampal regions. The same study developed a model to 

differentiate bvFTD from AD by evaluating FA, MD and resting state fMRI 

derived independent components resulting in an AUC of 0.811. The model 

interrogated metrics from the following anatomical regions; uncinate 

fasciculus, forceps minor, cingulum bundle, corticospinal tracts and functional 

connectivity within the dorsal default mode network. The addition of GM 

metrics did not enhance the classification accuracy of the model further. 

Despite limited generalisability, this bvFTD-control MRI classification model 

has been also applied to pre-symptomatic FTLD mutation carriers to explore if 

early radiological alterations may also be correctly interpreted 62, 63. The 

optimal combination of imaging variables continues to be defined, with the 

recurring theme that multimodal approach is superior at classifying single-

subjects with neurodegenerative disorders according to network-based 

patterns of degeneration 113.  

1.3.2 Classification models capture pre-symptomatic changes in FTLD 

While most classification schemes were trialled on established cases 

with relatively long symptom duration, carefully optimised MRI classification 

models have the potential to support an early diagnosis. A cross-sectional 

study of pre-symptomatic FTLD mutation carriers found that there was no 

difference in structural or functional MR imaging measures in mutation 

carriers compared to controls 61. Similarly, a multi-modal bvFTD MRI 

classification model 53 was unable to differentiate mutation carriers from 
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controls beyond chance with an AUC of only 0.57 62. Nevertheless, alternative 

unimodal and multimodal carrier-control models relying on structural and 

functional MRI measures performed modestly better than chance with an 

AUC of 0.68 62. Successful carrier-control models used exclusively white 

matter variables, with no additional benefit of incorporating structural grey 

matter or functional connectivity measures. This in line with the 

aforementioned chronology of early WM changes preceding frank GM 

atrophy in familial FTLD 21, 23, 150, 151. In addition, individualised quantification 

of brain atrophy may predict conversion from pre-symptomatic or mildly 

symptomatic to dementia in pre-symptomatic FTLD mutation carriers 112. 

While these carrier-control models are currently not sensitive enough to be 

used in clinical practice, these landmark studies demonstrates that subtle 

radiological changes may be ascertained in single-subjects before symptom 

onset 62. There may have been other classification attempts of pre-

symptomatic mutation carriers which were not published to due to a bias to 

primarily disseminate successful study outcomes. 

These observations were refined by subsequent longitudinal studies 

that reliably differentiated pre-symptomatic FTLD mutation carriers 

approaching phenoconversion from controls using similar multi-modal 

classification models 63. Higher classification scores were achieved in mutation 

carriers compared to non-carriers with no difference in the rate of 

progression between the two groups. However, subgroup analysis of 

mutation carriers revealed a significantly higher rate of progression of 

classification scores in those who became symptomatic compared to those 
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who remained asymptomatic 63. These pre-symptomatic radiological changes 

emerge over a relatively short 2-year period before clinical onset, with 

maximal loss of WM integrity in the genu of the corpus callosum 21. This is 

analogous to the accelerating evolution of pre-symptomatic cognitive and 

fluid biomarkers within the same timeframe 145, 152-155. An interpretation of 

this is that there is a brief interval to capture pre-symptomatic radiological 

changes, but it is currently unknown when this window of opportunity will 

arise in those who are genetically susceptible 21, 63. A preliminary study 

demonstrated that reduced fractional anisotropy in the forceps minor 

predicted phenoconversion within 4-years with AUC 0.81 64. This is 

anatomically consistent with the site of maximal pre-symptomatic WM 

change 21. Additional MRI metrics did not improve classification accuracy in 

this cohort 64, but their potential role warrants further exploration considering 

that pre-symptomatic genotype-associated GM atrophy has been consistently 

described 22, 156. 

1.3.3 Stereotyped methodological challenges drive model development  

The challenges around model development and the methodological 

constrains of published studies are not unique to FTLD and are also shared 

with other neurodegenerative disorders 157-159. In an attempt to boost sample 

sizes, a variety of phenotypes, genotypes and pathological subtypes may be 

pooled in a single training sample, which precludes the precision classification 

of subjects. For the generation of optimal training samples, especially when 

supervised models are implemented, meticulously labelled cases are required 

with limited within-cohort heterogeneity, so that class-specific distinctive 
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features can be defined. In training datasets, group membership is often only 

defined based on the clinical diagnosis without supporting PET imaging, wet 

biomarker profiles and subsequent post mortem ascertainment. The absence 

of neuropathological characterisation in the majority of ML studies is another 

significant drawback because the underlying molecular subtype is increasingly 

relevant for targeted therapeutic trials. Thus far, MRI classification models 

have primarily focused on differentiating clinical phenotypes or FTLD from AD 

rather than differentiating FTLD-tau from FTLD-pTDP43. Relatively distinct 

patterns of WM degeneration 141 and GM atrophy 27, 141, 160-162 have been 

proposed in the different pathological subtypes, but this needs further 

validation to be reliably utilised for individual data interpretation. Training 

datasets often encompass convenience samples with considerable clinical 

heterogeneity with regards to symptom duration, cognitive function and 

behavioural impairment. Sample heterogeneity is even more marked when 

pre-symptomatic cases are classified as these individuals are often scanned at 

different stages of their disease process with considerable variability with 

regards to their projected phenoconversion. If scanned too early, 

asymptomatic mutation carriers may elude the detection of characteristic 

radiological changes 62. Moreover, in pre-symptomatic cohorts, machine-

learning models are often implemented which have been developed on 

different cohorts 62, 63. One classification model which has been widely utilised 

is derived from a relatively small number of established sporadic bvFTD cases 

53 and therefore may not be optimal to detect radiological changes associated 

with other phenotypes and genotypes 62, 63. The model may be too specific to 
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the training sample, which is another common shortcoming of classification 

initiatives, referred to as ‘model overfitting’. The small size of the training and 

testing cohorts in some of the earlier machine-learning studies also contribute 

to the risk of model overfitting and poor generalisability.  

While a multitude of ML models have been trialled in FTLD (Table 1), 

typically only a single classification model is implemented in a given study 

which precludes the comparative assessment of the accuracy of various 

models on the same sample. This is a lost opportunity as determining the 

performance characteristics of several models on the same data would be 

hugely important for the development of real-life applications. The choice of 

classification models is not always justified by data characteristics; some 

models are contingent on stringent assumptions, the proportion of feature 

variables and sample size is important and models differ considerably in their 

ability to account for outliers and missing variables. Ideally, the choice of a 

specific model should depend on the characteristics of the available data, 

outliers, sample size, number of predictor variables etc. Another challenge of 

ML initiatives in neurodegeneration is model validation. Single-centre samples 

are typically split into training and testing samples and validation is sometime 

sought on external datasets. The most contentious aspect of model validation 

is commenting on diagnostic performance in a model which has only been 

tested on subjects with an established diagnosis with long symptom duration. 

The performance of a model should ideally be tested on either pre- or peri-

symptomatic cohorts. Classifying subjects with long disease duration and 

marked atrophy does not mirror the clinical challenge of labelling cases with a 
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suspected diagnosis relatively soon after symptom onset. It seems therefore 

paramount to report the clinical profile of the testing dataset, particularly 

with regards to symptom duration and interval from diagnosis, to gauge the 

‘real-life’ performance of a proposed diagnostic model. While validation on 

external datasets demonstrates model generalisability and scrutinises 

performance further, it introduces additional challenges. Clinical imaging data 

are seldom acquired with uniform pulse-sequence parameters, spatial 

resolution and a multitude of head-coil designs, field strengths and scanner 

manufacturers are used at various centres. In the academic setting, large 

imaging consortia recommend specific pulse sequence settings to aid data 

harmonisation, which help the validation of classification models. In the 

clinical setting, imaging protocols are often optimised for speed of data 

acquisition, spatial resolution may be limited, slice gaps are commonly 

included and diffusion tensor data are not routinely acquired preventing the 

quantitative interpretation of single-subject data. The binary classification 

schemes presented by some studies may not represent the diagnostic 

dilemmas faced by neurologists. Binary classification models offering AD vs. 

FTLD categorisation will inevitably mislabel patients with LBD or vascular 

dementia. Another determinant of model performance is the selection of 

predictor variables which often centres on common cortical grey matter 

metrics (thickness, volumes), white matter integrity indices (FA, RD) and 

subcortical structure volumes (thalamus, hippocampus). Overall subcortical 

volumes may not be representative of a diagnostic cohort as selective 

thalamic nuclear involvement, focal amygdalar pathology and preferential 
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hippocampal subfield degeneration characterises most neurodegenerative 

conditions 163, 164. Accordingly, similar to cortical segmentation, subcortical 

structures should also be meticulously parcellated to ascertain group-specific 

disease burden patterns and aid the categorisation of individual subjects.   

1.3.4 Relentless technological advances herald efficient future applications 

In the past few years, considerable progress has been made in the 

optimisation of classification approaches (Figure 2). Technological 

developments, such as the widespread availability of high-field magnets, 

‘cloud’ data storing and processing solutions, open-source software are just 

some of the factors fuelling advances in neuroimaging. Increased interest by 

funding agencies, well-defined regional data protection laws, large multi-site 

consortia and efficient international collaboration helped to overcome some 

of the early challenges associated with recruitment, sample sizes, scanning 

costs, and data processing.  The larger data sets of careful harmonised 

protocols provide high-quality training datasets and permit more rigorous 

model testing and validation 79, 93, 99. Larger datasets also allow the splitting of 

main diagnostic groups (AD, FTLD) into specific clinical phenotypes such as 

early- versus late-onset AD 80, stable- versus progressive-MCI 49, or 

stratification into nfvPPA versus svPPA etc. 94, 128. The cohort sizes of recent 

ML studies in FTLD are much more balanced 90, 93 compared to previous 

studies which typically operated with a large control and AD group and a small 

FTLD group. Innovative pre-symptomatic studies have assessed the value of 

MRI measures to predict phenoconversion 64. More recent papers offer 

meticulous clinical characterisation, the symptom duration profile of patients 
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is increasingly reported 94 and cohorts with pathologically confirmed 

diagnoses have now been evaluated 123. Another strength of recently 

published papers is the in-depth analysis of misclassified individuals and the 

discussion of contributing factors 79. The consideration of a multitude of 

possible diagnostic output labels in addition to AD and FTLD, such as MCI, 

LBD, vascular dementia, ALS, depression or psychiatric diagnoses make recent 

models more relevant to clinical applications 67, 68, 75, 80, 133. Similarly, the 

classification of individuals with subjective memory complaints mirrors clinical 

scenarios better than merely testing a model with healthy subjects and those 

with FTLD/AD 114, 130. The choice of mathematical models has also evolved; 

recent studies increasingly rely on unsupervised approaches, utilise 

dimensionality reduction 66 and ‘deep-learning’ strategies 93, 99. Innovative 

approaches, such as subtype and stage inference (SuStaIn) 130, AD 

resemblance index, frontotemporal dementia index 131 led to excellent 

classification outcomes, and certain models such as generative adversarial 

neural networks (GAN) seem particularly robust to classify individual subjects 

99. Recent ML initiatives provide transparent feature selection descriptions 

and often rank the best discriminating anatomical regions and biophysical 

measures 75, 88, 114, 115. The hierarchy of imaging metrics with regards to 

discriminatory power offer important academic insights and has practical 

ramifications for the development of future models.
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. 

Figure 2: Progress in MRI-based machine-learning in FTD: methodological and conceptual developments 

 

AD – Alzheimer’s disease;  ANN – artificial neural networks; bvFTD – behavioural variant FTD; DLB – dementia with Lewy bodies; FTD – frontotemporal dementia;  GAN - generative adversarial neural 
network; KNN - K-nearest neighbour; MCI – mild cognitive impairment; ML – machine learning; nfvPPA – non-fluent variant primary progressive aphasia; PCA - principal component analysis; PPA – primary 

progressive aphasia; ROI – region of interest analysis; SVD - singular value decomposition; SVM – support vector machine; svPPA – semantic variant primary progressive aphasia; VD – vascular dementia
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1.3.5 Practical clinical applications of MRI classification models 

While diagnostic classification algorithms have originally been 

developed in the academic setting, they have the potential to be optimised 

for viable clinical applications. From a clinical perspective, there is a pressing 

need to develop panels of diagnostic, prognostic and monitoring biomarkers 

to track longitudinal changes and gauge response to therapy in clinical trials 

145. Prolonged diagnostic uncertainty is associated with considerable anxiety 

in both suspected patients and their caregivers. Late recruitment into 

pharmacological trials, when considerable degenerative changes have already 

taken place, is likely to limit the therapeutic or neuroprotective potential of 

putative disease-modifying drugs. On clinical grounds alone, it can be 

challenging to differentiate early neurodegenerative disorders, such as early 

FTLD from AD 165-167, and validated imaging (amyloid PET, tau PET, MRI) or 

biofluid (CSF or serum) markers offer diagnostic clarification in these 

circumstances 168-170. The inclusion of MRI classification models presents the 

opportunity to enhance the diagnostic pathway in tandem with other 

biomarkers 171. This is with the stipulation that MRI scans should only be 

interpreted with reference to the clinical context. In neurodegenerative 

conditions, quantitative MRI offers the advantage of determining the extent 

of cerebral disease-burden and the trajectory of longitudinal progression non-

invasively with limited cost implications 172. There is the potential for 

widespread use of these machine learning algorithms that may be readily 

exchanged between centres 173 without being significantly affected by 

differences in MRI parameters 72. Diagnostic accuracy is crucial to recruit 
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suspected patients into clinical trials at an earlier stage, and the accurate 

distinction of FTLD-tau from FTLD-pTDP43 has gained unprecedented 

relevance in upcoming clinical trials. Preliminary studies indicate that ML 

methods may also have a prognostic role such as predicting likely symptom 

onset in pre-symptomatic FTLD mutation carriers 174. This would allow the 

clinical team to facilitate timely organisation of care, resource allocation and 

set expectations for the patient and their caregivers about the timing of 

symptom onset.  

1.4 Discussion 

The potential role of MRI-based classification in aiding an early 

diagnosis in FTLD has been compellingly demonstrated by pioneering studies. 

Existing frameworks need further optimisation and validation in large pre-

symptomatic or early-symptomatic FTLD cohorts stratified by phenotype and 

genotype. The key limitations of early machine learning studies in FTLD stem 

from small sample sizes, reliance on binary classification models, and limited 

clinical profiling which resulted in modest diagnostic performance, poor 

generalisability and model overfitting. A stereotyped weakness of existing 

studies is model testing with established, advanced FTLD cases with long 

symptom duration which does not mirror real-life clinical dilemmas, where 

suspected patients with short symptom duration need to be accurately 

labelled. Rigorous model testing and validation on peri-diagnostic cohorts is 

indispensable to demonstrate the purported diagnostic utility of such models. 

Despite their considerable academic and clinical importance, pre-symptomatic 

studies in FTLD are relatively scarce, owing to the limited number of suitable 
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participants who undergo predictive genetic testing for familial FTLD. The 

methodological constraints of early machine-learning studies in FTLD have 

been gradually overcome by robust multi-centre studies. A series of clinically 

relevant multi-class classification studies have been recently published 

categorising individual patients into a multitude of clinically plausible 

diagnostic labels such as AD, VD, LBD, MCI etc. Recent studies increasingly rely 

on large, uniformly acquired imaging datasets offering ample opportunities 

for robust cross-validation. Pre-symptomatic imaging data have been 

interrogated with regards to predicting phenoconversion and symptomatic 

patients were classified into the prognostic categories. Classification models 

have their respective advantages and drawbacks, therefore the choice of a 

specific model needs to be carefully justified based on the characteristics of 

the available data and the classification performance of several models should 

ideally be evaluated on the same dataset. Classification models differ 

considerably in their ability to accommodate missing data, interpret both 

continuous and categorical input variables, manage outliers, provide feature 

importance ranking, tolerate non-normally distributed input variables, 

homoscedasticity and multicollinearity. Flexible unsupervised models, such as 

deep neural networks and GAN are increasingly utilised which don’t rely on 

stringent mathematical assumptions compared to more conventional models. 

Dimension reduction strategies and feature importance ranking are 

increasingly reported which help the streamlining and development of future 

models. Small, single-centre studies have been gradually superseded by 

collaborative, multi-centre initiatives which generate adequate sample sizes 
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for well-powered analyses. Owing to technological and conceptual advances, 

the development of radiological classification models in FTLD has gained 

unprecedented momentum in recent years. Once only explored in the 

academic setting, classification models are now close to become practical 

clinical tools. While radiological ML algorithms are mathematically complex 

and computationally intense, clinician-friendly user interfaces can be readily 

developed to provide speedy, automated diagnostic probability scores based 

on large normative datasets. With further optimisation, classification 

frameworks may soon be developed into viable clinical applications to 

expedite the diagnostic process and categorise individual patients into fine-

grained diagnostic, phenotypic and prognostic categories. Recent advances in 

the field indicate a paradigm shift in the clinical role of neuroimaging in FTLD 

which has evolved from merely out ruling alternative diagnoses to the 

precision computational interpretation of single-subject data.  

 Machine-learning algorithms are likely to become an integral 

part of the diagnostic process in FTLD, patient stratification in pharmaceutical 

trials, and assigning patients into prognostic categories. Existing models will 

no doubt be optimised further and the sample size limitations of current 

studies will be overcome through international collaboration. While model 

development will continue to be spearheaded by academic experts, and large 

training datasets will be compiled by international consortia, user-friendly 

interfaces are likely to be developed for clinicians to interpret their patients’ 

imaging data on cloud-based solutions. Instead of providing a definite 

diagnostic label for clinicians, future ML applications will provide diagnostic 
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probability values. Pioneering ML applications currently only trialled in the 

academic setting are likely to filter down to routine clinical care. In 

neurodegenerative conditions, we are likely to witness a paradigm shift from 

the visual inspection of medical images to the quantitative interpretation of 

spatially-coded data using automated computational methods. The continued 

refinement and optimisation of ML applications will undoubtedly curtail the 

diagnostic journey of patients with neurodegenerative conditions and 

facilitate an earlier entry into clinical trials. 

1.5 Conclusions  

Single-subject imaging data interpretation is an emerging field of 

neuroimaging which is a rapidly developing interface of clinical neurology, 

academic radiology and applied mathematics. Emerging frameworks have 

demonstrated the potential of observer-independent subject classification, 

but considerable improvements are needed before these methods can be 

integrated into routine clinical practice. Optimised machine-learning methods 

show the promise of accurately classifying single subjects into diagnostic 

groups, prognostic categories and detecting pre-manifest neurodegenerative 

change in mutation carriers. The landmark studies reviewed in this paper 

herald a paradigm shift from group-level radiological descriptions to 

pragmatic clinical applications.  
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2 Pre-symptomatic radiological changes in 

frontotemporal dementia: implications for clinical trials 

2.1 Introduction 

Frontotemporal dementia (FTD) incorporates a wide range of 

neurodegenerative disorders that present with diverse clinical phenotypes, 

radiological signatures, and underlying molecular pathology. A genetic cause 

is determined in approximately 30% of cases 175. The most common 

genotypes include autosomal dominant mutations in chromosome 9 open 

reading frame 72 (C9orf72), progranulin (GRN), or microtubule-associated 

protein tau (MAPT) genes. In recent years, there have been concerted efforts 

to characterise the sequential cascade of clinical, imaging and biofluid 

alterations in the pre-symptomatic phase of familial FTD 176. These initiatives 

help to capture accruing disease-burden before it is clinically evident and 

imaging data provide additional insights on anatomical patterns of disease 

propagation. The practical aspiration of presymptomatic studies is to 

ascertain potential prognostic indicators, predict the clinical phenotype, 

forecast phenoconversion and suggest a window for viable therapeutic 

intervention. Given the increasing recognition of the clinical relevance of 

presymptomatic changes in familial FTD, the radiology literature of pre-

symptomatic FTD is systematically reviewed.  

2.2 Methods  

A systematic literature review was conducted using the MEDLINE 

database in accordance with the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) recommendations. The core search 
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terms ‘frontotemporal dementia’, ‘FTD’, ‘frontotemporal lobar degeneration’ 

or ‘FTLD’ were individually combined with the keywords ‘pre-symptomatic’, 

‘presymptomatic’, ‘asymptomatic’, ‘pre-clinical’, ‘prodromal’ or ‘pre-

manifest’. This was followed by searching these pairings in combination with 

‘magnetic resonance imaging’, ‘MRI’, ‘positron emission tomography’, ‘PET’, 

‘MR spectroscopy’, ‘MRS’, ‘brain imaging’ or ‘neuroimaging’. The database 

search was limited to human studies written in English. It was last accessed in 

April 2022. Duplicate records were removed. A single reviewer individually 

screened and assessed the 116 records for eligibility. The inclusion criteria 

consisted of original research papers that investigated pre-symptomatic 

radiological changes in the most common FTD genotypes: C9orf72, GRN and 

MAPT. Additional relevant records were identified from reference lists. Based 

on the above criteria a total of 68 eligible records were reviewed, grouped 

according to genotype and stratified according to imaging modality (Figure 3). 
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Figure 3: A PRISMA flowchart for systematic review of pre-symptomatic radiological changes in FTD 
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2.3 Results 

Based on the above search criteria, 68 original research studies were 

identified that investigated pre-symptomatic radiological changes in C9orf72, 

GRN and MAPT mutation carriers (Figure 3; Table 2). There were 26 studies 

that included more than one genotype; 15 studies investigated only C9orf72 

mutation carriers; 18 studies enrolled only GRN mutation carriers; and 9 

studies evaluated only MAPT mutation carriers. The median (range) sample 

size for all genotypes was 15 (3-141); for C9orf72 mutation carriers it was 28 

(3-108); for GRN mutation carriers it was 32 (5-142); and for MAPT mutation 

carriers it was 13 (3-54). Only a minority of studies (28%) had a longitudinal 

design with a median (range) follow-up interval of 2 (1-8) years. Most of the 

studies relied on a single imaging modality (66%). The most common data 

acquisition technique was MRI (97%) that was interpreted in grey matter 

analyses (75%), white matter analyses (34%), functional analyses (29%) and 

spectroscopy (4%). There was a paucity of PET imaging studies (12%). 

Identified studies are first stratified according to the underlying genotype and 

then discussed from a methodological, academic and clinical viewpoint.  
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Table 2: Study characteristics of pre-symptomatic neuroimaging initiatives in the most common FTD genotypes 
 All genotypes MAPT C9orf72 GRN 

Reviewed Studies 68 34 37 43 

% of studies from database 100% (68/68) 50% (34/68) 54% (37/68) 63% (43/68) 

Sample size per genotype - Average 23 18 36 47 

Sample size per genotype - Median 15 13 28 32 

Sample size per genotype - Range (3-141) (3-54) (3-108) (5-142) 

Longitudinal 28% (19/68) 30% (10/34) 30% (11/37) 28% (12/43) 

Follow-up – Average (years) 2.6 3.5 2 2.7 

Follow-Up – Median (years) 2 3 1.5 2 

Follow up – Range (years) (1-8) (1-8) (1-6) (1-6) 

Multimodal % (n) 44% (30/68) 29% (10/34) 35% (13/37) 42% (18/43) 

MRI % (n) 97% (66/68) 97% (33/34) 97% (36/37) 100% (43/43) 

Grey Matter Analyses % (n) 75% (51/68) 68% (23/34) 81% (29/36) 81% (35/43) 

White Matter Analyses % (n) 34% (23/68) 26% (9/34) 33% (12/36) 30% (13/43) 

Functional MRI % (n) 29% (20/68) 29% (10/34) 25% (9/36) 37% (16/43) 

MR Spectroscopy % (n) 4% (3/68) 9% (3/34) 0% (0/36) 0% (0/43) 

PET % (n) 12% (8/68) 9% (3/34) 8% (3/37) 5% (2/43) 
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2.3.1 C9orf72 

The majority of radiological studies of pre-symptomatic C9orf72 

GGGGCC repeat expansion carriers describe widespread structural and 

functional changes. It remains debated whether such findings represent 

neurodevelopmental or neurodegenerative change given the early onset and 

relatively slow progression 177. It has been proposed that radiological changes 

may begin in the thalamus and posterior cortical regions, later involving the 

frontotemporal regions, and may be identified up to 25 years before symptom 

onset 22. Preliminary multimodal MRI classification models have shown that 

individual radiological changes may not be evident until a few years before 

symptom onset in pre-symptomatic FTD mutation carriers 63. We next discuss 

the evidence of pre-symptomatic radiological changes in C9orf72 repeat 

expansion mutation carriers (Table 3). 

Widespread cortical and subcortical grey matter (GM) pathology is 

often detected but may be too subtle for visual detection 178. Cortical thinning 

is observed in the frontal 179-181, temporal 179, 180, 182, parietal 179-182, and 

occipital cortices 182. Volume loss is relatively symmetrical 183, involving the 

frontal 22, 156, 181, 183-187, temporal 22, 156, 181, 183, 184, 186-188, parietal 156, 181, 183, 184, 

188, insular 22, 181, 183, 185-187, cerebellar 22, 156, 181, 183, 188, 189 regions. Relatively 

selective cerebellar involvement has been suggested by some 189 with the 

preferential degeneration of lobules VIIa, VIIb, Crus I and II 156, 183. In an 

admixed group of pre-symptomatic FTD mutation carriers, there is also early 

change in ventricular volume compared to controls 190. Subcortical 191 

degeneration has been recently further characterised by reports of 

preferential degenerative change in specific subcortical sub-regions. Focal 
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thalamic changes 22, 156, 179, 181, 183-186, 188, 192, 193 have been described in the 

anterior 192, 193, laterodorsal 183, lateral geniculate nuclei 183 as well as in 

pulvinar regions 183. Preferential caudate 179, 182, 187, putamen 182, 183, 187, 

amygdala 183, 187, 194 and hypothalamus 183 pathology has also been described. 

In some studies degenerative changes were only detected in  older cohorts 

aged >40 years 188. This trend of progressive changes in older subgroups was 

shown in a study that described widespread changes in pre-symptomatic 

cohorts aged >40years compared with those aged <40 years 184. The rate of 

cortical thinning has been calculated as either faster 180 or no different 195 

compared to controls. Patterns of atrophy have been evaluated 186 to predict 

phenoconversion 112. The level of educational attainment 196, 197 and 

TMEM106B genotype 197 are considered to be modifying factors. Some pre-

symptomatic structural changes are thought to be associated with early 

behavioural changes; apathy has been linked to frontal and cingulate 

pathology 198; and impaired social cognition to insula, basal ganglia, amygdala, 

and frontotemporal involvement 187. In addition to standard morphometric 

and volumetric GM methods, a number of novel analysis pipelines have also 

been implemented. Early abnormal gyrification index has been described in 

the left anterior cingulate cortex, left precentral gyrus, right inferior parietal, 

and right superior occipital regions decades before expected symptom onset 

199. This anatomical pattern is similar to the focal regions of atrophy described 

in both pre-symptomatic and symptomatic cases, despite no corresponding 

cortical thickness abnormalities detected in this study 199. Neurite orientation 

dispersion and density imaging (NODDI) also detected more widespread GM 

abnormalities in frontal, temporal parietal, occipital and insular regions 
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compared to conventional volumetric measures 200. Reduced cortical surface 

area has been described in a similar but more restricted anatomical 

distribution to symptomatic cohorts, particularly in the ventrofrontal regions 

180. It is noteworthy that a minority of published studies do not detect any 

pre-symptomatic GM pathology 195, 201-203. 

Widespread WM degeneration has been repeatedly described in pre-

symptomatic C9orf72 repeat expansion carriers typically involving the corpus 

callosum 184, 204, thalamic radiation 181, 184, 188, uncinate fasciculus 185, superior 

longitudinal fasciculus 181, inferior longitudinal fasciculus 185, corticospinal 

tracts 181, 185, 205, orbitofrontal regions 204 and other frontal WM tracts 181, 185, 

188. These structural changes may be associated with incipient executive 

dysfunction, specifically reduced verbal fluency 204. It is proposed that WM 

pathology may precede or occur in tandem with GM degeneration 184, 188, 204, 

205. Recent MRI classification models in pre-symptomatic FTD mutation 

carriers indicate that the earliest radiological changes occur in the WM 

because WM features offer the best discriminating value from controls 62. 

Longitudinal studies have shown strikingly inconsistent results depending on 

cohort and region of interest (ROI) characteristics. In pre-symptomatic 

C9orf72 carriers aged >40 years, significant baseline cervical spinal cord WM 

atrophy was described, with ensuing corticospinal tract (CST) FA reductions on 

interval imaging over an 18-month period 205. In contrast, no significant 

progression of brain imaging changes were identified over a 12-month follow-

up period 204. Similar to GM analyses, novel WM methods have also been 

increasingly implemented. Neurite orientation dispersion and density imaging 

(NODDI) readily detects corticospinal and frontotemporal WM tracts 
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abnormalities with greater sensitivity than standard diffusivity metrics in pre-

symptomatic C9orf72 cohorts 200. A minority of studies do not detect any pre-

symptomatic diffusivity abnormalities 195. However, subtle internal capsule 

(IC) and the corpus callosum (CC) changes may be detected on longitudinal 

follow-up in some of these studies 195. The pre-symptomatic phase of C9orf72 

is not thought to be associated with increased WM hyperintensity burden 206.  

Functional imaging changes are also evident several years before 

symptom onset 185, 202, 207, 208, sometimes preceding the detection of structural 

imaging abnormalities 195, 202. [18F] FDG-PET studies demonstrate significant 

frontotemporal hypometabolism in the insular cortex, central opercular 

cortex, basal ganglia and thalami 202, 209, with the additional involvement of 

the inferior parietal lobes and adjacent regions 202. A [11 C]UCB-J PET study has 

shown pre-symptomatic synaptic density reduction in the thalamus that was 

most marked in pulvinar and ventral-posterior regions with progressive 

cortical and subcortical loss of synaptic density 210. Preliminary studies using 

arterial spin labelling (ASL) have described cerebral hypoperfusion in the 

insula, orbitofrontal, anterior cingulate, temporal and inferior parietal cortices 

up to 12.5 years before expected symptom onset 211. Functional connectivity 

alterations have also been described 185, 195 that may 195 or may not 185 occur 

with associated structural changes. A longitudinal study described increased 

sensorimotor network connectivity adjacent to regions which later become 

affected in symptomatic cohorts 195. In contrast, reduced functional 

connectivity has been described in thalamic, frontotemporal and motor 

networks in a less extensive but similar anatomical distribution to 

symptomatic cohorts 212. It is hypothesised that the maintenance of functional 



 

 47 

network topography facilitates cognitive resilience in face of relentless 

structural changes 208, 213. The integrity of these functional networks then 

rapidly declines as patients become symptomatic 208. 
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Table 3: Imaging studies of pre-symptomatic C9orf72 mutation carriers 
First author, 
 year of publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Structural MRI 

Bertrand et al, 2018 184 Pre-symptomatic C9orf72 n= 41 
Controls n=39 

Cross-sectional 
Case control 

N/A MRI – TIV, DTI 

Bocchetta et al, 2021183 Pre-symptomatic: C9orf72 n=107; MAPT n=47; GRN n=125 
Symptomatic: C9orf72 n=63; MAPT n=20; GRN n=43 
Controls n=298 

Cross-sectional 
Case control 

N/A MRI – Cortical and subcortical volumes 

Cash et al, 2018156 Pre-symptomatic: C9orf72 n=40; MAPT n=23; GRN n=65 
Symptomatic: C9orf72 n=25; MAPT n=10; GRN n=12 
Controls n=144 

Cross-sectional 
Case control 

N/A MRI - VBM 

Caverzasi et al, 2019 199 Pre-symptomatic C9orf72 n=15 
Controls n=67 

Cross-sectional 
Case control 

N/A MRI – Cortical thickness, local gyrification index 

Convery et al, 2020203 Pre-symptomatic: C9orf72 n=73; MAPT n=39; GRN n=104 
Symptomatic: C9orf72 n=31; MAPT n=10; GRN n=24 
Controls n=181 

Cross-sectional 
Case control 

N/A MRI - VBM 

Cury et al, 2019192 Pre-symptomatic: C9orf72 n=72; MAPT n=8; GRN n=53 
Controls n= 98 

Cross-sectional 
Case control 

N/A MRI – Large diffeomorphic deformation metric mapping 

Floeter et al, 2016 201 Pre-symptomatic: C9orf72 n= 7 
Symptomatic C9orf72 n=20 
Sporadic ALS n=22 
Controls n=28 

Longitudinal 
Case-control 

6-18 months MRI – Cortical thickness and volumetry  

Fumagalli et al, 2018178 Pre-symptomatic: C9orf72 n=42; MAPT n=24; GRN n=66 
Symptomatic: C9orf72 n=31; MAPT n=15; GRN n=17 
Controls n=148 

Cross-sectional 
Case control 

N/A MRI- VBM 

Gazzina et al, 2019196 Pre-symptomatic: C9orf72 n=31; MAPT n=20; GRN n=65 
Controls n=113 

Longitudinal 
Case-control 

4 years MRI – GM volume 

Le Blanc et al, 2020 180 Pre-symptomatic C9orf72 n=83 
Symptomatic C9orf72 n= 54 
Control n=249 

Cross-sectional 
Case control 

N/A MRI – Cortical thickness, cortical surface area 
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First author,  
year of publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Structural MRI 
Lulé et al, 2020204 Pre-symptomatic C9orf72 n=21; SOD1 n=15 

Controls n=91 
Longitudinal 
Case-control 

12-months MRI - DTI 

Malpetti et al, 2021198 Pre-symptomatic C9orf72 n=108, MAPT n=54, GRN n=142 
Controls n=296 

Longitudinal 
Case-control 

2-years MRI – GM volume 

Olney et al, 2020186 Pre-symptomatic mutation carriers n=103 
Mild symptomatic carriers n=43 
Dementia n=72 
Controls n=102 

Cross-sectional 
Case control 

N/A MRI – Cortical volumes 

Panman et al, 2019181 Pre-symptomatic C9orf72 n=12, MAPT n=15, GRN n=33 
Controls n=53 

Longitudinal 
Case-control 

2-years MRI – VBM, Cortical thickness, DTI 

Papma et al, 2017 188 Pre-symptomatic C9orf72 n=18 
Control n=15 

Cross-sectional 
Case control 

N/A MRI – VBM, DTI 

Popuri et al, 2018179 Pre-symptomatic C9orf72 n=15, GRN n=9 
Controls n=38 

Cross-sectional 
Case control 

N/A MRI – Cortical thickness, subcortical volumes 

Premi et al, 2017197 Pre-symptomatic C9orf72 n=33, MAPT n=14, GRN n=61 
Controls n=123 

Cross-sectional 
Case control 

N/A MRI – Cortical, subcortical and cerebellar volumes 

Querin et al, 2019 205 Pre-symptomatic C9orf72 n= 40 
Controls n=32 

Longitudinal 
Case-control 

18-months  MRI – Total, GM and WM cervical spinal cord CSA, DTI 

Rohrer et al, 201522  Pre-symptomatic C9orf72 n=18, MAPT n=15, GRN n=45 
Symptomatic C9orf72 n=16, MAPT n=11, GRN n=13 
Controls n=102 

Cross-sectional 
Case control 

N/A MRI – Cortical and subcortical volumes 

Russell et al, 2020187 Pre-symptomatic C9orf72 n=106, MAPT n=49, GRN n=123 
Symptomatic C9orf72 n=53, MAPT n=18, GRN n=32 

Cross-sectional 
 

N/A MRI - VBM 

Staffaroni et al 2021112 Pre-symptomatic mutation carriers n=46 
Symptomatic mutation carriers n=81 
Controls n=101 
Reference n=383 

Longitudinal 
 

2-years MRI – GM volume 
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First author,  
year of publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Structural MRI 
Sudre et al, 2017206 Pre-symptomatic C9orf72 n=28, MAPT n=8, GRN n=25 

Symptomatic C9orf72 n=23, MAPT n=13, GRN n=7 
Controls n= 76 

Cross-sectional 
Case control 

N/A MRI – WMH 

Tavares et al, 2019190 Pre-symptomatic C9orf72 n=13, MAPT n=4, GRN n=29 
Controls n= 56 

Longitudinal 
Case-control 

1-year MRI – Ventricular volumes 

Walhout et al, 2015 182 Pre-symptomatic C9orf72 n=16 
Symptomatic C9orf72 n=14 
Control n=51 

Cross-sectional 
Case control 

N/A MRI – Cortical thickness, subcortical volumes, DTI 

Wen et al, 2019200 Pre-symptomatic C9orf72 n=38 
Control n=29 

Cross-sectional 
Case control 

N/A MRI – Volumetry, DTI, NODDI 

Functional MRI 
Feis et al, 201862 Pre-symptomatic: C9orf72 n=72; MAPT n=8; GRN n=35 

Controls n = 48 
Cross-sectional 
Case control 

N/A MRI – GMD, WMD, DTI, rs-fMRI 

Feis et al, 201963 Pre-symptomatic C9orf72 n=12, MAPT n=8, GRN n=35 
Controls = 48 

Longitudinal 
Case-control 

6-years MRI- GMD, DTI, rs-fMRI 

Lee et al, 2017185 Pre-symptomatic C9orf72 n=15 
Control n=15 

Cross-sectional 
Case control 

N/A MRI – VBM, DTI, rs-fMRI 

Mutsaerts et al, 2019211 Pre-symptomatic C9orf72 n=34, MAPT n=18, GRN n=55 
Controls n= 113 

Cross-sectional 
Case control 

N/A MRI – ASL 

Premi et al, 2019 207 Pre-symptomatic C9orf72 n=82, MAPT n=45, GRN n=122 
Controls n= 223 

Cross-sectional 
Case control 

N/A MRI - rs-fMRI 

Rittman et al, 2019208 Pre-symptomatic C9orf72 n=17, MAPT n=13, GRN n=40 
Symptomatic C9orf72 n=12, MAPT n=11, GRN n=6 
Controls n= 86 

Cross-sectional 
Case control 

N/A MRI - Task-free fMRI 

Shoukry et al, 2020 212 Pre-symptomatic C9orf72 n=15 
Symptomatic C9orf72 n=27 
Controls n=48 

Longitudinal 
Case-control 

6-months 
18-months 

MRI – rs-fMRI 

Tsvetanov et al, 2021213 Pre-symptomatic C9orf72 n= 39, MAPT n=19, GRN n= 63 
Controls n=134 

Cross-sectional 
Case control 

N/A MRI – GM volume, rs-fMRI 
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First author,  
year of publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Functional MRI 
Waugh et al, 2021 195 Pre-symptomatic C9orf72 n = 15 

Symptomatic C9orf72 n=27 
Controls n=34 
 

Longitudinal 
Case-control 

18-months MRI – Cortical thickness, volumetry, DTI, rs-fMRI 

Positron Emission Tomography  

De Vocht et al, 2020 209 Pre-symptomatic C9orf72 n = 17 
Controls n=25 
 

Cross-sectional 
Case-Control 

N/A [18F] FDG PET-CT 

Malpetti et al, 2021210 Pre-symptomatic C9orf72 n = 3 
Symptomatic C9orf72 n=1 
Controls n= 19 
 

Cross-sectional 
Case-Control 

N/A MRI and [11 C]UCB-J PET 
 

Popuri et al, 2021 202 Pre-symptomatic C9orf72 n= 15 
Controls n=20 
 

Cross-sectional 
Case-Control 

N/A MRI and [18F] FDG PET-CT 
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2.3.2 GRN 

In pre-symptomatic GRN mutation carriers, there is ample radiological 

evidence of structural and functional alterations, typically involving frontal, 

parietal and subcortical regions in a similar but more restricted pattern to 

symptomatic cases 20. These findings may be evident several years before 

symptom onset but may be very subtle or elude detection for a variety of 

reasons that are later discussed. They are best detected in mutation carriers 

who are approaching the expected age of phenoconversion 21. Herein we 

summarise the observed pre-symptomatic radiological findings (Table 4). 

In pre-symptomatic GRN mutation carriers, several studies report no 

difference in cortical or subcortical volumes compared to controls 61, 151, 179, 181, 

183, 214-217. The ability to detect GM pathology may depend on the interval to 

projected phenoconversion 156, 178 and subtle changes may require 

longitudinal follow-up for detection 218. GM degeneration is typically not 

appreciated on visual rating scales 178. GM volume loss is thought to first occur 

in insular regions 22, 156, 176, 219, 220 up to 15-years before symptom onset 22; 

followed by frontal 20, 156, 220, 221, parietal 22, 156, 186, 219, temporal 22, 156, 176, 186, 218, 

220, occipital 221 and subcortical atrophy 22, 156. Frontal lobe changes typically 

involve orbitofrontal 20, 220 and posterior 156 regions; these early alterations 

may be associated with progressive apathy 198. The temporal lobe alterations 

may be predominantly anterior 156, 220, posterior 186, and lateral 218. 

Longitudinal studies have detected the greatest rate of atrophy in the pre-

symptomatic phase in the frontal 220, 221, parietal 221 and occipital 220 lobes. 

Characteristic asymmetry 22 and differences in ventricular volumes 190 may be 

detected a few years before symptom onset. Pre-symptomatic subcortical 
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changes are also readily detected in GRN mutation carriers. Anterior thalamic 

shape deformation was described at least 5-years before symptom onset 192. 

The thalamus and basal ganglia have both been implicated in an admixed 

group of pre-symptomatic and symptomatic GRN mutation carriers 187. The 

characterisation of atrophy patterns may be used to discriminate pre-

symptomatic and symptomatic FTD mutation carriers 112. The degree of GM 

volume loss may be influenced by level of educational attainment 196, 197, 

which is further modulated by the TMEM106B genotype 197. Other modifiers 

include high leukocyte mRNA levels of inflammation-related TMEM40 and 

LY6G6F that are associated with greater parietal and superior frontal lobe 

atrophy respectively 222. 

Pre-symptomatic GRN mutation carriers also exhibit extensive WM 

degeneration 21 which may be evident several years before symptom onset 20 

and rapidly progresses prior to phenoconversion 21. The loss of WM integrity 

detected by diffusivity metrics typically involves the corpus callosum 21, 220, 

superior longitudinal fasciculus 20, 176, 220, corticospinal tracts 20, 220, the 

cingulum 20, uncinate 151, 176 and inferior occipitofrontal fasciculi 151. There is 

progressive WM degeneration that is maximal in the genu of the corpus 

callosum 21, 220 and the right-sided superior longitudinal fasciculus 220 in the 2-

years prior to symptom onset 21. Patterns of preferential WM vulnerability 

depend on the subsequent clinical phenotype, with early involvement of the 

uncinate fasciculus in non-fluent primary progressive aphasia (nfvPPA) and of 

the superior longitudinal fasciculus in behavioural variant FTD (bvFTD) 176. 

There thought to be an increased burden of WM hyperintensities 223 that 

accumulate over time, particularly in the periventricular frontal, parietal and 
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occipital regions 206, 223. These WM hyperintensities have been linked to 

executive dysfunction, TMEM106B risk genotype, low GM volume, and 

elevated neurofilament light chains 223. The sequential order of radiological 

changes is yet to be determined. Some studies suggest that WM degeneration 

precedes GM degeneration 62, 176; while other studies suggest that it occurs 

simultaneously 21. The best-performing multimodal MRI classification models 

use exclusively WM features to categorise individual pre-symptomatic 

mutation carriers 224, highlighting the superior specificity of WM signatures 62. 

This is further supported by data-driven disease progression modelling 

initiatives that relied on cross-sectional data to estimate the cascade of 

biomarkers and suggest that WM diffusivity abnormalities preceded GM loss, 

and that the left hemisphere is involved before the right hemisphere 176. 

These diffusivity abnormalities however are typically only detected 2-4 years 

prior to symptom onset 21. This may explain why some studies do not detect 

any WM diffusivity alterations 61, 181, WM volume loss 151 or WM 

hyperintensities 206 in pre-symptomatic GRN mutation carriers. As a 

consequence, MRI-based classification scores often remain similar to controls 

until approaching phenoconversion 63.  

Pre-symptomatic functional imaging changes have also been described 

207. In [18F] FDG-PET studies, asymmetric cerebral hypometabolism is typically 

reported involving either the left 218 or right 225 hemisphere – primarily 

localised to the frontal 218, 225, insular 225 or temporal 218 lobes. Regional 

cerebral hypometabolism is thought to precede structural imaging changes 

and may be detected up to 20-years before expected symptom onset 218. 

Studies using arterial spin labelling (ASL), a non-invasive method of 
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quantifying cerebral perfusion, have demonstrated reduced cerebral blood 

flow in frontal, temporal, parietal and subcortical regions in pre-symptomatic 

FTD mutation carriers up to 12.5 years before expected symptom onset 211, 226. 

In pre-symptomatic GRN mutation carriers, asymmetric frontoparietal 

hypoperfusion involving the bilateral anterior cingulate/paracingulate, right 

anterior insula/orbitofrontal, and right supramarginal/angular gyri has been 

reported 211, 226. Functional connectivity deficits have also been repeatedly 

described involving the frontal 216, 227, parietal 216, 227, and thalamic 217 regions 

which may also precede structural deficits 216, 217. Both decreased and 

increased functional connectivity have been reported depending on the age 

profile, education and definition of seed regions. Cognitive reserve is also an 

important modifying factor 228, 229 which should be considered in the 

interpretation of clinico-radiological correlations. Altered dynamic functional 

connectivity with increased activation of the insula and parietal regions has 

been recently reported 230. Initial hyperconnectivity involving the salience 214, 

217, default mode 217, perirolandic 217 and language networks 217 has been 

described. The latter was asymmetric with progressively reducing connectivity 

with age 217. Other studies identified reduced salience network connectivity 

228. It remains unclear whether increased connectivity represents a 

compensatory mechanism 217 reduced inhibition or stems from 

methodological factors 231. Some studies suggest that the maintenance of 

functional network organisation contributes to cognitive resilience in face of 

evolving structural degeneration 208, 213, 232. The subsequent loss of functional 

network organisation is associated with emergent cognitive symptoms 208, 213. 
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While some studies detect complex functional reorganisation, others do not 

detect functional connectivity alterations 20, 61, 207, 230. 
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Table 4: Imaging studies of pre-symptomatic GRN mutation carriers 
First author,  
year of publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Structural MRI 
Bocchetta et al, 2021183 Pre-symptomatic: C9orf72 n=107; MAPT n=47; GRN n=125 

Symptomatic: C9orf72 n=63; MAPT n=20; GRN n=43 
Controls n=298 

Cross-sectional 
Case control 

N/A MRI – Cortical and subcortical volumes 

Borrego-Écija et al, 
2021215 

Pre-symptomatic GRN n=100 
Controls n=94 

Cross-sectional 
Case control 

N/A MRI – Cortical thickness  

Borroni et al, 2008 151 Pre-symptomatic GRN n=7 
Controls n=15 

Cross-sectional 
Case control 

N/A MRI – VBM, DTI 

Cash et al, 2018156 Pre-symptomatic: C9orf72 n=40; MAPT n=23; GRN n=65 
Symptomatic: C9orf72 n=25; MAPT n=10; GRN n=12 
Controls n=144 

Cross-sectional 
Case control 

N/A MRI - VBM 

Chen et al, 2020221 Pre-symptomatic GRN n=8 
Symptomatic GRN n=5 
Controls n=10 

Longitudinal 
Case-control 

3 years 
 

MRI – TBM-SyN 

Convery et al, 2020203 Pre-symptomatic: C9orf72 n=73; MAPT n=39; GRN n=104 
Symptomatic: C9orf72 n=31; MAPT n=10; GRN n=24 
Controls n=181 

Cross-sectional 
Case control 

N/A MRI - VBM 

Cury et al, 2019192 Pre-symptomatic: C9orf72 n=72; MAPT n=8; GRN n=53 
Controls n= 98 

Cross-sectional 
Case control 

N/A MRI – Large diffeomorphic deformation metric mapping 

Fumagalli et al, 2018178 Pre-symptomatic: C9orf72 n=42; MAPT n=24; GRN n=66 
Symptomatic: C9orf72 n=31; MAPT n=15; GRN n=17 
Controls n=148 

Cross-sectional 
Case control 

N/A MRI- VBM 

Gazzina et al, 2018219 Pre-symptomatic GRN n=19 
Controls n=17 

Cross-sectional 
Case control 

N/A MRI – Cortical volume, thickness and surface area 

Gazzina et al, 2019196 Pre-symptomatic: C9orf72 n=31; MAPT n=20; GRN n=65 
Controls n=113 

Longitudinal 
Case-control 

4 years MRI – GM volume 

Jiskoot et al, 201921 Pre-symptomatic GRN n=30; MAPT n=13 
Controls n=30 

Longitudinal 
Case-control 

4 years MRI – VBM, DTI 

Malpetti et al, 2021198 Pre-symptomatic C9orf72 n=108, MAPT n=54, GRN n=142 
Controls n=296 

Longitudinal 
Case-control 

2-years MRI – GM volume 
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First author,  
year of publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Structural MRI 
Milanesi et al, 2013 222 Pre-symptomatic GRN n=14 

Symptomatic GRN n=15 
FTD GRN negative n=16 
Controls n=11 

Cross-sectional 
Case control 

N/A MRI - VBM 

Olm et al, 2018 220 Pre-symptomatic GRN n=11 
Controls n=11 

Longitudinal 
Case-control 

2-years MRI – GM density, DWI 

Olney et al, 2020186 Pre-symptomatic mutation carriers n=103 
Mild symptomatic carriers n=43 
Dementia n=72 
Controls n=102 

Cross-sectional 
Case control 

N/A MRI – Cortical volumes 

Panman et al, 2019181 Pre-symptomatic C9orf72 n=12, MAPT n=15, GRN n=33 
Controls n=53 

Longitudinal 
Case-control 

2-years MRI – VBM, Cortical thickness, DTI 

Panman et al, 2021 176 Pre-symptomatic GRN n=56 
Symptomatic GRN n=35 
Controls n=35 

Cross-sectional N/A MRI – Volumetry, DTI 

Paternicò et al, 2016233 
 

Pre-symptomatic GRN n=11 
Controls n=11 
 
Symptomatic GRN n=14 
FTD GRN negative n=28 
Controls n=15 

Cross-sectional 
Case control 

N/A MRI - WMH  

Popuri et al, 2018179 Pre-symptomatic C9orf72 n=15, GRN n=9 
Controls n=38 

Cross-sectional 
Case control 

N/A MRI – Cortical thickness, subcortical volumes 

Premi et al, 2017197 Pre-symptomatic C9orf72 n=33, MAPT n=14, GRN n=61 
Controls n=123 

Cross-sectional 
Case control 

N/A MRI – Cortical, subcortical and cerebellar volumes 

Rohrer et al, 201522  Pre-symptomatic C9orf72 n=18, MAPT n=15, GRN n=45 
Symptomatic C9orf72 n=16, MAPT n=11, GRN n=13 
Controls n=102 

Cross-sectional 
Case control 

N/A MRI – Cortical and subcortical volumes 

Russell et al, 2020187 Pre-symptomatic C9orf72 n=106, MAPT n=49, GRN n=123 
Symptomatic C9orf72 n=53, MAPT n=18, GRN n=32 
 

Cross-sectional 
 

N/A MRI - VBM 
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First author,  
year of publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Structural MRI 
Staffaroni et al 2021112 Pre-symptomatic mutation carriers n=46 

Symptomatic mutation carriers n=81 
Controls n=101 
Reference n=383 

Longitudinal 
 

2-years MRI – GM volume 

Sudre et al, 2017206 Pre-symptomatic C9orf72 n=28, MAPT n=8, GRN n=25 
Symptomatic C9orf72 n=23, MAPT n=13, GRN n=7 
Controls n= 76 

Cross-sectional 
Case control 

N/A MRI – WMH 

Sudre et al, 2019223 Pre-symptomatic GRN n=101; (Longitudinal n=39) 
Symptomatic GRN n=32; (Longitudinal n=12) 
Controls n=203; (Longitudinal n=73) 
 

Longitudinal 
Case-control 

Not specified 
Annual MRI 

MRI – GMD, WMH 

Tavares et al, 2019190 Pre-symptomatic C9orf72 n=13, MAPT n=4, GRN n=29 
Controls n= 56 

Longitudinal 
Case-control 

1-year MRI – Ventricular volumes 

Functional MRI  
Borroni et al, 2012 214 Pre-symptomatic GRN n=9 

Symptomatic GRN n=7 
FTD GRN negative n=16 
Controls n=24 

Cross-sectional 
Case control 

N/A MRI – VBM, rs-fMRI 

Dopper et al, 2014 23 Pre-symptomatic GRN n=28; MAPT n=9 
Controls n=38 

Cross-sectional 
Case control 

N/A MRI – VBM, DTI, rs-fMRI 

Dopper et al, 2016 226 Pre-symptomatic GRN n=23; MAPT n=11 
Controls n=31 

Longitudinal 
Case-control 

2-years MRI – ASL 

Feis et al, 201862 Pre-symptomatic: C9orf72 n=72; MAPT n=8; GRN n=35 
Controls n = 48 

Cross-sectional 
Case control 

N/A MRI – GMD, WMD, DTI, rs-fMRI 

Feis et al, 201961 Pre-symptomatic GRN n=28; MAPT n=11 
Controls = 36 

Cross-sectional 
Case control 

N/A MRI – VBM, DTI, rs-fMRI 

Feis et al, 201963 Pre-symptomatic C9orf72 n=12, MAPT n=8, GRN n=35 
Controls = 48 

Longitudinal 
Case-control 

6-years MRI- GMD, DTI, rs-fMRI 

Lee et al, 2019217 Pre-symptomatic GRN n=14 
Pre-clinical GRN n=3 
Controls n=30 

Cross-sectional 
Case control 

N/A MRI – VBM, Task-free fMRI 
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First author,  
year of publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Functional MRI 
Mutsaerts et al, 2019211 Pre-symptomatic C9orf72 n=34, MAPT n=18, GRN n=55 

Controls n= 113 
Cross-sectional 
Case control 

N/A MRI – ASL 

Pievani et al, 201420 Pre-symptomatic GRN n=5 
Controls n=5 

Cross-sectional 
Case control 

N/A MRI – Cortical thickness, DTI, rs-fMRI 

Premi et al, 2013 228 Pre-symptomatic GRN n= 17 
Symptomatic GRN n= 12 
FTD GRN negative n=20 

Cross-sectional 
Case control 

N/A MRI - rs-fMRI 

Premi et al, 2014 227 Pre-symptomatic GRN n= 17 
Symptomatic GRN n= 14 
FTD GRN negative n=38 

Cross-sectional 
Case control 

N/A MRI – GM volume, rs-fMRI 

Premi et al, 2016 216 Pre-symptomatic GRN n= 17 
Symptomatic GRN n= 14 
Controls n=33 

Cross-sectional 
Case control 

N/A MRI – VBM, rs-fMRI 

Premi et al, 2019 207 Pre-symptomatic C9orf72 n=82, MAPT n=45, GRN n=122 
Controls n= 223 

Cross-sectional 
Case control 

N/A MRI - rs-fMRI 

Premi et al, 2021 230 Pre-symptomatic GRN n=141 
Controls n=282 

Cross-sectional  
Case-control 

N/A MRI – TIV, rs-fMRI 

Rittman et al, 2019208 Pre-symptomatic C9orf72 n=17, MAPT n=13, GRN n=40 
Symptomatic C9orf72 n=12, MAPT n=11, GRN n=6 
Controls n= 86 

Cross-sectional 
Case control 

N/A MRI - Task-free fMRI 

Tsvetanov et al, 2021213 Pre-symptomatic C9orf72 n= 39, MAPT n=19, GRN n= 63 
Controls n=134 

Cross-sectional 
Case control 

N/A MRI – GM volume, rs-fMRI 

Positron Emission Tomography 
Caroppo et al, 2015 218 Pre-symptomatic GRN n = 16 

Controls n=17 
Longitudinal 
Case-control 

20-months MRI – Cortical thickness 
[18F] FDG PET-CT 

Jacova et al, 2013 225 Pre-symptomatic GRN n = 9 
Controls n=11 

Cross-sectional 
Case control 

N/A MRI 
[18F] FDG PET-CT 
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2.3.3 MAPT  

Pre-symptomatic MAPT mutation carriers exhibit evidence of insidious 

radiological involvement, typically beginning in the medial temporal lobes, 

extending to the insula and accelerating 2-years before symptom onset 21, 22, 

181, 226, 234. Multimodal MRI based classification models suggest that individual 

radiological changes may not detectable until a few years before 

phenoconversion 63, 224. Evidence for pre-symptomatic radiological changes in 

MAPT mutation carriers is summarised in Table 5. 

