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Clustering and the Component-wise

Peak-Finding Algorithm
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Abstract—Density peaks clustering detects modes as points with high density and large distance to points of higher density. Each
non-mode point is assigned to the same cluster as its nearest neighbor of higher density. Density peaks clustering has proved capable
in applications, yet little work has been done to understand its theoretical properties or the characteristics of the clusterings it produces.
Here, we prove that it consistently estimates the modes of the underlying density and correctly clusters the data with high probability.
However, noise in the density estimates can lead to erroneous modes and incoherent cluster assignments. A novel clustering
algorithm, Component-wise Peak-Finding (CPF), is proposed to remedy these issues. The improvements are twofold: (1) the
assignment methodology is improved by applying the density peaks methodology within level sets of the estimated density; (2) the
algorithm is not affected by spurious maxima of the density and hence is competent at automatically deciding the correct number of
clusters. We present novel theoretical results, proving the consistency of CPF, as well as extensive experimental results demonstrating
its exceptional performance. Finally, a semi-supervised version of CPF is presented, integrating clustering constraints to achieve
excellent performance for an important problem in computer vision.

Index Terms—Density-Based Clustering, Nearest-Neighbor Graph, Density Peaks, Semi-Supervised Clustering, Multi-Image Matching
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1 INTRODUCTION

DENSITY-BASED clustering methods relate the notion
of clusters to high-density contiguous regions of the

underlying density function. Hartigan [1] proposed the
concept of density-based clusters as “regions . . . where the
densities are high surrounded by regions where the densi-
ties are low”. The concept is attractive for several reasons:
(1) the clusters are free to assume any shape, in contrast to
model-based clustering methods; (2) the clustering method
is associated with density but without requiring strong
assumptions on the density function; (3) the number of
clusters is linked to density peaks and can be determined as
part of the estimation procedure. Density-based clustering
methods can be broadly classified into two categories: level
set methods and mode-seeking methods.

Level set methods detect clusters as connected compo-
nents of the density level sets {x : f(x) � �}, where f is
the density function and � is a cutting threshold. The density
f is unknown, and hence the level sets are required to be
estimated from the data. Nearest-neighbor graphs have been
widely used for this purpose [2], [3]. Taking the instances to
be the vertices of a graph, k-NN graphs add edges between
a vertex and all its k nearest neighbors. Mutual k-NN graphs
add an edge between two vertices only if they are k nearest
neighbors of each other. It has been shown that any density
level set of a given dataset can be approximated by the
connected components of the mutual k-NN graph [2], [3],
and further work attempted to develop an understanding
of the optimal choice of k [2], [4].
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Mode-seeking methods aim to directly locate the modes
in the density and then associate each instance in the ob-
served data with a relevant mode. Such approaches begin
with a density estimate f̂ and then move each point xi

towards a mode of f̂ by ascending the density. Mean shift,
introduced in [5] and further developed in [6] and [7], is a
popular mode-seeking method that associates an instance to
a mode along the path of steepest ascent of the density es-
timate. To circumvent the costly run time of mean shift, the
authors in [8] proposed a fast sample-based method, termed
quick shift. Quick shift simply associates each instance to
its nearest neighbor of higher empirical density. To return a
partition of the data, a segmentation parameter ⌧ is required
such that an instance will not be associated to its nearest
neighbor of higher density if the distance between them is
greater than ⌧ . Quick shift is shown in [9] to consistently
estimate the non-trivial modes of the underlying density
and to correctly assign instances to their associated mode.
However, appropriate tuning of ⌧ requires a knowledge
of the distances between modes. Furthermore, determining
modes by only the distances between instances and their
nearest neighbor of higher density can cause outlying points
to be erroneously selected as modes.

The density peaks clustering (DPC) method introduced
in [10] offers a potential remedy to these issues, providing
an intuitive method for sample-based mode detection. The
true modes of the density are estimated using a decision
graph, a scatter plot of the local density against the distance
to the nearest neighbor of higher density. The modes are
estimated as the extreme instances on the decision graph.
DPC assigns the remaining instances to the detected modes
using the same methodology as quick shift. The partition
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Figure 1: Left: The decision graph of the DPC method. The
three extreme points are detected as the modes. Right: The
assignment of the instances to the modes.

of the data is extracted by grouping together instances that
are assigned to the same mode. The decision graph and the
resulting clustering for a toy dataset are shown in Figure 1.

While many papers have demonstrated the ability of
the DPC method to provide high-quality clusterings in
applications [11], [12], there is, to the best of our knowledge,
only one publication on the theoretical analysis of the DPC
method. In [13], the authors derive a theoretically grounded
rule for selecting modes from the decision graph, using
a robust linear regression of log of the density estimates
log f̂(x) against the log of the distances to neighbors of
higher density.

In this work, we seek to deepen our understanding of
the DPC method and propose a new density-based clus-
tering technique that improves DPC both theoretically and
computationally. By adapting results from related works, we
provide theoretical guarantees that DPC consistently esti-
mates the modes of the underlying density and can correctly
cluster the data with high probability. We also demonstrate
the deficiencies of the DPC methodology in the presence
of noisy density estimates. Motivated by the deficiencies,
we introduce a novel clustering algorithm: Component-wise
Peak-Finding (CPF). CPF improves DPC in two ways: firstly,
CPF partitions the data into regions mutually separated
by areas of low density before clustering, thus ensuring
the correct assignment of instances to their respective clus-
ters; secondly, the peak-finding criterion is directed to seek
modal-sets rather than point modes in the data, reducing the
sensitivity of the clustering result to fluctuations in the den-
sity estimate. We provide theoretical guarantees for our new
algorithm, extending the theoretical properties available for
the DPC method. In particular, we prove that CPF recovers
unique and consistent estimates of the high-density regions
in the data, and correctly determines the true number of
clusters. Furthermore, the complexity of our algorithm is of
the order O(nk log(n)), near linear in k and n. Finally, to
demonstrate the adaptability of CPF, we present a modified
version of the method, CPF-Match, designed for multi-
image matching, an application in computer vision. We
show that CPF-Match achieves state-of-the-art performance
for this task.

