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ABSTRACT: Neural networks are powerful function approximators which scale to problems having
large input and output dimensionalities. Bayesian neural networks (BNN) are an interesting choice for
surrogate models as they (1) natively enable performing sensitivity analyses by quantifying the
derivative of the function’s output with respect to its inputs, (2) are able to quantify heteroscesdastic
model prediction uncertainties, (3) are able to quantify the epistemic uncertainties associated with
parameters. However, a main limitation of typical BNN is that they do not allow propagating
uncertainties analytically from the model inputs to its outputs. The tractable approximate Gaussian
inference method (TAGI) solves this issue by enabling to propagate uncertainties analytically from the
model inputs to its outputs, making it suited to be used as a surrogate model for probabilistic setups.
One key limitation of TAGI is that, up to now, it relied on locally linearized activation functions. The
result of that approximation is that the input uncertainties only affect the output variances without
modifying the associated expected values, and these variances are only accurate for small magnitudes of
input-uncertainties. The objectives of this paper are twofold: first it is to introduce the TAGI method for
Bayesian neural networks to the surrogate modelling community and second, to present a new method
based on a mixture of truncated Gaussians to replace the local linearization in order to accurately
propagate uncertainties through neural networks.

Neural networks (NN) are powerful function
approximators (Goodfellow et al., 2016). A key
property is that unlike other surrogate modelling
(SM) methods such as polynomial chaos expansion
(PCE) (Sudret, 2008) and Gaussian process regres-
sion (GPR) or Kriging (Rasmussen and Williams,
2006), its computational complexity is primarily
controlled by the number of hidden units employed,
which in turns controls the model capacity. In typi-
cal neural networks, the computational complexity
is linear with respect to the number of weight pa-
rameters in the network (Goulet et al., 2021). This
enables scaling NN beyond the capacity of PCE
and GPR, to problems having large dimensional-
ities as it easily extents from a handful to thou-

sands of input as well as output values. Neural net-
works are an interesting choice for surrogate mod-
els as they natively enable performing sensitivity
analyses by quantifying the derivative of the func-
tion’s output with respect to its inputs (Margossian,
2019; Schröder et al., 2020). Backprop-based neu-
ral networks, have been shown to be able to quan-
tify heteroscesdastic model prediction uncertainties
(Izmailov et al., 2020; Maddox et al., 2019; Wu
et al., 2019; Gupta and Nagar, 2018). This as-
pect is particularly important in order to quantify
the surrogate model prediction accuracy as a func-
tion of the input values. One key limitation for
the neural networks that are relying on the gradient
backpropagation method (Rumelhart et al., 1986)
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for learning the network parameters is that they
do not allow propagating uncertainties analytically
from the model inputs to its outputs. Instead, they
need to either rely on Monte-Carlo (MC) sampling
(Lieu et al., 2022) to be trained while providing la-
belled examples for the output variance (Tripathy
and Bilionis, 2018), or rely on linear approxima-
tions (Schröder et al., 2020).

In the general framing, Bayesian neural networks
(BNN) have the particularity of considering the
epistemic uncertainties by quantifying the posterior
probability density function (PDF) for the weight
and bias on a NN (Neal, 2012). Existing methods
rely on approximate techniques such as MC sam-
pling (Neal, 2012), Variational inference (Wu et al.,
2019), and the Laplace approximation (Daxberger
et al., 2021). Some alternative methods do not
quantify the posterior over weights and instead only
focus on capturing the predictive uncertainty by en-
sembling several models. Examples of such meth-
ods are MC dropout (Gal and Ghahramani, 2016)
and ensembles (Barber and Bishop, 1998). Despite
being able to better capture the predictive uncer-
tainty than their non-Bayesian counterpart, they are
also typically order of magnitudes slower and are
still unable to propagate uncertainties analytically
from the model inputs to its outputs.

A new method that tackle these limitations is the
tractable approximate Gaussian inference method
(TAGI) (Goulet et al., 2021) that enable performing
closed-form analytical prediction and inference for
BNN while being orders of magnitude faster than
state-of-the-art BNN approaches (Deka, 2022). In
addition, TAGI enables propagating uncertainties
analytically from the model inputs to its outputs
making it suited to be used as a SM for probabilistic
setups. In addition to enabling analytical parameter
inference, TAGI enables performing input-values
inference such that for a trained network, we can
analytically infer the input such they match spec-
ified output values (Nguyen and Goulet, 2022a).
This aspect is relevant to the context of SM where
one wants to optimize model parameters for reach-
ing desired outputs. One key limitation of TAGI is
that, up to now, it relied on locally linearized acti-
vation functions (Goulet et al., 2021). The result of

that approximation is that (1) the input uncertain-
ties only affect the output variances without modi-
fying the output expected values, and (2) the output
variances are only accurate for small magnitudes of
input-uncertainties.

The objectives of this paper are twofold: first it
is to introduce the TAGI method for Bayesian neu-
ral network to the surrogate modelling community,
and second, to present a new method based on a
mixture of truncated Gaussians to replace the lo-
cal linearization and thus solve the two current lim-
itations associated with it while keeping all other
desirable properties allowing performing sensitiv-
ity analyses as well as quantifying heteroscedastic
prediction uncertainties. The structure of the paper
is the following: Section 2 presents a review of the
TAGI method, Section 3 presents the mixture rec-
tified linear activation unit (mReLU) proposed in
this paper and section 4 presents experiments com-
paring the performance at propagating uncertainties
for the existing and the new approach.