Pre-symptomatic cortical 22, 181 and subcortical 22, 192 GM pathology 

may be detected up to 15-years before symptom onset. In the pre-

symptomatic phase, cortical changes may be detected in the insula, anterior 

cingulate, orbitofrontal and medial temporal regions 22, 156, 181, 186, 235. Medial 

temporal lobe atrophy may even be detected by visual inspection using visual 

rating scales 178. In pre-symptomatic FTD mutation carriers, there is also a 

difference in ventricular volume 190. In the minimal and mild symptomatic 

phase, GM degeneration extends to involve the dorsolateral temporal cortex 

183, cingulate cortex and lingual gyrus in the occipital lobe 236. This peri-

symptomatic involvement of the cingulate cortices has been linked to 

progressive apathy 198. Subcortical involvement has been described in the 

anterior thalamus in an admixed group of pre-symptomatic FTD mutation 

carriers 192. Amygdalar 22, 183 and hippocampal pathology 22, 181, 183, 237 have 

been detected in a subgroup of pre-symptomatic MAPT carriers, but this is 

not a universal finding 238. However, significant differences may only be 

detected if the volumes of specific subregions are estimated rather than 

considering the overall volume of the entire structure. For instance, the 
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selective involvement of the accessory basal and superficial nuclei subregions 

of the amygdala may be detected before the total volume of the amygdala 

changes 183. In pre-symptomatic FTD mutation carriers, the quantification of 

individual GM patterns may be used to predict disease progression 112, 224. 

Level of educational attainment 196, 197 and TMEM106B genotype 197 are 

considered individual modifying factors. In some studies, GM pathology is not 

detected for a variety of reasons that are later discussed 23, 61, 183. 

There is also evidence for genotype-specific patterns of WM 

degeneration involving the frontotemporal tracts 23. A longitudinal study of 

pre-symptomatic MAPT mutation carriers demonstrated entorhinal WM 

pathology that extended into the limbic and frontotemporal projections after 

phenoconversion 239. Loss of WM integrity has also been described in the 

bilateral uncinate fasciculus, left anterior thalamic radiation, left inferior 

fronto-occipital fasciculus 23, 181 evolving 2-years before phenoconversion, but 

not earlier than this 21. While the involvement of the uncinate fasciculus is not 

unique to this genotype, it was more markedly involved in pre-symptomatic 

MAPT mutation carriers compared to GRN mutation carriers 21. In contrast, 

another study only found uncinate involvement in symptomatic cases 239. The 

chronology of sequential GM and WM pathology is not well defined. 

Multimodal MRI classification studies indicate that the earliest pre-

symptomatic changes are WM alterations in FTD mutation carriers 62; whereas 

other studies suggest simultaneous GM and WM pathology, with 

predominant loss of WM integrity 21. Conversely, frank diffusivity 

abnormalities may not be readily identified in pre-symptomatic MAPT 
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mutation carriers 21, 61, 236 and no marked WM hyperintensity burden has been 

detected 206.  

MR spectroscopy studies have suggested a relatively stereotyped 

sequence of events, beginning with increased m-Ins/Cr ratio (indicators of 

glial activity), followed by decreased NAA/m-Ins ratio (markers of loss of 

neuronal integrity) and subsequent atrophy 240. MRS studies of 

presymptomatic MAPT mutation carriers are predominantly single voxel 

studies focusing on different regions of interests (ROIs) such as the posterior 

cingulate gyrus inferior precuneus 234, 238 or medial frontal lobe 241. Similar to 

structural findings, these radiological changes accelerate in the 2-years 

preceding symptom onset 234. Cross-sectional studies have reported divergent 

results of NAA/Cr ratios: some studies have demonstrated decreased NAA/Cr 

ratios in the medial frontal lobe 241; and other studies have shown no 

difference in the posterior cingulate gyrus inferior precuneus 238. Given that 

decreased NAA/Cr ratio is a relatively consistent finding in symptomatic MAPT 

mutation carriers, these findings may signal impending phenoconversion 238.  

Pre-symptomatic PET studies have used different radiotracers. An [18F] 

flortaucipir PET study showed slightly elevated binding in the insula, frontal, 

parietal and medial temporal lobe indicating tau pathology 242, A multi-modal 

PET study showed dopaminergic dysfunction in the putamen using l-[β-

11C]dopa PET, and variable levels of glial activation using [11C]DAA1106 PET in 

the frontal, occipital and posterior cingulate cortices 237. An [18F] FDG-PET 

study demonstrated anterior cingulate hypometabolism 235. Studies using 

arterial spin labelling have detected a trend of relatively symmetrical 

perfusion reduction in the frontal and subcortical areas in MAPT mutation 
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carriers 226 up to 12.5 years before expected symptom onset 211. fMRI studies 

have supported the notion of accruing radiological findings prior to 

phenoconversion 207, 226. Altered functional connectivity has been reported in 

the default mode network preceding structural atrophy 148. It has been 

repeatedly proposed that preserved functional network integrity enables 

cognitive resilience in the setting of pre-symptomatic functional and structural 

radiological abnormalities 208, 213. It is noteworthy however that pre-

symptomatic functional connectivity alterations may not readily detected in 

MAPT mutation carriers 23, 61.
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Table 5: Imaging studies of pre-symptomatic MAPT mutation carriers 
First author, year of 
publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Structural MRI 
Bocchetta et al, 2021183 Pre-symptomatic: C9orf72 n=107; MAPT n=47; GRN n=125 

Symptomatic: C9orf72 n=63; MAPT n=20; GRN n=43 
Controls n=298 

Cross-sectional 
Case control 

N/A MRI – Cortical and subcortical volumes 

Cash et al, 2018156 Pre-symptomatic: C9orf72 n=40; MAPT n=23; GRN n=65 
Symptomatic: C9orf72 n=25; MAPT n=10; GRN n=12 
Controls n=144 

Cross-sectional 
Case control 

N/A MRI - VBM 

Chen et al, 2019239 Pre-symptomatic MAPT n=12 
Symptomatic MAPT n=10 
Controls n=20 

Longitudinal 
Case-control 

4-years MRI - DTI  

Convery et al, 2020203 Pre-symptomatic: C9orf72 n=73; MAPT n=39; GRN n=104 
Symptomatic: C9orf72 n=31; MAPT n=10; GRN n=24 
Controls n=181 

Cross-sectional 
Case control 

N/A MRI - VBM 

Cury et al, 2019192 Pre-symptomatic: C9orf72 n=72; MAPT n=8; GRN n=53 
Controls n= 98 

Cross-sectional 
Case control 

N/A MRI – Large diffeomorphic deformation metric mapping 

Domínguez-Vivero et al, 
2020236 

Pre-clinical MAPT n=12; (Pre-symptomatic n=6/12) 
Controls n=44 

Cross-sectional 
Case-Control 

N/A MRI – VBM, WMH, DTI 

Fumagalli et al, 2018178 Pre-symptomatic: C9orf72 n=42; MAPT n=24; GRN n=66 
Symptomatic: C9orf72 n=31; MAPT n=15; GRN n=17 
Controls n=148 

Cross-sectional 
Case control 

N/A MRI- VBM 

Gazzina et al, 2019196 Pre-symptomatic: C9orf72 n=31; MAPT n=20; GRN n=65 
Controls n=113 

Longitudinal 
Case-control 

4 years MRI – GM volume 

Jiskoot et al, 201921 Pre-symptomatic GRN n=30, MAPT n=13 
Controls n=30 

Longitudinal 
Case-control 

4-years MRI – VBM, DTI 

Malpetti et al, 2021198 Pre-symptomatic C9orf72 n=108, MAPT n=54, GRN n=142 
Controls n=296 

Longitudinal 
Case-control 

2-years MRI – GM volume 

Olney et al, 2020186 Pre-symptomatic mutation carriers n=103 
Mild symptomatic carriers n=43 
Dementia n=72 
Controls n=102 

Cross-sectional 
Case control 

N/A MRI – Cortical volumes 
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First author, year of 
publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Structural MRI 
Panman et al, 2019181 Pre-symptomatic C9orf72 n=12, MAPT n=15, GRN n=33 

Controls n=53 
Longitudinal 
Case-control 

2-years MRI – VBM, Cortical thickness, DTI 

Premi et al, 2017197 Pre-symptomatic C9orf72 n=33, MAPT n=14, GRN n=61 
Controls n=123 

Cross-sectional 
Case control 

N/A MRI – Cortical, subcortical and cerebellar volumes 

Rohrer et al, 201522  Pre-symptomatic C9orf72 n=18, MAPT n=15, GRN n=45 
Symptomatic C9orf72 n=16, MAPT n=11, GRN n=13 
Controls n=102 

Cross-sectional 
Case control 

N/A MRI – Cortical and subcortical volumes 

Russell et al, 2020187 Pre-symptomatic C9orf72 n=106, MAPT n=49, GRN n=123 
Symptomatic C9orf72 n=53, MAPT n=18, GRN n=32 

Cross-sectional 
 

N/A MRI - VBM 

Staffaroni et al 2021112 Pre-symptomatic mutation carriers n=46 
Symptomatic mutation carriers n=81 
Controls n=101 
Reference n=383 

Longitudinal 
 

2-years MRI – GM volume 

Sudre et al, 2017206 Pre-symptomatic C9orf72 n=28, MAPT n=8, GRN n=25 
Symptomatic C9orf72 n=23, MAPT n=13, GRN n=7 
Controls n= 76 

Cross-sectional 
Case control 

N/A MRI – WMH 

Tavares et al, 2019190 Pre-symptomatic C9orf72 n=13, MAPT n=4, GRN n=29 
Controls n= 56 

Longitudinal 
Case-control 

1-year MRI – Ventricular volumes 

Functional MRI 
Dopper et al, 201423 Pre-symptomatic GRN n=28, MAPT n=9 

Controls n=38 
Cross-sectional 
Case control 

N/A MRI – VBM, DTI 
rs-fMRI 

Dopper et al, 2016 226 Pre-symptomatic GRN n = 23, MAPT n = 11 
Controls n=31 

Longitudinal 
Case-control 

2-years MRI – ASL 

Feis et al, 201862 Pre-symptomatic: C9orf72 n=72; MAPT n=8; GRN n=35 
Controls n = 48 

Cross-sectional 
Case control 

N/A MRI – GMD, WMD, DTI 
rs-fMRI 

Feis et al, 201961 Pre-symptomatic GRN n=28, MAPT n=11 
Controls = 36 

Cross-sectional 
Case control 

N/A MRI – VBM, DTI 
rs-fMRI 

Feis et al, 201963 Pre-symptomatic C9orf72 n=12, MAPT n=8, GRN n=35 
Controls = 48 

Longitudinal 
Case-control 

6-years MRI- GMD, DTI, rs-fMRI 
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First author, year of 
publication  

Study groups and cohort sizes Study design Follow-up  Imaging methods 

Functional MRI 
Mutsaerts et al, 2019211 Pre-symptomatic C9orf72 n=34, MAPT n=18, GRN n=55 

Controls n= 113 
Cross-sectional 
Case control 

N/A MRI – Arterial spin labelling 

Premi et al, 2019 207 Pre-symptomatic C9orf72 n=82, MAPT n=45, GRN n=122 
Controls n= 223 

Cross-sectional 
Case control 

N/A MRI - rs-fMRI 

Rittman et al, 2019208 Pre-symptomatic C9orf72 n=17, MAPT n=13, GRN n=40 
Symptomatic C9orf72 n=12, MAPT n=11, GRN n=6 
Controls n= 86 

Cross-sectional 
Case control 

N/A MRI - Task-free fMRI 

Tsvetanov et al, 2021213 Pre-symptomatic C9orf72 n= 39, MAPT n=19, GRN n= 63 
Controls n=134 

Cross-sectional 
Case control 

N/A MRI – GM volume, rs-fMRI 

Whitwell et al, 2011148 Pre-symptomatic MAPT n=8 
bvFTD n=21 
Controls n=8; Controls n=21 

Cross-sectional 
Case-Control 

N/A fMRI 

Magnetic Resonance Spectroscopy  
Chen et al, 2019234 Pre-symptomatic MAPT n=8 Longitudinal  8-years Single voxel 1H MRS; posterior cingulate  

Chen et al, 2019241 Pre-symptomatic MAPT n=9 
Symptomatic MAPT n=10 
Controls n=25 

Cross-sectional 
Case-Control 

N/A Single voxel 1H MRS; medial frontal lobe 

Kantarci et al, 2010238 Pre-symptomatic MAPT n=14 
Symptomatic MAPT n=10 
Controls n=24 

Cross-sectional 
Case-Control 

N/A Single voxel 1H MRS;  
posterior cingulate, inferior precuneus 

Positron Emission Tomography  
Clarke et al, 2021235 Pre-symptomatic MAPT n=6 

Controls n=12 
Cross-sectional 
Case-Control 

N/A [18F] FDG-PET-CT:  
Regional standard uptake value ratios 

Miyoshi et al, 2010 237 Pre-symptomatic MAPT n=3 
Controls n=9 

Cross-sectional 
Case-Control 

N/A [11C] DAA1106 PET 
l-[β-11C] dopa PET 
[11C] N-methylpiperidin-4-yl acetate PET 

Wolters et al, 2021242 Pre-symptomatic MAPT n= 6 
Symptomatic MAPT n=3 
AD n=52 
Controls n=30 

Cross-sectional 
Case-Control 

N/A [18F] flortaucipir PET scan 
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2.4 Discussion 

 There is a consensus in the literature that pre-symptomatic structural 

and functional imaging changes may be detected in C9orf72, GRN, and MAPT 

mutation carriers several years before expected symptom onset, which 

become particularly marked in the period leading up to phenoconversion. A 

multitude of imaging methods has been successfully implemented in 

presymptomatic gene carriers and the various modalities not only offer 

complementary information but are relatively consistent with regards to 

anatomical patterns of preferential vulnerability. Despite considerable 

methodological differences, focus on diverse ROIs, and divergent cohort 

characteristics, consensus study findings can be identified. In pre-

symptomatic C9orf72 mutation carriers, there is widespread cortical and 

subcortical GM involvement beginning in the thalamus and posterior cortical 

regions, gradually involving the frontotemporal regions. This is coupled with 

extensive WM degeneration, frontotemporal hypometabolism and altered 

functional connectivity involving thalamic, frontotemporal and motor 

networks. In pre-symptomatic GRN mutation carriers, there is relatively 

asymmetric cortical and subcortical GM pathology often spreading from 

insular regions, gradually involving frontal, parietal, temporal and thalamic 

brain regions. There is also extensive WM degeneration in particular at the 

genu of the corpus callosum, increased WM hyperintensity burden, 

asymmetric frontotemporal hypometabolism and altered functional 

connectivity in thalamic, frontal and parietal circuits. In pre-symptomatic 

MAPT mutation carriers, there is more focal GM involvement centred on the 

medial temporal lobe, later involving the insula and frontal regions. WM 
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degeneration in pre-symptomatic MAPT is particularly marked in the uncinate 

fasciculus. There is also ample evidence of frontal and subcortical 

hypometabolism and altered functional connectivity involving frontal 

networks. Multi-parametric imaging studies also offer insights regarding the 

likely chronology of radiological changes and biological cascades preceding 

phenoconversion (Figure 4). While there is no definite consensus on a specific 

timeline, there are indications of early metabolic and functional changes 

followed by structural degeneration before symptom onset. Classification 

studies have consistently highlighted that WM features best discriminate pre-

symptomatic mutation carriers from controls suggesting that WM alterations 

are relatively specific and early radiological features.  

It is increasingly debated whether pre-symptomatic radiological 

changes, particularly in C9orf72 mutation carriers, may represent early 

neurodegeneration or neurodevelopmental abnormalities 177, 243. In favour of 

neurodegeneration, C9orf72 mutation carriers exhibit a slowly evolving 

progressive radiological profile that is considered to represent the insidious 

pathological process several decades before symptom onset 183, 184. Moreover, 

there are well described patterns and stages of pTDP-43 pathology in C9orf72 

mutation carriers 244. In favour of a neurodevelopmental process, the 

trajectory of structural and functional imaging deficits in C9orf72 mutation 

carriers is deemed to be relatively similar to expected age-related changes 

observed in controls 185, 199. Some longitudinal studies do not detect 

progression, albeit short follow-up intervals may be ill-suited to detect subtle 

progressive changes 181. In addition, animal studies suggest that C9orf72 

protein plays a fundamental role in central nervous system development 245 
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and have observed altered synaptic structure in C9orf72 mutation carriers 246. 

The reality may lie somewhere in-between with pre-symptomatic radiological 

changes capturing both early phases of neurodegeneration superimposed on 

pre-existing neurodevelopmental abnormalities 177.  
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Figure 4: A schematic diagram of the likelihood of detecting radiological change in pre-symptomatic FTD  genotypes 

 
A schematic representation of the detection likelihood of presymptomatic radiological change in the most common FTD-associated genetic variants. In C9orf72 mutation carriers, it is hypothesised that 

neurodevelopmental factors may be at play in conjunction with slowly progressive neurodegeneration. In GRN mutation carriers, the disease process is thought to accelerate 2-years before 
phenoconversion. In MAPT mutation carriers, disease burden accrues 2-years before phenoconversion, but at a relatively slower rate than in GRN.
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Presymptomatic radiological observations may have important 

practical implications: predicting phenotype, heralding phenoconversion, 

tracking disease progression, and optimising the timing of clinical trial 

enrolment. The prospect of predicting subsequent clinical phenotype is 

seldom addressed in the current literature. This is important to explore in 

longitudinal studies traversing phenoconversion as some genotypes, such as 

C9orf72, may evolve into distinctly different clinical phenotypes along the 

ALS-FTD spectrum 142, 247, 248. Presymptomatic spinal cord pathology in 

hexanucleotide expansion carriers is likely to predict ALS-FTD rather than FTD 

205 highlighting the role of quantitative cord imaging techniques 249, 250. While 

machine-learning (ML) frameworks have been successfully applied to imaging 

data of symptomatic patient cohorts 75, 159, 224, their potential has not been 

systematically examined in presymptomatic mutation carriers. The role of 

imaging in clinical trials is of particular interest given the advances in gene-

specific therapeutic strategies, such as antisense oligonucleotides 155, 251. The 

exact timing of early intervention is yet to be defined. Lessons from other 

neurodegenerative disorders suggest that therapeutic efficacy should be first 

demonstrated in early symptomatic cohorts, and later across the spectrum of 

disease 252. Potential benefits may not be appreciated if tested in exclusively 

pre-symptomatic cohorts 252. In genetic FTD, very early symptomatic disease 

may be captured by combining the accelerating peri-diagnostic radiological 

changes in tandem with fluid biomarkers 169; thus facilitating optimal timing 

for clinical trial enrolment. Imaging could also be used to track disease burden 

objectively in individual subjects 33, 253. Similarly to other neurodegenerative 

conditions, longitudinal imaging studies in FTD should be complemented by 
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wet biomarkers and comprehensive clinical profiling 158, 254-256. Future clinical 

trials would need to adhere to standardised terminology because the terms 

‘asymptomatic’, ‘pre-symptomatic’, ‘pre-symptomatic’, ‘pre-clinical’, ‘pre-

manifest’ and ‘prodromal’ are used inconsistently and often interchangeably. 

Recently proposed nomenclature divides the overarching ‘pre-symptomatic’ 

phase into: ‘pre-manifest’ whereby there is only biomarker evidence of 

disease; and ‘prodromal’ whereby there may be detectable clinical signs 

without fulfilling the diagnostic criteria 257.  

While there is a likely reporting bias for significant radiological 

changes, pre-symptomatic changes are often not detected. The study 

population sometimes comprises an admixed cohort of pathogenic mutation 

carries, ages, subsequent clinical phenotypes, and individual modifying factors 

145. Familial FTD is a relatively low-incidence condition that sometimes leads 

to admixed studies of pre-symptomatic C9orf72, GRN and MAPT mutation 

carriers to boost sample sizes despite each genetic condition exhibiting 

relatively specific imaging signatures. However, if the participants are 

stratified according to the underlying genotype, studies may be 

underpowered to ascertain pathological changes 61. Clinical phenotypes are 

also associated with distinct patterns of lobar atrophy, particularly GRN which 

may evolve to bvFTD or nfvPPA phenotypes 216, 217. Recent studies have shown 

that the pre-symptomatic cascade may be relatively uniform in nfvPPA and 

more diverse in bvFTD 176. The interval to phenoconversion is likely to be a key 

determinant of the success in detecting presymptomatic changes. 

Concomitant GM and WM degeneration can be often detected a few years 

before symptom onset 61, 181, 215. The characteristic asymmetric cortical atrophy 



 

 74 

associated with GRN is only typically appreciated within this time window 178. 

The inclusion of participants with considerable differences in their estimated 

interval to symptom onset, especially younger participants, may preclude 

detection of subtle pre-symptomatic radiological changes that evolve closer to 

the time of symptom onset 61, 215. For example, GM degeneration may be 

detected in MAPT and GRN mutation carriers 2-years before symptom onset, 

but not in those who did not convert to during follow-up 21. Differences in 

terminology, methodological strategies, ROI priorities, demographic profiles, 

choice of controls, statistical thresholds all add the apparent inconsistency of 

findings in the literature. Longitudinal studies are needed to capture 

progressive changes which are not appreciated in cross-sectional analyses 226, 

but the follow-up interval may be too short to detect insidious changes and 

map propagation patterns 181. While imaging changes in mutation carriers 

offer invaluable insights into the relatively arcane presymptomatic phase of 

the disease, these observations may not be transferable to sporadic FTD. 

2.5 Conclusions 

Genotype-specific imaging changes may be detected several years 

before symptom onset in pre-symptomatic familial FTD mutation carriers, but 

robust multimodal, multi-timepoint longitudinal studies are required for the 

nuanced characterisation of the evolution of structural and functional 

changes.
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3 Frontotemporal pathology in motor neuron disease 

phenotypes: insights from neuroimaging 

3.1 Introduction 

This review explores the role of neuroimaging in characterising 

frontotemporal pathology in motor neuron diseases (MNDs). While 

frontotemporal involvement has been extensively investigated in amyotrophic 

lateral sclerosis (ALS) (Table 6), it is relatively under evaluated in other MND 

phenotypes, such as primary lateral sclerosis (PLS) (Table 7), progressive 

muscular atrophy (PMA), spinal bulbar muscular atrophy (SBMA), spinal 

muscular atrophy (SMA), hereditary spastic paraplegia (HSP), poliomyelitis 

and post poliomyelitis syndrome (PPS) (Table 8). PMA, SBMA, SMA and 

poliomyelitis were once regarded as pure anterior horn cell disorders, but 

emerging data shows that the central nervous system is more widely involved 

than previously thought 258, 259. PLS was traditionally considered a pure UMN 

condition, but extra-motor manifestations are now gradually recognised 260 

(Figure 5). The ALS-FTD continuum of neurodegenerative disorders share 

common clinical, radiological, genetic and pathological features 261, 262. Similar 

cognitive and behavioural manifestations, however, have also been described 

in the non-ALS MND phenotypes 263, 264. The low incidence of these slowly 

progressive UMN or LMN predominant disorders coupled with heterogeneous 

frontotemporal manifestations are all factors that may contribute to delayed 

or mistaken diagnoses 265-268. Caregiver burden is not only heightened by 

diagnostic delay, but may be exacerbated by considerable behavioural 

challenges 269, 270. Frontotemporal involvement may impact on entry into 
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clinical trials and decision to participate in research studies, potentially 

leading to participation bias. From an academic viewpoint, there are 

synergistic efforts to evaluate frontotemporal disease burden using 

computational imaging in combination with clinical instruments. In parallel, 

these advances help to advance our understanding of disease pathology, 

propagation patterns and the dynamics of anatomical spread. The objective of 

this review is to collate evidence from robust neuroimaging studies, distil 

emerging research trends, identify pertinent gaps in the literature, highlight 

clinical implications and postulate research priorities in the evaluation of 

frontotemporal pathology across the spectrum of MND phenotypes.  
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Table 6: Selection of original neuroimaging research articles in ALS since 2015 with more than 30 patients. 
First author, 
Year of publication 

Sample Size 
Study participants 

Study Design  Follow-up interval 
(months) 

Raw imaging data/imaging technique 

Agosta et al, 2016 ALS n=56 
UMN phenotype n=31 
LMN phenotype n=14 

Cross-sectional case-control  
Multi-centre 

N/A MRI - Cortical thickness, DTI  

Alshikho et al, 2018 ALS n=53 
PLS n=11 

Longitudinal case-control 
Single-centre 

6-months MRI - Cortical thickness, DTI 
[11C]-PBR28 PET 

Alruwaili et al, 2018 ALS n=30 Cross-sectional case-control 
Single-centre 

N/A MRI – VBM, DTI 

Basaia et al, 2020 ALS n = 173 
PLS n = 38 
PMA n = 28 

Cross-sectional case-control 
Multi-centre 

N/A MRI – DTI, rs-fMRI 
Global brain network analysis 
Functional connectivity analysis 

Bede et al, 2015 ALS = 36 Cross-sectional case-control 
Single-centre 

N/A MRI - DTI 

Bede et al, 2016 ALS = 70 Cross-sectional case-control 
Single-centre 

N/A MRI - Cortical and subcortical morphometry, DTI 

Bede et al, 2018 ALS n=32 Longitudinal case-control 
Single-centre 

4-months 
 8-months 

MRI – VBM, cortical thickness, DTI 
 

Bede et al, 2019 ALS n=100 
PLS n=33 
FTD n=30 

Longitudinal case-control 
Single-centre 

4-months MRI - Volumetry, vertex, morphometry 

Bede et al, 2020 ALS n=100 
PLS n=33 
FTD n=30 

Longitudinal case-control 
Single-centre 

4-months MRI - Volumetry 

Chipika et al, 2020 ALS n=100 
PLS n=33 

Cross-sectional case-control 
Single-centre 

N/A MRI – Volumetry, morphometry 

Christidi et al, 2017 ALS n=42 Cross-sectional case-control 
Single-centre 

N/A MRI - DTI 

Christidi et al, 2018 ALS n=50 Cross-sectional case-control 
Single-centre 

N/A MRI – VBM, DTI 
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First author, 
Year of publication 

Sample Size 
Study participants 

Study Design  Follow-up interval 
(months) 

Raw imaging data/imaging technique 

Christidi et al. 2019 
 

ALS=50 
AD =18 

Cross-sectional case-control 
Single-centre 

N/A MRI - Hippocampal volumetry, DTI 

Consonni et al, 2018 ALS n=48 Cross-sectional case-control 
Single-centre 

N/A MRI - Cortical thickness  

Illán-Gala et al, 2020 ALS n=31 
bvFTD n=20 

Cross-sectional case-control 
Single-centre 

N/A MRI - Cortical thickness, DTI 

Machts et al, 2015 ALS n=67 Cross-sectional case-control 
Multi-centre 

N/A MRI - Subcortical volumetry, shape, density  

Masuda et al, 2016 ALS n=51 Cross-sectional case-control 
Single-centre 

N/A MRI – VBM, DTI 

Rosskopf et al, 2015 ALS n = 140 
PLS n = 30 

Cross-sectional case-control 
Single-centre 

N/A MRI – DTI 

Srivastava et al, 2019 ALS = 65 Cross-sectional case-control 
Multi-centre 

N/A MRI - MRS 

Shen et al, 2016 ALS = 638 Cross-sectional case-control 
Multi-centre 

N/A MRI - VBM 

Westeneng et al, 2015 ALS n=112 Longitudinal case-control 
Single-centre 

5.5 months MRI - Subcortical volumetry and shape 
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Table 7: Selection of original neuroimaging research articles in PLS 
First author, 
Year of publication 

Sample Size 
Study participants 

Study Design  Follow-up interval 
(months) 

Raw imaging data/imaging technique 

Agosta et al, 2016 ALS n=56 
UMN phenotype n=31 
LMN phenotype n=14 

Cross-sectional case-control 
Multi-centre 

N/A MRI - Cortical thickness, DTI  

Alshikho et al, 2018 PLS n=11 
ALS n=53 

Longitudinal case-control 
Single-centre 

6-months MRI, Cortical thickness, DTI 
[11C]-PBR28 PET 

Basaia et al, 2020 ALS n = 173 
PLS n = 38 
PMA n = 28 

Cross-sectional case-control 
Multi-centre 

N/A MRI – DTI, rs fMRI 
Global brain network analysis 
Functional connectivity analysis 

Bede et al, 2019 PLS n=33 
ALS n=100 
FTD n=30 

Longitudinal case-control 
Single-centre 

4-months MRI - Volumetry, vertex and morphometry 

Bede et al, 2020 PLS n=33 
ALS n=100 
FTD n=30 

Longitudinal case-control 
Single-centre 

4-months MRI - Volumetry 

Canu et al, 2013 PLS n=21 Cross-sectional case-control 
Single-centre 

N/A MRI – DTI 

Chan et al, 1999 PLS n=18 
ALS n=15 

Cross-sectional case-control 
Single-centre 

N/A MRI - MRS 

Charil et al, 2009 PLS n=9 
ALS n=38 

Cross-sectional case-control 
Single-centre 

N/A MRI – MTI, DWI, MRS 

Chipika et al, 2020 PLS n=33 
ALS n=100 

Cross-sectional case-control 
Single-centre 

N/A MRI- Volumetry, morphometry 

Clark et al, 2018 PLS n=18 
Pre-PLS n=13 

Longitudinal case-control 
Single-centre 

1-2 years MRI – Volumetry, cortical thickness, DTI,  
rs-fMRI, task-based fMRI 

Fabes et al, 2017 PLS n=6 
ALS n=43 

Longitudinal case-control 
Single-centre 

Not specified  MRI -FLAIR signal intensity 

Finegan et al, 2019 PLS n=49 
ALS n=100 

Cross-sectional case-control 
Single-centre 

N/A MRI – VBM, DTI 

Finegan et al, 2019 PLS n=33 
ALS n=100 

Cross-sectional case-control 
Single-centre 

N/A MRI – Volumetry, morphometry, vertex 
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First author, 
Year of publication 

Sample Size 
Study participants 

Study Design  Follow-up interval 
(months) 

Raw imaging data/imaging technique 

Finegan et al, 2020 PLS n=33 
ALS n=100 

Cross-sectional case-control 
Single-centre 

N/A MRI - Subcortical volumetry 

Finegan et al, 2021 PLS n = 40 Cross-sectional case-control 
Single-centre 

N/A MRI – VBM, DTI, subcortical volumetry 

Kolind et al, 2013 PLS n = 7 
ALS n=23 

Longitudinal case-control 
Single-centre 

7-months MRI - mcDESPOT 

Kwan et al, 2013 PLS n=22 
ALS n=21 

Longitudinal case-control 
Single-centre 

2-years 
 

MRI - Cortical thickness, volumetry, DTI 

Menke et al, 2012 PLS n=3 
ALS n=21 

Longitudinal case-control 
Single-centre 

6-months MRI – DTI 

Meoded et al, 2013 PLS n=17 
ALS n=13 

Cross-sectional case-control 
Single-centre 

N/A MRI – VBM, DTI 

Meoded et al, 2014 PLS n=16 Cross-sectional case-control 
Single-centre 

N/A MRI – rs-fMRI  

Mitsumoto et al, 2007 PLS n= 6 
ALS n= 49 
PMA n= 9 

Longitudinal case-control 
Single-centre 

Every 3-months for 
15-months 

MRI – DTI, MRS 

Paganoni et al, 2018 PLS n=10 Cross-sectional case-control 
Single-centre 

N/A MRI - Cortical thickness, DTI 
 [11C] PBR28 PET 

Tartaglia et al, 2009 PLS n=11 
 

Cross-sectional case-control 
Single-centre 

N/A MRI - Volumetry  

Tu et al, 2019 PLS n=10 
ALS n=9 

Cross-sectional case-control 
Single-centre 

N/A MRI - DTI 

Turner et al, 2007 PLS n=4 
ALS n=34 
 

Cross-sectional case-control 
Single-centre 

N/A [11C]-flumazenil PET 
 

Unrath et al, 2010 SBMA n=20 
HSP n=24 
PLS n=25 
 

Cross-sectional case-control 
Single-centre 

N/A MRI - DTI 
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First author, 
Year of publication 

Sample Size 
Study participants 

Study Design  Follow-up interval 
(months) 

Raw imaging data/imaging technique 

Van der Graaff et al, 2010 PLS n=12 
ALS n=24 
PMA n=12 

Longitudinal case-control 
Single-centre 

6-months MRI - MRS 

Van der Graff et al, 2011 ALS n=12 
PLS n=12 
PMA n-12 

Longitudinal case-control 
Multi-centre 

6-months MRI - DTI 
 

Van Weehaeghe et al, 
2016 

PLS n=10 
ALS n=105 
 

Cross-sectional case-control 
Single-centre 
 

N/A [18F]-FDG PET  
 

Zhai et al, 2003 PLS n=10 Cross-sectional case-control 
Single-centre 

N/A MRI - MRS 
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Table 8: Selection of original neuroimaging research articles in PMA, SMA, SBMA, PPS and HSP 
First author, 
Year of publication 

Sample Size 
Study participants 

Study Design  Follow-up interval 
(months) 

Raw imaging data/imaging technique 

Progressive muscular atrophy  
Agosta et al, 2016 ALS n=56 

UMN phenotype n=31 
LMN phenotype n=14 

Cross-sectional case-control 
Multi-centre 

N/A MRI - Cortical thickness, DTI  

Basaia et al, 2020 ALS n = 173 
PLS n = 38 
PMA n = 28 

Cross-sectional case-control 
Multi-centre 

N/A MRI – DTI, rs- fMRI 
Global brain network analysis 
Functional connectivity analysis 

Kew et al, 1994 ALS n = 6 
LMN phenotype n = 5 

Cross-sectional case-control 
Single-centre 

N/A Rs-PET, Task-based PET 

Mitsumoto et al, 2007 PMA n= 9 
PLS n= 6 
ALS n= 49 

Longitudinal case-control 
Single-centre 
 

Every 3-months for 
15-months 

MRI – DTI, MRS 

Quinn et al, 2012 ALS = 20 
PMA = 5 

Cross-sectional case-control 
Single-centre 

N/A MRI - MRS 

Raaphorst et al, 2014 ALS = 21 
PMA = 18 

Cross-sectional case-control 
Multi-centre 

N/A MRI - Task-based fMRI  

Van der Graaff et al, 2010 PMA n=12 
PLS n=12 
ALS n=24 

Longitudinal case-control 
Multi-centre 

6-months MRS 

Van der Graaff et al, 2011 PMA n-12 
ALS n=12 
PLS n=12 

Longitudinal case-control 
Multi-centre 

6-months MRI - DTI 

Spinal muscular atrophy 
De Borba et al, 2020 SMA type III (n=19) 

SMA type IV (n=6) 
Cross-sectional case-control 
Single-centre 

N/A MRI - Cortical thickness, volumetry 

Mendonça et al, 2019 SMA type 0 (n=3) Longitudinal case-control 
Single-centre 

1-3 years MRI 

Querin et al, 2019 SMA type III (n=19) 
SMA type IV (n=6) 

Cross-sectional case-control 
Single-centre 

N/A MRI - Cortical thickness, DTI 
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First author, 
Year of publication 

Sample Size 
Study participants 

Study Design  Follow-up interval 
(months) 

Raw imaging data/imaging technique 

Spinal-bulbar muscular atrophy  
Garaci et al, 2015 SBMA n=8 Cross-sectional case-control 

Single-centre 
N/A MRI - DTI 

 
Karitzky et al, 1999 SBMA n=9 Cross-sectional case-control 

Single-centre 
N/A MRI - MRS 

Kassubek et al, 2007 SBMA n=18 Cross-sectional case-control 
Single-centre 

N/A MRI- VBM 

Lai et al, 2013 SBMA n=10 Cross-sectional case-control 
Single-centre 

N/A [18F]-FDG PET 

Mader et al, 2002 SBMA n=10 Cross-sectional case-control 
Single-centre 

N/A MRI - MRS 

Pieper et al, 2013 SBMA n = 8 Cross-sectional case-control 
Single-centre 
 

N/A MRI – VBM, DTI 

Unrath et al, 2010 SBMA n=20 
HSP n=24 
PLS n=25 
 

Cross-sectional case-control 
Single-centre 

N/A MRI - DTI 

Post-polio syndrome 
Bruno et al, 1994 PPS n=22 Cross-sectional case-control 

Single-centre 
N/A MRI 

Demir et al, 2012 PPS n=11 Cross-sectional case-control 
Single-centre 

N/A MRI 

Li Hi Shing et al, 2021 PPS n=36 Cross-sectional case-control 
Single-centre 

N/A MRI - Cortical thickness, subcortical GM, DTI 

Li Hi Shing et al, 2021 PPS n=36 
ALS n=88 

Cross-sectional case-control 
Single-centre 
 

N/A MRI – Morphometry, DTI 

Trojan et al, 2014 PPS n=42 
MS n=49 

Cross-sectional case-control 
Single-centre 
 

N/A MRI – Volumetry  
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First author, 
Year of publication 

Sample Size 
Study participants 

Study Design  Follow-up interval 
(months) 

Raw imaging data/imaging technique 

Hereditary spastic paraplegia 
Aghakhanyan et al, 2014 HSP n=12 Cross-sectional case-control 

Single-centre 
N/A MRI – DTI 

Agosta et al, 2015 HSP n=44 
 

Cross-sectional case-control 
Single-centre 

N/A MRI – VBM, DTI 

Duning et al, 2010 HSP n=6 Cross-sectional case-control 
Single-centre 

N/A MRI – Volumetry, DTI  

Erichsen et al, 2009 HSP n=8 Cross-sectional case-control 
Single-centre 

N/A MRS – Volumetry 

Faber et al, 2018 HSP n=25 Cross-sectional case-control 
Single-centre 

N/A MRI- Cortical thickness, subcortical volumes, DTI 

França et al,  2012 HSP n=5 Cross-sectional case-control 
Single-centre 

N/A MRI – VBM, DTI 

Kassubek et al, 2006 HSP n=33 Cross-sectional case-control 
Single-centre 

N/A MRI - Brain parenchymal fractions 

Koritnik et al, 2009 HSP n=12 Cross-sectional case-control 
Single-centre 

N/A MRI - Task-based fMRI 

Liao et al, 2018 HSP n=12 Cross-sectional case-control 
Single-centre 

N/A MRI – rs-fMRI  

Lindig et al, 2015 HSP n=15 Cross-sectional case-control 
Single-centre 

N/A MRI - VBM, DTI  

Montanaro et al 2020 HSP n=31 Longitudinal case-control 
Single-centre 

30-months 
 

MRI – VBM, DTI, MRS 

Oğuz et al, 2013 HSP n=4 Cross-sectional case-control 
Single-centre 

N/A MRI - DTI 

Pan et al, 2013 HSP n=5 Cross-sectional case-control 
Single-centre 

N/A MRI -DSI 

Rezende et al, 2015 HSP n=11 Cross-sectional case-control 
Single-centre 

N/A MRI – Volumetry, DTI  

Scheuer et al, 2005 HSP n=18 Cross-sectional case-control 
Single-centre 

N/A MRI 
[18F]-FDG PET 
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First author, 
Year of publication 

Sample Size 
Study participants 

Study Design  Follow-up interval 
(months) 

Raw imaging data/imaging technique 

Hereditary spastic paraplegia 
Stromillo et al, 2011 HSP n=10 Cross-sectional case-control 

Single-centre 
N/A MRI – Volumetry, MRS 

Tomberg et al, 2012 HSP n=9 Cross-sectional case-control 
Single-centre 

N/A MRI - Task-based fMRI 

Unrath et al, 2010 SBMA n=20 
HSP n=24 
PLS n=25 

Cross-sectional case-control 
Single-centre 

N/A MRI - DTI 

Warnecke et al, 2007 HSP n=6 Cross-sectional case-control 
Single-centre 

N/A MRI - DTI 
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Figure 5: The motor and cognitive spectrum in MND phenotypes 

 

 

Dimensions of disease heterogeneity in MND; the spectrum of relative upper/lower motor neuron 
involvement and the spectrum of extra-motor manifestations. 



 

 87 

3.2 Methods 

This is a focused review of original neuroimaging studies that 

investigated frontotemporal pathology in the following MND phenotypes; PLS, 

PMA, SBMA, SMA, PPS, HSP and ALS. The search engines PubMed and Google 

Scholar were used to identify key papers. Individual MND phenotypes were 

searched paired with keywords ‘MRI’, ‘PET’, ‘brain imaging’, ‘neuroimaging’ or 

‘frontotemporal’. Only articles in English were reviewed. Editorials, opinion 

pieces and review articles were not selected. Additional papers were 

considered based on the reference list of reviewed publications. One hundred 

forty-two original research neuroimaging studies were identified. Given the 

paucity of prospective neuroimaging studies in non-ALS MNDs, case series, 

neuropsychology and post mortem studies were also reviewed in these 

conditions. The selected articles were systematically evaluated for cohort 

numbers, study design, clinical assessment, imaging methods, and anatomical 

focus.  

3.3 Results 

3.3.1 Primary lateral sclerosis 

PLS is an upper motor neuron disorder that typically presents with 

insidious spino-bulbar spasticity in adulthood 271, 272. It is often associated with 

pseudobulbar affect that may trigger self-imposed social isolation. Extra-

motor manifestations are increasingly recognised in PLS 264, 273, occurring in a 

similar behavioural and cognitive profile to ALS 264 and rarely fulfilling the 

diagnostic criteria for FTD 264, 273. Such deficits include impaired social 

cognition, executive function, verbal fluency, language or apathy 260, 263, 264, 273. 

The reported cases of frank FTD evolved several years after the insidious 
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onset of UMN signs and were associated with progressive radiological 

frontotemporal atrophy 273. This is in line with the mounting body of 

neuroimaging evidence that supports widespread frontotemporal 

involvement in PLS 260, 274, 275.  

The radiological profile of PLS varies from limited extra-motor 

involvement to widespread pathology 272. Structural and diffusion data 

revealed degenerative changes in the fornix, body of the corpus callosum, 

anterior cingulate, dorsolateral prefrontal, insular, opercular, orbitofrontal 

and temporal regions 260, 272, 274-277. Some studies have explored associations 

with underlying structural abnormalities focusing on apathy, impaired 

executive function, language and verbal fluency deficits 260, 275, 278. 

Longitudinal studies have yielded inconsistent findings with regards to 

progressive pathology 279-284. A case report described progressive cortical 

atrophy over an 8.5-year timeframe 285. These observations would suggest 

that contrary to ALS, longer follow-up intervals may be required in PLS to 

characterise radiological trajectories. Extra-motor findings in PLS are also 

supported by metabolic and functional imaging studies. PET imaging studies 

have detected prefrontal and premotor areas of hypometabolism in PLS that 

are almost indistinguishable from the patterns seen in ALS 286-288. Whilst 

primarily used in a research setting, novel PET radioligand binding studies 

have also demonstrated alterations beyond the motor system, in the bilateral 

anterior cingulate gyri and in left superior temporal lobe 271, 286, 289-291. MR 

Spectroscopy in PLS has mostly focused on the evaluation of the motor rather 

than extra-motor regions 280, 292. Similar to ALS, it shows reduced N-acetyl 

aspartate/creatinine ratios 280, 292-295 and increased myo-inositol/creatinine 
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ratios 293 in the motor cortex suggestive of neuronal dysfunction and gliosis 

respectively. Resting-state fMRI studies report increased functional 

connectivity in frontotemporal networks 278, 296 which has been associated 

with executive dysfunction 278, 297. Similar to ALS, increased functional 

connectivity is typically considered a ‘compensatory response’ to structural 

degeneration 278.  

 The few post-mortem studies are concordant with the extra-motor 

radiological profile of PLS 298-305. Frontotemporal lobar degeneration has been 

detected with some cases revealing ubiquitin- and TDP-43-immunoreactive 

neuronal cytoplasmic inclusion bodies in frontotemporal and hippocampal 

areas . Post-mortem studies seldom have accompanying comprehensive 

clinical information, but when available, features of nfvPPA or bvFTD have 

been described 298, 304. 

3.3.2 Progressive muscular atrophy 

PMA is a clinical diagnosis that is defined by a gradually progressive 

isolated lower motor neuron disorder, evolving over many years 306. Reports 

of extra-motor involvement are inconsistent which is further complicated by 

the debate on whether PMA is a distinct entity or embedded within the 

spectrum of ALS 307-310. There are undeniably shared clinical, radiological and 

pathological features, albeit less severe compared to ALS. While the initial 

exclusive LMN clinical presentation distinguishes PMA from ALS, patients with 

PMA often later develop UMN signs 309. The cognitive profile is also strikingly 

similar to ALS, with varying levels of executive function, language, fluency and 

memory affected 264, 311. In contrast, minimal behavioural impairment is 



 

 90 

observed, and very few patients with PMA fulfil the diagnostic criteria for FTD 

264, 311. 

Some imaging studies have identified radiological abnormalities in a 

distribution that may explain these cognitive deficits 311, 312. Structural 

analyses have reported loss of white matter integrity in inferior frontal, 

dorsolateral pre-frontal and hippocampal regions 276. A task-based fMRI study 

utilising a letter fluency task as a test of executive function showed impaired 

letter fluency and abnormal pre-frontal activation 313. As a counter-argument, 

a recent study in PMA reported preserved structural integrity with no 

functional connectivity alterations 297. Neither MRI spectroscopy nor PET 

imaging studies have identified radiological abnormalities in extra-motor 

regions 314, 315. It is noteworthy that a dedicated neuropsychological study 

failed to find a difference between patients with PMA compared to controls 

316. Potential shortcomings of the study designs must be considered, including 

small numbers of patients and the lack of sensitivity of either the chosen task 

or the imaging modality 315. 

The shared neuropathological hallmarks also lend support to the 

opinion that PMA is part of the ALS clinicopathological continuum 307-309. The 

pathological substrates of TDP-43 positive inclusions and occasional fused-in-

sarcoma (FUS)-positive basophilic inclusions are observed in both conditions, 

but at a lesser burden and more limited distribution in PMA 310, 317. Post-

mortem studies in PMA typically describe LMN degeneration, occasional 

pyramidal tract degeneration, and additional TDP-43 positive inclusions in the 

primary motor cortex and hippocampus even in the absence of UMN 

degeneration 310, 317. These findings raise the question, if in fact the results of 
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PMA studies should be streamlined, interpreted and analysed under the 

umbrella of ALS. 

3.3.3 Spinal muscular atrophy 

SMA is an autosomal recessive disorder that is caused by either 

homozygous deletions or loss of function mutations in the survival motor 

neuron 1 (SMN1) gene resulting in a deficiency of survival motor neuron 

(SMN) protein 318. It typically manifests as a proximal, predominantly 

symmetrical motor weakness. The phenotype is stratified in levels of 

decreasing severity from type 0 to type IV, depending on age of symptom 

onset and achievement of developmental milestones 318. There are 

preliminary signals of cerebral involvement in the more severe phenotypes, 

but it is not yet clear if there is preferential involvement of frontotemporal 

regions.  

The only two cross-sectional quantitative multimodal MRI brain 

studies evaluated the same 25 treatment naïve adults with type III or type IV 

SMA initially focusing on the cerebrum and then the cerebellum 258, 259. No 

supratentorial cortical atrophy was detected 258, but focal cerebellar changes 

were noted. In the more severe clinical phenotypes, qualitative MRI brain 

scans have captured more dramatic findings 319-322. In type 0 SMA, widespread 

supratentorial, and sometimes infratentorial, brain atrophy has been 

reported. A longitudinal case series of patients with type 0 SMA showed 

interval radiological abnormalities involving the thalamus and basal ganglia 

320, 322. Similar radiological findings have been described in type I SMA 321. For 

the most part, neuropsychological studies demonstrate preserved cognition 

323-326. This is with the caveat that these studies are mostly limited to children 
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and omit the more severe clinical phenotypes 327. Some aspects of childhood 

development are even deemed superior compared to healthy controls 328-332. 

The only neuropsychological study of adults with type II or type III SMA 

described normal rather than superior cognitive abilities. This study reported 

a possible adaptive mechanism of an inverse correlation between executive 

function and physical ability, but the level of executive function did not 

exceed healthy controls 323. In contrast, there are indications of attention and 

executive function deficits in children with type I SMA 327, 333.  

The post mortem examination of the brain is often confounded by 

coexistent anoxic changes 334, 335. The more severe clinical phenotypes display 

more widespread features of degeneration involving the cerebral cortex, 

thalamus, brainstem and some cranial nerve nuclei that are congruent with 

ante mortem radiological abnormalities 322, 336. Most of these regions seem 

spared in the milder phenotypes 334, 335, 337. This has been interpreted as 

selective neuronal network degeneration occurring below a threshold of SMN 

protein, although the true clinical significance of this is unknown 336. Overall, 

the radiological characterisation of the more severe clinical phenotypes has 

proven challenging because of the rarity of the condition, significant disability 

and limited life expectancy. In the advent of gene therapy, there may be 

opportunities for future research in this cohort.  