The remainder of the paper is organized as follows.
In Section 3, we formalize the DPC method, provide a
theoretical analysis of its performance, and demonstrate
its deficiencies via illustrative examples. In Section 4, the
CPF algorithm is explained in detail, and its consistency
properties are provided in Section 5. In Section 6, we assess
the clustering quality of CPF on a range of simulated and
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(b) Modal-Sets

Figure 2: Left: Noise in the density estimate leads to errors
when seeking point modes. Right: Modal-set methods are
robust to noise and recover the true cluster structure.

real-world datasets and show that CPF outperforms DPC
and other peer clustering methods. Section 7 introduces
CPF-Match, an adapted method for multi-image matching.
Section 8 concludes the paper.

2 RELATED WORK

Adaptations of the DPC method have proliferated in recent
years. One strand of works focuses on improving the den-
sity estimator (see [14], [15]), and another strand of works
focuses on automating the selection of modes from the
decision graph (see [16], [17]). The authors of DPC have
introduced a recent approach [18], which applies a density
estimator based on the intrinsic dimension of the data, and
a pruning mechanism for false modes.

A robust way of modelling high-density regions in the
data space is proposed in [19]. Modal-sets generalize the
concept of a point mode to a local support of the density
peak. An illustrative example is given in Figure 2. The
related clustering procedure, termed MCores, estimates the
modal-sets using connected components of k-NN graphs at
different levels of the empirical density. The authors provide
consistency guarantees on the recovery of true modal-sets
in the data. A subsequent work presents QuickShift++ [20]
improving on the MCores procedure by adopting the same
allocation procedure as quick shift and DPC. Recently, in
[21], DPC was adapted to detect modal-sets. The method,
termed DCF, was shown to detect modal-sets more effi-
ciently than QuickShift++.

While [19], [20], [21] use classical non-parametric density
estimators, recent literature has proposed density estimators
using neural networks. A prominent approach uses energy-
based models, defining an unnormalized density that is
the exponential of the negative energy function, param-
eterized by a neural network. The estimation procedure
involves either computing maximum likelihood estimates
( [22], [23]), variational approximation to an unnormalized
target ( [24], [25]), or methods combining both approaches
( [26]). The density estimates produced by these methods
are computationally expensive to compute, and consistency
guarantees are not currently available making theoretical
analysis challenging. Nevertheless, they can naturally be in-
tegrated into the clustering method discussed in this work.
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3 DENSITY PEAKS CLUSTERING

3.1 The Method
The peak-finding method in [10] requires two inputs: (1)
a density estimate at each data point, and (2) the distance
from each point to its nearest neighbor of higher density.
We consider a dataset X consisting of n data points in Rp

drawn from an unknown density f with compact support
X . We use a k-NN density estimator as it is computationally
fast and guarantees on its quality are well understood. For
a data point x 2 X , let rk(x) be the distance between x

and its k-th nearest neighbor. The density estimate used is a
simple functional of the distance rk(x).

Definition 1. For every x 2 Rp
, let rk(x) denote the distance

from x to its k-th nearest neighbor in X . The density estimate is

given as

f̂k(x) :=
k

n · vp · rk(x)p
,

where vp is the volume of the unit sphere in Rp
.

Note that this estimator is different from the estimate
of the empirical density used in [10], which counts the
number of data points within a threshold distance of a given
instance. It is replaced as no guarantees of its consistency
are possible. As well as a density estimate, the peak-finding
criterion requires the distance from each point to it’s nearest
neighbor of higher density:

Definition 2. For the point x = argmaxx2X f̂k(x), we define

the quantity

!(x) = max
x02X

kx� x
0k.

For the remaining points, let b(x) =

argminx02X

n
kx� x

0k : f̂k(x) < f̂k(x0)
o

, i.e. the nearest

neighbor of x with higher density. Define the distance to the

nearest neighbor of higher local density as

!(x) = kx� b(x)k.

Also of interest is the product of the estimated density
f̂k(x) and the distance quantity !(x). This is termed the
peak-finding criterion:

Definition 3. Taking f̂k(x) and !(x) as defined above, we define

the peak-finding criterion �(x) as

�(x) = f̂k(x) · !(x).

Following [10], the decision graph is the scatter plot
of {(f̂k(x),!(x)) : x 2 X}. To generate a set of mode
estimates cM = {xj}mj=1, threshold values for the density
f̂k(x) and the distance !(x) need to be set: the modes are
the data points with the two metric values both above the
thresholds, i.e. cM = {x 2 X : f̂k(x) � l,!(x) � ⌧}.

The algorithm used for density peaks clustering in this
formulation is described in Algorithm 1. The algorithm
takes as input the dataset X and uses the parameter k to
return the final set of clusters bC. Initially, the set of estimated
modes cM = ? and the cluster assignment graph ~G(X, ~E)
is initialized with vertices as the points of X and no edges.
DPC produces the decision graph (Lines 2-3).

DPC requests the user to select estimated modes using
this plot as reference. The estimated modes {xj}mj=1 are then

Algorithm 1 Density Peaks Clustering

Input: Neighborhood parameter k.
Output: A set of clusters bC

1: Initialisation: cM = ?, ~G(X, ~E), a directed graph with
X as vertices and no edges, ~E = ?.

2: Create the decision graph {(f̂k(x),!(x)) : x 2 X}.
3: Select the estimated modes using the thresholds l and ⌧ ,

i.e., {x 2 X : f̂k(x) � l,!(x) � ⌧}
4: Add the estimated modes {xj}mj=1 to cM.
5: for each x in X\ cM do
6: Add a directed edge from x to b(x).
7: end for
8: for each estimated mode x 2 cM do
9: Let C be the collection of the points connected by

any directed path in ~G(X, ~E) that terminates at x.
10: Add C [ x to bC.
11: end for
12: return bC

added to cM (Line 4). After the set of estimated modes has
been returned, edges are added to the graph ~G(X, ~E) from
each non-modal point x to b(x) (Lines 5-7). The estimated
mode together with all the vertices that have paths termi-
nating at it form a cluster that is added to bC (Lines 8-11).
Proceeding in this way, each sample point will be assigned
to a unique cluster.

3.2 Theoretical Analysis

The quality of the clusterings provided by DPC has been
thoroughly demonstrated in practice, as discussed in Sec-
tion 1. Yet, no previous work has provided guarantees on
the ability of DPC to recover modes consistently. Through
drawing an analogy to the quick shift method, we show
that DPC can recover the modes and the associated cluster
assignments with strong consistency guarantees.