3.3.4 Spinal and bulbar muscular atrophy (Kennedy’s disease)  

SBMA, also known as Kennedy’s disease, is an X-linked trinucleotide 

repeat disorder due to expansion of cytosine-adenine-guanine (CAG) repeat in 

the androgen receptor gene 338. It is a multisystem disorder that typically 

presents in men in their fourth decade of life with slowly progressive 
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weakness, bulbar involvement and muscle atrophy due to insidious lower 

motor neuron degeneration 339, 340. Relatively mild cognitive deficits have 

been consistently described 341-343. While it is a multi-system disorder, the 

involvement of the central nervous system has been relatively under-

evaluated from a radiological viewpoint338. 

The few brain imaging studies indicate various degree of 

frontotemporal involvement 344-346. Quantitative MRI analyses demonstrate a 

spectrum of frontal grey and white matter abnormalities ranging from entirely 

unaffected to subtle grey matter atrophy and extensive white matter 

degeneration 344, 345. Widespread loss of white matter integrity has been 

reported in the brainstem, corticospinal tracts and limbic system 344, 347, 348. A 

single PET imaging study showed hypometabolism in frontal areas 346. The 

results of conflicting MR spectroscopy studies highlight that subclinical 

neuronal dysfunction may not be detected by certain imaging protocols 349, 

350. A long echo-time MR spectroscopy study demonstrated altered 

metabolite ratios in the brainstem and motor regions 349; however, a short 

echo-time MR spectroscopy study failed to reproduce these findings 350. The 

discrepancy in these results may be explained by the potential pitfall of 

artificial metabolite elevation because of either metabolite signal overlap or 

incorrect baseline determination in short echo-time MR spectroscopy 351. 

These radiological findings are complemented by consistent reports of 

neuropsychological dysfunction in this cohort albeit mostly at a subclinical 

level 341-343. Deficits may be so subtle that performance on standard tests of 

executive function can be normal 341, 342. Mild deficits in social cognition have 
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also been recorded 342. In contrast, single cases of more severe frontal 

dysfunction have been repeatedly described 352, 353. 

Most post-mortem studies in SBMA focus on cardinal spinal cord, 

peripheral nerve and proximal muscle changes 340, 353, 354. The pathological 

examination of cerebral hemispheres is seldom reported. A post-mortem 

report of an SBMA patient with significant cognitive impairment 

demonstrated marked diffuse subcortical gliosis in the pre-frontal region, 

hippocampus and the degeneration of fronto-bulbar fibres in the midbrain 

without accompanying cortical pathology 353. Immunohistochemical studies 

have shown that the pathogenic nuclear mutant AR protein is present in 

abundance in the central nervous system; supporting the rationale to 

systematically evaluate cerebral changes in future SBMA studies 355.  

3.3.5 Poliomyelitis and post-polio syndrome 

Post-polio syndrome is characterised by progressive muscular 

weakness with or without pain, fatigue and muscle atrophy in patients who 

have recovered from a distant polio infection 356. Patients often report diverse 

cognitive symptoms, mostly deficits in attention or memory; however 

objective evidence is strongly confounded by comorbid factors such as fatigue 

357-360. The reportedly high prevalence of extra-motor symptoms is contrasted 

by the relative lack of cerebral radiological abnormalities in post-polio 

syndrome 361. 

A quantitative MRI study detected minimal cortical and subcortical 

atrophy, involving the cingulate gyrus, temporal pole and left nucleus 

accumbens 361. These subtle changes were not appreciated in other studies 

356, 362. Qualitative MRI studies either identified no abnormalities or discrete 
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subcortical hyperintensities that were hypothesised to contribute to the 

disabling comorbid fatigue 357, 363, 364. Patients with post-polio syndrome 

frequently exhibit high levels of self-reported fatigue, apathy and verbal 

fluency deficits. In the absence of widespread frontotemporal imaging 

abnormalities, these extra-motor symptoms are postulated to be 

multifactorial in origin with factors such as low mood, poor sleep and 

polypharmacy all playing an additive role 361. 

These observations are corroborated by historical pathological studies 

that demonstrate preferential involvement of the brainstem rather than the 

cerebrum 357, 365, 366. This is further complicated by reports of patients with a 

history of polio, who later develop sporadic ALS and demonstrate mixed 

neuropathological features including the hallmarks of both diseases 367, 368. 

3.3.6 Hereditary spastic paraplegia 

Hereditary spastic paraplegias (HSPs) are a clinically and genetically 

heterogenous group of neurodegenerative disorders that present as 

progressive limb weakness and spasticity. They were traditionally divided into 

‘pure’ or ‘complicated’ phenotypes based on the absence or presence of 

extra-motor involvement respectively 369. In recent times, there has been a 

shift to stratify these cohorts in accordance with their genetic diagnoses 370. 

Interestingly, there are radiological indicators of frontotemporal dysfunction 

irrespective of the subgroup.  

Brain imaging studies have shown a reduction in whole brain volume 

in both clinical phenotypes 371. In pure HSP the volume of grey matter volume 

is thought to be mostly preserved, whereas in complicated HSP the volume of 

cortical and deep grey matter may be reduced. The only longitudinal study 
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detected no change in cerebral volume over a 2-year follow-up period 372. This 

is with the caveat that longer time intervals may be required to detect a 

significant change. Loss of white matter integrity has been identified in the 

corpus callosum, in the frontotemporal and parietal regions in both groups 347, 

369, 372-375. The severity of these findings correlate with the degree of cognitive 

impairment 369. Given the relative cortical sparing, cognitive deficits in these 

cohorts were postulated to be primarily subcortical in origin 374, 376, 377. This 

was supported by MR spectroscopy reports of abnormal metabolic ratios in 

the subcortical white matter 372, 378-384. PET imaging studies detected cortical 

hypometabolism, sometimes implicating the frontotemporal regions 385-391. 

This was accompanied by clinical measures of frontal dysfunction 390, 391. 

Resting-state fMRI studies have shown altered functional connectivity 

involving the primary motor cortex, insula and superior frontal gyrus 392. Task-

based fMRI studies typically report abnormal activation patterns in 

sensorimotor areas whilst performing motor tasks 393, 394.  

In the advent of genotyping, there has been a focused effort to define 

the radiological signatures of specific genotypes. Spastic paraplegia 4 (SPG4) is 

the most common autosomal dominant HSP subtype that is characterised by 

widespread white matter degeneration with relatively preserved grey matter 

374, 395, 396. Subclinical cognitive deficits have been described that later follow a 

more rapid trajectory of decline escalating in the eights decade of life 397-400. 

Spastic paraplegia 11 (SPG11) and spastic paraplegia 7 (SPG7) are rare 

autosomal recessive HSP subtypes that reveal white matter degeneration 

involving the frontotemporal regions amongst other features 370, 376, 380, 401-405. 

Varying degrees of cognitive deficits including attention, memory, and 
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executive dysfunction have been described in these genotypes and others 377, 

405, 406.  

The few post-mortem studies corroborate the radiological descriptions 

of frontotemporal pathology. Autopsy reports of those with a clinical rather 

than genetic diagnosis must be interpreted with caution. In clinically defined 

cases, marked cerebral atrophy and severe gliosis of the cerebral white matter 

has been described sometimes preferentially involving prefrontal and frontal 

areas 407-409. In SPG11, widespread frontotemporal cortical degeneration has 

been described 266. Similar pathological observations have been reported in 

SPG4, in addition to widespread ubiquitin positivity 399.  

3.3.7 Amyotrophic lateral sclerosis 

ALS is the most common form of MND that is characterised by 

progressive upper and lower motor neuron degeneration in the motor cortex, 

brainstem nuclei and anterior horn of the spinal cord. It begins with 

progressive limb-onset or bulbar-onset muscle weakness that clinically 

manifests as cramps, fasciculations, muscle wasting, difficulty swallowing or 

speaking before ultimately advancing to respiratory failure 410. Additional 

cognitive and/or behavioural impairment is universally recognised and a 

minority of patients with ALS also fulfil the diagnostic criteria for FTD 411.  

Clinical observations are widely supported by extra-motor neuroimaging 

findings. Structural imaging consistently reveals frontotemporal grey and 

white matter degeneration 201, 412-427. Grey matter atrophy has been described 

in the anterior cingulate, insula, operculum, inferior frontal gyrus, superior 

temporal gyrus, cerebellum, parietal and occipital cortex 201, 312, 417, 423, 425-433. 

White matter degeneration has been detected in the body of the corpus 
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callosum, inferior longitudinal fasciculus, uncinate fasciculus, cerebellum, 

inferior frontal, middle temporal, superior temporal, orbitofrontal, occipital 

and parietal regions 312, 412-424, 431, 433-435. These anatomical findings are often 

linked to structure-specific behavioural or cognitive deficits 201, 312, 424, 425, 427, 

434, 436-441, but similar patterns have been described in the absence of overt 

cognitive impairment 312, 429, 431, 442, 443. Extra-motor changes were initially 

considered to be more prominent in those with C9orf72 genotype compared 

to those with sporadic ALS 201, 442, but widespread frontotemporal 

involvement is not unique to C9orf72 444. Subcortical grey matter involvement 

can also be readily detected in the hippocampus, amygdala, thalamus, 

caudate nucleus, putamen, nucleus accumbens and globus pallidus 247, 423, 429, 

433, 434, 441, 442, 445-448. Progressive brainstem pathology has also been reported 

preferentially involving the pons and the medulla oblongata 449, 450. Structural 

and diffusion studies are complemented by robust metabolic and functional 

imaging studies. PET imaging studies have shown frontotemporal 

hypometabolism involving the dorsolateral prefrontal, orbitofrontal, anterior 

frontal and anterior temporal areas 288, 451-453 and regional hypometabolism 

has been linked to cognitive deficits in ALS 452, 454, 455. PET imaging 

abnormalities may precede the detection of cortical atrophy 456. While in their 

infancy, novel PET radioligand studies highlight microglial activation in 

frontotemporal regions, suggestive of localised inflammatory processes 291, 457-

461. MR spectroscopy detects extra-motor abnormalities, potentially before 

the emergence of clinical symptoms 462. It shows reduced N-acetyl-aspartate 

indicative of neuronal dysfunction in the mid-cingulate gyrus 463, dorsolateral 

315, 464, ventrolateral 465 and mesial prefrontal cortices 462, 466. Sometimes these 
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frontal lobe abnormalities are subtle 467 and may be associated with measures 

of executive dysfunction 315, 464, 467. Resting-state fMRI studies captured both 

increased and decreased functional connectivity within networks that 

mediate specific behavioural and cognitive functions 468-474. Task-based fMRI 

studies have linked these abnormal activation patterns with different facets of 

cognition, specifically executive function 475-477, social cognition 476, 478-482, 

memory 479, 483, 484 and language 485. Executive dysfunction is associated with 

increased activation of the right superior and inferior frontal areas 476, left 

superior and mid temporal gyrus and left anterior cingulate gyrus 475 and 

decreased activation in the left precentral gyrus 475, and dorsolateral pre-

frontal cortex 475, 477, 485; impaired social cognition is associated with increased 

activation in the prefrontal cortex 476, 478, 480, 481, right supramarginal area 482, 

right posterior temporal sulcus and decreased activation in the bilateral 

hippocampus 481; memory deficits are associated with increased activation in 

the hippocampus 483 and superior frontal gyrus 484, and decreased activation 

in the right pre-frontal cortex 484; and finally impaired language is associated 

with decreased activation patterns in the pre-frontal cortex, right cingulate 

gyrus and left temporal lobes 485. For the most part there are increased 476, 478, 

480, 483 or co-existing 475, 477, 479, 481, 482, 484 activation patterns which suggests 

either loss of inhibitory dysfunction or partial compensation to overcome 

early functional impairment 232, 486, 487. Overall there does not seem to be a 

consistent compensatory or inhibitory effect which suggests that these 

patients may have been captured at different stages of disease. Functional 

studies have also been widely utilised to evaluate extra-pyramidal dysfunction 

in ALS 488, 489. Emerging functional modalities, such as 
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magnetoencephalography or spectral EEG have also confirmed widespread 

extra-motor dysfunction and as these technologies develop they are likely to 

contribute important additional insights 490-494. The majority of imaging 

studies in ALS explored the underpinnings of the most commonly affected 

neuropsychological domains 485, 495, such as the substrate of verbal fluency 

deficits, executive dysfunction and behavioural impairment, but with the 

recognition of the relatively high prevalence of impairments in social 

cognition, memory deficits and of apathy, the focus of imaging studies is likely 

to gradually shift 496-501. Imaging changes in ALS are typically solely interpreted 

based on genetic and clinical profiles, and seldom correlated with other 

markers such biofluid markers 158, 502, 503. The radiological patterns identified 

by various imaging studies are largely congruent with the distribution of 

pathological TDP-43 (pTDP-43) aggregates in extra-motor brain regions 504-508. 

Patients with ALS-FTD are thought to carry increased extra-motor pTDP-43 

burden compared to patients without cognitive impairment 507. A study of 

patients with cognitive impairment revealed correlations between regional 

pTDP-43 load and executive, language and fluency deficits 504. 

3.4 Discussion  

This review collates evidence of radiological frontotemporal 

involvement in common MND phenotypes. Existing neuroimaging studies 

suggest that frontotemporal degeneration may be readily detected in ALS and 

PLS; a varying degree of frontotemporal pathology may be captured in PMA, 

SBMA and HSP. Cerebral involvement without regional predilection may be 

exhibited in the more severe clinical phenotypes of SMA; and there is limited 

evidence for cerebral changes in PPS (Figure 6, Table 9). These radiological 
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features may precede clinical symptoms, and longitudinal studies often 

capture gradual progression. Imaging studies in MND suffer from considerable 

inclusion bias because of disease-specific factors. Patients with significant 

apathy, motor disability, respiratory compromise or sialorrhea are less likely 

to participate or return for follow-up imaging. This inherent bias in exclusively 

imaging-based studies precludes estimating the prevalence of frontotemporal 

pathology in these conditions. Herein we will discuss the potential clinical and 

academic implications of these findings mostly referring to the widely 

published ALS neuroimaging studies because of the surprising paucity of non-

ALS MND literature. 



 

 

102 

Figure 6: Cognitive and anatomical vulnerability in MND phenotypes 
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Table 9: An overview of preferential anatomical involvement in MND phenotypes 
PLS Grey Matter Primary motor cortex and precentral gyrus 

Prefrontal cortex and inferior frontal gyrus - insular, opercular and orbitofrontal regions 
Mesial temporal lobe 
Anterior cingulate cortex 
Cerebellum 

White Matter Corticospinal tracts 
Corpus callosum 
Fornix 
Superior longitudinal fasciculus 
Brainstem – pons, medulla  
Cerebellum 

Subcortical  Nucleus accumbens 
Thalamus 
Hippocampus 

PMA Grey Matter Primary motor cortex and precentral gyrus 
Prefrontal cortex and inferior frontal gyrus – insular regions 

White Matter Corticospinal tracts 
Corpus callosum 
Fornix 
Superior longitudinal fasciculus 
Uncinate fasciculus  

Subcortical  Hippocampus 
SMA Grey Matter Global without regional predilection in severe cases 

Cerebellum 
SBMA Grey Matter Frontal lobes (subtle) 

White Matter Corticospinal tracts 
Inferior frontal 
Brainstem – midbrain 
Cerebellum 

PPS Grey Matter Cingulate gyrus (subtle) 
Temporal pole (subtle) 

Subcortical  Nucleus accumbens 
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HSP Grey Matter Primary motor cortex 
Limbic 
Parietal 
Cerebellum 

White Matter Corticospinal tracts 
Corpus callosum 
Frontal 
Parietal-occipital 
Brainstem 
Cerebellum  

Subcortical  Thalamus 
Basal ganglia 

ALS Grey Matter Primary motor cortex and precentral gyrus 
Prefrontal cortex and inferior frontal gyrus - insular, opercular and orbitofrontal regions 
Mesial temporal lobe 
Anterior cingulate cortex 
Parietal 
Occipital 
Cerebellum 

White Matter Corticospinal tracts 
Corpus callosum 
Arcuate fasciculus 
Inferior longitudinal fasciculus 
Uncinate fasciculus 
Fornix  
Brainstem 
Cerebellum 

Subcortical  Thalamus 
Hippocampus 
Amygdala 
Caudate nucleus 
Putamen 
Nucleus accumbens 
Globus pallidus 
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In clinical practice, the wide spectrum of frontotemporal 

manifestations in ALS are already incorporated in the clinical diagnostic 

criteria 411. It is anticipated that these features will be a fundamental part of 

future revisions, in conjunction with supportive neuroimaging data 509. 

Despite implications for survival 510, clinical staging systems of ALS have 

omitted to include a cognitive facet thus far 511, 512. These observations have 

also not yet translated into the diagnostic criteria of other MND phenotypes. 

While such deficits are increasingly recognised in PLS, they are deemed too 

infrequent to be included in the core clinical features 513. The link between 

FTD and other rare MND phenotypes may have important implications for 

everyday clinical practice, particularly given that many non-ALS MND 

phenotypes are associated with longer survival than ALS 514. The awareness of 

possible frontotemporal dysfunction may prompt the use of 

neuropsychological screening tests in the routine evaluation of these patients. 

Validated, disease-specific screening tools are preferred to generic 

instruments, and these are available in ALS 515, 516. Several of these are 

adapted to motor disability and dysarthria, and interrogate domains 

commonly affected in ALS. It is worth noting that patients with predominant 

frontotemporal cognitive deficits should be screened for incipient motor 

deficits 517. The early recognition of neuropsychological deficits is crucial for 

individualised patient care including: the appraisal of decision-making 

capacity, caregiver support, resource allocation and the anticipation of 

management challenges 270. It may also allow clinicians to consider 

pharmacological and non-pharmacological interventions such as cognitive or 

behavioural rehabilitation. In the context of FTD, this is primarily focused on 
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developing compensatory skills for adapting to functional impairments with 

the lowest level of assistance required. For example, an electronic device 

calendar is a daily planning tool that can be used to establish routines and set 

reminders to initiate activities such as taking medications 518. There is also an 

evolving interest in early language therapy interventions 519, 520. The education 

of caregivers is crucial to identify unmet needs of the patient that may trigger 

behavioural problems. These measures have proven to be beneficial to both 

the patient and their caregivers 518.  

In tandem, technological innovations have enriched the supportive 

radiological data. High-field MRI generates better quality images and 

acceleration techniques enable shorter data acquisition that may be better 

tolerated by patients. Quantitative MRI analyses using validated 

computational pipelines and reliance on robust comparative, correlative and 

classifier models enhance the clinical interpretation of vast imaging datasets 

157. The advent of structural and functional connectivity studies have ignited 

interest in the concept of disease-specific selective network degeneration 

rather than the emphasis on focal pathology 521. These methods have proven 

particularly useful to differentiate clinical phenotypes and map longitudinal 

changes in neurodegenerative disorders 432, 521. Novel MRI pulse sequences, 

non-Gaussian diffusion models such as DKI or NODDI, quantitative 

susceptibility mapping, and multi-voxel spectroscopy are just some of the 

promising new tools enriching our armamentarium of imaging tools 522-524. 

While these methods continue to be tested in the research community they 

have not been implemented in routine clinical radiology protocols 62.  
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Frontotemporal involvement across the spectrum of MND phenotypes 

has important implications for clinical trials. It invites the opportunity for the 

development of radiological biomarkers that quantify and track 

frontotemporal involvement. This has the potential to enrich the clinical 

dataset by detecting subtle imaging abnormalities that prompt the use of 

targeted neuropsychological tests which may have been overlooked by 

general screening tools. These metrics can be applied to enhance study 

designs, prognostic modelling and outcome analyses. This matter has been 

brought to the forefront as we enter the therapeutic era after decades of 

minimal treatment prospects 525. The pioneering gene therapy trials have 

primarily focused on clinical outcome measures such as motor milestones, 

requiring artificial ventilation and survival 526-528. This is also relevant because 

there has been interest in developing adjunctive interventions such as 

transcranial or neuromuscular magnetic stimulation 529, 530. These methods 

are not only applicable to symptomatic patients but also to those in the pre-

symptomatic stages of their disease . In ALS, genotype-specific radiological 

alterations have been detected in pre-symptomatic carriers of pathogenic 

mutations decades before the onset of clinical symptoms 22, 184, 185. Awareness 

of associated behavioural and cognitive impairment allows for due 

preparation and adaption of study designs if required. To date, there has been 

hesitancy in utilising radiological biomarkers as outcome measures in MND 

clinical trials because of the perceived low sensitivity and presumed need for 

increased sample size. However, it is increasingly recognised that the accuracy 

improves with targeted appraisal of disease-specific regions rather than 

routine whole-brain analyses 69; and the application of machine-learning 
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algorithms may facilitate the interpretation of single-subject scans 69. 

Nevertheless, despite optimal planning, these deficits could pose a unique 

challenge that hinders patients’ enrolment and participation in future clinical 

trials.  

As we begin to incorporate these developments into clinical practice 

and clinical trial designs, there are pressing academic questions to be 

elucidated. First and foremost, it is uncertain if the motor or extra-motor 

changes evolve in sequence or in parallel across all phenotypes. This topic is 

probably best explored in ALS where there is a unique opportunity to study 

the pre-symptomatic phase in carriers of pathogenic C9orf72 repeat 

expansions. In this cohort, radiological co-existence of motor and extra-motor 

involvement has been consistently described 22, 184, 185, 188. Overall, the 

topography of radiological alterations is largely similar but less marked than 

what is described in symptomatic cases. It is unclear if the initial pattern 

dictates the ultimate clinical phenotype given that both FTD and ALS may 

have co-existent subclinical motor and extra-motor manifestations 185, 531, 532. 

It is also unclear whether these findings solely represent early 

neurodegenerative changes; some postulate that they capture a 

developmental abnormality 185. From a clinical perspective, early cognitive 

deficits have been described in pre-symptomatic carriers of C9orf72 

expansion before the phenotype is defined 22, 184, 185, 188. The notion of 

cognitive reserve has been increasingly evaluated in ALS which may impact on 

the sequence of symptom manifestation. It suggests that those with a high 

level of cognitive reserve, often proxied with educational attainment, require 

a greater degree of brain pathology to meet the threshold for clinical 
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symptoms 533. This concept has been investigated in greater detail in FTD, but 

similar themes are also emerging in ALS. The level of cognitive reserve 

appears to predict cognitive performance and the degree of brain imaging 

abnormalities 534-536. These observations suggest that patient-specific factors 

influence the chronology of clinically evident symptoms. Some argue that the 

debate of whether extra-motor or motor symptoms emerge first in ALS is 

antiquated and that cognition and motor function are inseparably intertwined 

537. It is hypothesised that the selective deficit in action words and verb 

processing detected in patients with ALS is in fact a cognitive manifestation of 

motor dysfunction 537. Although some disagree and consider it to be a feature 

of executive dysfunction 538. Task-based fMRI studies in healthy controls have 

consistently shown that reading action words activates areas along the motor 

strip that were responsible for conducting these movements 539. In ALS, action 

observation and motor imagery are routinely utilised in fMRI studies to 

compensate for motor disability 540.  

Cognitive deficits in specific domains have been linked to the 

degeneration of single structures in MND 275, 312, 424, 425, 427, 448, 495. Often there 

is frank dissociation between cognitive and radiological findings 361, 369, but a 

reporting bias for confirmed associations prevents the gauging of this 

occurrence. Correlation analyses in ALS linked apathy to anterior cingulate 

and accumbens nucleus degeneration 438-440, and memory impairment to 

hippocampal degeneration 441. Linking cognitive deficits to single structures 

however may be a reductionist approach, which overlooks the role of complex 

cortico-subcortical networks in mediating cognitive functions 541. Accordingly, 

the underpinnings of neuropsychological deficits are probably best evaluated 
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at a circuitry-integrity level instead of seeking associations with focal 

structures 521. Traditional structural measures are increasingly complemented 

by connectivity metrics to appraise the integrity of functional circuits 491, 493. 

The selective vulnerability of functional networks is thought to drive cardinal 

manifestations of neurodegenerative conditions 521. It may or may not be 

associated with focal atrophy of crucial nodes within these networks 542.  

There are stereotyped shortcomings in the current literature that 

remain to be addressed. First, the low incidence of these conditions leads to 

small sample size despite multi-centre collaborations.  Second, while case-

control study designs are often used to evaluate these rare disorders, this 

cross-sectional approach is suboptimal to characterise dynamically evolving 

processes. Furthermore, the indolent progression of the non-ALS MND 

phenotypes may require relatively long follow-up intervals to detect 

progressive radiological changes 372. Third, co-existing neurodegenerative 

disorders are potential confounders, such as behavioural variant Alzheimer’s 

dementia.  To account for this, the use of serum or cerebrospinal fluid 

biomarkers should be considered in future study methods to enhance 

diagnostic certainty. Fourth, there is a scarcity of pre-symptomatic studies and 

often these cohorts are not followed longitudinally until phenoconversion . 

Fifth, the diagnostic criteria are not well-defined in some MNDs 306. The 

diagnosis of ‘definite PLS’ requires a symptom duration of at least 4 years 

which may further limit the number of patients available for recruitment 543. 

Sixth, imaging studies often concentrate on supratentorial cortical regions, 

overlooking the contribution of subcortical and cerebellar pathology to 

cognitive and behavioural manifestations . The sensitivity limitations of single 
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imaging modalities are seldom acknowledged. Subtle abnormalities may not 

be detected, considerable neuronal loss may ensue before it becomes 

radiologically evident. Seventh, the practical implications of cognitive deficits 

need to be specifically investigated. The presence of cognitive impairment in 

ALS is considered a negative prognostic indicator that is associated with 

increased caregiver burden, reduced quality of life and reduced survival; 

whereas the implications of cognitive impairment in other MND phenotypes is 

woefully under-evaluated despite their markedly longer survival 510. Finally, 

there is a disappointing lack of post-mortem validation of radiological 

findings. This is further complicated by the inherent bias of the pathological 

literature to favour atypical cases that are unlikely to represent the true 

hallmarks of these conditions . 

This paper offers an overview of imaging efforts across the spectrum of 

MNDs to investigate frontotemporal disease expansion. It highlights the 

disproportionate emphasis on ALS, which offers valuable lessons to conduct 

similar studies in other MND phenotypes. This discrepancy is in part driven by 

the rarity of other MND phenotypes relative to ALS. Radiological observations 

have meaningful impact on the direction of future clinical practice and 

research. It highlights the rationale for routine screening for frontotemporal 

dysfunction to inform individualised patient care. Future research projects 

should specifically focus on addressing existing gaps in our current knowledge. 

The quality of the data may be enhanced by using multiparametric imaging 

protocols, longitudinal study designs and the inclusion of pre-symptomatic 

cohorts where possible. The opportunity for international collaborations 
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through carefully harmonised protocols should be explored to maximise the 

number of study participants in low incidence phenotypes. 

3.5 Conclusions 

In contrast to ALS, the quantitative characterisation of frontotemporal 

disease burden in non-ALS MND phenotypes remains relatively under 

investigated. The nuanced evaluation of frontotemporal dysfunction across 

the entire spectrum of MNDs has important pragmatic implications for 

individualised clinical care, caregiver support, clinical trial designs and more 

broadly, for our understanding of disease biology which was once considered 

to be limited to the pyramidal and anterior horn cells.  
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4 A systematic review of quantitative spinal cord imaging 

in neurodegenerative and acquired spinal cord 

disorders. 

4.1 Introduction 

Recent methodological advancements in quantitative spinal cord 

imaging have facilitated the objective appraisal of spinal cord pathology 

across a spectrum of genetic and acquired conditions. These imaging methods 

may be divided into structural, microstructural or metabolic. Structural 

imaging methods includes spinal cord cross-sectional area (CSA) which is a 

surrogate marker for whole spinal cord atrophy. It is estimated over a 

representative number of T1- or T2-weighted slice images at specific vertebral 

levels. Spinal cord segmentation methods have permitted selective appraisal 

of cervical cord grey matter (GM) and white matter (WM). Microstructural 

imaging methods include diffusion tensor imaging (DTI), magnetization 

transfer (MT) and inhomogeneous magnetization transfer (ihMT) imaging. 

DTI-derived metrics - fractional anisotropy (FA), radial diffusivity (RD), axial 

diffusivity (AxD) and mean diffusivity (MD) - evaluate WM tract-specific 

degeneration. Novel MT and ihMT imaging both assess myelination integrity. 

Metabolic imaging methods includes spectroscopy which measures a 

selection of neurometabolites including: N-acetyl aspartate (NAA) which is a 

marker of neuronal integrity; creatine (Cr), tissue energy metabolism; choline 

(Cho), membrane integrity; and myo-Inositol (m-Ins), glial function. Together 

these imaging methods generate complimentary information that inform the 

topography and extent of spinal cord involvement. This systematic review 
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summarises the existing literature on quantitative spinal cord imaging in 

select neurodegenerative and acquired conditions. The potential clinical 

applications, academic contributions, study limitations and future directions 

are also discussed.  

4.2 Methods 

A literature review was conducted using the PubMed repository (last 

accessed on 6th April 2023) in accordance with the “preferred reporting items 

for systematic reviews and meta-analyses” (PRISMA) guidelines. The following 

search strategy was used: (“Spinal Cord” OR “Cervical Cord”) AND (“Magnetic 

resonance imaging” OR “MRI” OR “DTI” OR “diffusion tensor imaging” OR 

“MRS” OR “magnetic resonance spectroscopy”) AND ("Neurodegenerative” 

OR "Neuromuscular” OR "Motor neuron disease" OR "primary lateral 

sclerosis" OR "PLS" OR "ALS" OR "amyotrophic lateral sclerosis" OR “MND” OR 

"SBMA" OR "spinobulbar muscular atrophy" OR "Kennedy’s disease” OR 

"spinal muscular atrophy" OR "SMA" OR "hereditary spastic paraparesis" OR 

"hereditary spastic paraplegia" OR "HSP" OR "Parkinson’s disease" OR 

“Parkinson disease” OR "Huntington’s disease" OR “Huntington disease” OR 

"Spinocerebellar ataxia" OR "SCA" OR "Friedreich’s Ataxia" OR “Friedreich 

ataxia” OR "Subacute combined degeneration" OR "Spinal cord ischemia" OR 

"Spinal cord infarct*" OR "tropical spastic paraparesis" OR "poliomyelitis" OR 

"HIV myelitis" OR "HIV myelopathy" OR "HIV vacuolar myelopathy" OR 

"ganglionopathy" OR "sensory neuronopathy"). The database search was 

limited to studies written in English and only involving human participants. A 

single reviewer (MCMcK) individually screened the 1,555 abstracts for 

eligibility. All original research articles that investigated quantitative spinal 
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cord imaging in neurodegenerative, neuromuscular, vascular or infectious 

disorders were included. Review and methodology papers were excluded. 

Structural, inflammatory, neoplastic and traumatic spinal cord disorders were 

also excluded. The reference lists of selected articles were reviewed to 

identify additional related papers. Identified original research articles were 

reviewed for diagnosis, sample sizes, genetic information, study design, 

imaging methods, and the main quantitative spinal cord imaging results. A 

total of 77 studies were included (Figure 7). The results of these studies are 

next discussed stratified by clinical diagnosis.
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Figure 7: A PRISMA flowchart for systematic review of quantitative spinal cord imaging in neurodegenerative and acquired spinal cord disorders. 
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4.3 Results 

4.3.1 Motor neuron disease 

4.3.1.1 Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative 

disorder affecting the upper and lower motor neurons in the motor cortex, 

brainstem and anterior horn of the spinal cord. It is the most common type of 

motor neuron disease (MND). Clinical phenotypes are defined by the initial 

affected region with subsequent overlap as the disease progresses; for 

example, limb-onset ALS begins with muscle weakness, wasting and cramps in 

the arms and/or legs and later develops bulbar or respiratory involvement. It 

may be sporadic or familial. There has been an increased interest in 

quantifying spinal cord atrophy and T2 hyperintensities in ALS. The most 

common quantitative imaging modalities used include cervical cord area or 

volume (66%; 21/32) 60, 205, 544-562; followed by diffusivity (47%; 15/32) 60, 205, 

554-560, 563-568; magnetization transfer ratio (MTR) (19%; 6/32) 60, 555-558, 561; T2 

hyperintensities (13%; 4/32) 559, 560, 569, 570; spectroscopy (9%; 3/32) 571-573; and 

a single study used novel inhomogeneous magnetization transfer ratio 

(ihMTR) (3%; 1/32) 558. Several of these studies are multimodal (31%; 10/32) 

60, 205, 554-561. Most studies used 3.0T MRI (75%; 24/32). All studies specifically 

appraised the cervical spinal cord; and a single study evaluated the whole 

spinal cord 551. The mean number of participants was 33 (1-158); and mean 

disease duration was 27 (7-77) months. Some studies had additional genetic 

data (38%; 12/32) that varied from tested on a case-by-case basis to 

systematically testing all cases for common familial ALS genetic mutations. 

There were some longitudinal studies (25%; 8/32) 205, 547, 548, 553, 554, 556, 559, 562 
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with a mean follow-up duration of 9 (3-18) months. There were a few pre-

symptomatic studies 205, 544, 572. No studies had post-mortem data. We next 

summarise the existing literature of quantitative spinal cord imaging data in 

ALS (Table 10). 

In ALS, there is progressive 547, 548, 553, 556, 559, 562 cervical cord atrophy 

545-549, 551-557, 559, 560, 562 without flattening 552, 553 in a caudal direction 547-550 

compared to controls. This pattern of atrophy indicates preferential motor 

neuron vulnerability of the lateral corticospinal tracts (CST) in the cervical 

cord 551, 552. This is reiterated a high resolution 7.0T MRI study that identified 

T2 hyperintensities along the lateral CSTs in the cervical cord in ALS 570. Spinal 

cord GM and WM segmentation has consistently identified GM and WM 

atrophy in the cervical cord in ALS 545, 546, 549, 558. This has recently been 

facilitated by phase sensitive inversion recovery (PSIR) MR sequence that 

minimises motion sensitivity and susceptibility 545, 549. A cross-sectional study 

that stratified patients according to a clinical staging system reported initial 

GM atrophy in King’s stage 1, followed by progressive GM and WM atrophy in 

all cervical cord segments increasing in a caudal direction in King’s stage >/= 2 

549. This study predicted that the earliest detectable changes occur in the GM 

at C3-C4 level, and may even be detected several months before symptom 

onset 549. The only whole spine imaging study in ALS reported selective 

degeneration of C4-C7 at the cervical cord enlargement with no evidence of 

thoracolumbar atrophy; hence suggesting that future ALS studies should focus 

on dedicated cervical cord imaging 551. Whole cervical cord atrophy may be 

used to map longitudinal changes in ALS 553; whereas GM cervical cord 

atrophy may be used to differentiate ALS from controls 546. In contrast, no 
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significant difference in the anterior-posterior diameter 569 or mean cross-

sectional area (CSA) 550 of the cervical cord has occasionally been reported in 

ALS literature; but this has been attributed to several factors including small 

cohorts 550 and low resolution imaging 569. Regarding ALS phenotypes, there 

was no significant difference in cervical cord involvement 549; however there 

was a trend towards more marked cervical cord involvement in those with 

upper-limb onset 548, 554 or upper-limb involvement 549, 551 ALS compared to 

other ALS phenotypes. Bulbar-onset ALS seemed to be the least affected 545, 

554. Regarding ALS genotypes, cervical cord atrophy is readily demonstrated in 

SOD1 561, VAPB 544 and C9orf72 205, 547 ALS. No longitudinal changes were 

noted in a cohort of C9orf72 ALS at short interval follow-up 547. These 

radiological changes may even be detected in pre-symptomatic cohorts 205, 544. 

There was whole cervical cord atrophy in pre-symptomatic VAPB that was 

more marked in symptomatic VAPB 544; and WM cervical cord atrophy in pre-

symptomatic C9orf72 aged >40 years without progressive GM or WM cervical 

cord atrophy at 18-months follow-up 205.  

Regarding diffusivity, there is reduced FA of the whole cervical cord in 

ALS 554, 557, 560, 564, 565, 567 in a caudal direction 555, 565, 568 that may be segmented 

into the central cord 568, anterior 554, 564, 568, lateral 554, 555, 558, 563, 564, 566, 568 or 

posterior 554, 555, 568 columns. This may be accompanied by increased RD 554, 555, 

565, 566, increased MD 554, 566 or reduced AxD 558 in the lateral CSTs and the 

posterior columns; however, significant changes in MD 565, 567 or AxD 554, 565 

are not always detected. The results of longitudinal cervical cord DTI studies 

differ depending on follow-up interval: no significant changes are detected at 

6-months 554; reduced FA at 9-months 559; increased MD at 9-months 559 – 1-
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year 554; and increased RD at 1-year 554. Regarding ALS phenotypes, there was 

a trend towards reduced FA in upper-limb onset ALS 554, with bulbar-onset ALS 

once again being the least affected 554, 567. Regarding ALS genotypes, reduced 

FA is captured in pre-symptomatic C9orf72 205 and symptomatic SOD1 555 ALS. 

In pre-symptomatic C9orf72 carriers, there were no changes in baseline DTI 

metrics, and progressively reduced FA in the CSTs at 18-month follow-up 205. 

In a subset of pre-symptomatic C9orf72 mutation carriers aged >40 years with 

a family history of ALS, reduced FA in the CSTs was also detected at baseline 

205. It is hypothesised that this radiological observation may help identify 

those C9orf72 mutation carriers who are more likely to convert to ALS rather 

than frontotemporal dementia (FTD) phenotype 205. 

Regarding spectroscopy, reduced NAA/Cr 571-573, NAA/m-Ins 571-573, 

NAA/Cho 572, Cho/Cr 573 ratios and increased m-Ins/Cr 571 ratio are detected in 

the cervical cord in ALS compared with controls – with some subtle 

differences between studies 571, 573. Reduced NAA indicates neuronal loss; 

increased Cho levels suggests inflammation 571; and increased m-Ins 

represents gliosis 571. A similar profile of metabolic changes were captured in 

the cervical cord of presymptomatic SOD1 carriers (reduced NAA/Cr, NAA/m-

Ins and m-Ins/Cr ratios) 572; thus suggesting early radiological metabolic 

changes precede clinical or neurophysiological changes 572.  

The few studies that evaluate MTR in cervical cord in ALS capture 

progressively 556 reduced MTR ratios 60, 555-558, particularly in the lateral 

corticospinal tracts 555, 556, 558 in a caudal direction 555. In a single study of SOD1 

ALS, no significant difference in MTR ratio was detected 561. The only study 

investigating ihMTR in the cervical cord in ALS revealed reduced ihMT in all 
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regions of interest (ROI) including total WM, anterior GM, CSTs and posterior 

columns in the cervical cord 558. This study suggested that this novel technique 

may be more sensitive at detecting microstructural changes than conventional 

MTR or DTI metrics, but this needs to be clarified in future studies 558. 

Together these complementary structural spinal cord imaging 

methods may be combined to improve differentiating patient with ALS from 

healthy controls 60, 554. A multi-modal classification model using cervical cord 

CSA, DTI and MTR variables accurately differentiated ALS from controls with a 

sensitivity of 88% and specificity of 85% (AUC 0.96). The best-performing 

individual variables were RD, followed by FA, and then CSA at C5 spinal level 

60. Multi-modal cervical cord imaging data may also be used to develop 

prognostic models 546, 557.  

In terms of clinical correlations, whole cervical cord atrophy correlates 

with muscle strength 555, 556, respiratory involvement 562, disease duration 549, 

552, 561, and disease severity as measured by revised ALS functional rating scale 

(ALSFRS-R) 546, 548, 552-554, 556, 558, 561. Disease progression as measured by 

longitudinal ALSFRS-R scores correlates with whole cervical cord atrophy in 

sporadic ALS but not C9orf72 ALS 547. The specific location of cervical cord 

atrophy corresponds with associated muscle weakness 555. WM and GM 

cervical cord atrophy also independently correlate with disease severity 549, 

554. WM cervical cord atrophy has a greater association with disease severity 

549, 554 and additional association with disease duration compared with GM 

cervical cord atrophy 549. Diffusivity metrics correlate with motor tasks 565, 

muscle strength 558, respiratory involvement 565, disease duration 558 and 

disease severity 554-556, 560, 565. In particular, reduced FA of whole cervical cord 
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554, 558, 560, 565 or lateral CST 555, 556 correlated with muscle strength 558, 565, 

disease severity 554-556, 560 and rate of disease progression 567. Magnetic 

resonance spectroscopy (MRS) studies of the cervical cord in ALS reveal that 

altered metabolic ratios are associated with respiratory involvement (reduced 

NAA/m-Ins 571, 573, NAA/Cho 573 and NAA/Cr 571) or disease severity (reduced 

NAA/Cr 571 and NAA/m-Ins 571). MTR and ihMT metrics also correlated with 

muscle strength and disease duration 558. Sometimes there is a lack of clinical 

correlation with structural 544, 545, 547, 559, 560, diffusivity 559, 563, 564, 566 or 

metabolic 572, 573 data which is later discussed.  

4.3.1.2 Primary lateral sclerosis 

Primary lateral sclerosis (PLS) is an MND subtype that is characterised 

by exclusively upper motor neuron degeneration. It typically presents as 

gradual-onset of lower limb stiffness and spasticity. The 3.0T MRI quantitative 

imaging studies that evaluate spinal cord involvement in PLS include one 

cross-sectional 574 and two longitudinal studies 547, 548. The mean follow-up 

was 6-months. Spinal cord area 547, 548, diffusivity 574 and myelin water imaging 

(MWI) using gradient and spin echo sequence (GRASE) 574 were measured. 

The mean number of participants was 9 (2-18). The participants were 

sometimes considered in a larger group of ALS 548 (Table 10). 

In a clinically heterogenous group of MNDs that mostly included ALS 

and a few participants with PLS, there was cervical spinal cord atrophy with a 

trend towards longitudinal progression at 6-months follow-up 548. The 

presence of cervical cord atrophy was confirmed in a cohort of PLS, but no 

longitudinal changes were noted at 6-months follow-up 547. A single DTI study 

revealed increased RD in the cervical spinal cord GM and reduced FA in the 
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cervical spinal whole cord, GM and lateral funiculi compared to controls 574. 

Novel GRASE MWI identified low myelin water fraction in the lateral funiculi, 

suggesting that there is demyelination in the CSTs 574. Baseline cervical cord 

CSA correlated with disease severity as measured by ALSFRS-R in a cohort of 

PLS 547 and in a clinically heterogenous group of ALS and PLS 548. Disease 

progression measured by longitudinal ALSFRS-R scores correlated with 

cervical cord atrophy in PLS 547. 

4.3.1.3 Progressive muscular atrophy 

 Progressive muscular atrophy (PMA) is an MND subtype that is 

characterised by exclusively lower motor neuron degeneration. It clinically 

presents with progressive muscle wasting and weakness. It typically has a 

better prognosis than ALS. There are two quantitative spinal cord imaging 

studies that specifically evaluate this cohort (Table 10). There is varied 

nomenclature, with one study referring to this cohort as ‘sporadic adult onset 

lower MND’ 569. The mean number of participants was 38 (19-56). The initial 

1.5 T MRI cross-sectional study did not detect any changes in cervical spinal 

cord thickness of signal alterations in PMA compared with controls 569. In 

contrast, a recent 3.0 T MRI longitudinal study detected progressive upper 

cervical cord atrophy in PMA over a median follow-up of 5.5 (3-59) months 

547. Cervical cord atrophy in PMA correlated with disease progression 

(longitudinal ALSFRS-R score) but not disease severity (ALSFRS-R score) 547. 

4.3.1.4  Spinal and bulbar muscular atrophy (Kennedy’s disease) 

Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy’s 

disease, is an X-linked autosomal recessive MND caused by a trinucleotide 

repeat in the AR gene. It clinically presents with insidiously progressive bulbar 
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dysarthria and dysphagia with weakness and wasting of the proximal 

extremities. It may be associated with features of androgen insensitivity. The 

radiological involvement of the spinal cord in SBMA has been explored in two 

cross-sectional studies that primarily investigated ALS but also included small 

cohorts of SBMA (Table 10). The mean number of genetically confirmed 

participants was 12.5 (6-19). The mean disease duration was 20.25 (16.5-24) 

years. In SBMA, there is cervical and thoracic spinal cord atrophy compared to 

controls and significant cervical cord atrophy when compared with ALS and 

purely lower MND 569. This may have been because of statistically longer 

disease duration in the SBMA cohort when compared to the ALS cohort 569. 

This spinal cord atrophy is postulated to be because of marked dorsal column 

involvement of the fasciculus gracilis and cuneatus 569. There was no 

significant difference in diffusivity metrics in the cervical spinal cord in SBMA 

compared to controls 567. 

4.3.1.5 Post-polio syndrome 

Post-polio syndrome (PPS) is a condition that may develop several 

years after polio infection. It presents as generalised fatigue, progressive 

muscle weakness and atrophy. A single cross-sectional case-control imaging 

study investigates spinal cord involvement in PPS 575 (Table 10). It revealed 

that there was reduced cervical and thoracic spinal cord area in PPS compared 

with controls. The degree of spinal cord atrophy was more marked in those 

with progressive disease. This significantly correlated with muscle strength in 

the corresponding myotomes and was associated with PPS-related functional 

decline. These findings suggest that these findings of spinal cord atrophy may 

be related to a post-infectious secondary neurodegenerative process 575. 
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4.3.1.6  Spinal muscular atrophy  

Spinal Muscular Atrophy (SMA) is an autosomal recessive 

neuromuscular disease that is caused by mutations in the SMN1 gene. It 

typically presents with gradually progressive muscle weakness involving the 

arms, legs and respiratory muscles. The clinical phenotype is stratified 

according to disease severity (in decreasing order from type 0-type IV). There 

have been a few cross-sectional 576-578 and one longitudinal 579 imaging studies 

investigating cervical cord involvement in SMA (Table 10). All studies were 

conducted on 3.0T MRI scanners. All studies investigated spinal cord cross-

sectional area 576-579; and two studies also investigated DTI metrics 577, 578. All 

participants had a genetically confirmed diagnosis. The summarised results 

pertain to type III or IV clinical phenotype 576-579; only a single participant had 

the more severe type II clinical phenotype 578. The mean number of 

participants was 17 (10-25). The mean disease duration was 28 years.  

In SMA, there is cervical cord atrophy 576, 577, with selective GM 

degeneration 577. A significant cervical cord atrophy gradient is described, that 

is most prominent in regions that innervate proximal muscles (mainly C3-C6 

vertebral levels) 576. It is hypothesised that this pattern of anteroposterior 

cervical cord atrophy indicates anterior horn cell atrophy 576. In addition, 

there was increased AxD in the cervical cord GM 578. No other DTI 

abnormalities were noted 577, 578. However, these structural (GM CSA 578) and 

microstructural (DTI AxD 577) cervical cord changes are not always captured. 

The only longitudinal study showed that there was no significant difference in 

cervical cord GM or WM cross-sectional area over 2-years 579. This may be 

because of very slow disease progression or early degenerative changes 
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without subsequent progression 579. This observation could preclude the use 

of structural cervical cord as an objective biomarker in SMA clinical trials 579. 