Quick shift, as described in Section 1, is a fast non-
parametric density-based method that produces clusterings
with kernel density estimates. A directed graph is built with
the observed instances as vertices, and edges added from
each instance to its nearest neighbor of higher estimated
density. The final clusters are extracted as the connected
components of the graph once edges with length longer than
a segmentation parameter ⌧ are removed. The formulation
of DPC introduced above is similar to quick shift in all but
two ways: (1) a k-NN estimate of the density is used in
place of a kernel density estimate, and (2) a second threshold
value l is defined, used to flag low-density instances as
outliers. As such, in this section we present the main results
adapted from the consistency analysis of the k-NN density
estimator [27] and the consistency analysis of quick shift [9].
The primary contributions involve drawing the analogy to
the quick shift approach, and the extension of the analysis
to include the density threshold l used in the mode selection
step of DPC. An extended analysis, including proofs of the
theorems, is given in the supplementary material.

We assume that f is ↵-Hölder continuous and lower
bounded on X . Furthermore, it is assumed that the level sets
of f are continuous with respect to the density level, and the
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Figure 3: An illustration of the (r, ✓, ⌫)+-modes and
(r, ✓, ⌫)�-modes of Definition 4.

modes of f have negative definite Hessian. Following [9],
we now define a stronger notion of mode that allows for a
clearer analysis of DPC.

Definition 4. A mode x
⇤ 2 M is an (r, ✓, ⌫)+-mode, if

f(x⇤) > f(x0) + ✓ for all x
0 2 B(x⇤

, r)\B(x⇤
, rM) and

f(x⇤) > ⌫ + ✓. A mode x
⇤ 2 M is an (r, ✓, ⌫)�-mode, if

f(x⇤) < f(x0)� ✓ for some x
0 2 B(x⇤

, r) and f(x⇤) > ⌫+ ✓.

Let M+
r,✓,⌫ ✓ M denote the set of (r, ✓, ⌫)+-modes of f .

An illustration of the (r, ✓, ⌫)+-mode and the (r, ✓, ⌫)�-
modes is given in Figure 3. Recall that the DPC algorithm
requires two cutting-off thresholds, one for cutting the value
of the density estimate f̂k(x) and the other for cutting the
distance to the nearest neighbor of higher estimated density,
!(x). Taking the thresholds as ⌧ and l for the density and
distance values respectively, our first theorem shows that cM
contains unique and consistent estimates of the (⌧+✏, ✓, l)+-
modes of f , for ✓, ✏ > 0.

Theorem 1 (Mode Estimation - adapted from Theorem 2
of [9]). For every x

⇤ 2 M+
⌧+✏,✓,l\M

�
⌧�✏,✓,l, with probability at

least 1� ⇣ , there exists x̂ 2 cM satisfying

kx̂� x
⇤k  C · f(x⇤) · 1

k1/4
,

where C is a constant depending on p, n, ⇣ , and f ,

Theorem 1 proves that DPC recovers the modes of an
↵-Hölder continuous density f consistently. For n large
enough, with high probability, cM contains unique estimates
for all the true modes of f . As such, there is an injection
between the set of true modes and the set of estimated
modes.

The procedure used to assign points to their respective
modes is the same as that used in quick shift. As such,
theoretical guarantees developed for a variant of quick shift
in [20] can be applied directly to DPC. We provide the
relevant results below.

First, we define the attraction region of a mode. The
attraction region of a particular mode covers all points that
flow towards the mode along the direction of the gradient
of the underlying density.

Definition 5. Let path ⌫x : R ! Rp
satisfy ⌫x(0) = x and

⌫
0
x(t) = rf(⌫x(t)). For a mode x

⇤ 2 M, its attraction region

Ax⇤ is the set of points x 2 X that satisfy limt!1 ⌫x(t) = x
⇤
.
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Figure 4: An illustrative example of the (r, �)-interior of
an attraction region Ax⇤ , denoted A(r,�)

x⇤ , associated with
a mode x

⇤.

It is shown that DPC can cluster sample points in the
(r, �)-interior of an attraction region. The parameters r >

0 and � > 0 hold simultaneously across all modes of the
density and can be chosen arbitrarily small.

Definition 6. The (r, �)-interior of an attraction region Ax⇤ ,

denoted A(r,�)
x⇤ , is the set of points x1 2 Ax⇤ such that a path P

from x1 to any point x2 2 @Ax⇤ satisfies

sup
x2P

inf
x02B(x,r)

f(x0) � sup
x02B(x2,r)

f(x0) + �.

Points in the interior of an attraction region must satisfy
the property that any path leaving the attraction region
must significantly decrease in density at some point. An
illustrative example is given in Figure 4.

The main result (Theorem 2) states that, as long as the
modes are well-estimated, the assignment method of DPC
will correctly cluster the (r, �)-interiors of the attraction
regions with high probability. Suppose that x

⇤ 2 M is
estimated by x̂ 2 cM such that kx̂ � x

⇤k  r. Then, with
high probability, for x 2 Ax⇤ \X , density peaks clustering
clusters x to the cluster belonging to x

⇤
.

Theorem 2 (Cluster Assignment - adapted from Theorem
2 of [20]). Suppose that x

⇤ 2 M is estimated by x̂ 2 cM such

that kx̂ � x
⇤k  r. Then, for n sufficiently large, depending on

f , �, ⇣ and r, with high probability, for any x 2 A(r,�)
x⇤ \ X ,

DPC clusters x to the cluster belonging to x
⇤
.

3.3 Limitations
The theoretical analysis of Section 3.2 is based on the
assumption of a sample size large enough that the error
of the density estimator can be bounded. In this section,
we provide an analysis of the density peaks clustering
algorithm through three illustrative datasets, with n = 1500,
from the scikit-learn clustering demonstration 1. Taken to-
gether, the three datasets provide an understanding of the
density peaks clustering algorithm and the type of clusters
it returns; see Figure 5.

Firstly, the density estimation appears to recover pop-
ulation density for each dataset. The second feature of the
density peaks clustering algorithm analyzed is the decision

1. https://scikit-learn.org/stable/auto examples/cluster/
plot cluster comparison.html
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(a) Unequal Variance Gaussian Dataset

(b) Noisy Circles Dataset

(c) No Cluster Structure Dataset

Figure 5: Density peaks clustering of illustrative datasets.
The k-NN density estimator is used here with k = 40. Left:
Density estimates for the dataset. Darker regions indicate
higher density. Center: The decision plot, with thresholds
set to estimate approximately the correct number of clus-
ters. Right: The final clustering assignment. The color of
the shaded regions indicate the attraction region for each
cluster.

graph, provided to enable the estimation of the modes from
the dataset. The method of selecting mode estimates from
the decision graph is seen to perform well when the density
of the cluster is concentrated near the mode and decays
as the distance from the mode increases, such as for the
Unequal Variance Gaussian dataset. Each of the remaining
datasets contains areas of relatively uniform density. This
poses challenges for the density peaks clustering method as
noise in the density estimate leads to erroneous modes being
selected. Finally, the assignment method of density peaks
clustering is assessed. The assignment strategy is shown to
perform well for the Unequal Variance Gaussian dataset.
The allocation of instances to clusters for the Noisy Circles
runs contrary to geometric intuition about the clusters. In
this case, the allocation assigns instances to clusters across
areas of very low density in the dataset.

In sum, the density peaks clustering framework per-
forms well for datasets containing clusters with clear point
modes around which the density decays, such as Gaus-
sian components. The framework struggles when the high
density regions of the data are relatively uniform. In this
case, both the mode selection method and the assignment
strategy are shown to be susceptible to errors caused by
noise in the density estimate.

4 THE PROPOSED CPF ALGORITHM

In this section, the improvements to the density peaks
clustering method that constitute the CPF algorithm are in-

troduced, together with a detailed analysis of the clustering
algorithm.

4.1 Peak-Finding on Level Sets
In this section, we explain the component set notation and
the peak-finding criterion. We denote the mutual k-NN
graph G(X, E). The structure of the mutual k-NN graph
can help detect outlier data points in X . In particular, for
x 2 X , x is an outlier if its vertex in the graph G(X, E) has
very few or no edges. We denote the set of outliers by O.

Definition 7. For every x 2 Rp
, let rk(x) denote the distance

from x to its k-th nearest neighbor in X as before. The mutual k-

NN graph G(X, E) consists of the vertex set X and the edge set

E. There is an edge between two vertices xi and xj , denoted by

{xi,xj} 2 E, if and only if kxi�xjk  min(rk(xi), rk(xj)).
That is, an edge exists between the vertices xi and xj , only if they

are a k-nearest neighbor of each other.

Next, we formalize the notation of connected compo-
nents of the mutual k-NN graph G(X, E), beginning with
the definition of connectedness.

Definition 8. A path of length m from xi to xj , denoted by

{{xi,v1}, {v1,v2}, . . . , {vm�1,xj}}, is a sequence of distinct

edges in E, starting at vertex v0 = xi and ending at vertex

vm = xj , such that {vr�1,vr} 2 E for all r = 1, . . . ,m. We

say that the two data points xi and xj are connected, if there is a

path from xi to xj in the graph G(X, E).

The definition of connected components and component
sets follows.

Definition 9. A connected component of G(X, E), denoted by

G(S, E(S)), is a subgraph of G(X, E), where any two vertices

in S are connected to each other by paths, and the edge set induced

by S is a subset of E: E(S) = {{xi,xj} 2 E : xi 2 S,xj 2
S}. The vertex set S of the component graph G(S, E(S)) is a

subset of X and here is termed a component set of X .

From the definition of component, we know that the con-
nected components of G(X, E) reveal certain underlying
patterns of the data. In particular, the data X can be parti-
tioned into disjoint component sets. Here, we denote the set
of component sets S = {S1, . . . ,SnS}, where nS = |S| is
the number of component sets, and S1 [ · · · [ SnS = X .

Theoretical results regarding the ability of connected
components of G(X, E) to estimate the level sets of f

are given in [2], [3]. If two points belong to two different
component sets, it is highly likely that they are separated by
a region of low density.

4.2 Modelling High-Density Regions
We now explain the mode selection mechanism. The defi-
nitions for the peak-finding technique used are the same as
those given in Section 3.1. The definitions below are given
in terms of one S 2 S , and are equivalent for each.

Data points in S are placed in descending order of the
peak-finding criterion, and the modal-set associated with
the instance having maximal value of the peak-finding cri-
terion is automatically accepted. To decide whether or not to
select modal-sets associated with the subsequent instances,
we here utilize an idea similar to the methods of [21], [28],



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

[29]. A candidate modal-set cM associated with an instance
x
⇤ is accepted only when it is well separated from the

others.

Definition 10. Let 0 < ⇢ < 1. For an instance x
⇤ 2 S, define

a graph G(Vx⇤ , E(Vx⇤)) with

Vx⇤ =
n
x 2 S : rk(x) < ⇢

� 1
p rk(x

⇤)
o
.

The estimated modal-set cM is the connected component of the

graph G(Vx⇤ , E(Vx⇤)) containing the vertex x
⇤
. cM is accepted

only if it does not intersect any previously selected modal-set.

Note that the k-th nearest neighbour of x⇤ in the distance
rk(x⇤) is a point from the component set S, not from
the original dataset X . This approach allows the graph to
better reflect the scale of the data contained in the com-
ponent set. The component sets obtained from the graph
G(Vx⇤ , E(Vx⇤)) are assessed, and if the component set
containing x

⇤, i.e. cM , does not intersect previously selected
candidate modal-sets, then cM is accepted.

Varying the parameter ⇢ determines the number of clus-
ters for each component set S. The threshold relates directly
to the estimated density for each of the instances. For exam-
ple, if f̂k(x1) < ⇢f̂k(x2) then rk(x1) > ⇢

� 1
p rk(x2). For low

values of ⇢, fewer vertices will be removed, and it is less
likely that a proposed modal-set will be disconnected from
existing ones. For larger values of ⇢, more vertices and their
edges will be removed from the graph, and the probability
of the proposed modal-set being disconnected will increase.
It is not required to have different ⇢ values for different
component sets, because the threshold ⇢

� 1
p rk(x⇤) adapts

naturally to the density level of the component set being
assessed. It is seen that modal-sets associated with spurious
modes of the density estimate f̂k will not be accepted by
CPF, as the modal-sets are not disconnected from previously
accepted modal-sets.

4.3 The CPF Algorithm
The CPF ALGORITHM is explained with reference to Algo-
rithm 2 and the illustrative example in Figure 6.

The algorithm takes as input the dataset X and uses
parameters k and ⇢ to return the final set of clusters bC. Ini-
tially, the set of estimated clusters is bC = ?. The undirected
mutual k-nearest neighbor graph G(X, E) is constructed.
Vertices that have few to no edges are marked as outliers
and removed. The remaining data is partitioned into disjoint
component sets according to the graph G(X, E) yielding
S = {S1, . . . ,SnS} (Lines 1-2). In Figure 6a, two compo-
nents are extracted, yielding S = {S1,S2}.