This needs to be further investigated in multi-modal longitudinal studies 

including microstructural and metabolic modalities. In addition, there is 

variable clinical correlation of these imaging findings. A single study suggested 

that cervical cord GM cross-sectional area at C3-C4 significantly correlated 

with deltoid muscle strength 577. The remainder did not find any correlation 

between clinical measures and imaging findings 576, 578. 
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Table 10: Quantitative spinal cord imaging studies in MND phenotypes 
Year Author Participants Symptom duration Study design Follow-up  MRI technique Post-

mortem 
Genetics 

ALS 
2009 Agosta ALS n=17  

Controls n=20 
27 months Longitudinal 

Case control 
9 months Spinal cord area  

DTI 
T2 hyperintensities 

No N/A 

2018 Agosta SOD1 ALS n=20; 
Sporadic ALS n=11 

SOD1 ALS 70 months 
Sporadic ALS 30 
months 

Cross-sectional 
Case control 

N/A Spinal cord area 
MTR 

No SOD1 ALS n=20 

2022 Barry ALS n=15  
Controls n=17 

13 months Cross-sectional 
Case control 

N/A Spinal cord area No C9orf72 n=1; SOD1 n=1;  
TBK1 n=1; Unknown n=12 

2014 Branco ALS n=43  
Controls n=43 

34 months Cross-sectional 
Case control 

N/A Spinal cord area No N/A 

2016 Budrewicz ALS n=15  
Controls n=15 

7 months Cross-sectional 
Case control 

N/A DTI No N/A 

2011 Carew ALS n=14  
Controls n=16 

27 months Cross-sectional 
Case control 

N/A MRS No N/A 

2011 Carew Presymptomatic SOD1 
n=24 
SOD1 ALS n=23  
Controls n=29 

SOD1 ALS 567 days Cross-sectional 
Case control 

N/A MRS No Presymptomatic SOD1 n=24  
ALS SOD1 n=23 

2013 Cohen-Adad ALS n=29  
Controls n=21 

1 year Cross-sectional 
Case control 

N/A Spinal cord area 
DTI 
MTR 

No SOD1 n=2 
Sporadic n=27 

2013 Cohen-Adad ALS n=1  
Controls n=1 

23 months Cross-sectional 
Case control 

N/A T2 hyperintensities No N/A 

2017 deAlbuquerque ALS n=27  
Controls n=27 
 

30 months Longitudinal 
Case control  

8 months Spinal cord area  No C9orf72 negative ALS n=27 

2014 El Mendili ALS n=29, baseline 
ALS n=14, follow-up 

27 months Longitudinal 
Case series 

11 months Spinal cord area 
DTI 
MTR 

No N/A 
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Year Author Participants Symptom duration Study design Follow-up  MRI technique Post-
mortem 

Genetics 

ALS 

2018 Fukui ALS n=38;  
HSP n=7;  
SBMA n=6  
Controls n=8 

ALS - 1 year 
HSP - 15 years 
SBMA - 17 years 

Cross-sectional 
Case control 

N/A DTI No SBMA n=6 

2018 Grolez ALS n=40  
Controls n=21 

N/A Longitudinal 
Case control 

3 months Volumetry No N/A 

2015 Iglesias ALS n=21  
Controls n=21 

27 months Cross-sectional 
Case control 

N/A DTI No N/A 

2013 Ikeda ALS n=19  
Controls n=20 

20 months Cross-sectional 
Case control 

N/A MRS No N/A 

2022 Leoni Pre-symptomatic VAPB 
n=10;  
VAPB ALS n=20;  
Sporadic ALS n=20;  
Controls n=30 

6 years Cross-sectional 
Case control 

N/A Spinal cord area No Pre-symptomatic and 
symptomatic VAPB ALS n=30; 
Sporadic ALS (SOD1, VAPB, 
C9orf72, ATXN2 negative) n=20 

2010 Nair ALS n=14  
Controls n=15 

2 years Cross-sectional 
Case control 

N/A DTI No N/A 

2023 Nigri ALS n=48  
Controls n=17 

14 months Cross-sectional 
Case control 

N/A Spinal cord area No Sporadic ALS C9orf72, SOD1, 
FUS, OPTN, TARDBP negative 

2018 Olney ALS n=10  
Controls n=10 

44 months Cross-sectional 
Case control 

N/A Spinal cord area No N/A 

2018 Paquin ALS n=29  
Controls n=22 

N/A Cross-sectional 
Case control 

N/A  Spinal cord area No SOD1 n=2 

2019 Patzig ALS n=14  
Controls n=15 

20 months Cross-sectional 
Case control 

N/A DTI No N/A 

2020 Pisharady ALS n=20  
Controls n=20 

39 months Longitudinal 
Case control 

6-months (n=10) 
12-months (n=11) 

Spinal cord area 
DTI 

No N/A 

2018 Querin ALS n=60  
Controls n=45 

30 months Cross-sectional 
Case control 

N/A Spinal cord area 
DTI  
MTR 

No N/A 



 

 

129 

Year Author Participants Symptom duration Study design Follow-up  MRI technique Post-
mortem 

Genetics 

ALS 
2017 Querin ALS n=49 28 months Cross-sectional 

Case series 
N/A Spinal cord area 

DTI 
MTR 

No N/A 

2019 Querin Presymptomatic C9orf72 
n=40  
Controls n=32 

N/A Longitudinal 
Case control 

18 months Spinal cord area 
DTI  

No C9orf72 n=40 

2017 Rasoanandrianina ALS n=10  
Controls n=20 

16 months Cross-sectional 
Case control 

N/A Spinal cord area  
DTI  
MTR 
ihMTR 

No N/A 

2005 Sperfeld ALS n=39 
LMND n=19  
SBMA n=19 
Controls n=96 

ALS 3 years 
LMND 21 years 
SBMA 24 years 

Cross-sectional 
Case control 

N/A T2 hyperintensities 
AP diameter 

No SBMA n=19 

2023 Toh ALS n=75 
Controls n=13 

17 months Cross-sectional 
Case control 

N/A Spinal cord area No Case-by-case basis, and not 
systematically in all patients. 
C9orf72 n=1; and SOD1 n=1 

2007 Valsasina ALS n=28 
Controls n=20 

26 months Cross-sectional 
Case control 

N/A Spinal cord area 
DTI  
T2 hyperintensities 

No N/A 

2019 Van der Burgh C9orf72-ALS n=108, 64 
C9orf72+ALS n=26; 18 
PLS n=28; 18 
PMA n=56; 41 
Controls n=114, 54 
(n=baseline, follow-up) 

C9orf72-ALS 14 
months 
C9orf72+ALS 12 
months 
PLS 91 months 
PMA 20 months 

Longitudinal 
Case control 

C9orf72-ALS 5 
months 
C9orf72+ALS 5 
months 
PLS 7 months 
 PMA 5 months 

Spinal cord area No C9orf72+ALS n=26 

2014 Wang ALS n=24  
Controls n=16 

Range: 6-42 months  Cross-sectional 
Case control 

N/A DTI No N/A 

2020 Wimmer ALS n=158 (incl. PLS n=9) 
Controls n=86 

16 months Longitudinal 
Case control 

6-months Spinal cord area No ALS n=63; SOD1 and C9orf72 
(SOD1+ n=7, C9orf72+ n=7) 
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Year Author Participants Symptom duration Study design Follow-up  MRI technique Post-
mortem 

Genetics 

PLS 
2019 Dvorak PLS n=2  

RRMS n=1 
PPMS n=1  
NMO n=2 

N/A Cross-sectional 
Case control 
 

N/A DTI  
MWI 
 

No N/A 

2019 Van der Burgh C9orf72-ALS n=108, 64 
C9orf72+ALS n=26; 18 
PLS n=28; 18 
PMA n=56; 41 
Controls n=114, 54 
(n=baseline, follow-up) 
 

C9orf72-ALS 14 
months 
C9orf72+ALS 12 
months 
PLS 91 months 
PMA 20 months 

Longitudinal 
Case control 

C9orf72-ALS  
5 months 
C9orf72+ALS  
5 months 
PLS 7 months 
 PMA 5 months 

Spinal cord area No C9orf72+ALS n=26 

2020 Wimmer ALS n=158 (incl. PLS n=9) 
Controls n=86 

16 months Longitudinal 
Case control 

6-months Spinal cord area No ALS n=63; SOD1 and C9orf72 
(SOD1+ n=7, C9orf72+ n=7) 

PMA 
2005 Sperfeld ALS n=39 

LMND n=19  
SBMA n=19 
Controls n=96 

ALS 3 years 
LMND 21 years 
SBMA 24 years 

Cross-sectional 
Case control 

N/A T2 hyperintensities 
AP diameter 

No SBMA n=19 

2019 Van der Burgh C9orf72-ALS n=108, 64 
C9orf72+ALS n=26; 18 
PLS n=28; 18 
PMA n=56; 41 
Controls n=114, 54 
(n=baseline, follow-up) 
 

C9orf72-ALS 14 
months 
C9orf72+ALS 12 
months 
PLS 91 months 
PMA 20 months 

Longitudinal 
Case control 

C9orf72-ALS  
5 months 
C9orf72+ALS  
5 months 
PLS 7 months 
 PMA 5 months 

Spinal cord area No C9orf72+ALS n=26 

SBMA 
2018 Fukui ALS n=38;  

HSP n=7;  
SBMA n=6  
Controls n=8 

ALS - 1 year 
HSP - 15 years 
SBMA - 17 years 

Cross-sectional 
Case control 

N/A DTI No SBMA n=6 
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Year Author Participants Symptom duration Study design Follow-up  MRI technique Post-
mortem 

Genetics 

SBMA 
2005 Sperfeld ALS n=39 

LMND n=19  
SBMA n=19 
Controls n=96 
 

ALS 3 years 
LMND 21 years 
SBMA 24 years 

Cross-sectional 
Case control 

N/A T2 hyperintensities 
AP diameter 

No SBMA n=19 

PPS 
2022 Wendebourg 

 
PPS n=20 
Controls n=20 

44 months Cross-sectional 
Case control 

N/A Spinal cord area No N/A 

SMA 
2016 El Mendili SMA n=18  

(IIIa n=5; IIIb n=10; IV n=3)  
Controls n=18 
 

26 years Cross-sectional 
Case control 

N/A Spinal cord area No SMN1 SMA Type III or IV n=18 

2021 Querin SMA Type III or IV n=14 N/A Longitudinal  
Case series 

24 months Spinal cord area No SMN2 4 copies n=11 
SMN2 3 copies n=3 

2019 Querin SMA n=25  
(III n=19; IV n=6) 
Controls n=25 
 

30 years Cross-sectional 
Case control 

N/A Spinal cord area 
DTI 

No SMN1 SMA Type III or IV n=25 

2019 Stam SMA n=10  
(II n=1; IIIa n=4; IIIb n=5) 
Controls n=30 
 

N/A Cross-sectional 
Case control 

N/A Spinal cord area 
DTI 

No SMA Type II or III n=10 
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4.3.2 Hereditary ataxias 

4.3.2.1 Autosomal dominant hereditary ataxias 

4.3.2.1.1 Spinocerebellar ataxia 

Spinocerebellar ataxia (SCA) refers to a heterogenous group of 

autosomal dominant nucleotide repeat expansion neurodegenerative 

disorders that are primarily characterised by cerebellar degeneration. It may 

be associated with other clinical features such as parkinsonism, pyramidal 

signs, peripheral neuropathy or urinary dysfunction. The degree of 

radiological spinal cord involvement is informed by cross-sectional case-

control studies, and two longitudinal studies spanning over 1-5 years 580, 581 

(Table 11). All studies only evaluate the cervical cord focusing on spinal cord 

area 580-587 and eccentricity 582-584, 586. The majority of studies used 3.0T MRI 

580, 582-584, 586, with older studies using 1.5T 585 or 0.5T 581 MRI. There was a 

mean of 42 (7-210) participants in each subgroup, most of whom had a 

genetic diagnosis. No post-mortem data was available. The mean disease 

duration was 9-years. Two of the studies included pre-symptomatic cohorts 

583, 587. 

Quantitative imaging studies have captured cervical cord atrophy and 

flattening in SCA1 581, 584, SCA3 581-583 and SCA7 586. It is hypothesised that this 

indicates preferential involvement of the posterior columns 582, 583 and 

spinocerebellar tracts 587. In SCA3, cervical cord atrophy may be detected in 

pre-symptomatic 583, 587, early 585, or established cohorts 587. A cross-sectional 

study of SCA3 described a relatively linear pattern of progressive cervical cord 

atrophy in pre-symptomatic and symptomatic cohorts that were further 

stratified by disease duration (<5years, 5-10 years, 10-15 years and >15 years) 
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583. However, these findings failed to be replicated in longitudinal studies 580, 

581. This may be because participants had long-standing disease and already 

had maximal spinal cord atrophy 580. In SCA6, which is often considered a pure 

cerebellar degeneration phenotype, no cervical cord atrophy was detected 585. 

However, there was a suggestion of subtle spinal cord changes because lower 

mean CSA of cervical cord correlated with more severely impaired patients 585. 

These radiological measures may 582, 584, 586 or may not 585 correlate 

with clinical parameters. The degree of cervical cord atrophy correlates with 

disease severity and is associated with disease duration in SCA1 584, SCA3 582, 

and SCA7 586. In some instances, the clinical-radiological correlation between 

disease severity and cervical cord atrophy may be greater than other imaging 

biomarkers - such as cerebellum or brainstem imaging metrics 584.  

4.3.2.2 Autosomal recessive hereditary ataxias 

4.3.2.2.1 Friedreich’s ataxia 

Friedreich’s ataxia (FDRA) is an autosomal recessive trinucleotide 

repeat expansion disorder that clinically manifests as progressive dysarthria, 

limb- and gait-ataxia, and loss of lower limb reflexes. It is a multi-system 

disorder that is associated with cardiac involvement. It is radiologically 

characterised by cerebral, cerebellar and cervical cord atrophy. The degree of 

spinal cord involvement has been quantified in cross-sectional 588-592 and 

longitudinal 593 imaging studies that primarily focus on spinal cord area and 

eccentricity 588-593, followed by two DTI studies 590, 593 and a single MRS study 

593 (Table 11). All studies were conducted using 3.0T MR scanners. All 

participants had a genetically confirmed diagnosis of FRDA. No post-mortem 
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data was available. The mean number of participants was 68 (21-256). The 

mean disease duration was 12.5 years.  

Quantitative imaging studies have consistently demonstrated cervical 

and thoracic spinal cord atrophy and increased eccentricity in FDRA compared 

to controls 588-593. There is greater atrophy in the cervical cord; and greater 

anteroposterior flattening in the distal thoracic cord 589. These findings may 

be captured in early disease 592. It is suggested that this pattern indicates 

preferential degeneration of the dorsal columns, lateral CSTs and 

spinocerebellar tracts 588, 589, 592. DTI studies have shown reduced FA, 

increased RD, increased MD and sometimes increased AxD 590, 593 in total WM, 

dorsal columns, fasciculus gracilis, fasciculus cuneatus, and corticospinal tracts 

in the cervical spinal cord WM 590. A single MRS study revealed decreased 

total N-acetyl-aspartate (tNAA), increased m-Ins, and a decreased ratio 

tNAA/m-Ins in the cervical cord compared to controls 593. A single centre 

longitudinal study in FDRA demonstrated a significant decline in spinal cord 

CSA, followed by tNAA/m-Ins ratio, and then a trend towards decreased FA at 

1-year and 2-year follow-up intervals 593. Longitudinal atrophy was only 

observed in the cervical spinal cord WM and not GM 593. There are future 

plans to establish a longitudinal multi-modal multi-site imaging study to 

better evaluate these radiological changes in FDRA that will include spinal 

cord area, diffusivity and spectroscopy metrics 594. 

These radiological findings consistently correlate with clinical 

measures 588-590, 592, 593. The cervical cord CSA correlates with disease duration 

589, 590 and disease severity as measured by Friedreich’s Ataxia Rating Scales 

(FARS) 588, 590, 592, 593, Scale for Assessment and Rating of Ataxia (SARA) 589, 593, 
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Inventory of Non-Ataxia Signs 589 or Spinocerebellar Ataxia Functional Index 

(SCAFI) 589. DTI 590, 593 and MRS 593 metrics also correlated with disease severity 

590, 593; the former specifically involving the total WM, dorsal columns, 

fasciculus cuneatus, fasciculus gracilis and corticospinal tracts. DTI metrics of 

the CST also correlated with disease duration 590.  

It is often questioned whether these spinal cord imaging findings 

represent developmental or neurodegenerative changes 588, 589. Recent 

studies suggest developmental with superimposed neurodegenerative 

changes 591-593. Cross-sectional studies have shown progressive cervical cord 

atrophy after 10-years old with stable preserved eccentricity 591, 592. This 

suggests degenerative CST and developmental dorsal column abnormalities 

592. The only longitudinal study has demonstrated progressive cervical spinal 

cord structural and metabolic imaging changes 593. This highlights that spinal 

cord CSA may be a potential imaging biomarker to monitor disease 

progression, but this would need to be confirmed on further longitudinal 

studies 592.  

4.3.2.2.2  Autosomal recessive cerebellar ataxia type 1 

Autosomal recessive cerebellar ataxia type 1 (ARCA1) is a progressive 

cerebellar syndrome that is caused by a mutation in the SYNE1 gene. It may 

be associated with cognitive impairment and pyramidal signs. A single cross-

sectional case-control study did not identify any cervical cord atrophy in a 

small cohort of ARCA1 compared with controls (Table 11). It was suggested 

that the presence or absence of cervical cord atrophy may helpful to 

differentiate autosomal recessive ataxias e.g. FDRA. This is with the caveat 

that the small sample size may have affected the power of this study 595. 
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Table 11: Quantitative spinal cord imaging studies in hereditary ataxias 

Year Author Participants Symptom duration  Study design Follow-up  MRI technique Post-
mortem 

Genetics 

SCA 
2021 Faber SCA3 ataxic n=210 

SCA3 Pre-ataxic n=48 
Controls n=63 
 

SCA3 ataxic 13 years Cross-sectional 
Case control 

N/A Spinal cord area No SCA3 Ataxic n=210 
SCA3 Pre-ataxic n=48 

2015 Fahl SCA3 n=48 
Controls n=48 
 

 9 years Cross-sectional 
Case control 

N/A Spinal cord area No SCA3 n=48 

2021 Hernandez-
Castillo 

SCA7 n=48 
Controls n=48 
 

10 years Cross-sectional 
Case control 

N/A Spinal cord area No SCA7 n=48 

1996 Higgins Autosomal dominant SCA n=34 
Controls = not specified 
 
 

N/A Longitudinal 
Case control 

1-year Spinal cord area No SCA1n=7 SCA3n=17  
Not SCA1 or SCA3 n=10 

2008 Lukas SCA3 n=14 
SCA6 n=10 
Controls n=24 
 

SCA3 7 years 
SCA6 9 years 

Cross-sectional 
Case control 

N/A Spinal cord area No SCA3 n=14; SCA6 n=10 

2017 Martins Jr SCA1 n=31 
Controls n=31 
 

8 years Cross-sectional 
Case control 

N/A Spinal cord area No SCA1 n=31 

2020 Piccinin SCA3 n=23 
Controls n=22 
 

9 years Longitudinal 
Case control 

5 years Spinal cord area No SCA3 n=23 

2018 Rezende SCA3 n=79  
Pre-symptomatic SCA3 n=12 
Controls n=91 
 

10 years Cross-sectional 
Case control 

N/A Spinal cord area No SCA3 n=79  
Pre-symptomatic SCA3 n=12 
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Year Author Participants Symptom duration  Study design Follow-up  MRI technique Post-
mortem 

Genetics 

FDRA 

2013 Chevis FRDA n=33 
Controls n=30 
 
 

11 years Cross-sectional 
Case control 

N/A Spinal cord area No FRDA n=33 

2019 Dogan FDRA n=21 
Controls n=22 
 
 

19 years Cross-sectional 
Case control 

N/A Spinal cord area 
Volumetry 

No FRDA n=21 

2022 Hernandez FDRA n=30 
Controls n=30 
 
 

11 years Cross-sectional 
Case control 

N/A Spinal cord area 
DTI 

No FDRA n=30 

2022 Joers FDRA n=28 
Controls n=20 

6 years Longitudinal 
Cross-sectional 
Case control 

1-year n=21  
2-year n=19 

Spinal cord area 
DTI 
MRS 

No FDRA n=28 

2018 Rezende FDRA n=38 
(Adult FDRA n=25;  
Young-onset FDRA n=12) 
Controls n=37 
 
 

Adult FDRA 15 years 
Young FDRA 6 years 

Cross-sectional 
Case control 

N/A Spinal cord area No FDRA n=38 

2023 Rezende FDRA n=256 
Controls n=223 
 
 

14 years Cross-sectional 
Case control 

N/A Spinal cord area No FDRA n=256 

ACRA 

2018 Gama SYNE1 n=6 
Controls n=6 
 

10 years Cross-sectional 
Case control 

N/A Spinal cord area No SYNE1 n=6 
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4.3.3 Hereditary spastic paraplegia 

Hereditary spastic paraplegia (HSP) refers to a heterogenous group of 

neurodegenerative disorders. It may be classified according to phenotype or 

genotype. ‘Pure-HSP’ (pHSP) phenotype refers to clinical presentation limited 

to progressive lower limb weakness and spasticity; and ‘complicated-HSP’ 

(cHSP) phenotype extends beyond this involving other additional systems. The 

radiological evidence for spinal cord involvement in HSP is informed by cross-

sectional case-control studies (Table 12). The mean number of study 

participants was 18 (5-40). The mean disease duration was 18 years. Most 

participants had a genetic diagnosis 369, 377, 396, 596-603. For the purpose of 

analyses, participants were either stratified by clinical phenotype 369, 602, 604 or 

genetic diagnoses 377, 396, 597-601. There was no post-mortem data. The majority 

of studies evaluate spinal cord area and eccentricity 369, 377, 396, 596-598, 600-602, 604. 

Four studies also investigated diffusivity metrics 567, 599, 600, 603. All studies 

evaluated the cervical cord, with some also appraising the thoracic cord 596-600, 

602, 604. Most studies used a 3.0T MRI scanner 377, 396, 597-599, 601, 603, followed by 

1.5T 369, 596, 600, 602 and a single study used 1T MRI 604. 

In clinically-defined cohorts, marked cervical and thoracic cord atrophy 

is described in pHSP and cHSP compared with controls 369, 596, 602. In a cohort 

of pHSP, only reduced anteroposterior diameter of thoracic cord was detected 

compared with controls 604. Despite the distinctly different phenotypes, there 

was no difference in the degree of spinal cord atrophy in pHSP compared with 

cHSP 369, 602. There was also no difference in DTI metrics in a clinically 

heterogenous group of HSP as part of an ALS study 567.  
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In genetically-defined cohorts, varying degrees of spinal cord atrophy 

are described in SPG4 396, 600, 601, SPG5 598, 599, SPG6 596, SPG8 596, SPG11 377, 601; 

sometimes in SPG3A 596, 597, 601; but not in SPG7 601. The mild spinal cord 

atrophy captured in SPG3A 596 may elude detection 601. The pattern of spinal 

cord atrophy is characterised by the lack of changes in spinal cord eccentricity 

377, 396 and greater involvement of the thoracic cord 596, 598. This suggests 

preferential degeneration of the CSTs and other descending motor tracts. DTI 

studies have also revealed tract-specific degeneration with reduced FA, MA 

and increased RD in the pyramidal tracts and reduced FA in the dorsal 

columns in the cervical cord in a genetically heterogenous group of HSP 603. In 

SPG4, there was reduced FA in the dorsal columns, lateral and ventral funiculi 

in the cervical and thoracic spinal cord; and increased RD at the lower cervical 

and upper thoracic levels 600. In SPG5, there was reduced FA, elevated RD and 

elevated MD in the WM, dorsal columns, and bilateral lateral corticospinal 

tracts in the cervical and upper thoracic cord 599.  

These radiological observations may 377, 600, 601, 603 or may not 369, 596, 599, 

601-603 correlate with clinical measures. Disease duration and severity was 

associated with reduced cervical cord GM area in SPG4 601 and reduced 

cervical cord CSA in SPG11 377. Disease severity was also associated with FA in 

the lateral funiculi 600, and RD in the dorsal columns 603 of the cervical cord in 

SPG4. However, spinal cord atrophy does not always correlate with clinical 

metrics in clinically- 369, 602 or genetically-defined HSP 596, 601. This may be in 

part because of a ‘ceiling effect’ whereby participants are captured in late 

disease, with accrued disability and established spinal cord atrophy 369, 601. 
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Table 12: Quantitative spinal cord imaging studies in HSP 

Year Author Participants Symptom duration  Study design Follow-up  MRI technique Post-
mortem 

Genetics 

2015 Agosta pHSP n=20; cHSP n=24 

Controls n=19 

pHSP 26 years 

cHSP 18 years 

Cross-sectional 

Case control 

N/A Spinal cord area No SPG4 n=11; SPG11 n=3; SPG15 n=2; SPG3A 

n=1; SPG5 n=1; SPG7 n=1; SPG10 n=1 

2018 Faber SPG11 n=25 

Controls n=25 

13 years Cross-sectional 

Case control 

N/A Spinal cord area No SPG11 n=25 

2018 Fukui HSP n=7 

SBMA n=6, ALS n=38 

Controls n=8 

HSP: 15 years 

SBMA: 17 years 

ALS 1 year 

Cross-sectional 

Case control 

N/A DTI No SBMA n=6 

2005 Hedera HSP n=13 (SPG4 n=5; SPG3A n=3; 

SPG8 n=3; SPG6 n=2) 

Controls n=38 

22 years Cross-sectional 

Case control 

N/A Spinal cord area No SPG4 n=5; SPG3A n=3;  

SPG8 n=3; SPG6 n=2 

2022 Hocquel SPG3A n=5 

Controls n=8 

26 years Cross-sectional 

Case control 

N/A Spinal cord area 

Volumetry 

No SPG3A n=5 

1997 Krabbe Autosomal dominant pHSP n=16 

Controls n=8 

Range: 4-31 years Cross-sectional 

Case control 

N/A Spinal cord area No N/A 

2022 Lindig HSP n=40 (SPG7 n=15; SPG4 

n=12; SPG5 n=4; SPG11 n=1) 

Controls n=125 

17 years Cross-sectional 

Case control 

N/A DTI No SPG7 n=15; SPG4 n=12;  

SPG5 n=4; SPG11 n=1 

2022 Liu SPG5 n=17 

Controls n=17 

18 years Cross-sectional 

Case control 

N/A DTI No SPG5 n=17 

2022 Navas-

Sanchez 

SPG4 n=12 

Controls n=14 

22 years Cross-sectional 

Case control 

N/A Spinal cord area 

DTI 

No SPG4 n=12 

2021 Qianqian SPG5 n=17 

Controls = not specified  

14 years Cross-sectional 

Case control 

N/A Spinal cord area  No SPG5 n=17 

2014 Rezende SPG4 n=11 

Controls n=23 

14 years Cross-sectional 

Case control 

N/A Spinal cord area No SPG4 n=11 

2021 Servelhere HSP n=37 (SPG3A n=7; SPG4 

n=12; SPG7 n=10; SPG11 n=8) 

Controls n=21 

22 years (SPG3A 33; 

SPG4 21; SPG7 27; 

SPG11 10 years) 

Cross-sectional 

Case control 

N/A Spinal cord area No SPG3A n=7; SPG4 n=12;  

SPG7 n=10; SPG11 n=8 

2005 Sperfeld pHSP n=20; cHSP n=10 

Controls n=54 

pHSP: 20 years 

 cHSP 15 years 

Cross-sectional 

Case control 

N/A Spinal cord area No SPG4 n=6 in pHSP group 
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4.3.4 Other genetic neurodegenerative disorders 

4.3.4.1 Huntington’s disease 

Huntington’s disease (HD) is an autosomal dominant trinucleotide 

repeat expansion neurodegenerative disorder. It clinically manifests as a triad 

of motor, psychiatric and cognitive impairment. There are two quantitative 

imaging studies that specifically investigate cervical spinal cord involvement in 

HD (Table 13). These studies demonstrate progressive reduced upper cervical 

cord area in early 605 and established 606 disease. Cervical cord atrophy may 606 

or may not 605 be detected in pre-symptomatic cases. There are also mixed 

reports of clinical-radiological correlations of cervical cord atrophy with motor 

deficits in HD 605, 606. These discrepancies may be for a variety of reasons that 

are later discussed 606. Similar to other neurodegenerative conditions, it is 

often questioned whether these radiological changes capture developmental 

or disease-related changes. The trajectory of progressive cervical cord atrophy 

correlating with motor deficits indicates that these changes occur during the 

clinical stages of HD rather than developmental process 605, 606. 

4.3.4.2 Adrenoleukodystrophy  

X-linked adrenoleukodystrophy (ALD) is a rare inborn error of 

metabolism that is caused by mutations in the ABCD1 gene. It results in 

defective peroxisomal beta-oxidation causing very long-chain fatty acids 

accumulation in plasma and tissues. It is sometimes referred to as ‘metabolic 

hereditary spastic paraplegia’ or ‘adrenomyeloneuropathy’ because it 

clinically presents as a spectrum of adult-onset adrenocortical insufficiency, 

progressive myelopathy and peripheral neuropathy. Spinal cord imaging 

studies in ALD appraise the spinal cord area 607-609 and diffusivity metrics 607, 
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608 (Table 13). The mean number of participants was 20 (6-42), with mean 

disease duration of 12.5 years. The two longitudinal studies have a mean 

follow-up of 1.5 years 609. One study also included pre-symptomatic 

participants 609. We next summarise the existing spinal cord imaging data in 

ALD. 

Spinal cord imaging studies in ALD reveal reduced total CSA of the 

cervical and thoracic cord 607-609, that was more marked in the thoracic region 

607, 608. There was flattening of the cervical cord which suggests selective 

dorsal column degeneration 609. Longitudinal studies capture a trend toward 

reduced CSA of the upper cervical cord at 1-year 609; and progressive upper 

thoracic cord atrophy with a trend towards reduced CSA of the lower cervical 

cord at 2-years 608. There was no difference in cervical cord CSA in 

asymptomatic patients compared with controls 609. DTI studies reveal reduced 

FA 607, 608, reduced AxD 607, increased RD 607 in the WM of the upper cervical 

cord, and a trend towards reduced FA in the GM of the lower cervical cord 607. 

There is significantly reduced FA, increased MD and increased RD in the WM 

of the upper cervical cord on 2-year follow-up 608. Cervical cord atrophy may 

correlate with disease severity 609; however sometimes no clinical correlations 

with spinal cord area or DTI metrics are observed 607.
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Table 13:Quantitative spinal cord imaging studies in other genetic neurodegenerative disorders 
 

Year Author Participants Symptom duration  Study design Follow-up  MRI technique Post-mortem Genetics 

HD 
2014 Muhlau HD n=51 

Alzheimer’s disease n=35 
Controls n=227 
 

N/A Cross-sectional 
Case control 

N/A Spinal cord area No HD n=51 

2017 Wilhelms HD n=17 
Presymptomatic HD n=27 
 

N/A Cross-sectional 
Longitudinal 
Case control 

Presymptomatic HD 
23 months 

Spinal cord area No HD n=44 

ALD 
2016 Castellano ALD n=13 

Controls n=13 
 

11 years Cross-sectional 
Case control 

N/A Spinal cord area 
DTI  

No ALD n=13 

2019 Politi ALD n=6 
Controls n=6 
 

N/A Longitudinal 
Case control 

23 months Spinal cord area 
DTI  

No ALD n=6 

2020 vandeStadt ALD n=42 
Controls n=32 

15 years Cross-sectional 
Longitudinal 
Case control 
 

1-year, n=26 Spinal cord area No ALD n=42 
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4.3.5 Acquired spinal cord disorders  

4.3.5.1 Sensory neuronopathy 

Sensory neuronopathy is characterised by selective dorsal root ganglia 

degeneration. It clinically presents with ataxia and sensory symptoms. It may 

be idiopathic or secondary to autoimmune, paraneoplastic, infectious, 

metabolic, toxic or genetic causes. Spinal cord imaging may show non-

enhancing T2 hyperintensities of the posterior columns. Two quantitative 3.0T 

MRI studies further evaluate this: a cross-sectional study using DTI metrics 610; 

and a longitudinal study measuring spinal cord area and diameter and signal 

intensity of the dorsal root ganglion, posterior columns and C7 nerve root 611 

(Table 14). The mean number of participants was 18 (9-28) 610, 611, 

encompassing a wide range of acquired aetiologies. The mean disease 

duration was 8 (4-11) years. 

Spinal cord imaging studies reveal decreased area and increased signal 

intensity in the dorsal root ganglion and posterior columns, and decreased 

area of the C7 nerve root in sensory neuronopathy compared to disease- and 

healthy-control groups detected using multiple-echo data image combination 

(MEDIC) and coronal turbo inversion recovery magnitude (TIRM) sequences 

611. A single DTI study demonstrated reduced FA in the cervical spinal cord at 

C3-C4 that accurately differentiated a heterogenous group of sensory 

neuronopathies from disease- and healthy-controls 610. Both the MEDIC 

posterior column hyperintensities 611 and reduced cervical cord FA 610 are 

observed in patients without the characteristic T2-weighted posterior column 

abnormalities, even in those with short disease duration <1-year 610. This 

suggests that these imaging methods may be more sensitive at detecting 
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spinal cord involvement in sensory neuronopathy. Longitudinal observations 

in a single case suggest that these radiological changes begin in the nerve root 

(initial increased signal intensity of C7 nerve root) and progress towards the 

posterior columns (subsequent reduced signal intensity of C7 nerve root and 

increased signal intensity of posterior columns) 611. 

These radiological findings did not correlate with measures of disease 

severity 610, 611. Reduced cervical cord FA only correlated with pain scores 

(Leeds Assessment of Neuropathic Symptoms and Signs), indicating that 

sensory neuronopathy is associated with neuropathic pain 610. The lack of 

clinical correlations may be due to a combination of factors that are later 

discussed.  

4.3.5.2  HTLV-1 associated myelopathy and tropical spastic paraparesis  

HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) 

is a post-infectious myelopathy that presents as a gradually progressive 

spastic paraparesis that may be associated with sphincter involvement and 

sensory disturbance. The typical spinal imaging features include spinal cord 

atrophy and increased signal in the lateral columns. This has been further 

evaluated in cross-sectional case-control quantitative imaging studies 612-615 

(Table 14). Most studies used 3.0 T MRI 613-615; and a single study used 1.5 T 

MRI 612. These studies investigated spinal cord area 613-615, volumetry 612, 615, 

T2 hyperintensities 615 and diffusivity metrics 615. All studies appraised the 

cervical and thoracic spinal cord 612-615 and a single study included the lumbar 

spinal cord 613. A single study included post-mortem data 614. The mean 

number of symptomatic definite or possible HAM/TSP participants was 12.5 

(7-18); and the mean number of asymptomatic HTLV-1 carriers was 6 (2-11). 



 

 146 

The mean symptom duration was 8.75 years. The results are summarised 

below:  

In definite HAM/TSP, there was reduced cervical 612-615, thoracic 612-615, 

and lumbar 613 spinal cord atrophy compared to controls. This was 

demonstrated by both reduced spinal cord area 612-615 and volume 612, 615. The 

degree of volume loss was greater in the thoracic cord 612, 615. These 

observations were more pronounced in those with longer disease duration 615. 

Spinal cord atrophy was confirmed pathologically; it was more prominent in 

the WM, especially in the lateral columns 614. In those with possible HAM/TSP, 

there were reduced thoracic cord volumes that were close to or within the 

cord volume range of definite HAM/TSP 612. In asymptomatic HTLV-1 carriers, 

the spectrum of spinal cord atrophy ranged from normal 612, 613, 615; to 

intermediate between normal and definite HAM/TSP 613; and similar pattern 

of spinal cord atrophy to definite HAM/TSP 613. In definite HAM/TSP, focal T2 

hyperintensities were demonstrated in the bilateral anterolateral and dorsal 

columns extending over several spinal segments 615. DTI captured reduced FA 

in the ventral and dorsal spinal tracts compared to controls. No focal lesions 

or DTI abnormalities were detected in asymptomatic HTLV-1 carriers 615. 

The imaging findings variably correlated with clinical metrics 613, 615. 

Reduced cervical cord area 613, 615  and volume 615 correlated with disease 

duration; reduced cervical and thoracic cord area correlated with the 

Ambulation Index (an ordinal scale based on the 25-foot timed walk test) 613; 

and reduced FA in the dorsal tracts correlated with American spinal cord 

injury association (ASIA) score 615. In contrast, the imaging metrics did not 

correlate with clinical measures of disease severity in other studies 612, 614.  
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4.3.5.3 Vascular 

Spinal cord infarction is rare type of ischemic stroke. It may involve the 

anterior or posterior spinal cord arteries that both present with distinct 

clinical syndromes. Anterior spinal cord infarction presents with acute onset 

of back pain, bilateral lower limb weakness and numbness, sphincter 

disturbance and relative sparing of proprioception and vibration. Posterior 

spinal cord infarction presents with unilateral sensory loss including impaired 

proprioception and vibration. It may be idiopathic or secondary to 

atherosclerosis, trauma or other rarer causes such as fibrocartilaginous 

embolism. It is radiologically characterised by abnormal T2 signal in the 

affected vascular territory. There is a single longitudinal case series that 

quantified dynamic FA variations in spinal cord infarction 616 (Table 14). It 

revealed initial reduced FA in the spinal cord in both cases 616. This was 

followed by decreasing FA in the case with worsening symptoms and 

increasing FA in the case with improving symptoms 616. It was hypothesised 

that the younger age and possibly smaller volume infarct may account for the 

clinical and radiological improvement in the latter case 616.
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Table 14: Quantitative spinal cord imaging studies in acquired spinal cord disorders 
Year Author Participants Symptom 

duration  
Study design Follow-up  MRI technique Post-

mortem 
Genetics 

HAM/TSP 
2014 Evangelou Definite HAM/TSP n=5 

Possible HAM/TSP n=2  
Asymptomatic HTLV1 n=2 
Controls n=5 

8 years Cross-sectional 
Case control 

N/A Volumetry No N/A 

2014 Liu HAM/TSP n=18 
Asymptomatic HTLV1 n=4 
MS n=18 
Controls n=10 

11 years Cross-sectional 
Case control 

N/A Spinal cord area No N/A 

2017 Taniguchi HAM/TSP n=15 
Controls n=20 

4 years Cross-sectional 
Case control 

N/A Spinal cord area Yes N/A 

2014 Vilchez HAM/TSP n=10 
Asymptomatic HTLV1 n=11 
Controls n=18 

12 years Cross-sectional 
Case control 

N/A Spinal cord area 
Volumetry 
DTI  
T2 hyperintensities 

No N/A 

Spinal Cord Infarct 
2013 Theaudin Spinal cord infarct n=2 2-3 days Longitudinal 

Case series 
Day 3-4; 9-10; 15-22 DTI No N/A 

Sensory Neuronopathy 
2012 Bao Sensory neuronopathy n=9  

Disease controls n=16 (ALS n=14, SACD n=2) 
Controls n=20 

4 years Cross-sectional 
Longitudinal  
Case control 

4, 8 and 14 months (n=3) Spinal cord area 
MEDIC  
TRIM 
DRG, posterior column, C7 nerve 
diameter and signal intensity.  

No N/A 

2016 Casseb Sensory Neuronopathy n=28  
(Idiopathic n=18; Sjogren's n=4; Other: 
autoimmune hepatitis, paraneoplastic, 
HTLV, MGUS, VB12 n=6) 
Disease controls n=14 (Diabetes n=14) 
Controls n=20 

11 years Cross-sectional 
Case control 

N/A DTI 
T2 hyperintensities 

No N/A 



 

 149 

4.4 Discussion 

These observations have potential clinical applications and academic 

contributions. From a clinical perspective, the distinct patterns of spinal cord 

involvement with tract-specific degeneration may be used as an adjunctive 

diagnostic tool. For example, structural imaging studies revealing spinal cord 

atrophy with increased eccentricity suggest preferential dorsal column 

degeneration, as seen in FDRA, SCA and ALD; whereas spinal cord atrophy 

without increased eccentricity suggests preferential corticospinal tract 

degeneration, as seen in ALS and HSP. MRI classification models may use 

these distinct patterns to differentiate diseases from controls or from other 

differential diagnoses. Thus far this has only been explored in ALS whereby a 

multi-modal MR classification model using cervical cord cross-sectional area, 

DTI and MTR variables accurately differentiated ALS from controls 60. There is 

scope to explore the use of best-performing spinal cord imaging variables for 

MRI classification models in other conditions. Quantitative spinal cord imaging 

data may also be used as an imaging biomarker in clinical trials. The currently 

used clinical scales are subjective, subject to inter-rater variability, and may 

not capture changes in slowly progressive neurodegenerative disorders; 

whereas quantitative imaging metrics offer objective data that may precede 

these clinical changes. It also may be used to quantify baseline disease 

burden, track disease progression, and assess treatment efficacy in clinical 

trials of disease modifying therapies. This concept was demonstrated in a 

preliminary study of SPG5 that identified T9 spinal cord area as a potential 

clinical trial primary endpoint; however the proposed study duration of 14-

years was too long to be applicable to real-world clinical trials 598. 
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Interestingly, it is often a criticism that the time-interval in longitudinal 

imaging studies is too short to capture significant radiological changes, 

however this timing would be more representative of the real-world 

applications in clinical trials that are usually conducted over relatively short 

intervals. From an academic perspective, these studies have enhanced our 

understanding of disease pathogenesis by detailing the extent and location of 

spinal cord involvement across a wide-spectrum of disorders. In some genetic 

conditions, it may even be detected in the pre-symptomatic phase. There is 

also an ongoing debate whether these spinal cord imaging changes represents 

developmental, neurodegenerative or neurodegenerative superimposed on 

developmental changes in certain conditions. For example: progressive 

cervical cord atrophy with stable increased eccentricity in FDRA suggests 

degenerative corticospinal tract and developmental dorsal column 

abnormalities 591, 592. 

Despite ongoing improvements in spinal cord imaging study designs 

and imaging methods, several limitations must be highlighted. First, study 

sample sizes are often small owning to the rarity of these conditions, and 

certain cases may be excluded because they are already on disease-modifying 

therapies 579. Second, there are heterogenous study samples whereby 

different disease stages 614, phenotypes and genotypes are considered 

together in an effort to boost sample sizes. Third, the utilised clinical scoring 

scales are seldom disease-specific or disability-specific for cervical cord 

involvement 559, 610, 611; for example, ALSFRS-R is not validated in MND 

subtypes PMA and PLS 545. Fourth, there is scope to improve MR imaging 

acquisition and resolution via higher MRI field strength, cardiac- and 
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respiratory-gating 579. Fifth, MRI localization is important to ensure that the 

affected region is evaluated; some condition preferentially involve the cervical 

or thoracic cord. Sixth, different imaging methods capture different stages 

and aspects of neurodegeneration that may not be reflected in the chosen 

clinical measures 572, 573, 596, 607. Finally, there are limitations that are specific to 

longitudinal studies: selection bias - patients with more severe disease may 

not be able to participate in follow-up assessments; ‘ceiling effect’ -  patients 

with long-standing disease may already have maximal spinal cord atrophy at 

initial assessment 580; and the interval may be too short to capture significant 

radiological changes in slowly progressive neurodegenerative disorders 579. 

However, as previously mentioned short-interval studies may be better 

representative of real-world applications in clinical trials that are usually 

conducted over a relatively short duration. Overall some of these limitations 

may explain the lack of clinical correlation with these imaging findings. 

Quantitative spinal cord imaging is likely to be utilised as an adjunctive 

diagnostic tool and objective radiological biomarker for clinical trials. Future 

studies should focus on using multi-parametric MRI data to improve disease-

specific spinal cord imaging signatures. This could help to develop MRI 

classification models to differentiate disease from controls or other 

differential diagnoses. In addition, key methodological advancements are 

required before these academic observations translate into the real-world 

clinical setting, for example: multi-site collaborations to enhance homogenous 

sample sizes; new higher field strength MRI scanners utilizing cardiac- and 

respiratory-gating to improve data acquisition and resolution; imaging 

focused on affected spinal cord regions – such as the cervical spinal cord in 
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ALS 551 - to minimise scanning time and patient discomfort; and 

complementary post-mortem data to validate these radiological findings.  

4.5 Conclusions 

 This review has outlined the structural, microstructural and metabolic 

spinal cord involvement across a wide spectrum of neurodegenerative and 

acquired disorders. The most commonly studied conditions include ALS, 

followed by HSP and then SCA. There is increasing evidence that there is 

radiological involvement of the spinal cord in several other conditions.
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5 Infratentorial pathology in frontotemporal dementia: 

cerebellar grey and white matter alterations in 

frontotemporal dementia phenotypes 

5.1 Introduction 

The function of the cerebellum continues to be defined, particularly 

with respect to its physiological role in cognition and behaviour. Clinical 

observations from acquired cerebellar pathologies have consistently 

highlighted the posterior predominance of cognitive functioning in the 

cerebellum 617, 618 and imaging studies have confirmed the specific role of 

lobules VI, VIIA, VIIB, IX and crus I/II in mediating cognitive processes 619-621. 

Posterior cerebellar injuries may manifest in multi-domain cognitive deficits 

including verbal memory, language, visuospatial, executive function and 

sequencing abilities; while cognition may be relatively preserved in those with 

anterior cerebellar insults 622. Cerebellar pathology may contribute to 

impairments in social cognition 623, language deficits 624 and pathological 

crying and laughing 625, 626. Lesions of the vermis have been linked to 

emotional dysregulation such as irritability, impulsivity and disinhibition 627. 

While the neuropsychological sequelae of acute vascular, neoplastic and 

inflammatory cerebellar pathologies are widely recognised, cognitive deficits 

associated with slowly progressive neurodegenerative conditions are less well 

characterised. There is a striking paucity of imaging data on cerebellar 

involvement in FTD 628-630 despite ample post mortem evidence of cerebellar 

pathology 631. A recent meta-analysis noted lobule VI, VIIb, VIIIb atrophy in 

bvFTD, crus I and lobule VI volume loss in svPPA 632. Genetic FTD subtypes 
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appear to exhibit specific grey matter cerebellar abnormalities 628-630, 633, 634. 

The C9orf72 genotype has been linked to focal crus I and lobule VIIa 

degeneration, MAPT mutation associated with vermis pathology, and GRN 

mutation with relatively preserved cerebellar integrity 629. Interestingly, 

regional cerebellar atrophy was detected in asymptomatic C9orf72 mutation 

carriers 156. ALS-FTD has been linked to superior (lobules I-VI), crus and vermis 

degeneration 635. Other cerebellar regions, such as the cerebellar crura and 

lobule VI may be involved in all FTD subtypes 632. This region is often labelled 

‘the cognitive cerebellum’ because of its central role in cognitive processing; 

the extent of atrophy in this area is thought to correlate with cognitive 

performance across a multitude of domains 630, 632. Existing studies suggest 

that cerebellar abnormalities are most widespread in those with ALS-FTD and 

bvFTD, and may be relatively focal in those with svPPA or nfvPPA 630, 633, 635. 

Selective cerebellar atrophy seems to mirror patterns of cerebral cortical 

pathology 636, 637 and are likely to be defined by cerebello-cerebral 

connectivity. These observations further support the ‘dysmetria of thought 

theory’ whereby cerebellar lesions result in individual patterns of cognitive 

dysfunction dependent on the cortico-cerebellar tracts involved 638. The 

majority of cerebellar imaging studies in FTD solely appraise grey matter 

alterations, white matter degeneration is less well characterised in vivo, and 

there is a lack of cerebellar functional and metabolic studies. Cerebellar 

hypometabolism have been reported 632, 639, 640 but the majority of PET studies 

focus on supratentorial regions.  

Post-mortem studies in FTD also disproportionately focus on 

supratentorial regions. Much of the limited post-mortem data of cerebellar 
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pathology in FTD pertains to a select cohort of those carrying the C9orf72 

mutation. In such cases, TDP-43 negative, ubiquitin and p62-positive neuronal 

cytoplasmic inclusions were noted in the granular layer of the cerebellar 

cortex, but these findings are not exclusive to this genotype 631, 641, 642. 

Cerebellar atrophy has been described in those carrying the C9orf72 gene 

mutation, but not in those carrying the MAPT mutation 641, 643. A case series of 

two sisters with a clinical diagnosis of bvFTD and no established genetic 

mutation, demonstrated abundant abnormal tau deposition in the 

cerebellum, with a distinctly different morphology from the more common 

tauopathies 644.  

Emerging imaging and post mortem data lends credence to the body of 

evidence that cerebellar involvement may contribute to the clinical 

manifestations of FTD. These observations provide the rationale to 

characterise cerebellar signatures in FTD phenotypes using a multiparametric 

grey and white matter imaging protocol. The main objective of this FTD study 

is to ascertain if focal cerebellar degeneration may be identified in vivo and 

establish phenotype-specific and overlapping radiological features.  

5.2 Methods 

5.2.1 Participants 

A total of 156 participants were included in a prospective imaging 

study of frontotemporal dementia; 7 patients with behavioural-variant FTD 

(‘bvFTD’, mean age 60.71±3.3), 12 patients with non-fluent-variant primary 

progressive aphasia (‘nfvPPA’, mean age 61.5±2.96), 3 patients with semantic-

variant primary progressive aphasia (‘svPPA’, mean age 61.66±6.42), 12 ALS-

FTD patients carrying C9orf72 GGGGCC hexanucleotide repeat expansions 
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(‘C9+ALSFTD’, mean age 58.65±11.22), 12 C9orf72 negative ALS-FTD patients 

repeats (‘C9-ALSFTD’, mean age 59.95±7.67), and 110 healthy controls (‘HC’, 

mean age 59.21±10.5). All participants provided informed consent in 

accordance with the Medical Ethics Approval of the research project 

(Beaumont Hospital, Dublin, Ireland). Exclusion criteria included prior 

traumatic brain injury, cerebrovascular events, comorbid neoplastic, 

paraneoplastic or neuroinflammatory diagnoses. FTD and ALS-FTD was 

diagnosed based on the Rascovsky criteria 645 and participating ALS patients 

had ‘probable’ or ‘definite’ ALS according to the revised El Escorial research 

criteria. Healthy controls were unrelated to patients and had no known family 

history of neurodegenerative conditions. 

5.2.2 Magnetic resonance imaging  

Imaging data were acquired on a 3 Tesla Philips Achieva Magnetic 

resonance (MR) platform with an 8-channel receive-only head coil. The 

standardised imaging protocol included a high-resolution T1-weighted (T1w) 

and a 32-direasction diffusion tensor imaging (DTI). T1w was acquired with a 

3D Inversion Recovery prepared Spoiled Gradient Recalled echo (IR-SPGR) 

sequence with the following parameters; field-of-view (FOV) of 256 x 256 x 

160 mm, flip angle = 8°, spatial resolution of 1 mm3, SENSE factor = 1.5, TR/TE 

= 8.5/3.9 ms, TI =1060 ms. DTI data were acquired with a spin-echo echo 

planar imaging (SE-EPI) pulse sequence using a 32-direction Stejskal-Tanner 

diffusion encoding scheme, FOV = 245 x 245 x 150 mm, 60 slices with no 

interslice gap, spatial resolution = 2.5 mm3, TR/TE = 7639 / 59 ms, SENSE 

factor = 2.5, b-values = 0, 1100 s/mm2, dynamic stabilisation and spectral 

presaturation with inversion recovery (SPIR) fat suppression.  
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5.2.3 Cerebellar morphometry 

First, total intracranial volumes (TIV) were estimated for each subject 

to be used as a covariate in subsequent region-of interest (ROI) morphometric 

analyses. As described previously441, 449 TIV estimation was performed by 

linearly aligning each participant’s skull-stripped brain image to the MNI152 

standard, and the inverse of the determinant of the affine registration matrix 

was calculated and multiplied by the size of the template. FMRIB’s FSL-FLIRT 

was used for spatial registration and FSL-FAST for tissue type segmentation. 

Partial grey matter, white matter and CSF volumes were added for TIV 

estimation. Grey matter pathology in the FTD groups was evaluated by ROI 

morphometry using FMRIB’s FSL suite. Pre-processing steps included skull-

removal (BET), motion-corrections and tissue-type segmentation194. Grey-

matter partial volume images were aligned to the MNI152 standard space 

using affine registration. A study-specific grey matter template was created 

representing each study group to which the grey matter images of each 

participant were subsequently non-linearly co-registered. Permutation based 

non-parametric inference was utilised to contrast each patient group with 

healthy control implementing the threshold-free cluster enhancement (TFCE) 

method. Design matrices included group membership, age, sex and TIV 646. 

Statistics were restricted to a cerebellar ROI mask defined by label 1 of the 

MNI structural atlas. Resulting statistical maps were thresholded at p < 0.05 

and visualised in FSLeyes. The aid the localisation of statistically significant 

clusters the Diedrichsen probabilistic atlas was used as undelay647.  
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5.2.4 Cerebellar cortical thickness analyses 

To evaluate cerebellar cortical thickness alterations, the cerebellum 

was segmented using a validated parcellation algorithm 648-650. A patch-based 

segmentation algorithm was then applied to obtain cerebellar GM metrics for 

each lobule, separately for the right and left cerebellar hemispheres 648. As a 

quality-control step, anatomical parcellation and tissue-type segmentation 

was individually verified for each subject.  The following labels were used to 

retrieve regional cortical thickness values: lobules I-V, lobule VI, lobule VIIb, 

lobules VIII-X, Crus I, and Crus II. To test the effect of group membership on 

cerebellar cortical thickness in each lobule, Multivariate analyses of 

covariance (MANCOVAs) were conducted for the right and left cerebellar 

hemispheres separately, designating lobular cortical thickness as dependent 

variable, group membership as independent factor and age and gender as 

covariates. In case of a significant multivariate omnibus test, post-hoc 

comparisons were considered significant at p<0.05, following false-discovery 

rate (FDR) corrections for multiple comparisons to reduce Type I error. 

5.2.5 Cerebellar white matter analyses 

Raw DTI data underwent eddy current corrections and skull removal 

before a tensor model was fitted to generate maps of fractional anisotropy 

(FA), axial diffusivity (AxD), and radial diffusivity (RD). The tract-based 

statistics (TBSS) module of FMRIB’s software library was utilised for non-linear 

registration and skeletonisation of individual DTI images. A mean FA mask was 

created, and each subject’s individual AD, FA and RD images were merged 

into 4-dimensional (4D) AD, FA and RD image files. The input file order 

matched the group membership variables in the design matrix. Permutation-
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based non-parametric inference was used for the two-way, voxelwise 

comparison of diffusivity parameters between each FTD group and controls 

using design matrix-defined contrasts which included age and gender as 

covariates. The study specific white matter skeleton was masked by atlas-

defined labels for the entire cerebellum (left and right hemispheres) to 

restrict analyses to the cerebellum. The threshold-free cluster enhancement 

(TFCE) method was applied and results considered significant at a p < 0.01 

TFCE family-wise error (FWE).  

5.2.6 Genetic testing 

Pathogenic GGGGCC hexanucleotide repeat expansions in C9orf72 

were screened for with repeat-primed PCR as described previously 247, 272. 

Amplified DNA fragments were evaluated with the Applied Biosystems 3130xl 

Genetic Analyser (Foster City, CA, USA) and visualised using GeneMapper 

version 4.0.  GGGGCC hexanucleotide repeat expansions longer than 30 were 

considered positive. Participating patients were also screened and tested 

negative for other mutations associated with ALS and FTD: SOD1, ALS2, SETX, 

SPG11, FUS, VAPB, ANG, TARDBP, FIG4, OPTN, ATXN2, VCP, UBQLN2, 

SIGMAR1, CHMP2B, PFN1, ERBB4, HNRNPA1, MATR3, CHCHD10, UNC13A, 

DAO, DCTN1, NEFH, PRPH, SQSTM1, TAF15, SPAST, ELP3, LMNB1, SARM1, 

C21orf2, NEK1, FUS, CHMP2B, GRN, MAPT, PSEN1, PSEN2, TBK1. 

5.3 Results 

5.3.1 Cerebellar morphometry  

Region-of-interest morphometry in a study-specific, atlas-defined 

cerebellar grey matter mask revealed phenotype-specific patterns of atrophy 

at p < 0.05 TFCE (corrected for age, sex and TIV). GGGGCC hexanucleotide 
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repeat carrying ALS-FTD patients exhibited symmetric lobule VIII and lobule V 

atrophy. C9orf72 negative ALS-FTD patients displayed lobule V, VI, VIII and 

vermis atrophy. Behavioural variant FTD patients showed vermis, lobule V, 

lobule VII and symmetric posterior-inferior volume reductions. Non-fluent 

variant primary progressive aphasia patients exhibited widespread atrophy 

including lobules V, VI, VIII, and the vermis.  Semantic variant FTD patients 

displayed volume loss in crus I, Crus II, and lobule V on the left (Figure 8).
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Figure 8: Cerebellar morphometry 

 

Cerebellar grey-matter changes in FTD phenotypes at p < 0.05 TFCE corrected for age, gender and TIV. Focal changes in C9+ALSFTD are indicated in blue, C9-ALSFTD in copper colour, bvFTD in yellow, nfvPPA 
red-yellow, svPPA in green. The Diedrichsen probabilistic cerebellar atlas is presented as underlay to aid localisation. 
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5.3.2 Cerebellar cortical thickness analyses 

The evaluation of cortical thickness profiles revealed the preferential 

involvement of specific cerebellar lobules in FTD phenotypes with the 

apparent sparing of other cerebellar regions. Following FDR corrections and 

statistical adjustments for demographic factors, C9orf72 positive ALS-FTD 

patients exhibited reduced cortical thickness in Lobule IV, VI,VIIb, Crus I & II. 

Crus II and lobule VI was affected in both cerebellar hemispheres (Table 15). 