For each component set S 2 S , CPF computes the peak-
finding criterion for each point and selects the instance x

⇤

with maximal value (Lines 4-5). In Figure 6b, the higher
estimated density of the instances is represented by darker
colors, and the magnitude of the peak-finding criterion for
each instance is represented using the size of the points.

The subgraph G(Vx⇤ , E(Vx⇤)) is extracted, and the com-
ponent set of G(Vx⇤ , E(Vx⇤)) containing x

⇤ is denoted by
cM . The modal-set cM is automatically accepted, and the

set of true modal-sets for the component set S is initialised
as cM = { cM} (Lines 6-8). Following the comutation of the

Algorithm 2 The Component-wise Peak Finding Algorithm

Input: Neighborhood parameter k, fluctuation parameter ⇢.
Initialisation: bC = ?.

Output: A set of clusters bC.
1: Compute G(X, E), the mutual k-nearest neighbor

graph.
2: Extract S , the set of component sets from G(X, E).
3: for each S 2 S do
4: Sort the x’s according to their � values.
5: Let x⇤ = argmaxx2S �(x).
6: Let Vx⇤ = {x 2 S : rk(x) <

rk(x
⇤)

⇢1/p }.
7: Let cM ✓ S be the component set of the graph

G(Vx⇤ , E(Vx⇤)) containing x
⇤.

8: Initialise cM = { cM}, the set of true modal-sets in S.
9: loop

10: Let x⇤ = argmaxx2S{�(x) : x /2 cM}.
11: Let Vx⇤ = {x 2 S : rk(x) <

rk(x
⇤)

⇢1/p }.
12: Let cM ✓ S be the component set of the graph

G(Vx⇤ , E(Vx⇤)) containing x
⇤.

13: if cM \ cM = ? then
14: Add x

⇤ to cM.
15: end if
16: end loop
17: Initialise ~G(S, ~E), a directed graph with S as ver-

tices and no edges, ~E = ?.
18: for each x in S\ cM do
19: Add a directed edge from x to b(x).
20: end for
21: for each cluster center x 2 cM do
22: Let C be the collection of the points connected by

any directed path in ~G(S, ~E) that terminates at x.
23: Add C [ x to bC.
24: end for
25: end for
26: return bC

points x⇤ for each components, the purple and green modal-
sets are automatically selected in Figure 6c.

Next, the instance with maximal value of the peak-
finding criterion yet to be assessed is selected and denoted
by x

⇤. The subgraph G(Vx⇤ , E(Vx⇤)) is extracted, and the
component set of G(Vx⇤ , E(Vx⇤)) containing x

⇤ is denoted
by cM (Lines 10-12). If cM is disjoint from all selected modal-
sets in cM, then cM is added to cM (Lines 13-14). For the
top component set in Figure 6c, no further modal-sets are
detected. For the bottom component set, a second modal-
set, in yellow, is detected.

Once the center-selection loop is complete, non-center
points are allocated to their clusters. For each non-center
point x, a directed edge is added from x to b(x), its
nearest neighbor of higher density (Lines 17-20). All vertices
that have paths terminating at the same cluster center are
assigned to the same cluster, and the cluster is subsequently
added to bC (Lines 21-23). The process is repeated for each
component set to return the final set of clusters bC. The clus-
ters corresponding to each modal-set are shown in Figure
6d. Furthermore, a sample assignment path for an instance
in the purple cluster is shown in gold.
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Figure 6: Illustration of stages of the proposed CPF algorithm.

5 ANALYSIS OF CPF
5.1 Theoretical Analysis
In this section, we show that CPF extends the theoretical
guarantees available to the DPC method in Section 3.2. We
demonstrate that CPF can, with high probability, estimate
each modal-set of the underlying probability density bijec-
tively.

The notion of modal-sets can also be understood as a
method for pruning spurious estimates from the set of esti-
mated modes, in a similar way to the method of [30]. There,
the authors prune spurious modes arising due to sampling
variability by assessing the level sets at nearby levels of the
density. Using nearest neighbor graphs, [27] translates this
framework for mode detection, showing that the pruning
method allows for bijective estimation of the true modes that
with density above a certain level. The analogy to modal-
sets is easily drawn. The CPF procedure will only retain an
estimated modal-set, say cM , if it is contained in a separate
component set of the graph. The correspondence allows for
the following result, given previously in [20], stating that the
modal-set estimates returned by CPF estimate the modal-
sets of f bijectively and consistently.

Theorem 3 (Modal-Set Estimation - adapted from Theorem
1 of [20]). Let 0 < ⇢ < 1 and ✏, ⇣ > 0. Let M1, . . . ,Mm be the

modal-sets of f . The following holds with probability 1 � ⇣. For

n sufficiently large depending on f, ⇣, ✏ and ⇢, CPF returns m

modal-set estimates cM1, . . . ,
cMm such that Mi \X ✓ cMi ✓

Mi +B(0, ✏) for i = 1, . . . ,m.

The result proving the quality of the cluster assignment
of Section 3.2 can also be applied to each component set,
with suitable adjustments made to the number of observa-
tions in each component set.

5.2 Complexity Analysis
The most computation-intensive task is creating the mutual
k-NN graph which requires O(nk log(n)) operations on
average. The connected components are extracted with O(n)
operations. Another major computational burden is finding,
for each point, its nearest neighbor of higher density in a
component set. For the points which do not have a point
of higher density in their neighbors, this requires O(|S|)
operations, where |S| is the number of instances in the
component set. Experimental results for the proportion of
instances without a point of higher density in their neigh-
bors are presented in Figure 7. The green line in the figure is
0.2 log(|S|)/|S|. As the proportion of such instances present
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Figure 7: Analysis of the proportion of instances that do not
have a point of higher density in their k nearest neighbors.
Data was simulated from a mixture of Gaussian components
with n = 40000, with the number of components and all
component parameters chosen randomly to ensure variety.
CPF was run with k = 100. The points in black are (|S|, p)
for a given component set with the green dashed line
showing the function 0.2 log(|S|)/|S|.

in S appears of order O(log(|S|)/|S|), nearest neighbors of
higher density are found in O(|S| log(|S|) time. Assessing
each cluster center requires O(|S|k) operations. The assign-
ment mechanism requires O(|S|) operations. As such, we
see that the complexity of CPF is O(nk log(n)), near linear
in n and k.