Cortical thinning did not reach statistical significance in C9orf72 negative ALS-

FTD patients in any of the evaluated cerebellar regions. Patients with 

behavioural variant FTD showed cortical thinning in crus I and a trend of 

thinning post FDR in lobule VII of the right cerebellar hemisphere. Patients 

with non-fluent variant primary progressive aphasia (nfvPPA) exhibited lobule 

VI, VIIb, crus I & II. Lobule VI and crus II atrophy was observed in each 

hemisphere. Patients with semantic variant FTD (svPPA) showed lobule VIIb, 

crus I & II degeneration in the right cerebellar hemisphere.  
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Table 15: Cerebellar cortical thickness profile of the ALS-FTD spectrum 

Cerebellar 

Lobule 

Cortical thickness: Estimated Marginal Mean ± Standard Error (mm) Statistics 

HC 
ALS-

FTD-C9- 

ALS-

FTD-C9+ 
bvFTD nfvPPA svPPA 

F, p-value Univariate 

effect size 

HC vs 

ALSFTDC9- 

HC vs 

ALSFTDC9+ 

HC vs 

bvFTD 

HC vs 

nfvPPA 

HC vs 

svPPA 

Left a 
I-II 

1.416 

±0.031 

1.678 

±0.074 

1.437 

±0.074 

1.432 

±0.124 

1.604 

±0.095 

1.749 

±0.190 

F = 3.045, 

p = 0.012 

η2p = 0.085 
0.015 0.9 0.94 0.21 0.23 

III 
3.213 

±0.035 

3.355 

±0.083 

3.269 

±0.083 

3.058 

±0.140 

3.182 

±0.107 

3.501 

±0.214 

F = 1.198, 

p = 0.312 

η2p = 0.035 
0.26 0.73 0.47 0.9 0.36 

IV 
4.913 

±0.014 

4.930 

±0.033 

4.817 

±0.033 

4.788 

±0.055 

4.891 

±0.042 

4.919 

±0.084 

F = 2.462,  

p = 0.035 

η2p = 0.070 
0.82 0.06t 0.133 0.82 0.95 

V 
4.898 

±0.015 

4.875 

±0.035 

4.803 

±0.034 

4.796 

±0.058 

4.816 

±0.045 

4.873 

±0.089 

F = 2.095, 

p = 0.069 

η2p = 0.060 
0.73 0.072 0.23 0.23 0.9 

VI 
4.978 

±0.011 

4.917 

±0.026 

4.898 

±0.026 

4.907 

±0.044 

4.880 

±0.034 

4.975 

±0.067 

F = 3.431,  

p = 0.006  

η2p = 0.095 
0.15 0.05 0.26 0.06t 0.97 

VIIB 
4.608 

±0.021 

4.566 

±0.049 

4.476 

±0.049 

4.470 

±0.082 

4.408 

±0.063 

4.467 

±0.125 

F = 3.164,  

p = 0.009 

η2p = 0.088 
0.61 0.076 0.26 0.036 0.46 

VIIIA 
4.649 

±0.018 

4.662 

±0.041 

4.643 

±0.041 

4.502 

±0.070 

4.598 

±0.053 

4.637 

±0.107 

F = 1.023, 

p = 0.406 

η2p = 0.030 
0.9 0.94 0.168 0.54 0.94 

VIIIB 
4.514 

±0.032 

4.671 

±0.076 

4.430 

±0.076 

4.322 

±0.129 

4.711 

±0.098 

4.582 

±0.196 

F = 2.290, 

p = 0.048 

η2p =0.065 
0.21 0.49 0.3 0.21 0.9 

IX 
3.570 

±0.043 

3.621 

±0.101 

3.398 

±0.101 

3.298 

±0.170 

3.715 

±0.130 

3.504 

±0.260 

F = 1.363, 

p = 0.241 

η2p = 0.040 
0.82 0.26 0.26 0.47 0.9 

X 
2.491 

±0.042 

2.299 

±0.099 

2.468 

±0.098 

2.273 

±0.0166 

2.609 

±0.127 

2.710 

±0.254 

F = 1.400, 

p = 0.227 

η2p = 0.041 
0.23 0.9 0.38 0.55 0.51 

Crus I 
4.575 

±0.021 

4.516 

±0.049 

4.377 

±0.049 

4.445 

±0.083 

4.405 

±0.063 

4.353 

±0.126 

F = 4.241, 

p = 0.001 

η2p = 0.114  
0.46 0.003 0.27 0.072 0.23 

Crus II 
4.365 

±0.026 

4.290 

±0.062 

4.097 

±0.062 

4.390 

±0.104 

4.090 

±0.080 

3.983 

±0.159 

F = 5.695, 

p < 0.001 

η2p = 0.148 
0.46 0.003 0.9 0.015 0.095 
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Rightb 
I-II 

1.354 

±0.029 

1.636 

±0.068 

1.386 

±0.068 

1.462 

±0.114 

1.569 

±0.087 

1.587 

±0.174 

F = 3.878, 

p = 0.002 

η2p = 0.106  
0.001 0.85 0.56 0.09 0.4 

III 
3.092 

±0.032 

3.167 

±0.076 

3.118 

±0.076 

3.163 

±0.128 

3.142 

±0.098 

3.139 

±0.196 

F = 0.234,  

p = 0.947  

η2p = 0.007 
0.56 0.85 0.8 0.83 0.86 

IV 
4.772 

±0.019 

4.755 

±0.045 

4.714 

±0.045 

4.758 

±0.076 

4.819 

±0.058 

4.794 

±0.116 

F = 0.475, 

p = 0.795  

η2p = 0.014 
0.85 0.45 0.86 0.65 0.86 

V 
4.752 

±0.018 

4.679 

±0.043 

4.648 

±0.043 

4.686 

±.072 

4.735 

±0.055 

4.703 

±0.110 

F = 1.399, 

p = 0.227 

η2p = 0.041 
0.26 0.11 0.56 0.85 0.85 

VI 
4.928 

±0.011 

4.880 

±0.026 

4.855 

±0.026 

4.883 

±0.043 

4.835 

±0.033 

4.901 

±0.066 

F = 2.768, 

p = 0.020 

η2p = 0.078 
0.23 0.054t 0.52 0.054t 0.85 

VIIB 
4.788 

±0.017 

4.695 

±0.041 

4.608 

±0.041 

4.610 

±0.069 

4.665 

±0.053 

4.399 

±0.106 

F = 6.938, 

p < 0.001  

η2p = 0.175 
0.14 0.001 0.07t 0.11 0.001 

VIIIA 
4.642 

±0.017 

4.600 

±0.039 

4.571 

±0.039 

4.522 

±0.066 

4.576 

±0.050 

4.448 

±0.101 

F = 1.849, 

p = 0.106  

η2p = 0.053 
0.52 0.24 0.23 0.44 0.18 

VIIIB 
4.573 

±0.026 

4.593 

±0.061 

4.497 

±0.061 

4.454 

±0.103 

4.519 

±0.079 

4.673 

±0.157 

F = 0.695, 

p = 0.628  

η2p = 0.021 
0.85 0.45 0.45 0.73 0.74 

IX 
3.763 

±0.037 

3.70 

±0.088 

3.609 

±0.088 

3.485 

±0.148 

3.720 

±0.113 

3.720 

±0.226 

F = 1.148, 

p = 0.337  

η2p = 0.034 
0.86 0.26 0.21 0.85 0.86 

X 
2.251 

±0.036 

2.105 

±0.085 

2.146 

±0.085 

1.996 

±0.143 

2.228 

±0.110 

2.170 

±0.219 

F = 1.127, 

p = 0.348 

η2p = 0.033 
0.26 0.45 0.23 0.86 0.85 

Crus I 
4.636 

±0.022 

4.572 

±0.051 

4.524 

±0.051 

4.393 

±0.086 

4.429 

±0.066 

4.157 

±0.131 

F = 5.628, 

p < 0.001  

η2p = 0.146 
0.45 0.15 0.047 0.03 0.001 

Crus II 
4.576 

±0.024 

4.499 

±0.055 

4.412 

±0.055 

4.381 

±0.093 

4.364 

±0.071 

4.035 

±0.142 

F = 5.637, 

p < 0.001  

η2p = 0.147 
0.41 0.047 0.15 0.043 0.001 

 
Note. HC = healthy controls; Estimated marginal means ± S.E. for cortical thickness are adjusted for age and gender.  

Post-hoc univariate comparisons across groups were performed only in case of a significant multivariate omnibus test:  
a Pillai’s Trace = 0.623; F (12,60) = 1.864; p < 0.001; η2p = 0.125; b Pillai’s Trace = 0.575; F (12,60) = 1.701; p = 0.001; η2p = 0.115;  

Bold p-values are significant at p < 0.05, after false-discovery rate correction for multiple comparisons. 

Partial η2 effect size is interpreted as small (η2p = 0.01), medium (η2p = 0.06) or large (η2p = 0.14). t statistical trend at p ≤ 0. 07 
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5.3.3 Cerebellar white matter alterations 

Permutation-based nonparametric statistics confirmed focal diffusivity 

alterations at p < 0.01 TFCE (corrected for age & sex) in a study-specific 

cerebellar white matter skeleton. Reduced fractional anisotropy, reduced 

axial diffusivity and increased radial diffusivity were detected in each FTD 

phenotype with reference to healthy controls. Patterns of white matter 

vulnerability varied along the ALS-FTD spectrum (Figure 9). C9orf72 positive 

ALS-FTD patients exhibited reduced FA in the superior cerebellar peduncle, 

reduced AxD in Crus I & II, and increased RD in lobules I-IV as well as in the 

superior peduncle.  C9orf72 negative ALS-FTD patients displayed widespread, 

symmetric, multi-lobular FA reductions, focal AxD reduction in the right lobule 

V, and increased RD in crus I & II in the right cerebellar hemisphere. Patients 

with behavioural variant FTD showed FA reductions in nearly the entire 

cerebellar white matter skeleton, reduced AxD in crus I & II, and widespread 

areas of increased RD in particular in lobule VI. Patients with non-fluent 

variant primary progressive aphasia (nfvPPA) exhibited multi-lobular FA and 

AxD reductions and similarly widespread RD increases. Patients with semantic 

variant FTD (svPPA) showed superior-predominant symmetric FA reductions 

centred on lobule V, reduced AxD in Crus I, and no RD alterations at p < 0.01. 
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Figure 9: Cerebellar white matter analyses 

 

Tract-based white matter cerebellar changes in FTD phenotype as identified by FA, AxD and RD alterations at p < 0.01 TFCE adjusted for age and gender. Changes in C9+ALSFTD are indicated in blue, C9-
ALSFTD in copper colour, bvFTD in yellow, nfvPPA red-yellow, svPPA in green. The Diedrichsen probabilistic cerebellar atlas is presented as underlay to aid localisation. 
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5.3.4 Summary of findings  

The integration of findings across multiple imaging modalities revealed 

the selective involvement of cerebellar regions with relatively distinctive 

imaging signatures along the ALS-FTD spectrum (Table 16). 
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Table 16: Summary of focal cerebellar findings in ALS-FTD spectrum across the five imaging modalities 
 

Study Group Morphometry FA AxD RD Cortical Thickness 

C9+ALSFTD  Lobule V, VIII  Superior peduncle Crus I & II 
Lobules I-IV  

Superior peduncle 

Lobule IV, VI, VII  

Crus I & II 

C9-ALSFTD  
Lobule V, VI, VIII 

Vermis  

Widespread  

multi-lobular 
Lobule V Crus I & II 

Nil at p < 0.05 post 

FDR 

bvFTD 
Lobule V, VII 

Vermis  

Widespread  

multi-lobular 
Crus I & II 

Widespread  

multi-lobular 

Lobule VII 

Crus I 

nfvPPA 
Lobule V, VI, VIII 

Vermis   

Widespread  

multi-lobular 

Widespread  

multi-lobular 

Widespread  

multi-lobular 

Lobule VI, VII 

Crus I & II 

svPPA Lobule V, crus I & II 
Lobule V 

Superior cerebellum 
Crus I Nil at p<0.01 Lobule VII, crus I & II 
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5.4 Discussion 

Our study indicates that clinical subtypes of FTD exhibit individual 

patterns of cerebellar degeneration; these changes are widespread in nfvPPA 

and bvFTD, but relatively focal in svPPA. Marked cerebellar differences were 

detected between C9+ALSFTD and C9-ALSFTD. Our data suggest that certain 

cerebellar regions, such as lobule V, VI, VIII, vermis, Crus I and II, are more 

susceptible to degeneration in FTD than other areas. While our findings are in 

line with previous reports630, 632 one of the novelty of our study is the 

detection of lobule V degeneration across the clinical spectrum of FTD. This 

lobule is part of the anterior cerebellar lobe that primarily mediates 

sensorimotor functions 620, 651, 652. However, dichotomising motor and 

cognitive functions to the anterior and posterior cerebellum may be 

simplistic; lobule V is also involved in verbal working memory, emotion and 

rhythm processing 619, 620. This region has previously been implicated in bvFTD 

cohorts including those with ALSFTD628. We have also demonstrated that the 

cerebellar vermis is involved in nfvPPA, C9-ALSFTD-, and to a greater extent in 

bvFTD. Vermis degeneration has been previously linked to bvFTD and 

described in ALSFTD 628, 630, 632, 635. This region is often referred to as the 

‘limbic cerebellum’ because of its role in emotion processing and its 

connectivity with the limbic and paralimbic regions619. Structural 

abnormalities in this region may manifest in a myriad of irregular social or 

emotional behaviours, including aggression, irritability and disinhibition 627, 653, 

654. A similar constellation of symptoms may occur in opsoclonus myoclonus 

syndrome, a post-infectious or paraneoplastic disorder that preferentially 

involves the cerebellar vermis 655. These observations are further supported 
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by altered cerebello-cerebral connectivity in bipolar affective disorder 650, 656. 

The functional topography of the cerebellum has been gradually elucidated 657 

and careful meta-analyses have ascribed specific higher-level cognitive 

functions to distinct cerebellar areas619, 620. The affected regions identified in 

our study within the ‘cognitive cerebellum’ are involved in emotional 

processing, attention, executive function, working memory, language 

including expressive language, and social cognition 619, 620, 658. Functional MRI 

studies have confirmed the co-activation of posterior cerebellar and 

prefrontal cortices during cognitive tasks, patterns which are distinctly 

different from the activation of the anterior cerebellum and sensorimotor 

cortices during motor tasks 621, 659, 660. This pattern of connectivity has been 

replicated in greater detail in post-mortem studies 661, 662. 

We predominantly observed symmetric cerebellar degeneration, with 

the exception right hemisphere dominant cortical thinning in bvFTD and 

svPPA. The asymmetric cerebellar findings in svPPA may be linked to the 

similarly lateralised pathology at a supratentorial level and potentially 

mediated by crossed cerebellar network 142, 619, 620, 630, 663. It is noteworthy 

however that, exclusively left-sided lobule V, crus I-II volume reductions were 

noted in svPPA on morphometric analyses. These observations highlight that 

different imaging modalities capture different aspects of cerebellar 

degeneration493.  

We detected markedly divergent grey and white matter changes in 

C9orf72 positive and C9orf72 negative ALSFTD patients. In contrast to the 

widespread atrophy observed in C9+ALSFTD, cortical thinning did not reach 

statistical significance in C9-ALSFTD. This is consistent with the more extensive 



 

  171 

cerebellar involvement associated with the C9orf72 mutation 156, 629, 642, 643. 

Cerebellar, cerebral and spinal changes have also been detected in 

presymptomatic GGGGCC hexanucleotide repeats expansion carriers 155, 249, 

664, 665. It is noteworthy however that, p62-immunoreactive TDP-43 negative 

neuronal cytoplasmic inclusions were noted in cerebellar granule cells 

irrespective of C9orf72 status 631, 643. Widespread cerebellar and cerebral 

degeneration have also been consistently noted in ALS and PLS cohorts 

without FTD 491, 666, 667. Dysarthria, pseudobulbar affect, and cognitive deficits 

are commonly observed in ALS, and cerebellar pathology may contribute to 

these symptoms 496, 500, 668-670. Interestingly, we detected higher cortical 

thickness in lobules I-II in C9orf72 negative ALSFTD compared to controls, 

which may be in line with the proposed compensatory role of the cerebellum 

in ALS 231, 488, 671.  

 Our findings may have clinical implications. Patients with clinical and 

genetic FTD subtypes attend a broad range of specialist including neurologist, 

psychiatrists and medicine for the elderly physicians. Clinical assessments may 

be heavily weighted towards cognitive and behavioural testing. If a cerebellar 

exam is performed at all, there is likely to be a greater emphasis on eliciting 

physical clinical signs. Post-mortem studies that confirmed cerebellar 

involvement in C9orf72 highlighted the absence of overt ante mortem 

cerebellar signs such as ataxia without considering cognitive manifestations 

642, 643. It is conceivable that a formal cerebellar examination was not 

performed in some of these cases, and subtle cerebellar deficits may remain 

unrecognised. Since in our study lobule V degeneration was a consistent 

finding in all FTD subtypes, and this structure is a principal hub of cerebro-
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cerebellar sensorimotor networks, we suggest that formal cerebellar 

examination should be performed in all patients with suspected FTD. In 

addition, sequencing  tasks (visual, verbal, behavioural and spatial) could be 

considered as a screening tool for cerebellum-associated cognitive 

dysfunction 622. In those with apparent autosomal dominant inheritance who 

test negative for common FTD genes, it is important to consider SCA17; as it 

may initially resemble bvFTD 672. The establishment of phenotype-specific 

imaging signatures and biomarker profiles may also aid the accurate 

categorisation of single subject datasets into relevant diagnostic, phenotypic 

or prognostic groups 55, 60, 158, 503, 673. 

In addition to the lack of molecular profiling, a key limitation of our 

study is the sample size of our cohorts, particularly in those with PPA. 

Accordingly, our data need to be replicated in larger cohorts and validated by 

the dedicated assessment of the cerebellum post mortem. Longitudinal 

radiological data acquisition may help to further elucidate the dynamic 

biological processes underpinning the progressive symptoms observed 

clinically 172. Future cerebellar studies in FTD may benefit from 

complementing quantitative MRI analyses with [18F] FDG-PET to establish the 

comparative detection sensitivity of the two modalities.  While previous PET 

studies captured cerebellar hypometabolism no convergent patterns have 

been identified 632, 639, 640.  

Our own findings, and the limited literature available, suggest that 

cerebellar degeneration is an important, albeit under investigated facet of 

FTD research, which merits dedicated clinical, imaging and post mortem 

studies. The characterisation of cerebellar pathology in FTD is not merely an 
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academic pursuit. The concomitant degeneration of interconnected infra- and 

supra-tentorial regions indicates connectivity-mediated propagation 

mechanisms, which may aid the identification of novel therapeutic targets. 

The demonstration of markedly divergent cerebellar signatures across the 

spectrum of FTDs serves as a reminder that FTD is a pathologically 

heterogeneous condition and the quest for ‘one drug for all’ is a naïve notion. 

In line with the principles of precision medicine, phenotype- and genotype-

specific disease-modifying strategies are likely offer therapeutic benefits. 

Pioneering antisense oligonucleotide (ASO) studies in C9orf72 give cause for 

optimism to target specific genotypes and coordinated research efforts 

targeting tau may also pave the way to breakthrough individualised 

therapies155, 674. The refinement of clinical screening tools and the 

development of disease-specific imaging protocols may not only assist the 

accurate categorisation of suspected FTD patients but serve as biomarkers in 

future clinical trials.  

5.5 Conclusions 

 Our data indicate unique cerebellar imaging signatures in FTD 

phenotypes with the selective involvement of specific lobules. It is 

conceivable that facets of behavioural and cognitive impairment previously 

exclusively attributed to supratentorial regions, may in part stem from 

cerebellar degeneration. Our findings highlight the involvement of 

infratentorial regions in FTD and support the evolving role of the cerebellum 

in cognitive and behavioural manifestations. 
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6 Thalamic pathology in frontotemporal dementia: 

predilection for specific nuclei, phenotype-specific 

signatures, clinical correlates and practical relevance 

6.1 Introduction 

Frontotemporal dementia (FTD) encompasses a clinically and genetically 

diverse spectrum of neurodegenerative disorders. While phenotype-specific 

cortical signatures and anatomical patterns of hypometabolism are well-

defined, the in-depth characterisation of subcortical pathology is a relatively 

recent aspiration of quantitative neuroradiology. The contribution of multi-

synaptic cortico-thalamic circuits to physiological behavioural, executive and 

language functions are relatively well established 541, 675. Accordingly, in this 

review, we first introduce the structural and functional anatomy of the 

thalamus followed by a systematic review of thalamic involvement across the 

FTD spectrum stratified according to phenotype, genotype and pathological 

subtype.  

The thalami are deep paramedian grey matter structures, located 

superior to the midbrain, joined by the interthalamic adhesion. They are 

enclosed in a white matter external medullary lamina and separated by a Y-

shaped white matter internal medullary lamina that divides the thalamus into 

anterior, medial and lateral anatomical regions. The lateral region is further 

subdivided into lateral, ventral and posterior divisions. Each anatomical region 

contains a subset of thalamic nuclei: anterior thalamic nucleus in the anterior 

region; medial dorsal and midline nuclei in the medial region; lateral posterior 

and lateral dorsal nuclei in the lateral division of the lateral region; ventral 
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anterior, ventral lateral, ventral posterolateral and ventral medial nuclei in the 

ventral division of the lateral region; and pulvinar, lateral and medial 

geniculate nucleus nuclei in the posterior division of the lateral region. The 

thalamic nuclei also include intralaminar nuclei within the internal medullary 

lamina; and reticular nucleus on the lateral surface of the thalamus 676.  

Functionally, the thalamus mediates a multitude of both sensory and 

non-sensory processes that extend well beyond these structural boundaries 

(Figure 10). The sensory functions are classically mapped onto the ventral 

posterolateral, ventral medial, lateral and medial geniculate nuclei; 

specifically peripheral sensory information (e.g. temperature, pain, vibration, 

touch, proprioception) is relayed via the ventral posterolateral nuclei, taste 

and facial sensation via the ventral medial nuclei, visual sensory information 

via the lateral geniculate nuclei and auditory sensory information via the 

medial geniculate nuclei 677. Motor and language functions are relayed by the 

ventral anterior, ventral lateral, ventral posterolateral and ventral medial 

nuclei 677. Limbic processes are conveyed by anterior, ventral anterior, medial 

dorsal, lateral dorsal and pulvinar nuclei 677, 678. The anterior nuclei give rise to 

the thalamocingulate tract, an integral part of the Papez circuit that plays a 

central role in episodic memory 679, 680. Associative functions are mediated by 

midline nuclei; medial dorsal, lateral posterior and pulvinar nuclei 677, 678. This 

area plays a complex role in cognition and the integration of somatosensory 

and visuospatial information 677. The intralaminar and reticular nuclei 

contribute to arousal and alertness 677.  

The thalamus is part of a wider network of cortico-subcortical circuits 

including the basal ganglia that mediate cognitive and behavioural functions 
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541, 675. Each thalamic sub-region is linked with specific cortical areas via 

thalamocortical and corticothalamic projections forming closed-loop networks 

681, 682. Macroscopically, the anterior thalamic radiation primarily connects the 

anterior and medial thalamic regions with the limbic and frontal cortices; the 

superior thalamic radiation links ventral thalamic regions to the precentral 

and postcentral gyri; and the posterior thalamic region project to parietal and 

occipital regions via the posterior thalamic radiation 683. Within these large 

anatomical labels, there are several specific thalamocortical tracts, such as the 

thalamocingulate tract connecting the anterior thalamus with the cingulate 

cortex in Papez circuit 679, 680. Functional MR imaging studies confirm cortico-

thalamic-cortical connections between the prefrontal cortex and mediodorsal, 

ventral anterior nuclei and anterior thalamic region; the temporal cortex and 

medial pulvinar and medial geniculate nuclei; the parietal and occipital 

cortices and lateral pulvinar and lateral geniculate nuclei; the somatosensory 

cortex with anterior pulvinar and ventral posterolateral nuclei; the motor and 

premotor cortex with ventral anterior, ventral lateral, and mediodorsal nuclei 

684, 685. The disruption of specific thalamocortical circuits has been linked to 

fairly specific neuropsychological manifestations, such as executive 

dysfunction, apathy, disinhibition or depression 675, 686, 687. 

From an imaging perspective, the thalamus is often simplistically 

considered as a single structure but recent advances in computational imaging 

have permitted the nuanced appraisal of specific nuclei. With increasing 

interest in subcortical structures in FTD, we review the existing evidence of 

thalamic involvement across the FTD spectrum stratified by phenotype, 

genotype and pathological subtype. The main objectives of this review is the 
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description of phenotype- and genotype-associated intra-thalamic signatures 

based on consensus research findings, highlighting inconsistencies among 

published papers, identifying innovative research strategies as well as 

methodological shortcomings to propose desirable study designs for future 

initiatives, a synthesis of academic contributions and reflecting on the 

potential clinical relevance of thalamic pathology in FTD.
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Figure 10: A schematic diagram of thalamo-cortical circuits 

 
A schematic diagram of distinct thalamo-cortical circuits, their main thalamic components, cortical projections and associated physiological role;  

AV: anterior ventral; DLPFC: dorsolateral prefrontal cortex; LD: lateral dorsal; MD: medial dorsal; VA: ventral anterior; VLa: ventral lateral anterior; VLp: ventral lateral posterior; VM: ventral medial.
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6.2 Methods 

A formal literature review was conducted using the PubMed repository 

(last accessed on 16th May 2022) in accordance with the ‘preferred reporting 

items for systematic reviews and meta-analyses’ (PRISMA) guidelines. The 

following search strategy was used: ("frontotemporal dementia" [Mesh] OR 

“frontotemporal dementia” [tw] OR “FTD” [tw] OR “frontotemporal lobar 

degeneration” [tw] OR “FTLD” [tw] OR “C9orf72” [tw] OR “MAPT” [tw] OR 

“GRN” [tw]) AND ("thalamus"[Mesh] OR “thalam*” [tw] OR “subcortical”) 

AND ("neuroimaging" [Mesh] OR “MRI” [tw] OR “magnetic resonance 

imaging” [tw] OR “brain imaging” [tw] OR “neuroimaging” [tw] OR “PET” [tw] 

OR “positron emission tomography” [tw] OR “pathology” [Mesh] OR 

“autopsy” [Mesh] OR “neuropathology” [Mesh] OR “post-mortem” [tw]). The 

database search was limited to studies written in English that involved human 

subjects. A single reviewer (MCMcK) individually screened and assessed the 

266 records for eligibility. All original research articles that investigated 

radiological or pathological involvement of the thalamus in FTD were 

included. Reviews, editorials and case reports were excluded. Studies limited 

to corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP) 

phenotypes were also excluded. The reference lists of selected articles were 

reviewed to identify additional, potentially relevant papers (Figure 11). 

Identified original research articles were individually reviewed for cohort 

sizes, demographic profile, clinical categorisation, genetic information, 

imaging methods, study design, cross-sectional versus longitudinal data 

collection, main findings, anatomical predilection, the battery of 
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accompanying clinical tests, and the presence of presymptomatic or post-

mortem data.
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Figure 11: A PRISMA flowchart for systematic review of thalamic involvement in FTD 
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6.3 Results 

A total of 97 original research articles met the inclusion criteria. The 

majority of these studies were exclusively imaging-based (79%; n=77/97); 

some had both imaging and pathology data (18%; n=18/97); and very few 

reported pathological data only (3%; n=3/97) (Table 17). The studies were 

typically unimodal (73%; n=71/97). The most commonly used imaging 

modality was MRI (88%; n=85/97) including grey matter (77%; n=75/97) 

(Table 18), white matter (20%; n=19/97) (Table 19) and functional (13%; 

n=13/97) (Table 20) analyses. A minority of studies used PET imaging (16%; 

n=16/97) (Table 21). The thalamus was most often considered as a single 

structure, and seldom segmented into specific nuclei (4%; n=4/97) 183, 193, 247, 

688 . Only a minority of studies were longitudinal (13%; n=13/97) with a mean 

interval follow-up of 1.3±0.5 years. The participants were stratified according 

to phenotype (78%; n=76/97); genotype (46%; n=45/97); or pathology (21%; 

n=20/97). Pre-symptomatic familial FTD mutation carriers were occasionally 

included (19%; n=18/97) (Table 22). The results of these studies are 

summarised according to phenotype, genotype and pathological diagnoses. 
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Table 17: Neuropathological studies of thalamic involvement in FTD 
Neuropathology 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up duration  Imaging modality 

Brettschneider et al, 2014 
244 

FTLD-TDP n=39  

(bvFTD n=39) 

(C9orf72 n=12; GRN n=6) 

 

Cross-sectional 

Case-series 
All cases N/A N/A 

Kawles et al, 2022 689 FTLD-TDP type C n=10 

(svPPA n=7; bvFTD n=3) 
Cross-sectional 

Case-series 
All cases N/A N/A 

Yang et al, 2017 690 C9orf72 positive bvFTD n=13 

Sporadic bvFTD n=8 

Sporadic ALS n=7 

Controls n=7 

Cross-sectional 

Case-control 

All cases N/A N/A 
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Table 18: Grey matter imaging studies of thalamic involvement in FTD 
Structural (Segmentation and Volumetry) 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up Imaging modality 

Ahmed et al, 2016 691 bvFTD n=19 

svPPA n=15 

AD n=15 

Controls n=25 

Cross-sectional 

Case control 
N/A N/A VBM 

Ahmed et al, 2019 692 bvFTD n=28 

AD n=16 

Controls n=19 

Cross-sectional 

Case control 

N/A N/A VBM 

Ahmed et al, 2021693 bvFTD n=58 (C9orf72+ n=17) 

ALS-FTD n=41 (C9orf72+ n=12) 

Controls n=58 

Cross-sectional 

Case control 

N/A N/A Cortical, subcortical, WM volumes 

Bede et al, 2018 663 bvFTD n=10 

nfvPPA n=11 

svPPA n=5 

ALS-FTD C9orf72+ n=14; C9orf72- n=12 

ALS without cognitive impairment n=36 

Controls n=50 

 

Cross-sectional 

Case control 

N/A N/A Cortical thickness 

Subcortical volume and density 

Connectivity-based segmentation 

Bocchetta et al, 2018 
694 

FTD n=341 

Phenotypes: bvFTD n=141; svPPA n=76; nfvPPA 

n=103; FTD-ALS n=7; PPA unspecified n=14) 

Genotypes: MAPT n=24; C9orf72 n=24; GRN n=15 

Pathology: Tau n=40; TDP-43 n=61; FUS n=3 

Controls n=99 

 

Cross-sectional 

Case control 

TDP43 n=61 

Tau n=40 

FUS n=3 

N/A Volumetry 

Bocchetta et al, 2019 
695 

svPPA n=24 

Controls n=72 

Cross-sectional 

Case control 

N/A N/A Cortical and subcortical volumes 

Bocchetta et al, 2020 
696 

FTLD TDP-43 Type C n=19 

Controls n=81 

 

Longitudinal n=14 

Case control 

All cases Not 

specified  

Volumetry  
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Structural (Segmentation and Volumetry) 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up Imaging modality 

Bocchetta et al, 2020 
688 

 

FTD n=402 

Phenotypes: bvFTD n=180; svPPA n=85; nfvPPA 

n=114; FTD-ALS n=8; PPA unspecified n=15 

Genotypes: MAPT n=27; C9orf72 n=28; GRN n=18 

Pathology: Tau n=37; TDP-43 n=38; FUS n=4 

Controls n=104 

N/A TDP43 n=38 

Tau n=37 

FUS n=4 

N/A Volumetry 

Thalamic nuclei segmentation 

Bocchetta et al, 

2021183 

Pre-symptomatic  

MAPT n=47; GRN n=125; C9orf72 n=107 

Mild symptomatic  

MAPT n=13; GRN n=30; C9orf72 n=32 

Symptomatic  

MAPT n=20; GRN n=43; C9orf72 n=63 
Controls n=298 

Cross-sectional 

Case control 

N/A N/A Cortical and subcortical volumes 

Branco et al, 2018 697 ALS n=50 (Cognitively impaired ALS n=12) 

Controls n=38 

Cross-sectional 

Case control 

N/A N/A Cortical thickness 

Subcortical volume  

DTI 

Cajanus et al, 2020 698 FTLD C9orf72+ n=26 

(bvFTD n=19, PPA n=5; FTD-ALS n=2) 

FTLD C9orf72- n=52 

(bvFTD n=35; PPA n=14; FTD-ALS n=3) 

Longitudinal n=11 N/A 23 months Cortical thickness 

Subcortical volume 

Cardenas et al, 2007 
699 

FTD n=22 (ALS-FTD n=5) 

Controls n=22 

Cross-sectional 

Case control 

Pick’s disease n=2 

FTD-ubiquitin n=2 

ALS-FTD n=1 

N/A Morphometry 

Cash et al, 2018 156 Pre-symptomatic  

MAPT n=23; GRN n=65; C9orf72 n=40 

Symptomatic  

MAPT n=10; GRN n=; C9orf72 n=25 
Controls n=144 

Cross-sectional 

Case control 

N/A N/A VBM 

Chang et al, 2005 430 ALS n=10 

FTD-ALS n=10 

Controls n=22 

Cross-sectional 

Case control 

N/A N/A VBM 
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Structural (Segmentation and Volumetry) 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up  Imaging modality 

Chipika et al, 2020 247 C9orf72 + ALS n=12 (ALS-FTD n=8/12) 

C9orf72 - ALS n=88 (ALS-FTD n=7/88) 

PLS n=33 

Controls n=117 

Cross-sectional 

Case control 
N/A N/A TIV 

Thalamus segmentation 

Thalamus vertex analyses 

Thalamus morphometry  

Convery et al, 2020 
203 

Pre-symptomatic  

MAPT n=39; GRN n=104; C9orf72 n=73 

Symptomatic  

MAPT n=10; GRN n=24; C9orf72 n=31 
Controls n=181 

 

Cross-sectional 

Case-control 

N/A N/A VBM 

Cury et al, 2019 192 Pre-symptomatic  

MAPT n=26; GRN n=53; C9orf72 n=34 

Controls n= 98 

Cross-sectional 

Case control 

N/A N/A Large diffeomorphic deformation 

metric mapping 

De Reuck et al, 2014 
700 

FTLD n=37 

AD n=46 

ALS n=11 

LBD n=13 

PSP n=14 

VD n=16 

Controls n=15 

Cross-sectional 

Case control 

All cases N/A Quantification MRI GRE iron  

De Reuck et al, 2017 
701 

ALS n=12 

FTLD n=38 (FUS n=6; Tau n=13; TDP43 n=19) 

Controls n=28 

Cross-sectional 

Case control 

All cases  N/A Quantification of MRI GRE iron  

Devenney et al, 2017 
702 

bvFTD n=36; (C9orf72+ n=9/36) 

FTD-ALS n=20 (C9orf72+ n=5/20) 

Controls n=23 

Cross-sectional 

Case control 

N/A N/A VBM 

Devenney et al, 2021 
703 

ALS n=28 

ALS-Plus n=9  

ALS-FTD n=11 

bvFTD n=27 

Controls n=25 

Cross-sectional 

Case-control 

N/A N/A VBM 
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Structural (Segmentation and Volumetry) 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up  Imaging modality 

Fletcher et al, 2015 
704 

FTLD n=31 (sporadic n=24/31) 

Phenotype: bvFTD n=15; svPPA n=11; nfvPPA n=5 

Genotype: C9orf72 n=6; MAPT n=2 

AD n=20 

Cross-sectional 

Case-control 

N/A N/A VBM 

Garibotto et al, 2011 
705 

bvFTD n=38 

svPPA n=9 

nfvPPA n=6 

Controls n=25 

Cross-sectional 

Case-control 

N/A N/A Subcortical volume 

Harper et al, 2017 706 Dementia n=186  

(AD n= 107; DLB n=25; FTLD n=54 [3R-tau n=11; 

4R-tau n=17; TDP43A n=12; TDP43C n=14]) 

Controls n=73 

Cross-sectional 

Case-control 

All cases N/A VBM 

Hornberger et al, 

2012 680 

In vivo:  

bvFTD n=15; AD n=19; controls n=18 

Post-mortem:  

bvFTD n=19; AD n=18; controls n=20 

Cross-sectional 

Case-control 

Post-mortem 

cohort: bvFTD 

n=19 [TDP type A 

n=6; TDP type B 

n=3; Tau n=10 – 

Picks disease n=7; 

CBD n=3]; AD 

n=18; Controls 

n=20 

N/A VBM  

DTI 

Irwin et al, 2013 707 C9orf72+ n=64 (ALS n=31; FTD n=22 [bvFTD n=17; 

svPPA n=1; nfvPPA n=4]; ALS-FTD n=9; AD n=2) 

C9orf72- n=79 (ALS n=36; FTD n=43 [bvFTD n=23; 

svPPA n=7; CBS n=2]; ALS-FTD n=10; AD n=1) 

Cross-sectional 

Case-control 

C9orf72+ n=13 

C9orf72- n=12 

N/A VBM 

Irwin et al, 2016 708 Pick’s disease n=21 (bvFTD n=16; nfvPPA+bvFTD 

n=1; ALS-FTD n=1; CBS n=2; AD n=1) 

Imaging controls n=60 

Cross-sectional 

Case series 

All cases N/A GMD 

DTI 

Kumfor et al, 2015 709 svPPA n=11 

bvFTD n=13 

Controls n=11 

Cross-sectional 

Case-control 

N/A N/A VBM 
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Structural (Segmentation and Volumetry) 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up  Imaging modality 

Landin-Romero et al, 

2017 710 

bvFTD n=37 

AD n=41 

Controls n=33 

Longitudinal  

Case-control 

N/A 1-, 2-, 3, 

4-years 

Cortical thickness 

Subcortical volumes 

Links et al, 2009 711 FTD n=21 

Controls n=21 

Cross-sectional 

Case-series 

N/A N/A Subcortical volumes 

Machts et al, 2015 448 C9orf72+ ALS n=67  

(ALS-FTD n=7; ALS ci/bi n=18; ALS-cn n=42) 

Controls n=39 

Cross-sectional 

Case-control 

N/A N/A Subcortical volume, density, shape 

Mahoney et al, 2011 
712 

svPPA n=43 Cross-sectional 

Case-control 

N/A N/A VBM 

Manera et al, 2019 713 bvFTD n=70 

Controls n=133 

Longitudinal  

Case-control 

N/A 1-year Deformation-based morphometry 

Mann et al, 1993 714 FTD n=10 

FTD-ALS n=6 

Cross-sectional  

Case series 

All cases  N/A Cortical thickness 

Cortical, subcortical CSA 

Cortical ribbon length  

McKenna et al, 2021 
193 

bvFTD n=10 

nfvPPA n=15 

svPPA n=5 

ALS-FTD C9orf7+ n=20; C9orf72- n=20 

Controls n=100 

Cross-sectional  

Case control 

N/A  N/A Thalamus segmentation 

Thalamus vertex analyses 

Thalamus morphometry 

McMillan et al, 2015 
715 

C9orf72+ n=55 

(In vivo n=20; Post-mortem n=35) 

Longitudinal n=11 C9orf72+ n=35 1-year GM density  

Meysami et al, 2022 
716 

bvFTD n=20 

EOAD n=45 

Cross-sectional 

 

N/A N/A Volumetry 

Mioshi et al, 2013 717 FTD n=52 

AD n=20 

Controls n=18 

Cross-sectional 

Case control 

N/A N/A VBM 

Möller et al, 2015 718 FTD n=24 

AD n=72 

Controls n=72 

 

Cross-sectional 

Case control 

N/A N/A Subcortical volume 
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Structural (Segmentation and Volumetry) 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up Imaging modality 

Pasquini et al, 2020 
719 

FTD n=16 

bvFTD n=5; bvFTD-ALS n=9; ALS n=2 

FTLD-TDP-B n=10; FTLD-TDP-U n=3; ALS-TDP n=3 

C9orf72+ n=7; C9orf72- n=9 

 

Cross-sectional 

Case series 

All cases  N/A VBM 

Popuri et al, 2018 179 Pre-symptomatic C9orf72 n=15; GRN n= 9 

Controls n=38 

Cross-sectional 

Case control 

N/A N/A Cortical thickness  

Subcortical volume 

Possin et al, 2012 720 MCI n=53 

Dementia n=110 (bvFTD n=32; AD n=32; svPPA 

n=25; nfvPPA n=6; PSP n=10; CBS n=5) 

Controls n=37 

Cross-sectional 

Case control 

N/A N/A Volumetry  

Rohrer et al, 2010 160 FTLD-TDP43 n=28  

Type1 n=9; Type2 n=5; Type3 n=10;  

Unspecified n=4) 

Controls n=50 

Cross-sectional 

Case control 

All cases  N/A VBM 

Rohrer et al, 2015 22 Pre-symptomatic  

MAPT n=15; GRN n=45; C9orf72 n=18 

Symptomatic  

MAPT n=11; GRN n=13; C9orf72 n=16 
Controls n=102 

Cross-sectional 

Case control 

N/A N/A Cortical, subcortical volumes 

San Lee et al, 2020 721 nfvPPA n=38 

Controls n=76 

Cross-sectional 

Case control 

N/A N/A Cortical thickness  

Subcortical shape and volume 

Seeley et al, 2008 146 bvFTD n=45 

Controls n=45 

Cross-sectional 

Case control 

N/A N/A VBM 

Sellami et al, 2018 722 Familial FTD mutation carriers n=167  

(GRN n=75; C9orf72 n=60; MAPT n=32) 

Cross-sectional 

Case control 

N/A N/A VBM 

Sha et al, 2012 723 C9orf72+ n=31  

(bvFTD n=15; FTD-ALS n=11; ALS n=5) 

Disease controls n=73  

(bvFTD n=48, FTD-ALS n=19; ALS n=6) 

 

Cross-sectional  

Disease control 

N/A N/A VBM 
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Structural (Segmentation and Volumetry) 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up Imaging modality 

Spinelli et al, 2021724 Genetic FTLD n=66  

Phenotype: bvFTD n=12; bvFTD-ALS n=5; 

nfvPPA n=3; svPPA n=2; ALS n=35; PMA 

n=6; PLS n=3 

Genotype: C9orf72 n=33; TARDBP n=10; 

GRN n=8; C9orf72+GRN n=1; 

C9orf72+TARDBP n=1 SOD1 n=7; FUS 

n=2; TBK2 n=2; MAPT n=1; TREM2 n=1 

Sporadic FTLD n=61  

Phenotype: bvFTD n=12; nfvPPA n=2; 

svPPA n=2; ALS n=37; PMA n=5; PLS n=3 

Cross-sectional 

Case control 

N/A N/A VBM 

Sturm et al, 2017 725 bvFTD n=20 

AD n=15 

Controls n=39 

Cross-sectional 

Case control 

N/A N/A VBM 

Sturm et al, 726 2018  bvFTD n=30 

AD n=25 

Controls n=25 

Cross-sectional 

Case control 

N/A N/A VBM 

Toller et al, 2020 727 Sporadic bvFTD n=154 

Pre-symptomatic genetic FTD n=71 

Behavioural MCI n=12 

(C9orf72 n=5; MAPT n=3; GRN n=4)  

Genetic bvFTD n=71 

(C9orf72 n=36, MAPT n=26, GRN n=9)  

Controls n=140 

Longitudinal 

n=62: behavioural 

MCI n=7; sporadic 

bvFTD n=35; 

genetic bvFTD 

n=20; controls 

n=53) 

N/A Not 

specified  

VBM 

van der Burgh et al, 

2020 728 

ALS n=292 (C9orf72+ n=24) 

Controls n=156 

Longitudinal  

(ALS n=150;  

C9orf72-n=133; 

C9orf72+ n=17; 

Controls n=72) 

N/A 5 months  

 

Cortical thickness 

Subcortical volumes 

DTI 
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Table 19: Grey and white matter imaging studies of thalamic involvement in FTD 
Diffusion imaging and white matter analyses 
First author,  
Year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up Imaging modality 

Bede et al, 2013 442 C9orf72+ ALS n=9  

(ALS-FTD n=6; ALS executive dysfunction n=2) 

C9orf72+ ALS n=30  

(ALS-FTD n=3; ALS executive dysfunction n=2) 

Controls n=40 

Cross-sectional  

Case-control 
N/A N/A VBM 

Cortical thickness 

DTI 

Bertrand et al, 2019 
184 

Pre-symptomatic C9orf72 n= 41 

Control n=39 

Cross-sectional 

Case control 
N/A N/A Cortical, subcortical volumes 

DTI 

Daianu et al, 2016 40 bvFTD n=20 

EOAD n=23 

Controls n=33 

Cross-sectional 

Case control 

N/A N/A DTI 

Downey et al, 2015 
729 

bvFTD n=29 

svPPA n=15 

Controls n=37 

Cross-sectional 

Case control 

N/A N/A VBM 

DTI 

Floeter et al, 2016 201 C9orf72+ n =28 

(Asymptomatic n=7)  

(ALS n=11; ALS-FTD n=7; bvFTD n=3) 

Controls n=28 

Longitudinal n=20 

Case control 

N/A 6-months 

(n=19); 

18-

months 

(n=12) 

DTI 

Jakabek et 2018 39 bvFTD n=24 

Controls n=24 

Cross-sectional 

Case control 

N/A N/A Cortical, subcortical volumes 

DTI  

Mahoney et al, 2012 
642 

C9orf72+ n=19 (bvFTD n=12; FTD-ALS n=3; nfvPPA 

n=1; not specified n=3) 

 

Cross-sectional 

Case series 

n=6 N/A VBM 

Volumetry  

Cortical thickness 

DTI 

Masuda et al, 2016 443 ALS-nc n=19 

ALS-ci n=25 

ALS-FTD n=7 

Cross-sectional 

Case control 

N/A N/A VBM 

DTI 



 

 

1
9

2
 

Diffusion imaging and white matter analyses 

First author,  
Year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up Imaging modality 

Möller et al, 2015 7 

 

AD n=39 

bvFTD n=30 

Controls n=41 

Cross-sectional 

Case control 

N/A N/A VBM 

Subcortical segmentation 

DTI 

Panman et al, 2019 
181 

Pre-symptomatic  

GRN n=33; MAPT n=15; C9orf72 n=12 

Controls n=53 

 

Longitudinal 

Case-control 

N/A 2-years VBM 

Cortical thickness 

DTI 

Pampa et al, 2017 188 Pre-symptomatic C9orf72 n=18 

Control n=15 

 

Cross-sectional 

Case control 

N/A N/A VBM  

DTI 

Spotorno et al, 2020 
730 

bvFTD n=20 

Controls n=22 

 

Cross-sectional 

Case control 

N/A N/A VBM 

DTI 
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Table 20: Functional MRI imaging studies of thalamic involvement in FTD 
fMRI 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up  Imaging modality 

Agosta et al, 2017 731 C9orf72+ ALS n=19 

Sporadic n=29; early onset n=14; ALS-ci n=24 

Controls n=22 

Cross-sectional  

Case-control 
N/A N/A Cortical thickness 

Subcortical volume 

DTI  

fMRI 
Dopper et al, 2016 226 Pre-symptomatic MAPT n = 11; GRN n = 23 

Controls n=31 

Longitudinal 

Case-control 

N/A 2 years fMRI - ASL 

Farb et al, 2013 732 bvFTD n=8 

svPPA n=8 

Controls n=16 

Cross-sectional  

Case-control 

N/A N/A fMRI – Independent component 

analysis 

Feis et al, 2019 61 Pre-symptomatic MAPT n=11; GRN n=28 

Controls = 36 

Cross-sectional 

Case control 

N/A N/A VBM 

DTI 

rs-fMRI 

Lee et al, 2014 733 C9orf72+ n=14 (bvFTD n=9; FTD-ALS n=5) 

C9orf72- n=14 (bvFTD n=9; FTD-ALS n=5) 

Controls n=14 

Cross-sectional  

Case-control 
N/A N/A VBM 

fMRI – Intrinsic connectivity network 

Lee et al, 2017 185 Pre-symptomatic C9orf72 n=15 

Control n=15 

Cross-sectional 

Case control 

N/A N/A VBM 

DTI 

fMRI - Intrinsic connectivity network  

Lee et al, 2019 217 Pre-symptomatic GRN n=14 

Pre-clinical GRN n=3 

Controls n=30 

Cross-sectional 

Case control 
N/A N/A VBM 

fMRI - Intrinsic connectivity network  

Ng et al, 2021 734 bvFTD n=14 

AD n=50 

Controls n=47 

Cross-sectional 

Case control 

N/A N/A rs-fMRI 

Rijpma et al, 2022 735 bvFTD n=44 

Controls n=44 

Cross-sectional 

Case control 

N/A N/A fMRI - Intrinsic connectivity network  

Rombouts et al, 2003 736 FTD n=7 

AD n=7 

Cross-sectional 

Case control 

N/A N/A rs-fMRI 
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fMRI 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up  Imaging modality 

Shoukry et al, 2020 212 Pre-symptomatic C9orf72 n=15 

Symptomatic C9orf72 n=27 

Controls n=48 

 

Longitudinal 

Case-control 

N/A 6-months 

18-months 

MRI – rs-fMRI 

Toller et al, 2018 737 Neurodegenerative disorder n=103 (bvFTD n=14; 

AD n=29; PSP n=20; svPPA n=21; nfvPPA n=19) 

Controls n=65 

 

Cross-sectional 

Case control 

N/A N/A fMRI - Intrinsic connectivity network  

Zhou et al, 2010 50 bvFTD n=12 

AD n=12 

Controls n=12 

Cross-sectional 

Case control 

N/A N/A fMRI - Intrinsic connectivity network 
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Table 21: PET imaging studies of thalamic involvement of FTD 
PET 
First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up 
duration  

Imaging modality 

Cistaro et al, 2014 738 C9orf72+ ALS n=15 

Sporadic ALS-FTD n=12 

Sporadic ALS-cn n=30 \ 

 

Cross-sectional 

Case-Control 
N/A N/A [18F] FDG PET-CT 

De Vocht et al, 2020 209 Pre-symptomatic C9orf72 n = 17 

Controls n=25 

Cross-sectional 

Case-Control 

N/A N/A [18F] FDG PET-CT 

Diehl-Schmid et al, 2007 
739 

bvFTD n=22 

Controls n=15 

Longitudinal 

Case-Control 

N/A 19.5 months [18F] FDG PET-CT 

Diehl-Schmid et al, 2019 
740 

FTLD C9orf72+ n=22 

FTLD C9orf72- n=22 

Controls n=23 

Cross-sectional 

Case-Control 

N/A N/A [18F] FDG PET-CT 

Frisch et al, 2013 741 FTLD n=11 (svPPA n=5; bvFTD N=4; mixed n=2) 

AD n=19 

Controls n=13 

Cross-sectional 

Case-Control 

N/A N/A VBM 

[18F] FDG PET-CT 

Grimmer et al, 2004 742 FTD n=10 

Controls = not specified  

Longitudinal 

Case-Control 

N/A 17 months 

 

[18F] FDG PET-CT 

Ishii et al, 1998 639 FTD n=21 

AD n=21 

Controls n=21 

Cross-sectional 

Case-Control 

N/A N/A [18F] FDG PET-CT 

Jang et al, 2018 743 FTD n=4 (bvFTD n=2; nfvPPA n=1; svPPA n=1) 

AD n=2 

Controls n=2 

Cross-sectional 

Case-Control 

N/A N/A MRI 

 [18F]-Florbetaben amyloid PET 

THK5351 and AV-1451 tau PET 

Jeong et al, 2005 744 FTD n=29 

Controls n=11 

Cross-sectional 

Case-Control 

N/A N/A [18F] FDG PET-CT 

Leuzy et al, 2015 745 bvFTD n=5 

Controls n=10 

Cross-sectional 

Case-Control 

N/A N/A VBM 

[18F] FDG PET-CT  

[11C] ABP688 PET 
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PET 

First author,  
year of publication  

Patient groups and cohort sizes Study design Neuropathology Follow-up  Imaging modality 

Malpetti et al, 2021210 

 

Pre-symptomatic C9orf72 n = 3 

Symptomatic C9orf72 n=1 

Controls n= 19 

Cross-sectional 

Case-Control 

N/A N/A MRI 

[11 C] UCB-J PET 

 

Matias-Guiu et al, 2015 
746 

FTD n=33 

AD n=33 

Other diagnoses n=33 

Cross-sectional 

Case-Control 

N/A N/A [18F] FDG PET-CT 

Poljansky et al, 2011 747 FTLD n=16 (bvFTD n=9; nfvPPA n=4; svPPA n=3) 

AD n=16 

MCI n=11 

Cross-sectional 

Case-Control 

N/A N/A [18F] FDG PET-CT 

Popuri et al, 2021 202 Pre-symptomatic C9orf72 n=15 

Controls n=20 

Cross-sectional N/A N/A Volumetry  

[18F] FDG PET-CT 

Schaeverbeke et al, 2018 
748 

PPA n=20 (nfvPPA n=12; svPPA n=5; lvPPA n=3) 

Controls n=64 

Cross-sectional 

Case-Control 

N/A N/A MRI – VBM 

[18F]-THK5351 PET 

 [11C]-Pittsburgh Compound B PET 

 

Soleimani-Meigooni et 

al, 2020 749 

AD n=8 

FTLD tau n=9 (PSP n=4; CBD n=2; MAPT n=2; AGD 

n=1) 

FTLD Non-tau n=3 (GRN n=1; C9orf72 n=1; FUS n=1) 

Cross-sectional All cases  N/A MRI  

18F-flortaucipir PET 
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Table 22: A summary of studies evaluating thalamic pathology in FTD 

 

Reviewed Studies n=97 

Phenotype 
bvFTD 

FTD-ALS 

svPPA 

FTLD unspecified 

nfvPPA 

PPA unspecified  

78% (76/97) 

63% (48/76) 

36% (27/76) 

28% (21/76) 

22% (17/76) 

21% (16/76) 

4% (3/76) 

Genotype 
C9orf72 

GRN 

MAPT 

Other 

46% (45/97) 

93% (42/45) 

38% (17/45) 

33% (15/45) 

4% (2/45) 

Pathology 
TDP-43 

Tau 

FUS 

FTLD unspecified  

21% (20/97) 

70% (14/20) 

40% (8/20) 

25% (5/20) 

25% (5/20) 

Longitudinal 13% (13/97) 

Follow-up – Average (years) 1.3±0.5 years. 