5.3 Limitations
While the CPF algorithm remedies the mode estimation and
assignment issues of the DPC algorithm, potential limita-
tions of the method exist. CPF, for simplicity, takes as input
only one neighborhood parameter k, used to compute the
mutual k-nearest neighbor graph and the density estimate
f̂k. For datasets with small number of instances, often the
optimal value of k for these tasks is different, with too small
k leads to oversegmentation of the data, but too large k

causes an oversmoothing of the density estimate and poor
detection of the modes. This issue would be compounded
if the data contained both low- and high-density clusters.
In such a case, it is possible to define k1 and k2 for graph
estimation and density estimation respectively.

6 EXPERIMENTS
6.1 Experimental Set-Up
Code implementing CPF and code to reproduce the below
experiments is available online.2

2. https://github.com/tobinjo96/CPFcluster (Github repository)
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Machine Configuration: All experiments have been con-
ducted on a PC running Debian 10 (Buster), consisting of 24
cores and 24GB of RAM.

Evaluation Criteria: To evaluate the clusterings pro-
duced we use the Adjusted Rand Index (ARI) [31] and the
Adjusted Mutual Information (AMI) [32]. For both metrics,
a larger value indicates a higher-quality clustering.

Comparison Methods: We compare with the following
state-of-the-art clustering algorithms:

• Density Peaks Clustering (DPC) method with k-NN
density estimator explained in Section 3. Implemen-
tation: Python. Input Parameter: k - neighbors.

• The original DPC (ODP) method of [10]. Implemen-
tation: R. Input Parameter: dc - threshold distance.

• Density Peaks Advanced Clustering (DPA) [18]. Im-
plementation: Python and C++. Input Parameter: z -
peak significance parameter.

• Adaptive Density Peaks Clustering (ADP) [16]. Im-
plementation: R. Input Parameter: h - bandwidth.

• Comparative Density Peaks Clustering (CDP) [33].
Implementation: Matlab. Input Parameter: dc -
threshold distance.

• DBSCAN (DBS) [34]. Implementation: Python and
C++. Input Parameter: eps - threshold distance.

• HDBSCAN (HDB) [35]. Implementation: Python and
C++. Input Parameter: minPts - minimum cluster
size.

• Mean Shift (MNS) [6], [7]. Implementation: Python
and C++. Input Parameter: h - bandwidth.

• Quick Shift (QKS) [8]. Implementation: Python. Input
Parameter: h - bandwidth.

• K-Means++ (KMS) [36]. Implementation: Python and
C++. Input Parameter: k - cluster number.

The distance-based parameters of ODP, ADP, CDP, DBS,
MNS, and QKS were set to fractions of the average standard
deviation of the data in each direction. The neighborhood
parameters of CPF, DPC, and HDB were set in the range of
log n to

p
n. The parameter for KMS was set in a range of the

true number of clusters, and the peak significance parameter
for DPA was set from 1.0 to 4.0. DPC, OPD, ADP, and CDP
require the number of clusters to be specified in advance.
For all experiments, the true number of clusters is provided
as an input to these algorithms.

6.2 Simulated Datasets
A qualitative comparison of the clustering methods is
provided by applying them to four synthetic illustrative
datasets. For brevity, we restrict the number of compari-
son methods to a peak-finding approach (DPC), a level-set
approach (DBS), a mode-seeking method (MNS), and the
proposed approach (CPF).

We present the clustering with the highest combined
value of the ARI and AMI across the range of parameter
values assessed. The results are presented in Figure 8, where
different colours indicate different clusters. The datasets are
henceforth referred to as Unequal Variance, Noisy Circles,
Noisy Moons, and Large m, following Figure 5. Considering
the Unequal Variance dataset, the mode-seeking methods
are seen to extract the correct cluster structure, while DBS

C
PF

D
PC

D
BS

M
N
S

Figure 8: The results of the clustering algorithms on syn-
thetic datasets. The ARI and the AMI for each clustering is
given in the lower left corner.

Table 1: Characteristics of the real-world datasets.

Name n p m

Dermatology [37] 358 34 6
Ecoli [37] 336 7 8
Glass [37] 214 9 6
Letter Recognition [37] 20000 16 26
Optdigits [37] 5620 64 10
Page Blocks [37] 5743 10 5
Pendigits [37] 10992 16 10
Phonemes [38] 4509 256 5
Seeds [37] 210 7 3
Vertebral [37] 310 6 3

fails to detect clusters at different densities. The DBS method
performs well for the Noisy Moons dataset as the level set
approach can detect clusters that are separated by regions
of low density. DPC and MNS are seen to select multiple
modes for the high-density cluster for the Noisy Circles
dataset. CPF is seen to exactly recover the cluster structure
for each dataset, combining the benefits of level-set and
mode-seeking methods.

6.3 Real-World Datasets

We assess CPF on a pool of ten real-world datasets. Details
of the datasets can be found in Table 1. Instances with
missing values are removed before clustering. Results are
presented in Table 2. For each method we present the
clustering with the highest combined value of the ARI and
AMI across the range of parameter values assessed. CPF
achieves the best clustering, in terms of the ARI and AMI,
for six of the datasets assessed, significantly outperforming
all of the competitor methods. Also presented are the mean
rankings for the quality of the clusterings returned by each
of the methods for both metrics. Here, CPF is seen to have
the best performance overall, indicating that the clustering
results are generally of high quality. In terms of the ARI, the
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Table 2: The quality of the clusterings for the real-world datasets. The best results are highlighted in bold.

CPF DPC ODP DPA ADP CDP DBS HDB MNS QKS KMS
Dataset ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI
Dermatology 0.81 0.83 0.74 0.83 0.25 0.45 0.53 0.67 0.58 0.73 0.71 0.75 0.44 0.63 0.47 0.66 0.66 0.77 0.35 0.49 0.66 0.81
Ecoli 0.70 0.66 0.47 0.57 0.55 0.50 0.04 0.1 0.68 0.65 0.51 0.55 0.50 0.48 0.40 0.41 0.74 0.70 0.42 0.49 0.72 0.67
Glass 0.29 0.41 0.24 0.31 0.20 0.27 0.00 0.00 0.26 0.27 0.25 0.38 0.25 0.37 0.25 0.37 0.28 0.39 0.20 0.32 0.21 0.29
Letter R. 0.19 0.56 0.05 0.25 0.23 0.54 0.17 0.54 0.09 0.53 0.13 0.42 0.07 0.46 0.02 0.45 0.14 0.52 0.16 0.55 0.16 0.38
Optdigits 0.78 0.83 0.78 0.84 0.74 0.79 0.72 0.82 0.00 0.00 0.83 0.86 0.30 0.60 0.09 0.44 0.51 0.61 0.53 0.55 0.62 0.70
Page Blocks 0.48 0.32 0.22 0.21 0.42 0.28 0.43 0.32 0.38 0.26 0.42 0.30 0.32 0.18 0.33 0.20 0.48 0.32 0.30 0.22 0.12 0.18
Pendigits 0.75 0.83 0.64 0.79 0.61 0.75 0.73 0.81 0.48 0.64 0.64 0.77 0.57 0.71 0.65 0.75 0.67 0.76 0.58 0.76 0.62 0.73
Phonemes 0.76 0.81 0.75 0.81 0.76 0.81 0.62 0.73 0.70 0.76 0.56 0.66 0.44 0.62 0.36 0.57 0.46 0.60 0.43 0.55 0.64 0.70
Seeds 0.78 0.72 0.78 0.72 0.71 0.69 0.78 0.75 0.77 0.72 0.65 0.62 0.38 0.46 0.32 0.41 0.63 0.62 0.62 0.62 0.77 0.72
Vertebral 0.43 0.40 0.45 0.40 0.57 0.57 0.00 0.00 0.19 0.30 0.37 0.33 0.31 0.27 0.27 0.25 0.12 0.22 0.19 0.21 0.29 0.31
Mean Rank 1.8 1.7 5.3 5.1 5.1 5.1 6.1 6.0 6.5 6.4 5.1 5.1 8.1 8.1 8.5 8.4 5.4 5.2 8.5 8.5 4.0 4.6

Table 3: P-values for Wilcoxon signed-rank tests with the
Benjamini-Hochberg correction, comparing the ARI and
AMI values of CPF with the competitor methods. Signifi-
cance at the ↵ = 10% level is denoted in bold and at the
↵ = 5% level with an asterisk.

DPC ODP DPA ADP CDP
ARI 0.076 0.144 0.079 0.013* 0.037*
AMI 0.192 0.223 0.151 0.060 0.060

DBS HDB MNS QKS KMS
ARI 0.013* 0.013* 0.047* 0.013* 0.195
AMI 0.027* 0.027* 0.082 0.027* 0.072

methods with the three next highest rank is KMS, ODP and
CDP. In terms of the AMI, the DPC method, as formulated
in Section 3.1 is also among the best performing approaches.
Taken together, this makes a strong case for the ability of the
peak-finding criterion to detect meaningful clusters in the
data.

Considering the competitor approaches that determine
the number of clusters automatically, the performance is
significantly worse than CPF. The peak-finding method DPA
exhibits inconsistent quality, achieving the best results for
the Seeds but not detecting meaningful clusterings for the
Ecoli, Glass and Vertebral datasets. The level set methods
DBS and HDB perform poorly. The poor performance in
both metrics indicates that these methods fail to capture
the classes present in the data. MNS achieves the optimal
clustering for two datasets, Ecoli and Page Blocks, but
does not regularly return high quality clusterings. QKS also
does not return high quality clusterings, particularly when
assessed using ARI. As ARI significantly penalizes false
positive clusters, it can again be concluded that quick shift
is not adequately detecting the true number of clusters in
the data. Considering the significant similarities between
the methodology of QKS and that of the DPC methods, the
poor results are likely the result of difficulty in finding the
optimal value of the parameter h.

Following the guidance given in [39], the results are
also subjected to a statistical analysis using non-parametric
tests. We apply the Wilcoxon signed-rank test for pairwise
comparisons, using the Benjamini-Hochberg correction to
control the false-discovery rate [40], [41]. The p-values for
the associated comparison are shown in Table 3. The results
indicate a strong level of statistical significance for the
improved clustering quality for the CPF method. CPF signif-
icantly outperforms all but one of the methods assessed and

is not outperformed by any of the competitor approaches.
The average run time, in seconds, for each method is

presented in Table 4. For small datasets, DBS and HDB
achieve the fastest run time, however the magnitude of
difference with CPF is unlikely to hinder their use in appli-
cations. This reflects their implementation in C++. For larger
datasets, CPF remains competitive with the fastest methods
and achieve near the fastest run time for Letter Recognition,
the dataset with the largest number of instances assessed.
Further context is provided in Table 5, detailing the com-
putational complexity of the algorithms. It is concluded that
CPF, as well as achieving high quality clusterings, gracefully
scales to larger datasets.

6.4 Analysis of the Parameter Space
CPF achieves superb results across the datasets when opti-
mal values for the parameters are applied. This performance
is exhibited across datasets of all sizes, with optimal results
achieved for datasets with the fewest and most number
of samples and for datasets with low and high numbers
of dimensions. The consistency of the performance of the
approach is now demonstrated for a wide range of param-
eter values. CPF has two parameters: (1) k, the number of
neighbors computed for each point when constructing the
k-NN graph and computing the the k-NN density estimator,
and (2) ⇢, the amount of variation in the density used
to assess potential cluster centers. The parameters of the
competitor methods are detailed in Section 6.1. In Figure
9 we present the clustering quality in terms of the ARI and
the AMI over a broad range of parameter values, for four
datasets, with the remainder included in the supplementary
material.

CPF is relatively robust to the choice of k and ⇢ for
all the datasets apart from the Vertebral dataset, for which
the choice of k appears important to the clustering qual-
ity. The results indicate that, for general application, it is
recommended to assess k = b0.9

p
nc. This value is near

the optimal for all of the datasets apart from the Letter
Recognition dataset. The quality of the clusterings remains
consistent as the variation parameter used to assess poten-
tial cluster centers varies from ⇢ = 0.1 to ⇢ = 0.9. For
general application, it is recommended to first assess ⇢ = 0.6
as competitive results are achieved for all datasets, except
Page Blocks. The performance of CPF for values of the
parameter ⇢ is not affected by the number of samples in the
data. Users can intuitively tune the parameter ⇢ for alternate
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Table 4: The average run time for the real-world datasets.