Follow-Up – Median (years) 1±0.5 years. 

Follow up – Range (months) 5 – 26 months 

Pre-symptomatic  19% (18/97) 

Multimodal % (n) 27% (26/97) 

MRI % (n) 88% (88/97) 

Grey Matter Analyses % (n) 77% (75/97) 

White Matter Analyses % (n) 20% (19/97) 

Functional MRI % (n) 13% (13/97) 

PET % (n) 16% (16/97) 

A summary of studies evaluating thalamic pathology in FTLD: patient cohorts, study designs and imaging 

modalities. bvFTD – behavioural variant frontotemporal dementia; C9orf72 - chromosome 9 open 

reading frame 72; FTLD – frontotemporal lobar degeneration; FTD-ALS – FTD- amyotrophic lateral 

sclerosis; FUS – fused in sarcoma; GRN – progranulin; MAPT - microtubule-associated protein tau; 

nfvPPA – non-fluent variant primary progressive aphasia; PET – positron emission tomography; PPA – 

primary progressive aphasia; svPPA – semantic variant primary progressive aphasia; TDP-43 - TAR DNA-

binding protein 43 
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6.3.1 Phenotypes 

The most commonly evaluated clinical phenotypes included bvFTD 

(63%; n=48/76); followed by FTD-ALS (36%; n=27/76); svPPA (28%; n=21/76); 

and nfvPPA (21%; n=16/76). Participants were sometimes grouped together 

under the umbrella of “unspecified FTD” or “PPA” 699, 736, 750 (Table 22). 

Thalamic atrophy is thought to be most marked in FTD-ALS 751, followed by 

bvFTD, nfvPPA and svPPA 688, 694. The degree of thalamic volume loss is 

sometimes more severe in bvFTD than FTD-ALS 714 but differences in symptom 

duration are seldom accounted for 155. Post-mortem studies have confirmed 

thalamic atrophy in all FTD phenotypes, sometimes commenting on the 

affected region 752, but seldom mentioning specific nuclei 160, 162, 714, 752, 753.  

6.3.1.1 Behavioural variant FTD (bvFTD) 

In bvFTD, diffuse thalamic atrophy 691-693, 699, 705, 745 involving all 

thalamic nuclei 193 is often detected. There is particular predisposition to 

medial dorsal 146, 688, lateral dorsal 688 and midline 688 pathology which is 

consistent with post mortem observations 244. The pulvinar nuclei 193, 726 may 

or may not 688 be involved. Subtle changes may be captured relatively early, 

before becoming increasing widespread as the disease progresses 146, 710, 713. 

The degree of thalamic atrophy is more prominent in C9orf72 mutation 

carriers 693, 707, 723, which is discussed in more detail below. Morphometric 

findings are complemented by insights from other imaging modalities such as 

the reduced integrity of the anterior thalamic radiation 7, 39, 40, 730; decreased 

salience 50, 734, 735, 737 and limbic 732 network connectivity traversing the 

thalamic nodes; bilateral thalamic hypometabolism 639, 742, 744, 745, 754; 

decreased [11C]-ABP688 745 and increased [18F]-THK5351 748 radiotracer uptake 
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in the bilateral thalami – the latter indicating non-specific neurodegeneration 

743. Paradoxical thalamic hypertrophy, as a potential compensatory 

mechanism, has also been described in regions projecting to the medial pre-

frontal cortex 39.  

Thalamic atrophy in bvFTD has been linked to a multitude of cognitive, 

perceptual, functional, and behavioural impairments. Cognitive impairment is 

readily associated with anterior thalamic atrophy 680 that may be preceded by 

functional working memory network impairment 736. Detailed 

neuropsychological testing often reveals impaired object memory 709, visual 

memory 741, and design fluency 720. Perceptual impairment and psychosis-like 

symptoms were also associated with anterior thalamic involvement 703. 

Functional impairment has been linked to medial dorsal nuclei atrophy 717. 

Social cognition and behavioural impairment 725-727, 735 may be associated with 

pulvinar nuclei atrophy. Reduced limbic connectivity of the anterior thalamus 

has been linked to apathy 732. Additionally, there is a trend towards greater 

posterior thalamic atrophy in those with apathy compared to those without 

apathy 711. Thalamic atrophy has also been linked to altered eating behaviour 

691 and body composition 692. Thalamic hypometabolism has been associated 

with the re-emergence of primitive reflexes in an admixed group of FTD 

phenotypes 746.  

6.3.1.2 Amyotrophic Lateral Sclerosis – Frontotemporal Dementia (ALS-FTD) 

Thalamic atrophy 193, 443, 448, 663, 693 is thought to be particularly striking 

751 in ALS-FTD with relatively symmetrical 694 involvement of the anterior 

(anterior ventral), medial (midline, medial dorsal), lateral (lateral dorsal, 

lateral posterior), ventral (ventral anterior, ventral lateral) and intralaminar 
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nuclei 193, 448, 688. There is a particular predilection for the lateral dorsal nuclei 

193, 448, 688. The posterior (pulvinar, lateral and medial geniculate) 193, 430 and 

additional ventral (ventral medial, ventral posterolateral) 193 aspects are 

sometimes also implicated. There may be early signs of thalamic atrophy in 

sporadic ALS with cognitive 697 or behavioural 728 impairment that does not 

meet criteria for FTD, but this may not always be the case 443, 728. Post-mortem 

studies readily confirm widespread thalamic degeneration in ALS-FTD 714. 

Thalamic atrophy may be particularly marked in C9orf72 hexanucleotide 

expansion carriers 663, 693, 707, 723, 731, which is expanded below in detail. The 

above findings are complemented by white matter analyses that capture 

reduced superior thalamic radiation integrity 443. Preferentially affected 

thalamic regions project to motor 448, 663, sensory 448, 663 and limbic 448 areas 

underpinning cognitive correlates 448, 697 and perceptual impairment 702, 703.  

6.3.1.3 Semantic variant primary progressive aphasia (svPPA) 

Thalamic atrophy tends to be relatively subtle in svPPA and may only 

be a feature of late-stage disease 695. This may explain the strikingly conflicting 

accounts on the presence 691 or absence 663, 696, 705 of thalamic involvement in 

svPPA. If detected, there is thought to be a predilection for anterior (anterior 

ventral), medial (medial dorsal, midline), lateral (lateral dorsal, lateral 

posterior), or posterior (lateral geniculate) nuclei 193, 688. Post-mortem studies 

suggest anterior predominant thalamic atrophy 679 which occasionally extends 

to involve the intralaminar 688 and more posterior (pulvinar, medial 

geniculate) nuclei 193, 712. It tends to be left-lateralised 193, 691, 694, 695, yielding 

the highest asymmetry indexes among FTD phenotypes 694. In contrast, 

morphometric changes may be more pronounced in the right thalamic 
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hemisphere 193. WM analyses reveal anterior thalamic radiation degeneration 

729. In a small FTD cohort which included svPPA, bilateral thalamic 

hypometabolism was described 747. Functional analyses show reduced limbic 

connectivity via the anterior thalamus 732. Nuclear imaging studies 

demonstrate elevated tau-tracer [18F]-THK5351 binding in the thalamus 748 

indicative of a neurodegenerative process 743. Radiological changes in the 

thalamus have been linked to apathy 732, impaired social cognition 729, altered 

eating behaviour 691, as well as auditory symptoms which were specifically 

associated with medial geniculate nucleus atrophy 712. 

6.3.1.4 Non-fluent variant primary progressive aphasia (nfvPPA) 

Bilateral, 193, 663, 705 but left hemisphere predominant thalamic atrophy 

is typically described in nfvPPA 193, 721. Relatively selective anterior (anterior 

ventral), medial (medial dorsal, midline), lateral (lateral dorsal, lateral 

posterior), ventral (ventral anterior, ventral lateral, ventral posterolateral, 

ventral medial) and posterior (medial geniculate) nuclear involvement has 

been reported 688. The pulvinar 193 and sometimes lateral geniculate nuclei 193, 

688 in the posterior region are typically spared. Extensive intra-thalamic 

density reductions are reported 193, particularly in areas projecting to motor 

regions 663. In a small cohort of FTD patients that included nfvPPA, bilateral 

thalamic hypometabolism was readily captured 747. Nuclear imaging studies 

revealed increased tau-tracer [18F]-THK5351 binding in the thalamus 748, 

suggestive of focal neurodegeneration 743.  

6.3.2 Genotypes 

The most common genotypes included in FTD thalamus studies are 

C9orf72 (93%; n=42/45); followed by GRN (38%; n=17/45); and MAPT (33%; 
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n=15/45) mutation carriers as well as less common genotypes such as 

TARDBP, SOD1, FUS, TBK1 or TREM2 (4%; 2/45). These are low incidence 

disorders, leading to small sample sizes, and often pooled analyses of 

genetically admixed cohorts are performed.  The degree of thalamic atrophy is 

more marked in familial FTD compared with sporadic FTD 724, particularly 

C9orf72 mutation carriers 181, 183, 688, 694. Pre-symptomatic studies in familial 

FTD indicate that some of the earliest changes may occur in the thalamus 192. 

Next, we discuss genotype-specific patterns of thalamic involvement in 

familial FTD 688, 694. 

6.3.2.1 C9orf72 

Thalamic atrophy 156, 179, 193, 642, 663, 698, 723, 724, 728, 733 is well-established 

in C9orf72 hexanucleotide expansion carriers, and widely corroborated by 

pathological studies 690, 707, 755-757. It may be symmetrical 694, or lateralised. The 

inconsistency with regards to laterality may stem from small sample sizes, but 

right-sided predominance is often observed in C9orf72-associated ALS-FTD 723, 

731, and relative left-predominance was noted in C9orf72-associated bvFTD 723, 

733. The spectrum of thalamic involvement also ranges from relatively focal 

medial dorsal pathology 247; to more widespread anterior (anterior ventral), 

lateral (lateral dorsal, lateral posterior), ventral (ventral anterior, ventral 

lateral) and posterior (pulvinar) thalamic disease-burden 193; to encompassing 

all thalamic nuclei 183, 688. Pulvinar atrophy was previously proposed as a 

C9orf72-specific trait 203, 688, 733, but not confirmed by others 183, 193, 247, 758. 

Thalamic atrophy may be too subtle for detection on visual inspection 723. In 

C9orf72-associated ALS-FTD, there may be a preferential involvement of 

thalamic subregions with motor and sensory thalamo-cortical projections 663. 
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Grey matter findings are complemented by WM analyses that consistently 

capture anterior thalamic radiation changes in both ALS and ALS-FTD 

phenotypes 201, 442, 642. Functional studies invariably detect reduced 

connectivity in thalamus-seeded circuits 212 and the salience network 733. [18F] 

FDG PET-CT studies are consistent in identifying bilateral thalamic 

hypometabolism 738, 740, 749. The radiological involvement of the thalamus may 

be associated with elevated serum neurofilament light chains 698, cognitive 201, 

759, behavioural 201, 724, 733 and perceptual impairment 203, 702, 704 in 

symptomatic disease. In pre-symptomatic GGGGCC hexanucleotide carriers, 

similar grey matter 22, 156, 179, 181, 183-185, 188, 192, white matter 181, 184, 188, 201, 

functional 185; and [18F] FDG PET-CT 202, 209 thalamus signatures are described 

as in symptomatic cohorts. Nuclear imaging studies capture pre-symptomatic 

synaptic density reduction with a predilection to pulvinar and ventral-

posterior thalamic subregions 210. Pre-symptomatic metabolic changes in the 

thalamus may precede structural alterations 202 or changes in CSF markers 

such as neurofilament light chain 209. Longitudinal studies suggest that 

thalamic atrophy remains relatively stable during the pre-symptomatic phase 

181, accelerates around phenoconversion 183, and either plateaus 728 or 

progresses 760 thereafter. 

6.3.2.2 GRN 

The GRN genotype typically involves most thalamic nuclei, particularly 

the anterior 724 (anterior ventral 183), medial (medial dorsal and midline 183) 

and lateral (lateral dorsal 183) regions. There are conflicting reports of 

posterior (pulvinar 688, medial 183 and lateral 183 geniculate nucleus) and lateral 

(ventral medial 688) thalamic involvement. This genotype has the highest 
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degree of asymmetric 694 thalamic involvement amongst all genotypes, which 

may be related to the most commonly associated clinical phenotype, nfvPPA 

694, 761. Thalamic atrophy is typically first detected as symptoms emerge 183 

and seldom evident before this 61, 179. Pre-symptomatic studies reveal 

thalamic hypoperfusion 226 and symmetrical thalamo-cortical hyper-

connectivity involving the salience, language and default mode networks 217. 

Thalamic involvement in GRN has been linked to psychotic symptoms, such as 

delusions and hallucinations 722. 

6.3.2.3 MAPT 

In MAPT mutation carriers, widespread thalamic atrophy is typically 

detected 183, 688, with marked involvement of medial (medial dorsal and 

midline 183) and lateral (lateral dorsal 183) regions. Reports of posterior 

thalamic nuclei involvement  (pulvinar 688 and lateral geniculate 183 nuclei) are 

inconsistent 183, 688. WM analyses reveals loss of the left anterior thalamic 

radiation integrity compared to controls 181. 

6.3.3 Histopathology  

The most common molecular finding is pTDP-43 (70%; n=14/20); 

followed by Tau (40%; n=8/20); and FUS (25%; n=5/20). Pathological 

diagnoses are sometimes grouped together under the umbrella of FTD/FTLD 

(25%; n=5/20) (Table 22). Only a minority of FTD studies provide dedicated 

thalamic histopathology data, either exclusively (3%; n=3/97) or 

accompanying imaging data (18%; n=17/97). The most marked thalamic 

involvement is reported in pTDP43-opathies, followed by tau-opathies and 

then minimal involvement in FUS-opathies 694. Pathology-specific pattern of 

thalamic degeneration may be used to differentiate subtypes 694. The medial 
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dorsal nucleus is the only nucleus affected in all pathological subgroups 688. In 

addition, there is a significant burden of iron deposition in the thalamus 

across the FTLD spectrum compared to other neurodegenerative disorders 700, 

701. Herein, we summarise the thalamic involvement in the pathological 

subtypes of FTD/FTLD spectrum. 

6.3.3.1 pTDP-43 

The propagation of pTDP-43 pathology is divided into four sequential 

stages, with thalamic pathology defining the second pathological stage 244. 

Thalamic atrophy 690, 699, 719 is well described in pTDP-43-opathies, with 

preferential anterior 680 and medial 719 involvement. Thalamic iron deposition 

is also reported 701. pTDP-43 pathology is divided into A, B or C subtypes that 

are associated with distinct phenotypes and pathological patterns of thalamic 

involvement 688. Volumetric analyses of pathologically confirmed cases of 

harmonised classified 103 type A pTDP-43 pathology revealed thalamic atrophy 

within a group of admixed clinical phenotypes including bvFTD, FTD-ALS and 

nfvPPA 160. This pathological subtype is associated with widespread thalamic 

atrophy 160, 706 implicating thalamic nuclei in the anterior (anterior ventral), 

medial (medial dorsal, midline, intralaminar), lateral (ventral anterior, ventral 

lateral, lateral posterior, lateral dorsal) and the posterior (lateral geniculate 

nucleus) region 688. This contrasts the relatively focal thalamic atrophy 

observed in type B pTDP-43 688 which is associated with bvFTD, FTD-ALS and 

nfvPPA phenotype 103; and the rather limited thalamic involvement noted in 

type C pTDP-43 pathology 688 which is associated with svPPA or bvFTD 

phenotype 103. In the latter, there may 688, 689, 706 or may not 689, 696 be thalamic 

involvement at all; if affected it is limited to the medial dorsal nuclei 688. These 
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post mortem observations 160 have clinical implications as subtle thalamic 

involvement in type B and C pTDP-43 pathology may evade radiological 

detection.  

6.3.3.2 Tau 

Thalamic atrophy is commonly observed in Tau-opathies 680, 699, further 

divided into tau-Pick’s, tau-PSP, tau-CBD and FTDP-17 688. The propagation of 

tau pathology in Pick’s disease is divided into four sequential stages, 

implicating the thalamus in the second pathological stage 708. The thalamic 

involvement in Pick’s disease 706 involves the anterior (anterior ventral), 

medial (medial dorsal, midline); lateral (lateral posterior, ventral anterior, 

ventral lateral, ventral posterolateral) and posterior region (medial geniculate 

nucleus) 688. There is also thalamic involvement in tau-PSP 706 affecting the 

medial (medial dorsal, intralaminar) and lateral (ventral anterior and ventral 

lateral) nuclei; in tau-CBD 706 affecting the anterior (anterior ventral), medial 

(medial dorsal, midline and intralaminar), and lateral (ventral anterior, ventral 

lateral, lateral posterior, and particularly lateral dorsal) nuclei; and in FTDP-17 

affecting the medial (medial dorsal, ventral medial, midline), lateral (lateral 

posterior, ventral lateral, ventral posterolateral) and posterior (medial and 

lateral geniculate) nuclei 688. The different patterns of involvement may be 

influenced by the associated clinical phenotype 680. 

6.3.3.3 FUS 

The few studies that include FUS-opathies indicate that there is only 

minimal thalamic involvement without significant asymmetry 694. The medial 

dorsal nuclei are the only affected thalamic nuclei 688. Similar to pTDP-43-

opathies, iron deposition may also be observed in the thalamus 701. 
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6.4 Discussion 

There is compelling evidence for thalamic involvement across the 

clinical, genetic and molecular spectrum of FTD (Table 23). This is 

demonstrated by thalamic volume loss involving the anterior nuclei, medial 

nuclei and lateral division nuclei within the lateral region in all clinical 

phenotypes, genotypes and most pathological subtypes (Table 23). The 

consistent involvement of these regions within the cortico-subcortical circuits 

is likely to contribute to some of the cardinal manifestations of FTD such as 

limbic dysfunction, behavioural and emotional regulation impairment 688. 

There is pan-thalamic degeneration of most thalamic nuclei in bvFTD and 

nfvPPA; more selective thalamic involvement in ALS-FTD; and focal thalamic 

atrophy in svPPA. Thalamic atrophy is more marked in familial FTD. There is 

diffuse thalamic nuclei atrophy in all genotypes with varying degrees of 

posterior thalamus involvement. PPA phenotypes and GRN genotypes exhibit 

particularly asymmetric thalamic atrophy. The few available pathology studies 

demonstrate a variable degree of posterior and ventral thalamic involvement 

across the pathological subtypes. It is most widespread in the type A subtype 

of the pTDP-43-opathies; tau-CBD subtype of tau-opathies; and minimal 

involvement in FUS-opathies. Thalamic atrophy, amongst other areas of grey 

matter degeneration observed in the FTD, may be accompanied by elevated 

serum 698, 730 neurofilament light chain which is a non-specific marker of 

neurodegeneration. 
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Table 23: A synthesis of focal thalamic volume alterations from published research papers with respect to anatomical predilection 

 

Volume reductions in thalamic nuclei across the FTLD spectrum stratified by phenotype, genotype and pathological subtypes: (+) affected; (+/-) sometimes affected; (-) not affected. 

FTLD Spectrum Phenotype Genotype Pathological  
Thalamic regions and sub-regions bvFTD FTD-ALS nfvPPA svPPA C9orf72 MAPT GRN pTDP-43 Tau FUS 

Anterior  

Anterior 

 

+ 

 

+ 

 

+ 

 

+ 

 

+ 

 

+ 

 

+ 

 

+/- 

 

+/- 

 

- 

Medial 

Medial dorsal 

Midline 

 

+ 

+ 

 

+ 

+ 

 

+ 

+ 

 

+ 

+ 

 

+ 

+/- 

 

+ 

+ 

 

+ 

+ 

 

+ 

+/- 

 

+ 

+/- 

 

+ 

- 

Lateral  

Lateral  

Lateral posterior 

Lateral dorsal 

Ventral 

Ventral anterior 

Ventral lateral 

Ventral posterolateral 

Ventral medial  

Posterior 

Pulvinar 

Medial geniculate  

Lateral geniculate 

 

 

+ 

+ 

 

+ 

+ 

+ 

+ 

 

+/- 

+ 

+ 

 

 

+ 

+ 

 

+ 

+ 

+/- 

+/- 

 

+/- 

+/- 

+/- 

 

 

+ 

+ 

 

+ 

+ 

+ 

+ 

 

- 

+ 

+/- 

 

 

+ 

+ 

 

- 

- 

- 

- 

 

+/- 

+/- 

+ 

 

 

+ 

+ 

 

+ 

+ 

+/- 

+/- 

 

+ 

+/- 

+/- 

 

 

+ 

+ 

 

+ 

+ 

+ 

+ 

 

+/- 

+ 

+/- 

 

 

+ 

+ 

 

+ 

+ 

+ 

+/- 

 

+/- 

+/- 

+/- 

 

 

+/- 

+/- 

 

+/- 

+ 

- 

- 

 

- 

- 

+ 

 

 

+/- 

+/- 

 

+/- 

+ 

+/- 

+/- 

 

- 

+/- 

+/- 

 

 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

Intralaminar + + - +/- +/- + + +/-  - 
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6.4.1 Academic insights 

The nuanced characterisation of thalamic pathology, either by imaging 

or histopathological examination points well beyond descriptive accounts 

(Table 24). From a conceptual point of view, the ascertainment of focal as 

opposed to global thalamus degeneration mirroring selective cortical 

degeneration supports the notion of “what wires together, dies together” 762, 

namely that interconnected brain regions exhibit concomitant 

neurodegeneration. Conceptually, this is in line with theories of trans-synaptic 

spread of pTDP-43 763 and “prion-like” propagation processes 764, 765. This also 

supports observations of co-occurring deficits in interlinked clinical domains 

766. Emerging evidence from presymptomatic studies confirm that 

pathological change accrues long before symptom onset 184, 200, 243, 665, 767 

indicating that neurodevelopmental factors may also be at play 177, 243. 

Clustering strategies on large admixed imaging datasets have revealed 

clinically and radiologically distinct subgroups. For example, various clustering 

approaches have consistently captured a sub-cohort of patients with marked 

frontotemporal change among unselected ALS patients 768-770. Clustering 

initiatives without a priori hypotheses may successfully uncover pathologically 

homogenous subgroups which may have distinctive genetic or clinical 

correlates 768. This approach was recently applied to an FTD-ALS cohort which 

yielded distinct clinical phenotypes with divergent white matter tract 

involvement 771.  
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Table 24: Key academic insights and clinical relevance of thalamic 
involvement in FTD 

 

Academic 

Insights 

Focal as opposed to global thalamic atrophy  

Phenotype- and genotype-associated thalamic signatures 

Patterns of thalamic involvement mirror regional cortical pathology  

Evidence for “network-wise” degeneration 

Supports the notion of “prion-like” propagation in pTDP-43 

Presymptomatic thalamic changes in mutation carriers 

 

Clinical 

relevance 

Thalamic alterations may precede the radiological detection of cortical change  

Discrimination of phenotypes  

Distinction of FTD from other neurodegenerative conditions such as AD, MCI  

Machine-learning opportunities 

Putative monitoring role as a biomarker - to be explored 

Predictive value - to be explored 

 

Pragmatic 

considerations 

 

Fast imaging data acquisition  

Established analysis pipelines 

Semi-automated methods 

Important metrics can be retrieved from T1-weighted MR data 

Opportunities for reliable single voxel spectroscopy 

Putative biomarker role in pharmacological trials – to be explored 
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6.4.2 Practical relevance 

 The clinical relevance of thalamic observations stem from the 

opportunity to capitalise on distinguishing phenotype-, genotype- and 

pathology-specific patterns of thalamic involvement in combination with 

cortical grey matter and white matter neuroimaging signatures. As evidenced 

by the literature, thalamic involvement can be radiologically detected, and the 

preferential involvement of specific regions may be computationally 

characterised. Thalamic signatures may help to distinguish FTD subtypes from 

controls 750, other phenotypes 694, genotypes 688, pathological subtypes 688 and 

other neurodegenerative disorders such as Alzheimer’s disease 7, 716. There 

are preliminary indications that using the volume of individual thalamic nuclei, 

rather than volume of the entire thalamus, may have better discriminating 

power 688, 694. While the optimal combination of thalamic volumetric 

measurements is yet to be determined, a single study demonstrated that the 

volume of the pulvinar nuclei accurately differentiates C9orf72 from MAPT 

genotypes; and varying combinations of anterior, lateral, medial and 

intralaminar nuclei volume reliably discriminates pathological subtypes 688. 

The increasing availability of uniformly acquired normative datasets may help 

the radiological interpretation of single patients with FTD or suspected FTD 33, 

42, 253. Machine learning (ML) applications are increasingly applied to large FTD 

and ALS-FTD data sets 224. MRI-based classification models use discriminatory 

MRI features to categorise single-subject MRI data into diagnostic groups. 

Feature selection in ALS-FTD spectrum disorders typically focuses on cortical 

grey matter thickness, volumes and white matter metrics 55, 56, 59, 90, 94, 216, 224, 

772 rather than subcortical volumes; this is likely because subcortical volumes 
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are considered as a whole  instead of the inclusion of nucleus-based metrics in 

the models. Thus, the addition of thalamic nuclei and thalamic radiation 

integrity metrics may improve the classification accuracy of such models 159. 

Pre-symptomatic thalamic atrophy observed in C9orf72 genotype may be 

used to ascertain and track disease-burden prior peri-diagnostic biomarker 

changes, such as CSF neurofilament light chain concentration alterations 209. 

From a medical education point-of-view, the thalamus is continued to be 

predominantly linked to sensory function. The importance of thalamus 

mediated cognitive, behavioural, and extrapyramidal motor function needs to 

be emphasised at an undergraduate level and illustrated in a clinical context 

such as FTD for future generations of physicians. Presymptomatic studies 

suggest that pathological changes may be detected several years, sometimes 

decade before symptom onset 184, 665. Presymptomatic insights and the 

observation that widespread pathological changes can be detected by the 

time diagnostic criteria are met, would suggest that the window for effective 

pharmacological intervention with true disease-modifying potential may fall 

into the presymptomatic or prodromal phase of the disease. The recognition 

of considerable disease burden around the time of diagnosis should hasten 

recruitment into clinical trials very early in the course of the disease and may 

ultimately pave the way for presymptomatic clinical trials in mutation carriers 

773.  

6.4.3 Study limitations 

 Our review also highlights the most common methodological 

shortcomings of thalamic studies which should be considered in the design of 

future research initiatives. First, heterogenous groups of different FTD 
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phenotypes, genotypes and pathological subtypes are sometimes admixed to 

boost sample sizes, but this precludes the precision characterisation of 

subtype-specific thalamic signatures. Despite this, sample sizes often remain 

relatively small, in part because of the rarity of these conditions. Second, most 

studies consider the volume of the entire thalamus, with only a minority of 

studies using emergent methods to quantify the volume of individual thalamic 

nuclei. Third, the majority of imaging studies adopt a single modality 

approach, overwhelmingly focusing on the thalamic grey matter. Multi-modal 

imaging strategies, integrating structural, functional, metabolic and 

connectivity-based observations are not only more informative but reveal 

more about the role of thalamic pathology in the context of thalamo-cortical 

circuitry dysfunction. Fourth, while several studies ascribe deficits in specific 

clinical domains to thalamic atrophy, direct clinico-anatomical correlations are 

somewhat contentious 670 as cognitive and behavioural functions are 

mediated by multi-synaptic networks with multiple grey and white matter 

components. Additionally, there is a disproportionate emphasis on the more 

common FTD phenotypes and thalamic pathology in low-incidence entities, 

such as primary lateral sclerosis associated FTD (PLS-FTD), complicated HSP, 

ALS-FTD or SBMA associated frontotemporal dysfunction are relatively under 

investigated 194, 272, 669, 774, 775 despite radiological evidence of frontotemporal 

pathology in PLS 776, 777, hereditary spastic paraplegia 778 and to a lesser extent 

in spinal bulbar muscular atrophy 255, 779. Anatomically elusive clinical 

symptoms such as fatigue have been repeatedly linked to thalamic changes 

780-782 but compelling evidence for direct associations are lacking 783. Executive 

function, language, motivation and limbic functions are the main non-sensory 
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functions linked to thalamic nuclei, but thalamic nuclei also mediate social 

cognition and theory of mind (ToM) related functions 784, 785. ToM deficits are 

increasingly recognised in a multitude of FTD phenotypes 254, 496 and the 

contribution of thalamic pathology should be systematically investigated in 

these conditions. Pseudobulbar affect is another clinical syndrome which is 

classically linked to corticobulbar disconnection, but more recent models 

implicate cortico-limbic-subcortical-thalamic-pontocerebellar network 

dysfunction 625, 626, 786. Finally, the involvement of sensory nuclei is seldom 

appraised, despite evidence of marked ventral posterolateral and 

ventromedial thalamic volume loss in GGGGCC hexanucleotide repeat 

expansion carriers 787 in ALS and ALS-FTD 787. From a sensory network point of 

view, the spinothalamic and dorsal column–medial lemniscus (DCML) 

pathways are rarely investigated even though the integrity of these tracts can 

now be reliably assessed both a spinal and cerebral level 249, 250.  

6.4.4 Methodological considerations 

Thalamic integrity may be evaluated with relative ease and a number 

of robust open-source software libraries are available to retrieve a variety of 

thalamus metrics. The observation that in most FTD subtypes thalamic 

atrophy is an early feature 767 and may precede characteristic cortical atrophy 

provides a strong rationale for quantitative thalamus imaging in FTD. Total 

thalamus volume and the volumes of specific nuclei can be estimated from 

high-resolution 3D T1-weighted data 788, which is routinely acquired in clinical 

protocols as part of the diagnostic work-up therefore there are no additional 

time or cost implications for acquiring raw data for post-hoc thalamic 

analyses. Similarly, shape deformation analyses also rely on 3D T1-weighted 
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images eliminating the need for additional data acquisition and scanning costs 

789. One of the challenges of cortical single-voxel MRS spectroscopy is the 

consistency in voxel placement 240 which is not a problem in thalamus 

spectroscopy as the structure is readily identified on localiser scans 790. As the 

thalami are paired structures, commenting on symmetry or asymmetry based 

on retrieved integrity indices is very straightforward. Similarly, longitudinal 

statistical models are not challenging to implement 145, 172, 791. While overall 

thalamic volumes are often evaluated and “overall” thalamic metabolism 

appraised, the thalamus consists of over 50 cytologically and functionally 

distinct nuclei 792 with distinguishing cortical projection patterns 663, 

physiological roles 793, developmental origin, 794 and vascular supply 677. The 

main caveat of assessing the thalamus as a single structure, either by 

volumetric, 448 metabolic, 795 spectroscopic, 790 or vertex-based methods, 445 is 

potentially averaging imaging metrics across preferentially affected and 

unaffected regions, therefore reducing detection sensitivity for pathological 

change. A number of innovative computational strategies have been 

developed and validated, most of which are available as open-source 

pipelines, to parcellate the thalamus either by cortical connectivity patterns 

792, 796-799 or based on the histological data 788. Compared to cortical pipelines, 

quantitative thalamus imaging remains somewhat overlooked, despite 

simplicity of implementation, moderate computational time requirement and 

the availability of normative datasets.   

6.4.5 Future directions  

 Given the academic and clinical relevance of thalamic measures in FTD, 

standard clinical imaging protocols should invariably include a high-resolution 
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3D T1-weighted pulse sequence and basic thalamus metrics should be 

routinely interrogated. A relatively short diffusion tensor imaging protocol 

offers ample opportunities for additional white matter analyses to evaluate 

the integrity of thalamic projections. It seems imperative that multimodal 

imaging protocols are implemented in the research setting so that the 

comparative detection sensitivity, prognostic value and monitoring potential 

of the various metrics can be contrasted and the best performing indices 

selected for future clinical use and as biomarkers in future pharmacological 

trials. Future academic studies should routinely include disease-controls in 

addition to healthy controls to assess the specificity of thalamic alterations to 

specific FTD subtype. Cross-sectional studies of patients with varied symptom 

duration reveal very little about the dynamic molecular process driving FTD, 

therefore carefully designed multi-timepoint imaging studies are required 

with uniform follow-up intervals to establish the natural history of disease 

burden propagation. As with other neurodegenerative conditions, longitudinal 

studies should ideally include presymptomatic mutation carriers to clarify the 

value of radiological metrics in predicting phenoconversion and contribute to 

academic debates such as  neurodevelopmental versus neurodegenerative 

processes, and the existence of compensatory and adaptive mechanisms in 

neurodegeneration.   

6.5 Conclusions 

FTD is associated with phenotype-, genotype- and pathological 

subtype-specific thalamic signatures. Thalamic degeneration is likely to 

contribute to the diverse manifestations observed clinically as a key hub of 

subcortical-cortical networks. Large, pathologically and biomarker-supported 
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longitudinal imaging studies are required with a standardised imaging and 

clinical protocol for the nuance characterisation of thalamic pathology in FTD 

in order to develop clinically meaningful biomarkers centred on thalamic 

changes. 
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7 Focal thalamus pathology in frontotemporal dementia: 

phenotype-associated thalamic profiles 

7.1 Introduction 

Frontotemporal dementia (FTD) is an umbrella term encompassing a 

clinically, radiologically, genetically, and pathologically diverse set of 

neurodegenerative conditions with distinct clinical phenotypes: behavioural 

variant FTD (bvFTD), non-fluent variant primary progressive aphasia (nfvPPA), 

semantic variant primary progressive aphasia (svPPA) and amyotrophic lateral 

sclerosis-FTD (ALS-FTD). In the clinical setting, FTD phenotypes are primarily 

linked to cortical atrophy patterns 33, but the contribution of subcortical 

pathology to cognitive and behavioural dysfunction is increasingly recognised 

675, 678, 679, 681-683.  

Thalamic pathology may be detected several years before 

phenoconversion in FTD 22, 183-185, 192 and longitudinal studies readily capture 

progressive thalamic degeneration over time 760. The degree of thalamic 

degeneration may show correlations with cognitive 759 and behavioural scores 

724, but clinico-radiological correlations may be confounded by extraneous 

factors 670. Whilst there is ample radiological evidence of thalamic 

involvement in all FTD phenotypes 663, 694, 705, 751, 761, the thalamus is typically 

evaluated as a single structure and the selective degeneration of specific 

thalamic regions are poorly characterised. Until recently, very few studies 183, 

247, 688 have evaluated thalamic nuclei specifically and these differ considerably 

in their study design, imaging methods, and clinical focus. Relatively mild 

anterior, medial, lateral, and intralaminar degeneration was described in 
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svPPA and moderate pan-thalamic degeneration reported in bvFTD and 

nfvPPA 688. Intra-thalamic 433, 489, and thalamic-cortical connectivity alterations 

488, 797 have also been described in ALS, ALS-FTD and other motor neuron 

diseases 489, 688, 774, but thalamic disease-burden is seldom linked to specific 

cognitive profiles 448.Thalamic atrophy in ‘genetic’ FTD 688, 694, 724 is thought to 

be more pronounced than in sporadic FTD 688, 723, 724, 733, 759. C9orf72 is 

associated with widespread thalamic atrophy 155, 445, 724 with the involvement 

of most nuclear groups 183, 688. Due to sample size differences and divergent 

analytical approaches, reports of genotype-associated thalamic signatures are 

relatively inconsistent. Pulvinar atrophy was initially proposed as a C9orf72-

specific trait 688, 733, which was not confirmed by others 247, 758 and pulvinar 

involvement is also evident in GRN and MAPT genotypes 183. The preferential 

laterality of findings also remains to be determined as several studies 

averaged thalamic changes in the left and right hemispheres 247, 758, while 

others suggested right-sided predominance in C9orf72-positive ALS-FTD 723, 

and relative left-predominance in C9orf72-associated bvFTD 723, 733. There are 

also conflicting reports of ventromedial, pulvinar and medial geniculate 

involvement in GRN and accounts of posterior thalamic nuclei involvement in 

MAPT are also relatively inconsistent 183, 688. 

As the involvement of specific thalamic nuclei is relatively poorly 

characterised post mortem 103, 160, 244, 714, 752, 755-757, 800 and significant 

inconsistencies exist in the thalamic imaging literature of FTD, the main 

objective of this study is to characterise thalamic changes in the two cerebral 

hemispheres separately, compare the detection sensitivity of three T1w-MR 



 

 220 

derived imaging techniques and identify which imaging modality best 

distinguishes the main clinical phenotypes.  

7.2 Methods 

7.2.1 Participants 

Following subject exclusions because of MR data quality, a total of 170 

participants, 70 patients with frontotemporal dementia (FTD) and 100 healthy 

controls (HC) were included in a prospective, single-centre imaging study. In 

accordance with the Ethics Approval of this research project (Beaumont 

Hospital, Dublin, Ireland), all participants gave informed consent. Exclusion 

criteria included comorbid neoplastic, paraneoplastic or neuroinflammatory 

diagnoses, prior cerebrovascular events, and known traumatic brain injury. 

Participating FTD and ALS-FTD patients were diagnosed according to the 

Rascovsky and El Escorial criteria 645. Participating patients were stratified 

based on their clinical phenotype into behavioural variant FTD (bvFTD, n=10), 

non-fluent-variant primary progressive aphasia (nfvPPA, n=15), semantic-

variant primary progressive aphasia (svPPA, n=5), and ALS-FTD (n=40). 

Patients with ALS-FTD were further categorised into those carrying the 

GGGGCC hexanucleotide expansions in C9orf72 (ALS-FTD C9+, n=20) and 

those without hexanucleotide repeats (ALS-FTD C9-, n=20). Methods for 

genetic screening for hexanucleotide repeat expansions in C9orf72 have been 

previously reported 801; repeat-primed PCR was used and expansions longer 

than 30 repeats were considered pathological. 

7.2.2 Magnetic resonance imaging  

T1-weighted (T1w) images were acquired on a 3 Tesla Philips Achieva 

Magnetic resonance (MR) platform with a 3D Inversion Recovery prepared 
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Spoiled Gradient Recalled echo (IR-SPGR) sequence with the following 

settings: field-of-view (FOV) of 256 x 256 x 160 mm, flip angle = 8°, spatial 

resolution of 1 mm3, SENSE factor = 1.5, TR/TE = 8.5/3.9 ms, TI =1060 ms. To 

assess the presence of comorbid inflammatory or vascular pathologies fluid-

attenuated inversion recovery (FLAIR) images were also acquired with an 

Inversion Recovery Turbo Spin Echo (IR-TSE) sequence:  spatial resolution = 

0.65 x 0.87 x 4 mm, FOV = 230 x 183 x 150 mm, TR/TE = 11000 / 125 ms, TI = 

2800 ms. Imaging data from all participants were individually reviewed for 

incidental radiological findings prior to inclusion into quantitative analyses. 

Computational analyses were performed using open-source suites, running on 

Linux distribution and parallel processes were used when possible to expedite 

pre-processing.  

7.2.3 Thalamic segmentation and volumetry 

The thalamus was parcellated into 25 sub-regions using Bayesian 

inference based on a probabilistic atlas 788. The thalamus was segmented into 

the following nuclei in each hemisphere: antero-ventral (AV), latero-dorsal 

(LD), lateral posterior (LP), ventral anterior (VA), ventral anterior 

magnocellular (VA mc), ventral lateral anterior (VLa), ventral lateral posterior 

(VLp), ventral posterolateral (VPL), ventromedial (VM), central medial (CeM), 

central lateral (CL), paracentral (Pc), centromedian (CM), parafascicular (Pf), 

paratenial (Pt), reuniens/medial ventral (MV-re), mediodorsal medial 

magnocellular (MDm), mediodorsal lateral parvocellular (MDl), lateral 

geniculate (LGN), medial geniculate (MGN), limitans/suprageniculate (L-SG), 

pulvinar anterior (PuA), pulvinar medial (PuM), pulvinar lateral (PuL), and 

pulvinar inferior (PuI). Segmentation accuracy was individually verified and 10 
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groups of nuclei were defined based on their functional anatomy: 

“Anteroventral”, “Lateral geniculate”, “Medial geniculate”, “Pulvinar-limitans” 

(PuA, PuM, PuL, PuI, L-SG), “Laterodorsal”, “Lateroposterior”, “Mediodorsal-

paratenial-reuniens” (MDm, MDl, MV-re, Pt), “Motor nuclei”/ “Motor hub” 

(VA, VAmc, VLa, VLp), “Sensory nuclei”/ “Sensory hub” (VPL, VM), 

“Intralaminar” (CeM, CL, Pc, CM, Pf). Segmentation outputs were individually 

verified in each participant. Three subjects were excluded because 

segmentation problems; on the review of their FLAIR images these patients 

had relatively large juxta-thalamic lacunae and were not included in the final 

analyses. Total intracranial volumes were estimated in each subject using 

FreeSurfer (v7.2) and utilised as a covariate in subsequent volumetric 

comparisons, morphometric and surface-based statistics.  

7.2.4 Thalamic vertex analyses 

Thalamic vertex analyses were performed to evaluate surface-

projected atrophy patterns in each patient group with respect of healthy 

controls. FMRIB’s (v6.0) subcortical segmentation and registration tool 789 was 

used to characterise thalamic shape characteristics. Vertex locations of each 

participant were projected on the surface of an average shape template as 

scalar values, positive value being outside the surface and negative values 

inside. Permutation based non-parametric inference was implemented for 

group comparisons 802, design matrices included demeaned age, sex, and total 

intracranial volumes as covariates 802 and family-wise error (FWE) corrections 

were used to account for multiple comparisons.  
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7.2.5 Thalamic morphometry 

In order to evaluate focal thalamic pathology beyond shape 

deformations and nuclear volume reductions, region-of-interest 

morphometry was performed to detect focal density alterations. FMRIB’s 

software library (FSL) v6.0 was used for skull removal and tissue-type 

segmentation. Affine registration was used to align grey-matter partial 

volume images to the MNI152 standard space. A study-specific grey matter 

template was subsequently created to which the grey matter images of 

individual subjects were non-linearly coregistered. A voxelwise generalised 

linear model and permutation-based non-parametric inference were 

implemented to evaluate signal alterations in a bilateral thalamus mask 

accounting for age, sex, and TIV 802. The labels of the Harvard-Oxford 

probabilistic structural atlas 803 were used to generate the bilateral thalamus 

mask. The threshold-free cluster enhancement (TFCE) approach was 

implemented and family-wise error (FWE) corrected outputs were 

thresholded at p < 0.05. Focal intra-thalamic alterations were visualised in 3D 

using a semi-transparent bi-thalamic ROI mesh.  

7.3 Results 

The six study groups (1) ALS-FTD C9+ (n=20, age 58.650±11.2216, male: 

12 right handed: 18 education: 12.3±.746) (2) ALS-FTD C9- (n=20, age 

59.950±7.6741, male: 13 right handed: 18 education: 14.3±.746) (3) bvFTD 

(n=10, age 61.200±4.2635, male: 6 right handed: 9 education: 14.7±1.055) (4) 

nfvPPA (n=15, age 61.267±4.9637, male: 9 right handed: 14 education: 

14.6±.861) and (5) svPPA (n=5, age 61.600±4.6690, male: 3 right handed: 5 

education: 15.8±1.492) (6) healthy controls (‘HC’, n=100, age 59.260±10.5463, 
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male: 52 right handed: 94 education: 14.2±.334) were matched for age 

(p=0.93), sex (chi square χ2: 1.630 p=.898), handedness (chi square χ2 = 1.213 

p=.944) and education (p=.0169). The C9+ and C9-ALS-FTD groups were 

matched for symptom duration (p=0.3) and motor disability as measured by 

ALSFRS-r (p=0.912).  

7.3.1 Thalamic segmentation and volumetry  

Volumetric analyses revealed anatomically widespread atrophy in bvFTD 

affecting all groups of nuclei in both hemispheres (Table 25, Table 26). 

C9orf72 negative ALS-FTD patients exhibited selective thalamic involvement 

with sparing of laterodorsal nuclei in both hemispheres and strikingly 

asymmetric, right-predominant pulvinar and left-predominant 

lateroposterior, intralaminar and sensory nuclear involvement. Interestingly, 

with the exception of left laterodorsal atrophy, pathological change was more 

widespread in C9-ALS-FTD than in hexanucleotide expansion carriers. In 

contrast to the C9-ALS-FTD group, medial and lateral geniculate volume loss 

was not observed in C9+ALS-FTD. Consistent with the clinical phenotype 

motor nuclei volume reductions were observed in both ALS-FTD groups. Left-

predominant thalamic degeneration was observed in svPPA based on 

volumetric measures. More widespread thalamus pathology was observed in 

nfvPPA with pulvinar and intralaminar sparing in both hemispheres and 

sensory and motor nuclear sparing in the right hemisphere. (Figure 12, Figure 

13, Figure 14). 
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7.3.2 Thalamic vertex analyses 

Vertex-wise analyses did not detect shape deformations in svPPA and 

captured widespread, largely overlapping patterns of outline changes in the 

other phenotypes (Figure 15). 

7.3.3 Thalamic morphometry 

At a FWE-corrected threshold of p < 0.05 region-of-interest 

morphometry captured right sided intrathalamic changes in C9+ ALS-FTD, 

right-predominant, but bilateral involvement in bvFTD and svPPA, and 

considerable symmetric disease-burden in nfvPPA (Figure 16).   
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Table 25: Left thalamic grey matter volumes in FTD phenotypes 
 

LEFT Thalamic 
Nuclei 

Study group EMM Standard 
error 

C9+ ALS-
FTD vs HC 

C9- ALS-
FTD vs HC 

bvFTD 
vs HC 

nfvPPA  
vs HC 

svPPA 
 vs HC 

Anteroventral ALS-FTD C9+ 94.176566 4.388157 .001* <.001* .002* <.001* .001* 

ALS-FTD C9- 93.857057 4.369024 
bvFTD 89.336838 6.143660 
nfvPPA 76.269693 5.008516 
svPPA 78.402016 8.700440 

HC 114.354730 1.945412 
Lateral 

geniculate 
ALS-FTD C9+ 151.401233 6.363185 .070 .001* .009* <.001* .005* 

ALS-FTD C9- 143.325954 6.335441 
bvFTD 138.655292 8.908807 
nfvPPA 129.977142 7.262756 
svPPA 123.971826 12.616348 

HC 171.480977 2.821005 
Medial 

geniculate 
ALS-FTD C9+ 102.662335 3.984781 1.000 .001* .038* .009* .005* 

ALS-FTD C9- 91.333051 3.967407 
bvFTD 91.291808 5.578912 
nfvPPA 92.173803 4.548114 
svPPA 79.355346 7.900663 

HC 109.301381 1.766582 
Pulvinar-
limitans 

ALS-FTD C9+ 1487.004888 36.709172 .106 1.000 .004* .761 .040* 

ALS-FTD C9- 1536.786264 36.549119 
bvFTD 1397.128459 51.394850 
nfvPPA 1508.442034 41.898792 
svPPA 1368.838975 72.783624 

HC 1597.118054 16.274360 
Laterodorsal ALS-FTD C9+ 16.581108 1.880173 .019* .086 .007* .006* .014* 

ALS-FTD C9- 17.630101 1.871976 
bvFTD 13.501745 2.632346 
nfvPPA 15.042874 2.145976 
svPPA 10.435624 3.727838 

HC 23.352574 0.833542 
Lateroposterior ALS-FTD C9+ 96.590125 4.361024 .001* .009* <.001* <.001* <.001* 

ALS-FTD C9- 100.150159 4.342010 
bvFTD 83.956351 6.105673 
nfvPPA 90.775107 4.977548 
svPPA 76.213566 8.646644 

HC 116.754651 1.933383 
Mediodorsal-

paratenial-
reuniens 

ALS-FTD C9+ 792.908790 27.291034 <.001* <.001* <.001* <.001* <.001* 
ALS-FTD C9- 765.131482 27.172044 

bvFTD 754.556508 38.208941 
nfvPPA 718.998489 31.149201 
svPPA 693.702377 54.110193 

HC 969.128144 12.098996 
Motor nuclei 

“Motor hub” 

ALS-FTD C9+ 1647.447706 45.731631 0.014* <.001* .001* <.001* .070 
ALS-FTD C9- 1603.882282 45.532240 

bvFTD 1540.928172 64.026787 
nfvPPA 1546.486345 52.196767 
svPPA 1550.280392 90.672540 

HC 
 

1817.243387 20.274308 
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LEFT Thalamic 
Nuclei 

Study group EMM Standard 
error 

C9+ ALS-
FTD vs HC 

C9- ALS-
FTD vs HC 

bvFTD 
vs HC 

nfvPPA  
vs HC 

svPPA 
 vs HC 

Sensory Nuclei 

“Sensory hub” 

ALS-FTD C9+ 835.414533 26.307583 .085 .006* .005* .005* .365 
ALS-FTD C9- 813.631883 26.192881 

bvFTD 773.471638 36.832056 
nfvPPA 797.328115 30.026717 
svPPA 794.710136 52.160294 

HC 916.497338 11.663000 
Intralaminar ALS-FTD C9+ 384.479615 11.603596 .299 .039* .006* 1.000 1.000 

ALS-FTD C9- 375.870245 11.553004 
bvFTD 352.724366 16.245670 
nfvPPA 397.531489 13.244011 
svPPA 373.590695 23.006561 

HC 414.474561 5.144249 
Whole 

thalamus 
ALS-FTD C9+ 5608.666900 131.514896 <.001* <.001* <.001* <.001* .001* 

ALS-FTD C9- 5541.598479 130.941486 
bvFTD 5235.551177 184.128052 
nfvPPA 5373.025090 150.107315 
svPPA 5149.500954 260.755834 

HC 6249.705798 58.304797 

 

Left thalamic grey matter volumes (mm3) in healthy controls (HC), C9orf72 positive ALS-FTD patients 
(ALS-FTD C9+), C9orf72 negative ALS-FTD patients (ALS-FTD C9-), bvFTD, nfvPPA, svPPA. Estimated 

marginal means and standard error are adjusted for age, gender and total intracranial volume (TIV). 
Significant intergroup differences at p ≤ 0.05 after Bonferroni-corrections for multiple comparisons are 

flagged in bold print and an asterisk. Covariates appearing in model are evaluated at the following 
values: Age = 59.629, Sex = 1.44, TIV = 1536464.23305
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Table 26: Right thalamic grey matter volumes in FTD phenotypes 
 

RIGHT Thalamic 
Nuclei 

Study group EMM Standard 
error 

C9+ ALS-
FTD vs 

HC 

C9- ALS-
FTD vs HC 

bvFTD 
vs HC 

nfvPPA  
vs HC 

svPPA 
 vs HC 

Anteroventral ALS-FTD C9+ 106.843667 4.698552 .006* .010* <.001* <.001* .101 
ALS-FTD C9- 107.806973 4.678066 

bvFTD 92.953007 6.578230 
nfvPPA 92.979010 5.362792 
svPPA 99.317217 9.315864 

HC 125.583480 2.083020 
Lateral geniculate ALS-FTD C9+ 147.929840 5.732850 .208 .001* .001* .001* .036* 

ALS-FTD C9- 137.981051 5.707855 
bvFTD 129.688888 8.026304 
nfvPPA 134.439392 6.543310 
svPPA 127.638956 11.366576 

HC 163.616989 2.541557 
Medial geniculate ALS-FTD C9+ 100.988939 3.443228 1.000 .009* .013* <.001* .005* 

ALS-FTD C9- 94.522678 3.428215 
bvFTD 90.386017 4.820707 
nfvPPA 89.264759 3.930001 
svPPA 81.911885 6.826920 

HC 107.633156 1.526494 
Pulvinar-limitans ALS-FTD C9+ 1265.305825 34.325989 <.001* .032* <.001* .980 1.000 

ALS-FTD C9- 1323.925377 34.176326 
bvFTD 1171.961616 48.058263 
nfvPPA 1362.151856 39.178696 
svPPA 1353.870597 68.058465 

HC 1440.326744 15.217819 
Laterodorsal ALS-FTD C9+ 18.308572 1.918132 .700 1.000 .001* 0.040* .371 

ALS-FTD C9- 19.366731 1.909769 
bvFTD 11.168110 2.685490 
nfvPPA 15.356123 2.189301 
svPPA 13.684984 3.803099 

HC 22.536846 0.850370 
Lateroposterior ALS-FTD C9+ 94.629428 4.407375 .100 .072 <.001* .012* .349 

ALS-FTD C9- 94.241970 4.388159 
bvFTD 74.848217 6.170566 
nfvPPA 89.474346 5.030451 
svPPA 87.400322 8.738544 

HC 107.954766 1.953932 
Mediodorsal-

paratenial-

reuniens 

ALS-FTD C9+ 767.550842 27.648826 <.001* <.001* <.001* <.001* <.001
* ALS-FTD C9- 756.080885 27.528276 

bvFTD 682.163679 38.709869 
nfvPPA 749.646798 31.557574 
svPPA 706.716234 54.819590 

HC 951.402701 12.257617 
Motor Nuclei 
“Motor hub” 

ALS-FTD C9+ 1666.405898 46.947448 .050* .011* .001* .500 .585 
ALS-FTD C9- 1644.023097 46.742755 

bvFTD 1536.627336 65.728996 
nfvPPA 1696.716423 53.584465 
svPPA 1621.448805 93.083151 

HC 1820.374718 20.813318 
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RIGHT Thalamic 
Nuclei 

Study group EMM Standard 
error 

C9+ ALS-
FTD vs 

HC 

C9- ALS-
FTD vs HC 

bvFTD 
vs HC 

nfvPPA  
vs HC 

svPPA 
 vs HC 

Sensory Nuclei 
“Sensory hub” 

ALS-FTD C9+ 784.470686 25.095136 .726 .090 .002* 1.000 1.000 
ALS-FTD C9- 763.397877 24.985721 

bvFTD 695.361166 35.134564 
nfvPPA 814.540281 28.642866 
svPPA 772.675845 49.756365 

HC 839.346955 11.125484 
Intralaminar ALS-FTD C9+ 369.773524 12.517554 .700 .625 .003* 1.000 1.000 

ALS-FTD C9- 369.414889 12.462977 
bvFTD 327.893689 17.525261 
nfvPPA 389.691294 14.287176 
svPPA 380.078701 24.818673 

HC 397.362603 5.549436 
Whole thalamus ALS-FTD C9+ 5322.207222 135.483130 <.001* <.001* <.001* .020* .132 

ALS-FTD C9- 5310.761528 134.892418 
bvFTD 4813.051727 189.683797 
nfvPPA 5434.260282 154.636543 
svPPA 5244.743547 268.623689 

HC 5976.138958 60.064043 

 

Right thalamic grey matter volumes (mm3) in healthy controls (HC), C9orf72 positive ALS-FTD patients 
(ALS-FTD C9+), C9orf72 negative ALS-FTD patients (ALS-FTD C9-), bvFTD, nfvPPA, svPPA. Estimated 

marginal means and standard error are adjusted for age, gender and total intracranial volume (TIV). 
Significant intergroup differences at p ≤ 0.05 after Bonferroni-corrections for multiple comparisons are 

flagged in bold print and an asterisk. Covariates appearing in model are evaluated at the following 
values: Age = 59.629, Sex = 1.44, TIV = 1536464.23305 
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Figure 12: Volumetric profile of left thalamic nuclei 

 
Left thalamic nuclei volumetric profile in healthy controls (HC), C9+ ALS-FTD, C9- ALS-FTD, bvFTD, nfvPPA and svPPA based on estimated marginal means adjusted for age, sex, TIV.  