Dataset CPF DPC ODP DPA ADP CDP DBS HDB MNS QKS KMS
Dermatology 0.19 0.10 4.65 0.05 2.5 0.32 0.01 0.02 1.11 0.05 1.04
Ecoli 0.16 0.08 2.54 0.04 1.67 0.33 0.00 0.02 0.93 0.03 0.25
Glass 0.08 0.08 0.61 0.03 0.24 0.11 0.00 0.00 0.67 0.03 0.09
Letter R. 24.00 10.44 2430.84 15.48 1002.42 372.14 19.94 25.53 1128.16 35.41 2.39
Optdigits 4.45 1.53 126.83 1.14 2404.59 4.80 2.03 1.63 25.11 1.88 1.06
Page Blocks 1.44 0.67 123.27 2.55 43.26 14.59 1.23 0.68 21.77 12.78 1.35
Pendigits 3.33 1.32 320.98 3.35 126.74 15.25 2.72 1.49 30.45 5.89 4.11
Phonemes 21.13 9.18 1627.81 1.27 57.33 43.22 16.26 11.42 24.12 4.80 1.40
Seeds 0.08 0.09 0.51 0.02 7.78 0.03 0.00 0.00 1.07 0.01 0.04
Vertebral 0.05 0.10 0.84 0.04 15.28 0.11 0.00 0.00 0.40 0.02 0.10

Table 5: Computational complexity for the competitor al-
gorithms. Note that CPF has complexity O(nk log(n)). For
KMS, t is the number of iterations until convergence.

DPC ODP DPA ADP CDP
O(nk log(n)) O(n2) O(nk log(n)) O(n2) O(n2 log(n))

DBS HDB MNS QKS KMS
O(n2) O(n2) O(n2) O(nk log(n)) O(tknp)

clusterings, increasing ⇢ if more clusters are desired and
decreasing ⇢ if fewer clusters are desired. Considering the
competitor methods, it is noted that ADP, CDP, DPA, and
QKS also achieve consistent results as the values of their re-
spective parameters increase. Each of these methods, as well
CPF, allocate instances to the same cluster as their nearest
neighbor of higher local density. An additional benefit of
CPF is that the parameters do not depend on the scale of
the data. This is illustrated in the large range of k, relative
to the size of the datasets, for which CPF achieves excellent
results.

7 MULTI-IMAGE MATCHING WITH CPF
In this section, we introduce an adapted version of CPF for
multi-image matching. Multi-image matching is an impor-
tant application in computer vision, notably in the recon-
struction of 3-D scenes form 2-D images. We can consider
the problem as extending clustering from an unsupervised
task to a semi-supervised task. For multi-image matching,
the only supervision information provided is the images
from which each point is created. No two instances from the
same image can be grouped together in the final clustering.

Quick shift forms the basis of the first successful appli-
cation of density-based clustering to the problem of multi-
image matching. QuickMatch [42] modifies quick shift by
moving a point to its nearest neighbor with higher empirical
density, only if the neighbor does not belong to an image
already contained in the cluster. We adapt the CPF method
introduced in Algorithm 2 to accommodate supervision
information. Denote the image label of an instance x by
I(x) 2 {1, . . . , nI}, where nI is the number of images
assessed. As such, we present CPF-Match by updating
the allocation phase of Algorithm 2, substituting lines 19-
22 with Algorithm 3. CPF-Match modifies the allocation
procedure of CPF, while component sets and cluster centers
are selected in the same way.

A directed graph ~G(S, ~E) is initialized as before (Line
17). Next, CPF-Match sorts the points of S not in modal-
sets according to the distance kx � b(x)k, from smallest to

Algorithm 3 CPF-Match

17: Initialise ~G(S, ~E), a directed graph with S as
vertices and no edges, ~E = ?.

18: Sort the vertices x 2 S\ cM in ascending order of the
distance from x to b(x).

19: for each x do
20: if I(x) 6= I(b(x)) then
21: Add a directed edge from x to b(x).
22: end if
23: end for

largest (Line 18). Processing the non-center points in turn, a
directed edge from x to b(x) is added if x and b(x) are not
from the same image, i.e., I(x) 6= I(b(x)) (Lines 19-23).

To demonstrate the ability of CPF-Match to perform
multi-image matching, we apply it to the Graffiti dataset.3
The dataset contains six image groups (bark, bikes, boat,
graffiti, Leuven, and UBC), each containing six different
images of the same scene. Features are extracted from each
image using SIFT, roughly 500 for each image [43]. Examples
for a pair of images from two of the six image groups are
presented in Figure 10.

For evaluation, we apply the same approach as in [42].
For a test point in an image, we calculate the distance
between its estimated correspondence and the true cor-
respondence in another image. If the distance is smaller
than a threshold, we consider the match to be correct. We
plot the percentage of testing points with correct matches
versus the threshold values to obtain a curve which can
be interpreted in a manner similar to a precision-recall
curve. As homography matrices are provided relating the
first image with the remaining images in each group, we
use all detected feature points in the first image as test
points and evaluate the matches in the other five images.
The performance curves for CPF-Match and QuickMatch
for each of the six datasets are presented in Figure 11. CPF-
Match achieves superior results compared with QuickMatch
for each of the datasets. The improvements are notable for
the Bikes, Boat and Leuven image sets. CPF-Match is a
viable and effective method for the multi-image matching
problem.

8 CONCLUSION AND FUTURE WORK

In this work, we provided the first theoretical analysis of the
popular DPC algorithm. DPC was proven to consistently

3. https://cvssp.org/featurespace/web/related papers/graffiti.html
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Figure 9: For each dataset and clustering algorithm, we show the clustering quality as a function of the input parameters.
The ARI is shown in blue, and the AMI in pink. Note that for CPF, we present the clustering quality as a function of both
k and ⇢.

Figure 10: One pair of images from the Bikes and Boat image
groups. Lines between each pair of images indicate a match
detected by CPF-Match.
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Figure 11: The performance curves for the CPF-Match
(black) and QuickMatch (blue) multi-image matching meth-
ods. For all datasets, k = 10, ⇢ = 0.5 and the threshold
parameter of QuickMatch is set to 4.

estimate the modes of the underlying density, and correctly
assign instances to clusters with high probability. We also
demonstrated issues with the DPC framework. This analysis
motivated a new clustering technique, the CPF algorithm.
CPF combines the benefits of both density-level set and
mode-seeking density-based clustering methods. CPF offers

extended theoretical guarantees, compared to DPC, and
exhibits improved clustering performance on a range of
synthetic and real-world datasets. Finally, we introduced
CPF-Match, an adaptation of CPF for an important semi-
supervised computer vision application. In future, we en-
visage the extension of CPF and CPF-Match to incorporate
other forms of supervision, including geometric informa-
tion for the multi-image matching problem, using node-
attributed mutual k-NN graphs.
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