Error bars represent 95% confidence intervals. Significant inter-group differences corrected for multiple comparisons are highlighted with asterisks * p < 0.05 ** p < 0.01  
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Figure 13: Volumetric profile of right thalamic nuclei 

 
Right thalamic nuclei volumetric profile in healthy controls (HC), C9+ ALS-FTD, C9- ALS-FTD, bvFTD, nfvPPA and svPPA based on estimated marginal means adjusted for age, sex, TIV.  

Error bars represent 95% confidence intervals. Significant inter-group differences corrected for multiple comparisons are highlighted with asterisks * p < 0.05 ** p < 0.01
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Figure 14: Preferential involvement of thalamic nuclei 
 

 

 

The preferential involvement of thalamic nuclei in C9+ ALS-FTD, C9- ALS-FTD, bvFTD, nfvPPA and svPPA 
with reference to healthy controls. 100% represents the estimated marginal mean of healthy controls 

for each structure. Estimated marginal means of volumes were calculated with the following values  
age = 59.629, sex = 1.44, TIV = 1536464.233 
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Figure 15: Thalamus vertex analyses 
 

 
Phenotype-associated thalamic shape deformations. Vertex analyses depict surface-projected patterns 
of atrophy (orange colour) at p < 0.01 FWE-corrected and adjusted for demographic variables and TIV, 
projected onto a thalamic mesh mask (blue colour). Representative anterior-superior, lateral superior 

and posterior-superior views are shown.
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Figure 16: Thalamus morphometry 
 

 
3D representation of intra-thalamic density alterations as identified by region-of-interest morphometric 

analyses. Focal density reductions at p < 0.05 FWE-corrected (TIV, age, sex adjusted) are indicated by 
blue colour in a transparent thalamic outline shown in pink colour.
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7.4 Discussion 

Our data demonstrate the selective involvement of the thalamic nuclei 

in FTD. The novelty of our paper is that thalamic metrics were not averaged in 

the left and right hemispheres, a large cohort of ALS-FTD patients were 

included and three independent T1w-derived MR analyses were conducted 

allowing the comparison of the detection sensitivity of these approaches. 

In C9orf72-positive ALS-FTD, bilateral anteroventral and mediodorsal; 

left laterodorsal, lateroposterior and ‘motor’; and right-predominant pulvinar 

degeneration was noted. Vertex analyses revealed symmetrical superior and 

inferior predominant surface deformations with medial and lateral sparing. 

Focal intra-thalamic density reductions were noted in the right hemisphere. In 

C9orf72-negative ALS-FTD, preferential volume loss was observed in the 

bilateral anteroventral, mediodorsal, motor, lateral and medial geniculate 

nuclei; left lateroposterior, sensory and intralaminar nuclei; and right-

hemispheric pulvinar nuclei. Surface-mapped atrophy patterns were largely 

similar to those observed in C9+ALS-FTD. In bvFTD, widespread bilateral 

volume loss was observed involving all thalamic nuclei. Vertex analyses also 

confirmed widespread changes affecting the entire thalamic surface 

bilaterally. Morphometry analyses captured bilateral, but right-predominant 

intra-thalamic changes. In nfvPPA, bilateral anteroventral, mediodorsal, 

laterodorsal, lateroposterior, lateral and medial geniculate degeneration; and 

left-sided motor and sensory nuclear involvement was observed. Vertex 

analyses showed diffuse, symmetrical surface deformation patterns and 

region of interest morphometry revealed extensive intra-thalamic changes. In 

svPPA, left-predominant thalamic changes were noted; bilateral mediodorsal, 
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lateral and medial geniculate atrophy; and left-sided anteroventral, 

laterodorsal, lateroposterior, and pulvinar degeneration. Conversely, 

morphometric changes were bilateral but more pronounced in the right 

hemisphere. 

With the exception of the bvFTD group, the above findings confirm 

selective thalamic involvement instead of global thalamic atrophy; with a 

distinctive profile of ‘affected’ and ‘unaffected’ regions. Bilateral mediodorsal 

atrophy was a universal finding across all FTD phenotypes which is consistent 

with previous reports 688. Considerable lateral dorsal nucleus degeneration 

was identified bilaterally in bvFTD and on the left in svPPA. Both of these 

regions project to cortical and subcortical limbic structures 804 that are critical 

for memory, motivation and the regulation of emotion and behaviour 677, 688. 

The marked involvement of this region, amongst other limbic thalamic nuclei, 

is in keeping with the clinical spectrum of limbic dysfunction observed in all 

FTD phenotypes. The involvement of thalamic regions associated with 

language is of particular interest in the nfvPPA and svPPA cohorts. Language is 

relatively poorly localised within the thalamus, with potential deficits arising 

from pathology in most regions 805. It tends to be lateralised to the dominant 

thalamic hemisphere, akin to the cortical localisation of language 805, 806. The 

thalamic regions that are most frequently implicated in language deficits 

include the pulvinar, intralaminar and ventrolateral nuclei 805, 807. Our 

understanding of the role of the thalamus in language stems from lesion 

studies, neurovascular observations, fMRI experiments and the effects of 

deep brain stimulation on language 808. In nfvPPA, left-lateralised 

ventrolateral nuclei were affected; the involvement of this region is 
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associated with perseveration, naming, fluency and articulation errors 805, 807-

809. In svPPA, left-lateralised pulvinar nuclei were affected; the involvement of 

this region is associated with naming errors 677, 805, 809. These thalamic nuclei 

are key components of complex thalamocortical networks that mediate 

language function 806. While ALS-FTD is primarily dominated by behavioural, 

executive and language deficits 441, there is increasing evidence of 

considerable deficits in social cognition ALS 254, 496, which may be exacerbated 

by subcortical grey matter changes 785.   

Our data indicate that pulvinar atrophy is not unique to the C9orf72 

genotype 688, 733. We found bilateral pulvinar atrophy in bvFTD, left-lateralised 

in svPPA and right lateralised in C9orf72-positive ALS-FTD and C9orf72-

negative ALS-FTD. This region plays diverse limbic and associative roles 

modulating language, memory, somatosensory and visual information 677, 688. 

Some of these functions are relatively lateralised 677. Most patients with 

nfvPPA eventually develop symptoms consistent with progressive 

supranuclear palsy (PSP) or corticobasal syndrome (CBS), conditions 

associated with similar thalamic profiles 810, 811. In CBS, there is early severe 

focal involvement of the ventral anterior and ventral lateral thalamic motor 

nuclei, just as seen in our nfvPPA cohort 810, 811. Our observations not only 

reiterate the importance of evaluating thalamic nuclei separately rather than 

evaluating ‘overall’ thalamic volumes as a single structure, but also highlight 

the importance of assessing integrity measures in the two hemispheres 

separately. This approach permits the nuanced characterisation of focal 

changes, and also enables detecting asymmetric involvement, analogous to 

the asymmetric cortical signatures observed in PPA and svPPA. In contrast to 
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previous thalamus studies in FTD, we have conducted three independent 

T1w-derived MR analysis streams to highlight the relative advantages and 

limitations of each method. This may inform the methodological design of 

future thalamus studies. For example, while vertex analyses are commonly 

performed, we demonstrate their limited utility in symptomatic FTD cases 

where nearly the entire thalamic convexity is deformed, irrespective of the 

underlying clinical diagnosis. The morphometric approach offers additional 

benefits to volumetric outputs. Contrary to the post hoc statistics necessary 

for the interpretation of volumetric outputs, covariates can be directly 

incorporated in the design-matrices, non-parametric permutation testing can 

be readily performed accounting for family wise error, spatial coordinates of 

maxima can be established, and as illustrated in Figure 16, intra-thalamic 

changes can be visualised in 2D or 3D. The inclusion of additional MRI 

techniques such as intra-thalamic diffusivity alterations 200, thalamic 

parcellation based on cortical projection patterns 663, or thalamic 

spectroscopy 790 may also contribute to the multifaceted characterisation of 

thalamic degeneration in FTD and ALS-FTD. The widespread structural 

changes identified in this study are largely consistent with previous metabolic 

and functional studies. It has been proposed that metabolic and functional 

findings may precede frank grey matter atrophy in FTD and ALS-FTD 202, 231. 

[18F] FDG-PET studies revealed thalamic hypometabolism in both pre-

symptomatic 202 and symptomatic 740 hexanucleotide repeat carriers and to a 

lesser extent sporadic FTD 740. Functional connectivity studies have 

consistently shown thalamus mediated network disruption 491, 733; medial 
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pulvinar nuclei atrophy has been linked to salience network disruption in both 

pre-symptomatic C9orf72 185 and symptomatic bvFTD 733. 

Accurate early diagnosis in FTD is hugely important for individual 

patients, genetic counselling, resource allocation, care planning, but also for 

early recruitment into clinical trials. One of the practical implications of 

describing phenotype-specific imaging traits lies in its potential to discriminate 

disease phenotypes early in the course of the disease and capitalise on 

distinguishing MR signatures in automated machine learning algorithms 55. A 

multitude of ML approaches have been applied to FTD 79, 128, ALS 58, 60, 159, and 

mixed ALS-FTD datasets 75 with varying classification accuracy. Preliminary 

discriminant analyses confirmed the value of evaluating individual thalamic 

nuclei rather than the entire thalamus in distinguishing FTD subgroups 688. The 

distinction between AD and early FTD can also be challenging on clinical 

grounds. There is evidence of relatively selective thalamic nuclei involvement 

along the clinical continuum of AD 812. Post-mortem studies have shown 

preferential involvement of the anterior thalamic nuclei with relative sparing 

of the medial dorsal nuclei even in the later stages 813, which is particularly 

interesting given our contrary finding of mediodorsal nuclei atrophy in FTD.  

Our study demonstrates the structural degeneration of thalamic hubs of key 

corticobasal circuits in FTD 675, complementing existing insights from functional 

imaging studies 521, 733, 814. As both presymptomatic cortical and thalamic changes 

have been described 184, the chronology of cortical and thalamic changes are not 

clear at present and disease propagation patterns remain disputed 815. Robust 

longitudinal studies with asymptomatic mutation carriers are required to elucidate 

anatomical propagation patterns 145.  
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This study is not without limitations; as asymptomatic hexanucleotide 

expansion carriers have not been included, early thalamic changes could not 

be evaluated. Imaging studies of GGGGCC repeat carriers suggest structural 

alterations long before symptom manifestation 184, 248, 665, and thalamic 

analyses in these cohorts are likely to reveal more focal signatures than the 

ones observed in our study. Furthermore, the integrity of thalamic white 

matter projections was not characterised despite their likely involvement. 

Finally, in the absence of post mortem data, we are unfortunately not in a 

position to describe the microscopic and molecular underpinnings of the 

changes detected in vivo.  Notwithstanding these limitations our data 

demonstrate focal thalamic involvement across the clinical spectrum of FTD 

and confirm that intra-thalamic neurodegenerative change can be reliably 

captured based on high-resolution T1-weighted datasets. Thalamic 

degeneration is a likely contributor to phenotype-specific clinical 

manifestations and large future studies are required to verify proposed 

genotype-associated atrophy patterns.  

7.5 Conclusions 

FTD is associated with focal rather than global thalamus degeneration. 

The main clinical subtypes exhibit phenotype-specific thalamic traits. Thalamic 

degeneration, while difficult to ascertain on visual inspection, is readily 

detected and characterised through computational image analyses. Thalamus 

degeneration is likely to contribute to the diverse manifestations observed 

clinically as a central hub of corticobasal and corticocortical circuits.  
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8 Mapping cortical disease-burden at individual-level in 

frontotemporal dementia: implications for clinical care 

and pharmacological trials 

8.1 Introduction 

The majority of imaging studies in FTD stratifies patients based on clinical, 

molecular or genetic categories and describes group-specific radiological traits 

26, 643, 816-818. These data however are difficult to apply to individual patients is 

everyday clinical practice. The current role of MR imaging in the diagnostic 

pathway of FTD is limited to ‘ruling-out’ structural mimics and alternative 

diagnoses. MR images acquired in a clinical setting are typically only 

subjectively and qualitatively interpreted with regards to atrophy 819-833. This 

is a missed opportunity, as raw MRI datasets contain rich, spatially coded 

information with regards to cortical thickness, subcortical volumes and white 

matter integrity that cannot be meaningfully appraised on visual inspection. In 

contrast, computational imaging offers objective, observer-independent, 

reference-based quantitative image interpretation 669. The potential 

translation of quantitative MR analysis frameworks to routine clinical practice 

may offer a number of practical benefits, including the generation of 

individualised atrophy maps, the objective assessment of longitudinal 

changes, and the classification of single scans into likely phenotypic 

categories. Ultimately, quantitative imaging may enable ‘ruling-in’ patients 

into specific groups, as opposed to merely ‘ruling-out’ differential diagnoses 

55, 834. From a practical point of view, MR platforms are widely available, MR 

imaging is non-invasive, relatively cheap, and a multitude of open-source 
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software are available for computational data analyses 25. Access to [18F] FDG 

PET-CT imaging on the other hand may be limited and the costs of routine PET 

imaging may be prohibitive in some health care systems 835, 836. 

The current diagnostic approach to FTD subtypes – bvFTD, ALS-FTD, 

nfvPPA, svPPA - requires meeting specific clinical criteria and a definitive 

diagnosis may only be confirmed in vivo by identifying a pathogenic genetic 

mutation or typical histopathological findings 71, 73, 162, 411, 505, 506, 837-839. The 

recent development, optimisation and validation of serum and CSF 

biomarkers panels will not only aid diagnostic classification but help the 

exclusion of alternative neurodegenerative diagnoses such as Alzheimer’s 

pathology 73, 158, 169, 503, 840-843. As with all diagnostic criteria, there are practical 

shortcomings with regards to sensitivity and specificity: some symptomatic 

patients do not meet proposed thresholds for diagnosis, despite subsequent 

pathological confirmation. In a subset of FTD cases, the diagnosis may never 

be reached in vivo, or a considerable diagnostic delay is experienced 844, 845. 

Diagnostic uncertainty often creates undue stress for the patient and their 

family. The insidious onset of apathy, lack of interest and social withdrawal 

may be mistaken for depression, amongst other misdiagnoses 269, 846. Early 

behavioural symptoms may be difficult to articulate, which is further 

complicated by the disparity in those perceived by the patients and their 

caregivers. Early cognitive deficits may also be difficult to identify, particularly 

due to the masking effect of cognitive reserve and the lack of sensitivity of 

generic screening instruments 269, 847. Primary care physicians may reassure 

patients and caregivers based on neuropsychological screening tests and a 

‘grossly’ normal MR imaging whilst awaiting lengthy specialist referrals 269. 
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Diagnostic delay in neurodegenerative conditions has a number of adverse 

implications. From a patients’ perspective, timely diagnosis is important to 

inform realistic expectations over coming years 848. It helps to guide targeted 

genetic testing that may be of significance to other family members. Accurate 

and early diagnostic classification enables prompt multidisciplinary team 

referrals and appropriate lifestyle adjustments with regards to employment, 

finances, driving, and childcare 848. In those with language impairment, there 

is a critical time-window to explore alternative communication options e.g. 

‘voice-banking’ to create a digital library for assisted communication devices 

849. A timely diagnosis is also important for resource allocation and advanced 

care planning to ensure that the patients’ end-of-life preferences are 

recognised 850. Early diagnostic categorisation is also indispensable for the 

timely inclusion of patients in clinical trials, which in turns enables longer 

follow-up 667. Based on these considerations, we have undertaken a 

quantitative imaging study across the spectrum of FTD phenotypes to test a 

framework to interpret cortical atrophy patterns at both individual- and 

group-level.   

8.2 Methods 

8.2.1 Recruitment 

A total of 227 participants were included in this study; 12 patients with 

non-fluent variant primary progressive aphasia (‘nfvPPA’ 6 females, mean age 

61.50±2.97), 3 patients with semantic variant primary progressive aphasia 

(‘svPPA’ 1 female, mean age 61.67±6.43), 7 patients with behavioural variant 

FTD (‘bvFTD’ 3 females, mean age 60.71±3.30 years, 20 ALS-FTD patients with 

C9orf72 hexanucleotide expansions (‘C9+ALSFTD’ 8 females, mean age 



 

 244 

58.65±11.22), 20 ALS-FTD patients without C9orf72 hexanucleotide 

expansions (‘C9–ALSFTD’ 7 females, mean age 59.95±7.67), 40 ALS patients 

with no cognitive impairment (‘ALS-nci’ 21 females, mean age 58.70±11.33) as 

disease controls and 125 healthy controls (HC). Methods for screening for 

GGGGCC hexanucleotide repeat expansions in C9orf72 have been previously 

described 801, 851. All participants provided written informed consent in 

accordance with the ethics approval of the Ethics Medical Research 

Committee of Beaumont Hospital, Dublin, Ireland. 651 additional HCs were 

also included from the Cambridge Centre for Ageing and Neuroscience (Cam-

CAN) data base resulting in a total of 776 healthy controls (HC: 393 females, 

mean age 55.08±17.63 years) 852.  

8.2.2 Imaging pulse sequences 

All local participants were scanned with uniform scanning parameters 

on a 3 Tesla Philips Achieva scanner using an 8-channel receiver head coil. As 

described previously 449, a 3D Inversion Recovery Prepared Spoiled Gradient 

Recalled Echo (IP-SPGR) pulse sequence was utilised to acquire T1-weighted 

images. Acquisition details: repetition time (TR) / echo time (TE) = 8.5/3.9 ms, 

inversion time (TI) = 1060 ms, field-of-view (FOV): 256 x 256 x 160 mm, spatial 

resolution: 1 mm3. To assess vascular white matter lesion load FLAIR images 

were also acquired from each participant. The Cam-CAN control subjects were 

scanned with a T1-weighted MPRAGE sequence on a 3T Siemens Magnetom 

TrioTrim scanner at the University of Cambridge, using the following image 

acquisition parameters: TR/TE 2.25/2.99 ms, TI 900 ms, FOV= 256 x 240  x 192 

mm; spatial resolution 1 mm3 852. 
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8.2.3 Pre-processing 

All subjects’ T1-weighted data were first pre-processed with 

FreeSurfer’s recon-all pipeline to reconstruct and parcellate the cortical 

surface and generate a cortical thickness (CT) map, which estimates CT at 

each vertex point of the cortical surface. All CT maps were subsequently 

transformed to the CIFTI file format at a 32k resolution per hemisphere 

(Connectivity Informatics Technology Initiative853, 854) using the Ciftify 

toolbox855. Finally, each subject’s CT map was parcellated into 1000 equally-

sized patches, or ‘mosaics’, using a local-global cortical parcellation scheme 

856, which further refines a previously published 7-brain-network cortical 

parcellation framework857. 

8.2.4 Statistical analyses: the standard approach  

A one-factorial, two-level, between-subjects comparison was first 

conducted between each patient group and controls controlling for age and 

gender. To correct for alpha-level inflation, we used a Monte-Carlo 

permutation procedure to obtain family-wise error-corrected (FWER) p-values 

(5000 permutations; thresholded at the voxel-level). These analyses were ran 

within the SPM-based toolbox (http://www.fil.ion.ucl.ac.uk) Multivariate and 

repeated measures 858. 

8.2.5 Statistical analyses: the ‘mosaic’ approach 

To appraise cortical thinning at an individual level, each CT map was 

rated with respect to an age- and sex-matched control group. Since neurite 

density varies significantly across the cortex859, CT was averaged across small 

‘mosaics’, defined by a 1000-patch atlas. For each mosaic, null distributions 

were built non-parametrically as follows: First, the average CT value of each 
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HC was z-scored with respect to all remaining controls to obtain a distribution 

at the size of the control group. Likewise, an individual patient’s CT was z-

scored with respect to all HC. P-values reflecting expected probabilities of 

cortical thinning were then calculated by counting how many values in the 

control distribution were smaller than the observed patient’s and dividing that 

count by the number of subjects in the control group. We considered mosaics 

with p-values ≤ 0.05 as significantly thin or ‘atrophic’. To account for 

confounding effects of age and gender 860, we customised the reference 

groups: For each patient, we only included age- and gender-matched controls 

from the mixed control cohort (in total 776 HC). ‘Age-matched’ was defined as 

+/– 2 years from the patients’ age. As demonstrated before 673, this strategy 

successfully corrects for variance introduced by demographic confounders. 

This strategy generates a binary atrophic/not-atrophic label to each cortical 

mosaic with reference to demographically matched controls, enables the 

calculation of the number of ‘significantly thin’ mosaics throughout the 

cortex, as well as its fraction with respect to all evaluated mosaics. To co-

validate the output of this method with the ‘gold standard’ approach we 

juxtaposed our findings with standard cortical thickness analyses. 

8.2.6 Inferential statistics of ‘mosaic’ maps 

The output maps of the mosaic approach can be readily visualised for 

individual patients indicating whether a cortical region (mosaic) is atrophic 

(‘hit’) or not with respect of demographically matched controls. However, 

these outputs can also be at group level; we employed a Monte-Carlo 

permutation testing scheme to compare each of the clinical groups to HCs. In 

brief, we first generated a matrix with the dimensions of nPatients x nmosaics for 
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each clinical group, indicating for each element either the presence (‘1’) or 

absence (‘0’) of regional atrophy. We then shuffled that matrix 100,000 times 

across mosaics, whereby we saved the count of patients with 1s at each 

iteration. As  a result, we obtained non-parametric distributions, comprised of 

100,000 values per mosaic, based on which FWER p-values can be calculated 

by counting the number of values exceeding the observed number of hits in 

the data and dividing that count by the number of iterations. We considered 

p-values ≤ 0.05 as statistically significant. Mathematical analyses were 

conducted within MATLAB version R2019b (The Mathworks, Natick, MA, USA). 

8.2.7 Between group contrasts 

Based on the ‘mosaic’ approach, a one-way, six-level analysis of 

variance (ANOVA) was conducted to ascertain differences among means of 

whole-brain thin-patch-fractions between the clinical groups. Based on the 

‘standard’ approach, the means of raw CT values were also compared with 

the inclusion of age and gender as covariates (ANCOVA), since, as opposed to 

the mosaic approach, these are not inherently accounted for. As the 

ANOVA/ANCOVA revealed statistically significant effects, post-hoc testing was 

conducted. Tukey’s honestly significant difference testing (HSD) using type III 

errors were utilised for pairwise comparisons. For post-hoc testing, age was 

converted into a categorical variable by assigning each patient to one of six 

separate age groups, since only categorical confounders can be accounted for 

in Tukey HSD. All statistical analyses were conducted within RStudio (version 

1.3.1093, R Core Team, R Foundation for Statistical Computing, Vienna, 

Austria).  
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8.2.8 Region-of-interest statistics 

To further characterise regional disease-burden, we calculated 

fractional thin-patch-counts for four large regions of interest (ROIs): motor 

cortex (i.e. pre-/paracentral gyri), parietal, temporal and frontal cortices. The 

1000-patch mosaic-parcellation was overlaid the anatomically-defined 

Desikan-Killiany atlas resulting in 122 mosaics in the motor, 185 in the 

parietal, 150 in the temporal and 200 in the frontal cortices. For each patient, 

we calculated the fraction of atrophic mosaics, and averaged that fraction 

across subjects in each clinical subgroup. To highlight the preferential 

involvement of main brain regions in each phenotype, we generated radar 

plots in which whole-brain fractional thin-patch-counts were also 

incorporated. Regional radar plots were also generated to characterise 

regional involvement in individual patients. 

8.3 Results 

Standard cortical thickness analyses confirmed subgroup-specific 

patterns of cortical atrophy consistent with the clinical diagnosis (Figure 17). 

The ‘mosaic-based’ approach has successfully generated individual atrophy 

maps for each patient with reference to controls (Figure 18). Group-level 

observations could also be inferred from the ‘mosaic-based’ approach 

following permutation testing (Figure 19). These results were anatomically 

consistent with the outputs of the ‘standard approach’ (Figure 17). Group-

level traits deduced from the ‘mosaic-based’ approach produced more focal 

and better demarcated atrophy maps than those generated by the standard 

approach. This is best demonstrated by the C9+ALS-FTD group where atrophy 

is not just more widespread than the C9–ALS-FTD group, but the precentral 
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gyrus is more affected. Cortical atrophy patterns derived from the ‘mosaic-

approach’ are also more focal and less noisy in the nfvPPA group than the in 

the maps generated by the standard approach.
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Figure 17: ‘Standard’ cortical thickness analyses 

 
’Standard’ cortical thickness analyses using voxelwise permutation testing, corrected for age and gender; family-wise error corrected p-maps are presented for the six clinical groups with reference to 
healthy controls. NCI: ALS patients with no cognitive impairment, C9+: ALS-FTD patients with C9orf72 hexanucleotide expansions, C9-: ALS-FTD patients without C9orf72 hexanucleotide expansions,  

bvFTD: behavioural variant FTD, nfvPPA: non-fluent variant primary progressive aphasia, svPPA: semantic variant primary progressive aphasia 
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Figure 18:  'Mosaic-based' individualised brain atrophy maps 

 

Individual data interpretation in single patients using the ‘mosaic’ pipeline; representative examples are shown from each clinical groups. Blue colour indicates cortical thinning with respect to 
demographically matched controls. Radar charts indicate the fraction of affected ‘mosaics’ in frontal, parietal, temporal and motor cortices as well as over the entire cortex.  

NCI: ALS patients with no cognitive impairment, C9+: ALS-FTD patients with C9orf72 hexanucleotide expansions, C9-: ALS-FTD patients without C9orf72 hexanucleotide expansions,  
bvFTD: behavioural variant FTD, nfvPPA: non-fluent variant primary progressive aphasia, svPPA: semantic variant primary progressive aphasia
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Figure 19: 'Mosaic-based' group-level brain atrophy maps 

 

Inferential statistics; group-level atrophy patterns derived from the ‘mosaic’ approach. Family-wise error-corrected p-maps are presented at p<.05. For svPPA a threshold of p<.06 is shown.  
NCI: ALS patients with no cognitive impairment, C9+: ALS-FTD patients with C9orf72 hexanucleotide expansions, C9-: ALS-FTD patients without C9orf72 hexanucleotide expansions,  

bvFTD: behavioural variant FTD, nfvPPA: non-fluent variant primary progressive aphasia, svPPA: semantic variant primary progressive aphasia 
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Both the ‘mosaic’ and the ‘standard’ approach indicated intergroup 

differences (Figure 20a/ Figure 20c) (mosaic approach: F(5) = 14.86, p = 8.73e-

11; standard approach: F(5) = 14.89, p = 9.50e-11). Post-hoc testing revealed 

that least affected study group was ALS-nci compared to all the other 

diagnostic categories. (Figure 20b) ALS-nci vs. C9–(0.202 +/– 0.132), padj = 

1.76e-04; ALS-nci vs. C9+(0.214 +/– 0.100), padj = 2.54e-05; ALS-nci vs. bvFTD 

(0.208 +/– 0.076), padj = 2.01e-02; ALS-nci vs. nfvPPA (0.321 +/– 0.121), padj < 

0.0001. The same pattern was observed for the standard approach (Figure 

20d), where the ALS-nci group exhibited higher CT in the pairwise 

comparisons than all other groups: ALS-nci vs. C9– (2.24 mm +/–0.11 mm), 

padj = 1.85e-04; ALS-nci vs. C9+ (2.23 mm +/–0.10 mm), padj = 2.86e-05; ALS-nci 

vs. bvFTD (2.22 mm +/–0.09 mm), padj = 4.30e-03; ALS-nci vs. nfvPPA (2.13 mm 

+/–0.11 mm), padj < 0.0001; ALS-nci vs. svPPA (2.17 mm +/–0.07 mm), padj = 

1.61e-02.  In contrast, the most affected clinical group was nfvPPA, where the 

mean thin-patch-count fraction was not only higher than that of the ALS-nci 

group, but also the C9–ALSFTD (padj = 9.45e-03) and the C9+ALSFTD (padj = 

2.80e-02). Again, this pattern was mirrored by the standard approach, where 

the ALS-nci group not only showed higher mean values than the nfvPPA 

group, but just as in the mosaic approach, also the C9–ALSFTD (padj = 1.72e-

02) and the C9+ALSFTD (padj = 4.66e-02) groups. 

Our region-of-interest statistics evaluated thin-patch-count fraction 

per ‘ROI’ (Figure 21a) and confirmed the preferential involvement of ROIs in 

the study groups (Figure 21b). The most anatomically widespread disease-

burden was detected in nfvPPA (largest radius), the least pathology in ALS-nci 

(smallest radius) and the most focal involvement in svPPA (temporal cortex).  
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Figure 20: A comparison of 'standard-' and 'mosaic-approach' group profiles 

 

The comparison of group profiles; distribution of the number of thin patches derived from the ‘mosaic approach’ (a) and cortical thickness values as calculated by the ‘standard approach’ (c). Group 

differences in the number of thin patches (b) and mean cortical thickness (d). * indicates post hoc intergroup difference at padj ≤ 0.05, (**) at padj ≤ 0.001 following Tukey HSD testing. The widths of box plots 

indicate sample size and error bars represent 1.5 times the interquartile range. NCI: ALS patients with no cognitive impairment, C9+ALS-FTD patients with C9orf72 hexanucleotide expansions, C9-ALS-FTD 

patients without C9orf72 hexanucleotide expansions, bvFTD: behavioural variant FTD, nfvPPA: non-fluent variant primary progressive aphasia, svPPA: semantic variant primary progressive aphasia.
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Figure 21: Regional disease burden in frontotemporal dementia 
 

 
 
 
Regional disease burden; cortical thinning was further evaluated in four atlas-defined regions-of-interest 

(ROIs) in the motor (blue), parietal (yellow), temporal (red) and frontal (green) cortices and over the 
entire cerebral cortex (a). The fraction of atrophic ‘mosaics’ was calculated in each patient within each 
ROI with respect to the total number of mosaics comprising the given ROI. The distribution of disease 

burden in the patient groups is presented as radar charts (b). NCI: ALS patients with no cognitive 
impairment, C9+: ALS-FTD patients with C9orf72 hexanucleotide expansions, C9-: ALS-FTD patients 

without C9orf72 hexanucleotide expansions, bvFTD: behavioural variant FTD, nfvPPA: non-fluent variant 
primary progressive aphasia, svPPA: semantic variant primary progressive aphasia   
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8.4 Discussion  

Our findings demonstrate the feasibility of interpreting single T1-

weighted images from individual patients to generate maps of atrophy. We 

have shown that cortical regions can be successfully categorised as atrophic or 

unaffected in single subjects with respect to a databank of controls. A z-score 

based approach not only enables the appraisal of cortical disease-burden in 

individual-subjects, but group-level patterns may also be inferred. The output 

maps of the proposed ‘mosaic’ approach are anatomically concordant with 

gold standard cortical thickness analyses. The topography of cortical thinning 

can be reported visually, numerically and in an ROI-based representation at 

both individual- and group-level. The pipeline is based on quantitative cortical 

thickness measurements, an atlas-based parcellation and is fully observer 

independent. In its current form it is computationally demanding, but all the 

mathematical steps utilised could be integrated into a single computer script 

and run either as a cloud-based solution or installed locally on the MR 

platform or data server.  

In this paper we have demonstrated the utility of this approach in FTD 

phenotypes, but this method could potentially also be utilised in 

neurodegenerative conditions where the ascertainment of cortical atrophy 

patterns is clinically relevant 272, 441, 488, 493, 861. The technique relies on the 

binary labelling of cortical regions as ‘atrophic’ or ‘normal’. This is 

fundamentally a reductionist approach, but given the very high number of 

cortical regions (mosaics), it is a successful strategy as demonstrated by the 

detection of confluent cortical areas. The generation of putative atrophy maps 

provides an instant representation of the anatomical expansion, focality and 
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lobar predominance of disease burden. These colour coded maps are 

potentially useful to illustrate affected regions to patients, caregivers and 

members of the multidisciplinary team. This starkly contrasts with the current 

practice of pointing at presumed regions of atrophy on black and white 2D 

images which are difficult to decipher by laypeople 833. The z-score derived, 

‘mosaic’ method may not only be applied to those with an established 

diagnosis, but also to those with a suspected diagnosis or pre-symptomatic 

mutation carriers to characterise disease burden distribution.  

In a clinical setting, progressive frontotemporal pathology is often 

monitored by validated neuropsychological tests 496, 847, 862. Cognitive 

assessment however may be particularly challenging in certain FTD 

phenotypes, especially in ALS-FTD where motor disability and dysarthria may 

preclude the use of certain tests 500, 668, 670. In other FTD phenotypes, 

performance on neuropsychological testing may be confounded by mood, 

apathy, cognitive reserve and practice-effects which highlight the role of 

neuroimaging in tracking progressive changes 229, 516.  

Quantitative cortical thickness mapping may also give additional 

reassurance to those who fear a particular diagnosis despite scoring high on 

neuropsychological tests 637. This is often a significant source of anxiety for 

patients, particularly for those who have first-hand witnessed a family 

member or close friend carrying a certain a diagnosis. Immediate answers 

would provide early reassurance, alleviating the sense of heightened stress 

and anxiety. The implementation of this method may be relatively 

straightforward as most patients undergo a routine MRI brain scan as part of 

the current diagnostic pathway  833.  
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 Despite the clinical rationale to devise such frameworks, our study has 

a number of limitations. The sample size of the various patient groups in this 

pilot study is relatively small necessitating validation in larger external 

datasets. All patients in our study had an established diagnosis; thus, the 

sensitivity of this method needs to be further evaluated in those with a 

suspected diagnosis, early-stage disease or in asymptomatic mutation carriers 

154, 155, 665. Moreover, only grey matter analyses were conducted, despite the 

contribution of white matter pathology to the clinical manifestations of these 

phenotypes 50, 433, 663, 863, 864. Finally, while our approach provides 

individualised atrophy maps, supervised and unsupervised machine learning 

approaches offer direct individual patient categorisation into diagnostic and 

prognostic groups 56, 57, 60, 157, 865.  

We envisage future applications for this methodological approach in 

both clinical practice and potentially in clinical trials. Consecutive MR datasets 

could be compared to the patients’ initial scan; allowing for the objective 

measurement of disease-burden accumulation and the evaluation of 

progression rates 145, 172, 866. Alternative imaging metrics such as spinal cord 

measures, network integrity indices, white matter diffusivity parameters or 

subcortical grey matter metrics could also be readily investigated in a similar 

z-score based framework 231, 249, 256, 491, 671. Future applications would require 

the validation of our findings in large multicentre studies, ideally incorporating 

diverse patient populations across a variety of neurodegenerative disorders.  

8.5 Conclusions 

Our preliminary findings indicate that T1-weighted MRI data from 

individual patients may be meaningfully interpreted and maps of cortical 



 

 259 

atrophy can be readily generated. The outputs of our analyses are 

anatomically analogous with gold standard methods. This is a promising 

approach to interpret single subject scans with viable clinical and clinical trial 

utility. 
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9 White matter microstructure alterations in 

frontotemporal dementia: phenotype-associated 

signatures and single-subject interpretation 

9.1 Introduction 

White matter changes in frontotemporal dementia (FTD) have been 

extensively studied and both clinical subtypes 13, 14, 16, 36, 867, 868 and genotypes 

21, 140, 150 have been linked to relatively specific white matter signatures. The 

most commonly utilised white matter technique is diffusion tensor imaging 

(DTI), but a variety of non-Gaussian techniques such as diffusion kurtosis 

imaging (DKI), neurite orientation dispersion and density imaging (NODDI) 

have also been successfully utilised. 200 White matter (WM) alterations in FTD 

can already be detected in the presymptomatic phase of the disease and 

white matter alterations are relatively marked by the time the diagnosis can 

be established.200 WM changes can also be readily tracked longitudinally 

across multiple timepoints to appraise the rate of progression and patterns of 

anatomical propagation. A shortcoming of descriptive imaging studies in FTD 

is that often only group-level inferences are presented i.e. shared patterns of 

white matter disease burden in specific phenotypes or genotypes. The 

demands of clinical imaging differ significantly from the deliverables of 

academic radiology. 834 The emphasis in the clinical setting is the accurate 

categorisation of a suspected patient into a diagnostic subgroup, the 

evaluation of an asymptomatic mutation carrier with regards to 

presymptomatic disease burden, or the follow-up of a specific patient with an 

established diagnosis to verify if further pathology has been accrued. 154, 172 
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The gap between group-level imaging and single-subject imaging is 

considerable in terms of practical utility, methodological challenges, and 

academic relevance. 670 While patterns of grey matter atrophy can be 

assessed in a variety of ways, the interpretation of single subject white matter 

profiles is particularly challenging. The visual inspection of FLAIR and T2-

weighted images offers limited information and the visual review of DTI data 

only permits the appreciation of movement, susceptibility or eddy-current 

related artefacts. In current clinical practice, the primary role of MR imaging is 

the exclusion of neoplastic, paraneoplastic, inflammatory and structural 

mimics rather than the confirmation of FTD-associated changes. Existing 

frameworks for single-subject categorisation rely on various machine learning 

algorithms to classify single-individuals into groups. A variety of supervised 

and unsupervised methods have been previously implemented across the 

spectrum of ALS-FTD.  Models such as support-vector machines, decision 

trees, neural networks, discriminant function analyses have been applied to 

imaging datasets with varying accuracy. 55-57, 59, 62-64, 67, 68, 75, 79, 80, 85, 88, 90, 100, 114, 

115, 122, 130, 869 A common application of these approaches is the categorisation 

of patients into FTD versus AD diagnostic groups. 53, 54, 65, 92-94, 99, 107, 123, 131 A 

key barrier to the development of successful machine learning algorithms in 

neurodegenerative conditions is the scarcity of uniformly acquired training 

data, especially in low-incidence phenotypes such as ALS-FTD, PLS-FTD, post-

polio syndrome etc. 260, 472, 751, 774, 870-876 Accordingly, the objective of this study 

is piloting an alternative quantitative white matter rating framework for 

single-subject diffusion data interpretation based on tractwise z-scoring of 

diffusivity metrics with reference to demographically-matched controls.  
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9.2 Methods 

9.2.1 Participants 

A total of 160 subjects were enrolled in this study. Sixty patients were 

included from across the clinical spectrum of FTD: 7 patients with behavioural 

variant FTD (bvFTD, 4 males, mean age = 60.71 yrs +/– 3.30 yrs), 9 patients 

with non-fluent variant primary progressive aphasia (nfvPPA, 5 males, mean 

age = 62.22 yrs +/– 3.03 yrs), 3 patients with semantic-variant PPA (svPPA, 2 

males, mean age = 61.67 yrs +/– 6.43 yrs), 21 patients with ALS-FTD carrying 

hexanucleotide repeat expansions in C9orf72 (ALSFTD-C9+, 13 males, mean 

age = 58.95 yrs +/– 9.95 yrs), and 20 ALS-FTD patients who tested negative for 

C9orf72 (ALSFTD-C9-, 13 males, mean age = 60.65 yrs +/– 8.73 yrs). The 

imaging profiles of patients were interpreted based on radiological data from 

100 healthy controls (HC, 50 males, mean age = 58.95 yrs +/– 9.95 yrs). 

Patients were diagnosed according to the Rascovsky73 and El Escorial 877 

criteria. The z-scoring strategy implemented in this study relies on the rating 

of single subjects’ data with respect to a demographically-matched control 

population. Accordingly, control selection for normative data generation was 

defined based on age to ensure age-matching between each male / female 

patient and the corresponding male / female control group. Two-sample t-

tests were performed to verify successful age-matching. Sex-matching was 

ensured by contrasting each male / female patient only to male / female 

controls. Given the available number of total controls, only one male and one 

female control group were defined, each of size n = 50. Relevant demographic 

data are presented in Table 27. Methods for ascertaining GGGGCC 

hexanucleotide repeat expansion in C9orf72 by repeat-primed PCR have been 
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described previously, 801, 878 expansions longer than 30 hexanucleotide repeats 

were considered pathological.
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Table 27: Demographic data of study participants 
 

 

 

ALSFTDC9-: ALS-FTD patients without C9orf72 hexanucleotide expansions, ALSFTDC9+: ALS-FTD patients with C9orf72 hexanucleotide expansions, bvFTD: behavioural variant FTD, DOF: degrees of freedom, 
HC: healthy controls, nfvPPA: non-fluent variant primary progressive aphasia, SD: standard deviation, svPPA: semantic variant primary progressive aphasia

Patient group Male Female 

 Mean age (SD) [years],  

sample size (n) 

t-score from two-sample t-test (DOF),  

p-value [HC vs. patients] 

Mean age (SD) [years], 

sample size (n) 

t-score from two-sample t-test (DOF),  

p-value [HC vs. patients] 

ALSFTD-C9+ 55.92 (8.11), 

n = 13 

t(61) = 1.73,  

p = 0.09 

58.50 (9.61), 

n = 8 

t(56) = -0.42,  

p = 0.68 

ALSFTD-C9- 62.00 (9.11), 

n = 13 

t(61) = –0.35,  

p = 0.73 

58.14 (7.98), 

n = 7 

t(55) = –0.31,  

p = 0.76 

bvFTD 59.25 (3.50), 

n = 4 

t(52) = 0.35,  

p = 0.73 

62.67 (2.98), 

n = 3 

t(51) = –0.99,  

p = 0.33 

nfvPPA 63.60 (2.97), 

n = 5 

t(53) = –0.60,  

p = 0.55 

60.50 (3.42), 

n = 4 

t(52) = –0.71,  

p = 0.48 

svPPA 58.00 (1.41), 

n = 2 

t(50) = 0.43,  

p = 0.67 

69.00 (0.00), 

n = 1 

t(49) = –1.21,  

p = 0.23 

HC 60.96 (9.68), 

n = 50 

56.94 (9.91), 

n = 50 
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9.2.2 Data acquisition 

A spin-echo echo planar imaging (SE-EPI) pulse sequence with a 32-

direction Stejskal-Tanner diffusion encoding scheme was used to acquire 

diffusion tensor imaging (DTI) data on a 3 Tesla Philips Achieva Magnetic 

resonance (MR) platform. The key parameters included: TR/TE = 7639 / 59 ms, 

b-values = 0, 1100 s/mm2, FOV = 245 x 245 x 150 mm, spatial resolution = 2.5 

mm3, 60 axial slices with no interslice gaps, SENSE factor = 2.5, dynamic 

stabilisation and spectral presaturation with inversion recovery (SPIR) fat 

suppression. For the visual assessment of co-morbid white matter pathology, 

FLAIR images were also reviewed of each participant. FLAIR data were 

acquired in the axial orientation using an Inversion Recovery Turbo Spin Echo 

(IR-TSE) sequence:  FOV = 230 x 183 x 150 mm, spatial resolution = 0.65 x 0.87 

x 4 mm, TR/TE = 11000 / 125 ms, TI = 2800 ms, 120° refocusing pulse, with 

flow compensation and motion smoothing and a saturation slab covering the 

neck region.  T1-weighted (T1w) images were acquired with a 3D Inversion 

Recovery prepared Spoiled Gradient Recalled echo (IR-SPGR) sequence with a 

field-of-view (FOV) of 256 x 256 x 160 mm, spatial resolution of 1 mm3, TR/TE 

= 8.5/3.9 ms, TI =1060 ms,  flip angle = 8°, SENSE factor = 1.5. 

9.2.3 Diffusion-weighted data processing 

Diffusion-weighted (DW) data were pre-processed within MRtrix3, 

including noise removal and removal of Gibb’s Ringing Artifacts. The topup-

eddy algorithm was utilised for corrections for eddy-induced distortions and 

subject movements as implemented in FSL. Bias-corrections was performed 

with the ANTs1.9 N4 method. Diffusion tensors were fitted within MRtrix3 

and maps of fractional anisotropy (FA), and radial diffusivity (RD) were 
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generated. Anatomical images were pre-processed using FMRIB’s FSL6.0’s fsl-

anat algorithm, including brain-extraction and biasfield-corrections. 

9.2.4 Tract segmentation 

As the main objective of the study was the detection of WM 

microstructure integrity changes in individual patients, our analyses were 

restricted to regions of FA reductions and foci of increased RD as these 

diffusivity shifts indicate pathologic processes. Tract-wise probabilities of 

presumed pathology in individual subjects were estimated based on reference 

normative data. First, each patient’s and control’s DW data were segmented 

into 50 WM tracts using a neural-network based algorithm, TractSeg, which, 

as opposed to atlas-based approaches, does not assume a common anatomy 

between subjects and relies on individual WM fibre bundles anatomy. Peaks 

of the spherical harmonic function were extracted at each voxel to inform 

TractSeg, which were calculated from fitting voxelwise constrained spherical 

deconvolution (CSD). CSD is an alternative to the tensor model to perform 

tractography, which has been shown to outperform the tensor model in 

regions of crossing fibres, among others. Response functions were estimated 

using the dhollander method as implemented in MRtrix3 from which fibre 

orientation distributions (fODF) could be calculated. Given that DW shells 

were acquired (b = 1000 and b = 0), a multi-shell approach could be 

implemented. Resulting fODFs were normalised according to Raffelt et al.

879

; 

spherical harmonic peaks were retrieved from the normalised measures, 

which then served as input values into TractSeg.   
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9.2.5 z-score based tract integrity evaluation  

The concept behind the z-scored-based strategy is the ascertainment 

of affected fibre bundles in individual patients. WM tracts were rated in 

individual patients with reference to age-/ sex-matched HCs. Only tracts 

exhibiting significant FA reductions and increased RD were considered 

‘affected’. First, subject-specific FA and RD maps were created for the 

segmented tracts by inputting each subjects’ individual FA / RD map into 

TractSeg and averaging the estimated values across each tract. Normative 

data from HCs were z-scored and patient data were normalised with respect 

to the relevant control group. Single patients’ tract profiles were then 

contrasted to normative data using nonparametric statistics. First, the number 

of HCs exhibiting lower FA and higher RD than the observed value in the 

patient was determined for each patient and each tract. This value was then 

divided by the number of HCs (i.e. 50 both for males and females) to obtain p-

values. Given that two tests were run (decreased FA / increased RD), tracts 

with p < 0.025 were considered significantly different.  

Finally, group-level statistics were also derived from the z-score-based 

strategy to aid cross-validation against the standard approach. We tested 

which tracts were preferentially affected across the entire patient group. To 

quantify this probability, probability distributions were first created reflecting 

the number of false positives across the patient group (i.e. p-values of < 0.025 

provided a random event). This was modelled as a Binomial process: 

1. X ~ B (n, p), 

where X is the random variable (a scalar), n is the number of correctly 

segmented tracts in the control distribution and p is the probability of 
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assigning significance to a tract’s p-value (in our case 0.025). This process was 

repeated 100,000 times to provide a dense probability distribution.  p-values 

were then derived for each tract by counting how many values in the null 

distribution exceeded the sum of significant observations across the patient 

group and dividing that count by the number of iterations. To match the 

threshold used in the validation arm of the study, the most affected tracts 

were identified using a relatively stringent alpha-threshold of p < 0.01.  

9.2.6 Cross-validation by standard tract-based statistics 

To validate the z-score-based approach, the group-level outputs were 

compared to those of an established analysis pipeline, FMRIB FSL’s tract-

based spatial statistics (TBSS). The voxelwise diffusivity profile of the five FTD 

group was contrasted to controls. In accordance with FSL’s TBSS 

recommendations, processing included outliner removal, non-linear 

registration to the FMRIB58FA template and application of that 

transformation to align all subjects’ FA / RD images to the MNI152 1mm 

standard space. Voxelwise group-comparisons were computed using FSL’s 

randomise algorithm, a non-parametric permutation testing scheme, with 2D-

optimised threshold-free cluster enhancement (TFCE) to control for the 

family-wise error rate (FWER). To highlight the most pertinent WM changes, a 

stringent alpha-threshold of p
FWER 

< 0.01 was applied. 

9.3 Results 

9.3.1 Demographics 

Two-sample t-tests were run between each male / female patient 

group vs. the male / female control groups to confirm age-matching. No 

statistical difference was found between any of the patient and control 
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groups suggesting appropriate age-matching. Relevant descriptive and 

inferential statistics are provided in Table 27. 

9.3.2 z-score-based subject-level inferences 

The z-score-based strategy has successfully captured relevant white 

matter pathology in individual subjects in each of the 60 FTD patients. A dual-

output scheme was utilised, affected white matter tracts can be depicted in 

3D and a text file was also generated listing the affected tract with the 

relevant z- and p-values. To showcase the potential utility of single-subject 

white matter profile interpretation we provide representative individual 

examples from the five patient groups (Figure 22). As described in the 

methods section, the z-score-based strategy also permits the description of 

group-level findings. An overview of affected tracts at a group-level is 

provided in Table 28 and Table 29 for each FTD cohort. More tracts were 

detected exhibiting increased RD than tracts with FA reductions suggesting 

that RD may be more sensitive to capture relevant white matter 

degeneration. Our approach detected left-hemisphere dominant changes in 

language variant phenotypes (nfvPPA and svPPA) compared to the relatively 

symmetric pathology in bvFTD and ALS-FTD groups. Relative sparing of 

posterior white matter bundles was observed across the entire spectrum of 

subgroups. 
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Figure 22: White matter alterations in individual FTD subjects 

 

 

White matter alterations in individual subjects based on single DTI datasets and normative data. 

Illustrative outputs from single patients with behavioural variant FTD (bvFTD), ALS-FTD patients without 

C9orf72 hexanucleotide expansions (ALSFTD-C9-), ALS-FTD patients with C9orf72 hexanucleotide 

expansions (ALSFTD-C9+), semantic variant primary progressive aphasia (svPPA) and non-fluent variant 

primary progressive aphasia (nfvPPA). 
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Table 28: Affected white matter tracts at group-level in ALS-FTD 

ALS-FTD with GGGGCC hexanucleotide repeat expansions in C9orf72 (C9orf72+) 
FA reductions  Increased RD  

 
Increased RD (continued) 

Tract name pFWER Tract name 
 

pFWER Tract name pFWER 

Arcuate fascicle right 0.0011 Arcuate fascicle left 0.0001 Optic radiation 

right 

<0.0001 

Corpus callosum: 

Rostrum 

0.0096 Arcuate fascicle 

right 

<0.0001 Parieto-occipital 

pontine left 

<0.0001 

Corpus callosum: 

Genu 

0.0009 Corpus callosum: 

Rostrum 

<0.0001 Parieto-occipital 

pontine left 

0.0008 

Corpus callosum: 

Anterior midbody 

0.0001 Corpus callosum: 

Genu 

0.0010 Superior cerebellar 

peduncle right 

0.0008 

Corpus callosum: 

Posterior midbody 

<0.0001 Corpus callosum: 

Rostral body 

0.0029 Sup. longitudinal 

fascicle I left 

<0.0001 

Corpus callosum: 

Isthmus 

0.0011 Corpus callosum: 

Anterior midbody 

<0.0001 Sup. longitudinal 

fascicle I right 

0.0001 

Corpus callosum: 

Splenium 

<0.0001 Corpus callosum: 

Posterior midbody 

0.0001 Sup. longitudinal 

fascicle II left 

0.0012 

Cingulum left 0.0012 Corpus callosum: 

Isthmus 

0.0011 Sup. longitudinal 

fascicle II right 

0.0009 

Cingulum right 0.0013 Corpus callosum: 

Splenium 

0.0010 Sup. longitudinal 

fascicle III left 

0.0084 

Corticospinal tract 

left 

0.0073 Cingulum left <0.0001 Sup. longitudinal 

fascicle III right 

0.0001 

Corticospinal tract 

right 

<0.0001 Cingulum right 0.0013 Sup. thalamic 

radiation left 

<0.0001 

Fronto-pontine tract 

right 

0.0082 Corticospinal tract 

left 

<0.0001 Sup. thalamic 

radiation right 

<0.0001 

Optic radiation left 0.0008 Corticospinal tract 

right 

<0.0001 Uncinate fascicle 

left 

<0.0001 

Parieto-occipital 

pontine right 

0.0095 Fronto-pontine 

tract left 

0.0085 Uncinate fascicle 

right 

0.0004 

Superior longitudinal 

fascicle I left 

0.0001 Fronto-pontine 

tract right 

0.0082 Thalamo-parietal 

right 

0.0001 

Superior longitudinal 

fascicle I right 

<0.0001 Inf. cerebellar 

peduncle left 

0.0001 Thalamo-occipital 

left 

<0.0001 

Superior longitudinal 

fascicle II left 

0.0010 Inf. cerebellar 

peduncle right 

0.0053 Thalamo-occipital 

right 

<0.0001 

Superior longitudinal 

fascicle II right 

0.0007 Inf. occipito-frontal 

fascicle left 

0.0001 Striato-fronto-

orbital right 

<0.0001 

Superior longitudinal 

fascicle III right 

<0.0001 Inf. occipito-frontal 

fascicle right 

<0.0001 Right  

Superior thalamic 

radiation right 

0.0005 Inf. longitudinal 

fascicle left 

<0.0001   

Thalamo-occipital left 0.0009 Inf. longitudinal 

fascicle right 

<0.0001   

Striato-fronto-orbital 

right 

0.0095 Optic radiation left 

 

 

 

<0.0001   



 

 272 

ALS-FTD without GGGGCC hexanucleotide repeat expansions in C9orf72 (C9orf72-) 
FA reductions  
 

Increased RD  Increased RD (continued) 

Tract name 
 

pFWER Tract name pFWER Tract name pFWER 

Arcuate fascicle left 0.0097 Arcuate fascicle left 0.0001 Parieto-occipital 

pontine right 

0.0055 

Corpus callosum: 

Genu 

0.0007 Arcuate fascicle 

right 

0.0009 Sup. cerebellar 

peduncle left 

0.0006 

Corpus callosum: 

Splenium 

0.0005 Corpus callosum: 

Rostrum 

<0.0001 Sup. cerebellar 

peduncle right 

0.0059 

Cingulum left 0.0009 Corpus callosum: 

Genu 

<0.0001 Sup. longitudinal 

fascicle I left 

<0.0001 

Corticospinal tract 

right 

0.0002 Corpus callosum: 

Rostral body 

0.0013 Sup. longitudinal 

fascicle I right 

0.0007 

Inferior occipito-

frontal fascicle right 

0.0068 Corpus callosum: 

Isthmus 

<0.0001 Sup. longitudinal 

fascicle II left 

<0.0001 

Middle cerebellar 

peduncle 

0.0068 Corpus callosum: 

Splenium 

0.0080 Sup. longitudinal 

fascicle III left 

0.0060 

Superior longitudinal 

fascicle III right 

0.0072 Cingulum left 0.0001 Sup. longitudinal 

fascicle III right 

0.0067 

  Cingulum right 0.0070 Sup. thalamic 

radiation left 

<0.0001 

  Corticospinal tract 

left 

<0.0001 Sup. thalamic 

radiation right 

0.0047 

  Corticospinal tract 

right 

0.0002 Uncinate fascicle 

left 

<0.0001 

  Fronto-pontine 

tract right 

0.0003 Uncinate fascicle 

right 

<0.0001 

  Inf. cerebellar 

peduncle left 

0.0071 Thalamo-parietal 

left 

0.0064 

  Inf. cerebellar 

peduncle right 

0.0075 Thalamo-occipital 

right 

0.0004 

  Inf. occipito-frontal 

fasc. right 

0.0005 Striato-fronto-

orbital left 

0.0069 

  Middle cerebellar 

peduncle 

0.0067 Striato-premotor 

left 

0.0060 

  Optic radiation 

right 

0.0004   
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Table 29: Affected white matter tracts at group-level in bvFTD, nfvPPA, svPPA 

Decreased FA  Increased RD  
Tract name pFWER Tract name pFWER 
bvFTD 
Corpus callosum: Genu <0.0001 Arcuate fascicle left 0.0004 

  Corpus callosum: Rostrum <0.0001 

  Corpus callosum: Genu <0.0001 

  Corticospinal tract right 0.0005 

  Fronto-pontine tract right 0.0003 

  Inferior occipito-frontal fascicle right 0.0006 

  Superior thalamic radiation left 0.0002 

  Superior thalamic radiation right 0.0006 

  Uncinate fascicle right 0.0006 

  Thalamo-premotor right 0.0006 

  Striato-fronto-orbital left 0.0005 

  Striato-fronto-orbital right 0.0005 

  Striato-premotor right 0.0005 

nfvPPA 
Corpus callosum: Genu <0.0001 Arcuate fascicle left <0.0001 

Cingulum left 0.0014 Arcuate fascicle right 0.0014 

Superior longitudinal fascicle I left 0.0008 Anterior thalamic radiation left 0.0005 

Superior longitudinal fascicle II left 0.0006 Anterior thalamic radiation right <0.0001 

Thalamo-premotor left 0.0059 Corpus callosum: Rostrum 0.0001 

  Corpus callosum: Genu <0.0001 

  Corpus callosum: Rostral body 0.0018 

  Corpus callosum: Post. midbody 0.0007 

  Cingulum left <0.0001 

  Cingulum right 0.0011 

  Fronto-pontine tract left 0.0004 

  Fronto-pontine tract right 0.0005 

  Inf. occipito-frontal fascicle left <0.0001 

  Inf. occipito-frontal fascicle right <0.0001 

  Inf. longitudinal fascicle right 0.0011 

  Optic radiation left <0.0001 

  Optic radiation right 0.0001 

  Sup. longitudinal fascicle I left <0.0001 

  Sup. longitudinal fascicle I right 0.0001 

  Sup. longitudinal fascicle II left <0.0001 

  Sup. longitudinal fascicle II right 0.0008 

  Sup. longitudinal fascicle III left <0.0001 

  Sup. longitudinal fascicle III right 0.0012 

  Uncinate fascicle left 0.0007 

  Thalamo-premotor left 0.0002 

  Thalamo-parietal left 0.0013 

  Thalamo-parietal right 0.0001 

  Thalamo-occipital left 0.0008 

  Thalamo-occipital right 0.0001 

  Striato-fronto-orbital left <0.0001 

  Striato-fronto-orbital right 

 

<0.0001 
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Decreased FA  Increased RD 

Tract name pFWER Tract name pFWER 
svPPA 
Inferior occipito-frontal fascicle left 0.0018 Arcuate fascicle left 0.0023 

Superior longitudinal fascicle III left 0.0017 Arcuate fascicle right 0.0018 

  Corpus callosum: Rostrum 0.0019 

  Corpus callosum: Genu 0.0018 

  Corpus callosum: Isthmus 0.0020 

  Cingulum left 0.0016 

  Inf. occipito-frontal fascicle left 0.0021 

  Inf. occipito-frontal fascicle right 0.0016 

  Inf. longitudinal fascicle left 0.0007 

  Inf. longitudinal fascicle right 0.0005 

  Optic radiation left 0.0015 

  Optic radiation right 0.0018 

  Sup. longitudinal fascicle I left 0.0017 

  Sup. longitudinal fascicle I right 0.0020 

  Sup. longitudinal fascicle II left 0.0015 

  Sup. longitudinal fascicle II right 0.0019 

  Sup. longitudinal fascicle III left 0.0019 

  Sup. thalamic radiation right 0.0019 

  Uncinate fascicle left <0.0001 

  Thalamo-parietal left 0.0017 

  Thalamo-parietal right 0.0018 

  Thalamo-occipital left 0.0018 

  Thalamo-occipital right 0.0019 

  Striato-fronto-orbital left 0.0019 

  Striato-fronto-orbital right 0.0019 
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9.3.3 Validation  

For validation purposes, standard TBSS analyses were performed to 

contrast each of the five FTD groups to healthy controls. Widespread, multi-

lobar FA reductions were detected in both ALS-FTD groups irrespective of 

C9orf72 status (Figure 23). Anterior frontal and left hemisphere predominant 

FA reductions were identified in the nfvPPA group.  At p < 0.01 no significant 

FA reductions were identified in the svPPA and bvFTD groups. At the same 

statistical threshold, areas of increased RD were detected in each FTD group: 

orbitofrontal and forceps minor predominant changes in bvFTD, left superior 

temporal and insular white matter alterations in svPPA, and extensive multi-

lobar white matter degeneration in nfvPPA, ALS-FTD-C9+ and ALS-FTD-C9- 

(Figure 24). While RD was more sensitive in detecting white matter pathology 

in bvFTD and svPPA, FA was more sensitive in detecting cerebellar changes in 

the two ALS-FTD groups compared to RD. Occipital involvement was relatively 

limited in the nfvPPA group.
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Figure 23: Fractional anisotropy reductions in FTD at group-level 

 

 

Fractional anisotropy (FA) reductions at group-level in patients with behavioural variant FTD (bvFTD), 

ALS-FTD patients without C9orf72 hexanucleotide expansions (ALSFTDC9-), ALS-FTD patients with 

C9orf72 hexanucleotide expansions (ALSFTDC9+), semantic variant primary progressive aphasia (svPPA) 

and non-fluent variant primary progressive aphasia (nfvPPA) compared to healthy controls at p < 0.01 

controlling for age, sex and family-wise error.
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Figure 24: Increased radial diffusivity in FTD at group-level 

 

 
Increased radial diffusivity (RD) at group-level in patients with behavioural variant FTD (bvFTD), ALS-FTD 

patients without C9orf72 hexanucleotide expansions (ALSFTDC9-), ALS-FTD patients with C9orf72 

hexanucleotide expansions (ALSFTDC9+), semantic variant primary progressive aphasia (svPPA) and non-

fluent variant primary progressive aphasia (nfvPPA) compared to healthy controls at p < 0.01 controlling 

for age, sex and family-wise error.
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9.4 Discussion 

We have successfully captured phenotype-specific white matter 

alterations in individual FTD patients using a z-scored based strategy. The 

group-level findings inferred from the trialled white matter rating scheme 

were consistent with the outputs of established pipelines. Our results indicate 

that it is feasible to interpret single DTI datasets if large reference datasets are 

available with uniform scanning parameters.  

In a clinical setting, grey matter atrophy can often be qualitatively 

appreciated in patients with FTD. 

637

 In contrast, white matter changes cannot 

be meaningfully commented upon beyond the exclusion of demyelination, 

inflammatory or vascular changes. WM changes are typically reviewed visually 

on T2w, FLAIR and DWI to make sure the suspected diagnosis is not 

confounded by coexisting vascular, inflammatory or neoplastic, or 

paraneoplastic pathology. In established cases of FTD, FLAIR and T2w images 

often look relatively normal and white matter ‘atrophy’ cannot be ascertained 

on visual inspection. While most FTD phenotypes are associated with the 

selective degeneration of specific white matter tracts, these patterns are not 

visible on standard clinical sequences. It is also noteworthy that clinical pulse-

sequences are typically optimised for speed of acquisition, often include slice 

gaps and operate with large voxel sizes, especially for FLAIR and T2w.  

In a research setting, imaging traits are typically derived from 

contrasting a group of patients with a specific clinical profile or a specific 

mutation to a group of demographically-matched controls.  In bvFTD, 

progressive WM changes have been described in the uncinate fasciculus, 

cingulum and corpus callosum; and to a lesser extent in the anterior thalamic 
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radiation, fornix and superior and inferior longitudinal fasciculus in both 

hemispheres 

13, 14, 16, 36, 867

. Studies in nfvPPA captured preferential left-sided 

changes in the anterior thalamic radiation, uncinate and superior longitudinal 

fasciculus 

13, 14, 868

, which become more prominent in the right hemisphere 

over time 

867

. In svPPA, left-hemispheric uncinate, arcuate and inferior 

longitudinal fasciculus 

13, 14, 16, 868

 degeneration has been consistently detected 

which remain relatively focal on longitudinal follow-up with some interval 

involvement of right frontotemporal regions 

13, 867

. In MAPT mutation carriers, 

early parahippocampal, cingulate and uncus involvement can be detected 

21, 

140, 150

 accompanied by corpus callosum, inferior and superior longitudinal 

fasciculus and fornix degeneration 

36, 140, 150

. In association with GRN, early 

corpus callosum and internal capsule changes have been described, followed 

by left-hemisphere predominant cingulum, inferior fronto-occipital, superior- 

and inferior longitudinal fasciculus degeneration 

21, 140, 150

. C9orf72 repeats 

have been linked to corticospinal tract, corpus callosum, thalamic radiation, 

cingulum, uncinate, superior and inferior longitudinal fasciculus degeneration 

36, 150

. The imaging signatures of rare genotypes – such as TARDBP and VCP - 

are poorly characterised as these have been predominantly evaluated in 

smaller case series 

532

. 

The group comparisons of academic imaging have relatively little to 

offer, when the priority is the appraisal of cerebral pathology in individual 

patients; either in those with a suspected diagnosis, or, on follow-up of 

patients with an established diagnosis. While machine learning (ML) 

applications show promise in accurate patient categorisation, they work best 

when ample training data are available which pertains to more common 
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neurodegenerative conditions. 

157, 865

 An advantage of the presented method 

is that, contrary to ML applications, it does not impose a possible diagnostic 

label (category), but merely lists the tracts which are ‘affected’ compared to 

normative controls. This leaves the interpretation of the output text file to the 

clinicians to be judiciously integrated with clinical findings and the broader 

clinical context, family history, comorbid conditions, genetic susceptibility etc. 

As shown in Figure 22, the algorithm offers a list of affected tracts based on a 

single DWI scan which can be depicted visually if need, but the main output is 

the text file with the relevant z-scores and p-values.  

Another advantage of the approach is the detection of white matter 

abnormalities in each hemisphere separately. The laterality of findings can 

then be interpreted in single subjects based on handedness which is 

particularly important in language variant FTDs. Our findings indicate left 

hemispheric dominant WM pathology in svPPA and nfvPPA both at individual 

and group-level. This is in striking contrast to the relatively symmetric WM 

degeneration observed in ALS-FTD. Academic studies using group 

comparisons typically pool data across right- and left-handed subjects which 

makes the interpretation of the laterality of findings more challenging. The 

quantitative evaluation of single subjects has other advantages. Pooled group-

level data not only introduce undue heterogeneity in terms of handedness but 

also with regards to symptom duration and disease severity which 

undermines the value of group-level inferences and rendering them less 

pertinent to single participants. This study has exclusively focused on whiter 

matter alterations. The assessment of cortical grey matter changes has been 

previously tested in a similar framework. 

673, 880

 It is conceivable that 
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additional imaging measures, such as basal ganglia volumes normalised for 

total intracranial volume (TIV), alternative white matter metrics, metabolite 

ratios, and network coherence indices could be interpreted in a similar 

framework with reference to normative data 

231, 488, 489, 491, 493, 881

 as well as 

cord parameters in ALS-FTD cohorts. 

60, 249, 250, 665, 882

 Finally, it is plausible that 

statistical outputs from imaging modalities can be integrated into larger 

biomarker panels, which would include quantitative serum, cerebrospinal 

fluid, EEG, MEG, proteomic and neuropsychological indices. 

158, 231, 441, 491, 493, 

496, 500, 503

  While the group-level outputs of the z-scored based strategy and 

TBSS are anatomically concordant, their sensitivity in detecting WM changes 

are different. It is noteworthy that FA on TBSS does not capture WM 

degeneration in svPPA and bvFTD even at p < 0.01 using the appropriate 

covariates. Using the tract-wise approach, FA reductions are readily detected 

in the anterior corpus callosum in bvFTD and in the left inferior occipito-

frontal and left superior longitudinal fascicles in svPPA (Table 29). At an 

individual level, the z-score-based approach readily detects the degeneration 

of relevant WM tracts in these two groups, which may be ‘averaged out’ by 

less severe cases in the group comparisons (Figure 22). TBSS generates 

voxelwise statistical maps projected on a white matter skeleton which can be 

thresholded at a specific p-value, but it is typically reviewed visually i.e. 

anything below that threshold is highlighted as ‘affected’ with a colour 

spectrum map. In contrast, the text outputs from the z-score-approach offer a 

list of ‘affected tracts’ which can be ranked in order of ‘severity’ based on 

associated p-values.   
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Both the tractwise analyses and TBSS suggest that RD is more sensitive 

to detect white matter alterations in FTD.  Based on RD profiles, affected 

tracts in bvFTD include corpus callosum, corticospinal tract and a number of 

subcoritco-cortical projections such as the superior thalamic radiation, 

thalamo-premotor, and striato-premotor fibres. The involvement of the 

corticospinal tract in bvFTD is of interest as another shared feature between 

ALS and FTD. The involvement of bundles linking subcortical and cortical 

regions supports previous findings, 

247

 and highlight the contribution of 

subcortical pathology to clinical manifestations. 

669

 White matter 

degeneration in svPPA not only includes the corpus callosum, cingulum and 

arcuate degeneration, but the left-hemisphere predominant involvement of 

long association fibres and projections from the thalamus and striatum (Table 

29). The nfvPPA cohort exhibits widespread degeneration of both 

commissural and long association fibres with slight left hemispheric 

predominance in addition to thalamic and striatal projections. The C9orf72 

negative ALS-FTD cohort not only exhibits widespread white matter pathology 

in core ALS-associated regions such as the corticospinal tracts and corpus 

callosum, but in line with more recent studies, in the cerebellar peduncles, 

long association fibres, arcuate fasciculus, uncinate and cingulum 

34, 883, 884

 

(Table 28). White matter degeneration in ALS-FTD patients carrying the 

GGGGCC hexanucleotide expansion is comparable to the anatomical patterns 

observed in C9orf72 negative patients, but is more readily detected by FA 

reductions (Table 28). These observations highlight that contrary to previous 

suggestions, severe frontotemporal degeneration and subcortical involvement 

in ALS are not unique to the C9orf72 genotype.  
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In the absence of accompanying post mortem and CSF data, the 

participants of this study were merely categorised clinically. FTD phenotypes 

arise from different underlying proteinopathies; 

839, 885, 886

 ALS-FTD is primarily 

linked to pTDP-43, 

887

 svPPA is nearly always associated with underlying TDP-

43-C pathological aggregates, 

888

 nfvPPA is commonly associated with 4R tau, 

889

 and molecular findings in bvFTD are thought to be heterogeneous. 

162

 

There are a number of study limitations we need to acknowledge, chief of 

which is the limited normative data at our disposal. Larger reference datasets 

stratified for narrow age brackets would permit more precise data 

interpretation. In this pilot study, we have only evaluated two diffusivity 

indices, but other diffusivity metrics, such as AD 

142

 or non-Gaussian diffusivity 

measures 

524

, could also be incorporated in z-score models. Finally, this is 

merely a cross-sectional study to test a quantitative, single-subject data 

interpretation framework. The natural expansion of this study would be 

tracking single subjects longitudinally to test whether our approach captures 

expanding white matter pathology in single subjects over time. 

Notwithstanding these limitations, our findings indicate that our strategy 

offers valuable clinical insights in single subjects and may be potentially 

developed into a viable clinical and pharmaceutical trial applications.   

9.5 Conclusions 

Frontotemporal dementia is associated with subtype-specific white 

matter signatures and regional white matter degeneration is a key contributor 

to phenotype-defining clinical manifestations.  The early diagnosis of FTD soon 

after symptom onset is challenging, and the current clinical role of imaging is 

limited to the exclusion of alternative structural, inflammatory or neoplastic 
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pathologies. As demonstrated, carefully designed computational pipelines 

enable the interpretation of individual diffusion datasets and the 

ascertainment of anatomical patterns of white matter degeneration in vivo. 

The development, optimisation and validation of similar imaging frameworks 

that categorise individual patients based on raw MR data should be a key 

research priority. These initiatives signal a departure from describing group-

level signature, and herald a paradigm shift to precision, individualised, 

computational radiology.  
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10 A case series of semantic behavioural variant 

frontotemporal dementia 

10.1 Introduction  

Frontotemporal dementia (FTD) encompasses a wide spectrum of 

neurodegenerative disorders that may be further stratified according to 

clinical phenotype, genotype or pathology. Semantic variant primary 

progressive aphasia (svPPA) is an FTD phenotype that clinically manifests as 

anomia and impaired single-word comprehension

890

; radiologically defined by 

dominant anterior temporal lobe atrophy

890

; and pathologically characterised 

by frontotemporal lobar degeneration transactive response DNA binding 

protein 43 (FTLD-TDP-43) pathology type C in the majority of cases

724

. In 

recent times, it has become apparent that non-dominant anterior temporal 

lobe atrophy presents with a distinct clinical phenotype that initially does not 

meet the classification criteria for svPPA

890, 891

. A vast range of alternative 

nomenclature has been used to describe this entity: ‘right temporal variant 

FTD’, ‘right temporal semantic dementia’, ‘right temporal svPPA’ and ‘right 

temporal behavioural variant FTD (bvFTD)’. Clinical algorithms have been 

proposed to differentiate this presentation from other FTD phenotypes and 

other neurodegenerative disorders 

892

. A recent study outlined the 

longitudinal clinical characteristics of this cohort, proposing a dedicated 

classification criteria with streamlined nomenclature highlighting the main 

symptomatology: ‘semantic behavioural variant FTD’ (sbvFTD)

893

.  

The proposed classification criteria for sbvFTD requires at least 2 core 

criteria: loss of empathy; difficulty identifying and naming people; rigid 
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thought processes or complex compulsions; and at least 2 supportive criteria: 

object naming difficulties; spared visuospatial functions; and spared motor 

speech and phonology

893

. It may be difficult to diagnose in early disease, often 

being mistaken for psychiatric illnesses

893

. The behavioural and language 

manifestations later progress and overlap with other FTD phenotypes, 

particularly svPPA and bvFTD

894-897

. It is radiologically defined by non-

dominant anterior temporal lobe atrophy with progressive bilateral 

orbitofrontal cortex, anterior cingulate and contralateral anterior temporal 

lobe atrophy

894

. FTLD TDP-43 type C is the most commonly reported 

pathology

891, 893, 895

.  The clinical symptoms, neuropsychological and 

radiological findings of sbvFTD  are highlighted in the following case series. 

We have also included exploratory quantitative analyses of MRI brain scans of 

4 different patients with sbvFTD to illustrate the radiological findings. 

10.2 Methods 

10.2.1 Grey and white matter analyses 

In an exploratory analysis, anatomical patterns of grey and white matter 

degeneration were investigated in 4 patients with right-sided semantic 

behavioural variant frontotemporal dementia (sbvFTD) compared to fifty age-, 

sex-, education-matched healthy controls. The standard voxel-based 

morphometry (VBM) and tract-based spatial statistics (TBSS) pipelines of the 

FMRIB’s software library were used as described previously. Resulting 

statistical maps were thresholded at p < 0.05, TFCE corrected and adjusted for 

age, sex, education and total intracranial volumes. 
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10.3 Results 

10.3.1 Case series 

The patients’ ages and occupations are omitted from the case series to 

avoid identification. The mean age of first symptoms was 62 (57-70) years. 

10.3.1.1 Case 1 

 A right-handed man presented with a 2-year history of indifference, 

lack of interest and lack of motivation. This was initially mistaken for a 

depressive episode. He had a history of a coronary-artery bypass graft in 

2016. Over the next 2-years, he developed an increasingly rigid routine: 

repetitively watching the same movie; going for long drives listening to the 

same music; and taking the train to the same destination to get an ice-cream 

every day. He lost interest in playing golf, reading and gardening. He spent 

most of his time lying in bed. He stopped socialising, partly because he had 

difficulty recognising people. He found it difficult to use his mobile phone and 

laptop. His impaired judgement led to him being a victim of online fraud. He 

developed a preference for sweet foods. He made inappropriate comments, 

mostly referring to a passive death wish. He also had perseverative thoughts 

ruminating on previous work issues. 

 On examination, there was subtle behavioural impairment: mildly 

inappropriate affect; insensitivity to social cues; cognitive rigidity; and lacked 

empathy when his wife was tearful. He also had difficulty identifying and 

explaining his feelings. He had insight, and found these changes upsetting: 

‘I’m not the person that I was’. Neuropsychological testing revealed impaired 

processing speed, attention, language and subtle executive dysfunction 

relative to his expected level of pre-morbid functioning. MRI brain scans 
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showed progressive bilateral frontotemporal atrophy with marked right 

temporal lobe atrophy (Figure 25A). [18

F] FDG PET-CT brain revealed right 

temporal lobe hypometabolism (Figure 25E). CSF biomarkers were not 

compatible with Alzheimer’s disease.
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Figure 25: Case series MRI brain and [

18

F] FDG PET-CT brain scans 
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10.3.1.2 Case 2 

 A right handed man presented with a 10-year history of initial difficulty 

recognising people, naming objects and behavioural impairment. He had a 

background of anxiety and suspected autism spectrum disorder. His wife first 

noticed that he could not recognise a famous politician in the newspaper. He 

later developed difficulty naming high- and low-frequency objects, with 

variable levels of understanding. He always had a regimented routine, but had 

developed increasingly rigid, precise and obsessive behaviours e.g. only 

charging his mobile phone to exactly 100%. His self-soothing movements in 

anxious settings were increasingly disinhibited e.g. tapping his head or 

flapping his hands in busy crowds. He had difficulty planning, organising and 

completing his collaborative academic projects. His preferred music choice 

had evolved from classical to traditional Irish folk music.  

 On examination, he had fluent speech with limited content, frequent 

circumlocution and perseveration. He had difficulty identifying and explaining 

his feelings. He had initial insight into these changes. Neuropsychological 

testing revealed marked anomia with variable comprehension (e.g. he was 

unable to name an ‘elastic band’ but knew that it was used ‘to put things 

together’); marked prosopagnosia (e.g. he was unable to name King Charles); 

surface dyslexia (e.g. he could not correctly pronounce ‘dough’ or ‘pint’); and 

impaired verbal fluency. He also had impaired abstract thought and proverb 

interpretation, but his wife said that this was a lifelong trait. MRI brain scans 

showed progressive bilateral temporal atrophy, greater on the right-side 

(Figure 25B). [18

F] FDG PET-CT brain scan showed bilateral frontotemporal 

hypometabolism, most marked in the right temporal region (Figure 25F). 
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10.3.1.3 Case 3 

A right-handed woman presented with an 8-year history of 

forgetfulness, difficulty recognising people and naming objects. She had a 

background of hypertension, type 2 diabetes, hypercholesterolaemia, age-

related macular degeneration and hypothyroidism secondary to radioactive 

iodine therapy for hyperthyroidism. She first noticed that she needed 

increased effort to prepare her lectures. She felt that it was because of a lack 

of attention and concentration from a highly-functioning baseline. She later 

noticed difficulty recognising familiar faces, mostly identifying people by their 

voices. Over the next few years, she described progressive forgetfulness e.g. 

not retaining detailed current affairs information and sometimes forgetting to 

take her medications. Collateral history from her husband reported difficulty 

naming objects, mild irritability and subtle increasingly rigid and obsessive 

behaviours; however, he acknowledges that she has always been quite rigid. 

She continued to enjoy assisting her former students in preparing manuscripts 

for publication. 

On examination, she had fluent speech with occasional tangential 

anecdotes. Neuropsychological testing revealed executive dysfunction, 

impaired verbal fluency, and marked prosopagnosia and anomia (e.g. when 

shown an image of a ‘volcano’, she named it a ‘sand-dune’). She had insight 

and described it ‘like an Olympic athlete losing their talent’. MRI brain scan 

show bilateral temporal atrophy, greater on the right-side (Figure 25C). [18

F] 

FDG PET-CT brain scan showed hypometabolism of the bilateral frontal lobes 

and right temporal lobe (Figure 25G). CSF biomarkers were not compatible 

with Alzheimer’s disease. 
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10.3.1.4 Case 4 

A left-handed man presented with a 7-year history of lack of 

motivation, forgetfulness, and negative behavioural changes. He had a 

background of epilepsy, depression and a few concussions without loss of 

consciousness during his 20-year boxing career. He lacked motivation at work 

and in his personal life. He lost interest in keeping fit and meeting up with his 

friends. He was increasingly forgetful e.g. unable to recall previous projects, 

content of conversations and misplacing items. He had difficulty remembering 

peoples’ names and sometimes recognizing peoples’ faces. He had low mood, 

poor attention and less spontaneous verbal output. His wife noticed new 

emotional indifference, inflexibility and irritation. He needed prompting for 

personal hygiene e.g. showering. His work partner noticed that he was newly 

disorganised and had some subtle impaired comprehension e.g. not sure what 

to do with his set of tools. 

Neuropsychological testing revealed attentional deficits, anomia with 

preserved semantic knowledge e.g. he was unable to name a ‘tricycle’ but 

knew what is was used for. He had prosopagnosia for less familiar faces but 

had retained person-specific knowledge e.g. he was unable to name ‘Mary 

MacAleese’, but he knew that she was previously the President of Ireland. He 

had insight into his deficits, and found it upsetting. MRI brain scans showed a 

small septum pellucidum and progressive bitemporal atrophy, greater on the 

right-side (Figure 25D). [18

F] FDG PET-CT brain scan showed bitemporal 

hypometabolism, greater on the right side (Figure 25H). CSF biomarkers were 

not compatible with Alzheimer’s disease. 
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10.3.2 Grey- and white-matter analyses 

Our voxelwise analyses confirmed right-hemisphere predominant 

temporal grey matter atrophy and white matter degeneration as evidenced by 

focal morphometric changes and decreased fractional anisotropy (Figure 26, 

Figure 27). While the radiological findings were mostly in the right 

hemisphere, left hemispheric findings were also revealed. 
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Figure 26: Grey-matter analyses in sbvFTD 

 

 

Patterns of grey matter volume reductions in right-sided semantic behavioural variant frontotemporal 

dementia (sbvFTD) patients compared to age-matched healthy controls as evidence by voxel-based 

morphometry, statistical map shown in radiological convention thresholded at p < 0.05 TFCE corrected 

and adjusted for age, sex, education and total intracranial volumes. 



 

 295 

 

Figure 27: White-matter analyses in sbvFTD 

 

 

Tract-based patterns of fractional anisotropy reductions in right-sided semantic behavioural variant 

frontotemporal dementia (sbvFTD) patients compared to age-matched controls as evidence by tract-

based spatial statistics, statistical map shown in radiological convention thresholded at p < 0.05 TFCE 

corrected and adjusted for age, sex, education and total intracranial volumes.
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10.4 Discussion 

This case series highlights the clinical presentation and radiological 

features of sbvFTD (Table 30). There were 3 men and 1 woman; 3 of whom 

were right-handed and 1 was left-handed. The majority had completed 3

rd

 

level education. The mean age of first symptom onset was 62 years (range 57-

70). The mean duration of symptoms at the time of clinical assessment was 7 

years (range 2-10 years). All cases had initial insight into their deficits. All 

cases presented with rigid thought processes, executive dysfunction and 

varying degrees of prosopagnosia; the majority had verbal semantic loss, 

obsessive repetitive behaviours, and episodic memory impairment; and some 

also had loss of empathy, apathy, disinhibition, alexithymia and dietary 

changes. The main cognitive domains affected were executive, language, 

fluency and memory. Most cases had anomia with varying levels of impaired 

comprehension. Surface dyslexia was also observed. All cases had bilateral 

anterior temporal lobe atrophy and hypometabolism, that was more 

pronounced in the right anterior temporal lobe. This radiological pattern was 

illustrated in exploratory quantitative analyses in 4 different patients with 

sbvFTD that captured right temporal predominant grey matter atrophy and 

white matter degeneration (Figure 26, Figure 27). Some cases also had 

structural and metabolic involvement of the frontal regions.  

These case studies were consistent with the existing sbvFTD literature. 

The average age of symptom onset is early 60’s 

893

. It typically affects a highly-

educated cohort 

893

. It presents with early behavioural symptoms: loss of 

empathy, rigid thought processes and loss of person-specific knowledge

893, 897

. 

It is suggested that ‘loss of person-specific semantic knowledge’ better 
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captures the multi-modal loss of person-specific concepts – faces, voices, 

names or biographical information - rather than ‘prosopagnosia’ which only 

refers to difficulty recognising faces

891, 893

. This tends to precede loss of verbal 

semantic knowledge which corresponds with the anatomical progression of 

the disease to the contralateral anterior temporal lobe. In addition to ‘loss of 

person-specific semantic knowledge’

892

, there are some early clinical features 

that help to distinguish sbvFTD from other FTD phenotypes, despite 

subsequent considerable clinical overlap

892-894

. In contrast with svPPA

71

, 

sbvFTD presents with early behavioural rather than language impairment

895

. 

Compulsive behaviours tend to be driven by verbal (words and symbols e.g. 

Case 2 was fixated on charging his phone to 100%) rather than visual 

targets

895

 (e.g. cleaning dishes). These behaviours include ritualistic 

preoccupations

892

 e.g. Case 1 gets an ice-cream in the same place every day. 

In contrast with bvFTD

73, 84

, insight is initially preserved

897

 , episodic memory 

is often impaired

892, 897

, language dysfunction is more marked

898

, dietary 

changes are less frequent

892

, and disinhibition tends to be more subtle in 

sbvFTD

893

 e.g. insensitivity to social cues telling long tangential stories - as 

seen in Case 1 and Case 3. The lateralisation of language may also influence 

the clinical phenotype. Most people are left hemispheric dominant 

irrespective of their handedness

899

. Indeed, in the largest case series of 

sbvFTD, 15% of cases were left-handed or ambidextrous 

893

.  

From a radiological perspective, there is striking anterior non-

dominant temporal lobe atrophy and hypometabolism. There is progressive 

medial-to-lateral gradient anterior temporal lobe 

892, 897, 900

 atrophy associated 

with ipsilateral insula

892

, hippocampal 

897, 900

, amygdala 

897

 

895, 900

 

901

 and 
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fusiform gyrus 

892, 900

 atrophy. Non-dominant temporal lobe atrophy 

correlates with loss of socioemotional non-verbal semantic knowledge

893

 e.g. 

recognizing emotion

898, 901-905

, peoples’ faces

892, 894

 and social cues

905, 906

; and 

hypometabolism correlates with psychiatric symptoms of low mood and 

anxiety

907

. The disease later progresses to involve the contralateral anterior 

temporal lobe

892, 893, 895, 897, 900

, hippocampus 

897, 900

, amygdala 

897, 900

, fusiform 

gyrus 

900

, bilateral anterior cingulate

894

 and orbitofrontal regions

891, 892, 894, 895, 

901

 

892

. The degree of atrophy inversely correlates with disease duration 

895

.  

Similar to svPPA, FTLD-TDP43 type C is the most commonly reported 

pathology

891, 908

; however FTLD-tau, FTLD TDP43 type A and B are also 

described 

908, 909

. The different pathologies demonstrate distinct patterns of 

progression at the end stage of the disease: FTLD-TDP43 type C demonstrate 

predominant temporal atrophy which is associated with prominent semantic 

impairment; whereas FTLD-tau, FTLD-TDP43 types A and B demonstrate 

predominant frontal atrophy which is associated with prominent behavioural 

impairment 

908, 909

. 

10.5 Conclusions 

Despite shared clinical, neuroanatomical and pathological features, it 

is suggested that sbvFTD should be considered a distinct clinical phenotype 

along the FTLD continuum

892, 893, 897

 . This facilitates early diagnosis; helping 

patients and their families better understand the disease

893

; and developing 

research frameworks to accurately stratify FTD phenotypes

891

. 
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Table 30: Case series of semantic behavioural variant FTD 
 Case 1 Case 2 Case 3 Case 4 
Handedness RHD RHD RHD LHD 
Sex M M F M 
Education  3rd Level  3rd Level 3rd Level Left school aged 15-years 
Duration of symptom onset 2-years 10-years 8-years 7-years 

Symptoms Prosopagnosia 
Rigid thought process 
Dysexecutive 
Obsessive repetitive behaviours 
- 
- 
Disinhibition 
Loss of empathy  
Apathy 
Dietary changes  
Alexithymia 

Prosopagnosia 
Rigid thought process 
Dysexecutive 
Obsessive repetitive behaviours 
Verbal semantic loss 
Episodic memory impairment 
Disinhibition 
- 
- 
- 
Alexithymia 

Prosopagnosia 
Rigid thought process 
Dysexecutive 
Obsessive repetitive behaviours 
Verbal semantic loss 
Episodic memory impairment 
Disinhibition  
- 
- 
- 
- 

Prosopagnosia 
Rigid thought process 
Dysexecutive 
- 
Verbal semantic loss 
Episodic memory impairment 
- 
Loss of empathy  
Apathy 
- 
- 

Cognitive Testing     

ACE-III 97/100 41/100 91/100 88/100 
ECAS 120/136 - 109/136 92/136 
BNT 25/30 - 14/30 21/30 
FBI - - 2 (Negative 1; Disinhibition 1) 30 (Negative 24; Disinhibition 6) 
FAB 18/18 ‘Impaired’  - - 
Main domains affected Executive  

Language 
Memory 
- 
Attention 

Executive  
Language 
Memory 
Fluency 
- 

Executive  
Language 
Memory  
Fluency  
- 

Executive  
Language 
Memory  
Fluency 
Attention 

CSF Not compatible with AD - Not compatible with AD  Not compatible with AD 
AB42 (591-997pg/mL) 835 - 959.6 722.2 
Total Tau (135-345pg/mL) 602.7 - 249 302 
P-Tau (35.0-64.0pg/mL) 116.5 - 46 67.3 
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List of Abbreviations 

l-[β-11C] dopa PET Pre-synaptic dopamine 
synthesis PET tracer 

ATXN2 Ataxin-2 

[11C] ABP688 PET mGluR5 PET tracer AUC Area under the receiving 
operating characteristic curve 

[11C] DAA1106 PET Peripheral benzodiazepine 
receptors PET tracer 

AV Anterior ventral 

[11C] flumazenil PET GABA-A PET tracer AxD Axial diffusivity 
[11C] PBR28 PET PET tracer; 18 kDa translocator 

protein 
BET Brain extraction tool 

[11C] UCB-J PET Synaptic vesicle glycoprotein 
2A PET tracer 

BNT Boston naming test 

[18F]  AV-1451 PET Tau PET tracer bvFTD Behavioural variant FTD 
[18F] FDG PET-CT 18F-fluorodeoxyglucose 

positron emission tomography 
computed tomography 

C21orf2 Cilia and flagella associated 
protein 410 

[18F] THK5351 PET Tau PET-tracer C9orf72 Chromosome 9 open reading 
frame 72 

1H-MRS Proton MR spectroscopy CAG Cytosine-adenine-guanine 
ABCD1  ATP binding cassette subfamily 

D member 1 
CBD Corticobasal degeneration 

ACE-III Addenbrooke’s cognitive 
examination III 

CBS Corticobasal syndrome 

AD Alzheimer’s disease CC Corpus callosum 
ALD Adrenoleukodystrophy CeM Central medial 
ALS Amyotrophic lateral sclerosis CHCHD10 Coiled-coil-helix-coiled-coil-

helix domain containing 10 
ALS2 Amyotrophic lateral sclerosis 2 CHMP2B Charged multivesicular body 

protein 2B 
ALS-bi ALS with behavioural 

impairment 
Cho Choline 

ALS-ci ALS with cognitive impairment Cho/Cr Choline/creatine 
ALSFRS-R Amyotrophic lateral sclerosis 

functional rating scale revised 
cHSP Complicated HSP 

ALS-FTD  Amyotrophic lateral sclerosis 
frontotemporal dementia 

CL Central lateral 

ALS-FTD C9+ C9orf72 positive ALS-FTD CM Centromedian 
ALS-FTD C9- C9orf72 negative ALS-FTD Cr Creatine 
ALS-nc/ALS-nci ALS with normal cognition / no 

cognitive impairment 
CSA Cross-sectional area 

ANCOVA Analysis of covariance CSD Constrained spherical 
deconvolution 

ANG Angiogenin CSF Cerebrospinal fluid 
ANN Artificial neural networks CST Corticospinal tracts 
ANOVA Analysis of variance CT Cortical thickness 
AP Anteroposterior DAO D-Amino Acid Oxidase 
AR Androgen receptor DCML Dorsal column-medial 

lemniscus  
ARCA Autosomal recessive cerebellar 

ataxia 
DCTN1 Dynactin Subunit 1 

ASIA American spinal cord injury 
association 

DKI Diffusion kurtosis imaging 

ASL Arterial spin labelling DLB Dementia with Lewy bodies 
ASO Antisense oligonucleotide DLPFC Dorsolateral prefrontal cortex 
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DRG Dorsal root ganglion HNRNPA1 Heterogeneous nuclear 
ribonucleoprotein A1  

DSI Diffusion spectrum imaging HSD Honestly significant difference 
testing 

DSM Diagnostic and statistical manual of 
mental disorders 

HSP  Hereditary spastic paraplegia 

DTI Diffusion tensor imaging HTLV1 Human T-lymphotropic virus 1 
DW Diffusion weighted IC Internal capsule 
DWI Diffusion weighted imaging ihMT Inhomogeneous magnetization 

transfer 
ECAS Edinburgh cognitive and 

behavioural ALS screen 
ihMTR Inhomogeneous magnetization 

transfer ratio 
EEG Electroencephalogram IR-SPGR Inversion recovery prepared 

spoiled gradient recalled echo 
ELP3 Elongator Acetyltransferase 

Complex Subunit 3 
IR-TSE Inversion Recovery Turbo Spin Echo 

EMM Estimated marginal means IWG  International Working Group  
EOAD Early onset Alzheimer’s disease KNN K-nearest neighbour 
EPI Echo-planar imaging LBD Lewy body dementia 
ERBB4 Erb-B2 Receptor Tyrosine Kinase 4 LD Lateral dorsal 
FA  Fractional anisotropy LGN Lateral geniculate 
FAB Frontal assessment battery  LMN Lower motor neuron 
FARS Friedreich’s ataxia rating scale LMNB1 Lamin B1 
FAST FMRIB’s Automated Segmentation 

Tool 
LMND Lower motor neuron disease 

FBI Frontal behavioural inventory LOAD Late-onset Alzheimer’s disease 
FDR False discovery rate LoCo Loss in connectivity 
FDRA Friedreich’s ataxia LP Lateral posterior 
FIG4 Factor-induced gene L-SG Limitans/suprageniculate 
FLAIR Fluid-attenuated inversion recovery Lt Left 
FLIRT FMRIB’s Linear Image Registration 

Tool 
lvPPA Logopaenic primary progressive 

aphasia 
fMRI Functional magnetic resonance 

imaging 
LY6G6F Lymphocyte antigen 6 family 

member G6F 
fODF Fibre orientation distributions MANCOVA Multivariate analysis of covariance 
FOV Field-of-view MAPT Microtubule associated protein tau 
FSL FMRIB Software Library MATR3 Matrin 3 
FSLeyes FSL image viewer mcDESPOT Multi-component driven 

equilibrium single pulse 
observation 

FTD Frontotemporal dementia MCI Mild cognitive impairment 
FTDP-17 Frontotemporal dementia with 

parkinsonism-17 
MD Medial dorsal 

FTLD Frontotemporal lobar degeneration  MD Mean diffusivity 
FUS Fused in sarcoma MDI Mediodorsal lateral parvocellular 
FWE Family-wise error MDm Mediodorsal medial magnocellular 
FWER Family-wise error connected MEDIC Multiple echo data image 

combination 
GAN Generative adversarial neural 

network 
MEG Magnetoencephalography 

GM Grey matter MGN Medial geniculate 
GMD Grey matter density MGUS Monoclonal gammopathy of 

uncertain significance 
GRASE Gradient and spin echo sequence m-Ins Myo-inositol 
GRN Progranulin m-Ins/Cr Myo-inositol/creatine 
HAM/TSP HTLV1 associated myelitis/tropical 

spastic paraparesis 
ML Machine learning  

HC Healthy control mm millimetres 
HD Huntington's disease MNI Montreal Neurological Institute 
HIV Human immunodeficiency virus MNI152 Montreal Neurological Institute 

152 Standard Space 
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MND Motor neuron disease  PSEN2 Presenilin 2 
MPRAGE Magnetization-Prepared Rapid 

Acquisition Gradient Echo. 
Pt Paratenial 

MR Magnetic resonance PuA Pulvinar anterior 
MRI Magnetic resonance imaging PuI Pulvinar inferior 
MRS Magnetic resonance spectroscopy  PuL Pulvinar lateral 
MS Multiple sclerosis  PuM Pulvinar medial 
MT Magnetization transfer PPA  Primary progressive aphasia 
MTI Magnetization transfer imaging PPMS Primary progressive multiple 

sclerosis 
MTR Magnetization transfer ratio PPS Post-polio syndrome 
MV-re Medial ventral/reunions PSIR Phase sensitive inversion recovery 
MWI Myelin water imaging PSP Progressive supranuclear palsy 
NAA N-acetyl-aspartate p-tau  Phosphorylated tau 
NAA/Cho N-acetyl-aspartate/choline pTDP-43 Phosphorylated  transactive 

response DNA binding protein 43 
kDa 

NAA/Cr N-acetyl-aspartate/creatine RD Radial diffusivity 
NAA/m-Ins N-acetyl aspartate/myo-inositol ROI Region-of-interest 
NCI No cognitive impairment RRMS Relapsing remitting multiple 

sclerosis  
NEFH Neurofilament heavy chain rs-fMRI Resting state functional magnetic 

resonance imaging 
NEK1 NIMA Related Kinase 1 Rt Right 
nfvPPA Non-fluent variant PPA RUSBoost Random undersampling boosting 
NIAA-AA National Institute on Ageing and 

the Alzheimer’s Association 
SACD Subacute combined degeneration 

NINCDS-
ADRDA 

National Institute of Neurological 
and Communicative Disorders and 
Stroke and Alzheimer’s Disease and 
Related Disorders Association 

SARA Scale for the assessment and rating 
of ataxia 

NINDS-
AIREN 

National Institute of Neurological 
Disorders and Stroke and 
Association Internationale pour la 
Recherche et l'Enseignement en 
Neurosciences 

SARM1 Sterile Alpha And TIR Motif 
Containing 1 

NINDS-
SPSP 

National Institute of Neurological 
Disorders and Stroke and Society of 
Progressive Supranuclear Palsy 

SBMA Spinal bulbar muscular atrophy 

NMO Neuromyelitis optica sbvFTD Semantic behavioural variant FTD 
NODDI Neurite orientation dispersion and 

density imaging 
SCA Spinocerebellar ataxia 

OPTN Optineurin SCAFI Spinocerebellar Ataxia Functional 
Index 

Pc Paracentral SD Standard deviation 
PCA Principal component analysis SE Standard error 
PET Positron emission tomography SE-EPI Spin-echo echo planar imaging 
PF Parafascicular SENSE Sensitivity encoding 
PFN1 Profilin-1 SETX Senataxin 
pHSP Pure HSP SIGMAR1 Sigma non-opioid intracellular 

receptor 1 
PIB-PET Pittsburgh compound B positron 

emission tomography 
SMA Spinal muscular atrophy  

PLS Primary lateral sclerosis SMC Subjective memory complaints 
PLS-FTD Primary lateral sclerosis-FTD SMN Survival motor neuron 
PMA Progressive muscular atrophy  SMN1 Survival motor neuron 1 
PRISMA Preferred Reporting Items for 

Systematic Reviews and Meta-
Analyses 

SMN2 Survival motor neuron 2 

PRPH Peripherin SOD1 Superoxide dismutase type 1 
PSEN1 Presenilin 1 SPAST Spastin 
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SPG Spastic paraplegia VM Ventral medial  
SPIR Spectral pre-saturation with 

inversion recovery 
VOI Volumes of interest 

SQSTM1 Sequestosome-1  VOL Volumetry  
STAND Structural abnormality in 

neurodegeneration 
VPL Ventral posterolateral 

SuStaIn Subtype and stage inference WM White matter 
SVD Singular value decomposition WMD White matter density 
SVM Support vector machine WMH White matter hyperintensity 
svPPA Semantic variant PPA wSDM Weighted symbolic dependence 

metric 
SYNE1 Synaptic nuclear envelope protein 

1 
  

T Tesla   
T1W  T1-weighted   
T2W T2-weighted   
TAF15 TATA-Box Binding Protein 

Associated Factor 15 
  

TARDBP TAR DNA binding protein    
TBK1 TANK binding kinase 1   
TBM Tensor-based morphometry   
TBM-Syn Tensor-based morphometry 

symmetric diffeomorphic image 
normalization 

  

TBSS Tract based spatial statistics   
TDP-43 Transactive response DNA binding 

protein 43 kDa 
  

TE Echo time   
TFCE Threshold-free cluster 

enhancement 
  

TI Inversion time   
TIV Total Intracranial volume   
TMEM106B Transmembrane protein 106B   
TMEM40 Transmembrane protein 40   
tNAA Total N-acetyl aspartate   
tNAA/m-Ins Total N-acetyl aspartate/myo-

inositol 
  

ToM Theory of mind   
TR Repetition time   
TREM2 Triggering Receptor Expressed On 

Myeloid Cells 2 
  

TRIM Turbo inversion recovery 
magnitude 

  

t-tau Total tau   
UBQLN2 Ubiquilin-2   
UMN Upper motor neuron   
UNC13A Unc-13 Homolog A   
VA Ventral anterior    
VA mc Ventral anterior magnocellular   
VAPB Vesicle-associated membrane 

protein-associated protein B/C 
  

VB12 Vitamin B12   
VBM Voxel based morphometry   
VCP Valsoin containing protein   
VD Vascular dementia   
VLa Ventral lateral anterior   
VLp Ventral lateral posterior   
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