1. TRACTABLE APPROXIMATE GAUSSIAN IN-
FERENCE (TAGI)

Figure 1 presents a directed acyclic graph (DAG)
describing the interconnectivity of a feedforward
neural network architecture having L hidden layers
zzz( j) each consisting of A hidden units, X inputs and
Y output variables. TAGI assumes that the joint dis-

x1

x2

...

xX

bbb(0)

z(1)1

z(1)2

...

z(1)A

bbb(1)

z(2)1

z(2)2

...

z(2)A

bbb(···)

· · ·

· · ·

...

· · ·

bbb(L−1)

z(L)1

z(L)2

...

z(L)A

bbb(L)

z(O)1

z(O)2

...

z(O)Y

y1

y2

...

yY

w(1)
1,1w(1)
1,1

w
(1
)

1,2w
(1
)

2,1

w
(1
)

1,
i

w
(1
)

i,1
w

(1
)

1,
A

w
(1
)

A
,1

b (1)
1

Figure 1: DAG representations of the variable nomen-
clature associated with feedforward neural networks.

tribution between the observations yyy and a neural
network’s parameters θθθ = {www,bbb} is approximated
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by a multivariate Gaussian distribution,

f
(

θθθ

yyy

)
= N
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θθθ

yyy

]
;
[

µµµθ

µµµY

]
,

[
ΣΣΣθ ΣΣΣ

ᵀ
Yθ

ΣΣΣYθ ΣΣΣY

])
,

so that the parameter inference can build upon the
Gaussian conditional equation describing the prob-
ability density function (PDF) of θθθ conditional on
observations yyy,

f (θθθ |yyy) = N (θθθ ; µµµθ |y,ΣΣΣθ |y)

µµµθθθ |yyy = µµµθθθ +ΣΣΣ
ᵀ
YYYθθθ

ΣΣΣ
−1
YYY (yyy−µµµYYY )

ΣΣΣθθθ |yyy = ΣΣΣθθθ −ΣΣΣ
ᵀ
YYYθθθ

ΣΣΣ
−1
YYY ΣΣΣYYYθθθ .

The approach is inherently divided in two steps;
first propagate uncertainties through the network in
order to obtain the joint PDFs between the quanti-
ties to be updated (i.e., neural network’s parameters
and hidden state units) and the observations, and
then update these quantities.

The first key operation to be considered is the
propagation of uncertainty from the activation units
AAA( j)∼N (µµµ

( j)
AAA ,ΣΣΣ

( j)
AAA ) of a hidden layer j to a hidden

unit Z( j+1)
i on the subsequent layer j+1

Z( j+1)
i =

A

∑
k=1

W ( j)
i,k A( j)

k +B( j)
i , (1)

where W ( j)
i,k are weights and B( j)

i the bias parameters
that are modelled by Gaussian random variables. In
order to maintain the analytical tractability of equa-
tion 1, TAGI approximates the product of any pair
of weight and activation unit by a Gaussian random
variable WA ≈ N (µWA,σ

2
WA), for which the exact

moments can be computed analytically using Gaus-
sian multiplicative approximation (GMA) (Goulet
et al., 2021; Deka et al., 2021). The second key
operation is the propagation of uncertainty through
non-linear activation functions

A( j+1)
i = ψ

(
Z( j+1)

i

)
, (2)

where, in order to maintain the analytical tractabil-
ity, TAGI locally linearize ψ(·) at the expected
value of the hidden units µ

( j+1)
Zi

. In practice it is
most common to employ the rectified linear acti-
vation function (ReLU) (Goodfellow et al., 2016)
which simply consists in

ψR(z) = max(0,z),

so that the local linearization results in

µA = 0, σA = 0 if µz ≤ 0
µA = µZ, σA = σZ if µz > 0. (3)

Maintaining the computational tractability of equa-
tions 1 and 2 requires assuming diagonal covari-
ance structures for the hidden units among a same
layer ΣΣΣ

( j)
ZZZ , and for the parameters ΣΣΣθθθ , yet in the case

where we want to propagate uncertainties from the
input to the output layer, one needs to consider the
full covariance ΣΣΣ

( j)
ZZZ within each hidden layer j.

The update step, i.e., the Gaussian conditional
inference step, is performed using a recursive
layer-wise procedure; Using the shorthand nota-
tion {θθθ +,ZZZ+} ≡ {θθθ ( j+1),ZZZ( j+1)} and {θθθ ,ZZZ} ≡
{θθθ ( j),ZZZ( j)}, the posteriors for the parameters and
hidden states are computed following

f (ZZZ|yyy) = N (zzz; µµµZZZ|yyy,ΣΣΣZZZ|yyy)

µµµZZZ|yyy = µµµZZZ +JZZZ

(
µµµZZZ+|yyy−µµµZZZ+

)
ΣΣΣZZZ|yyy = ΣΣΣZZZ +JZZZ

(
ΣΣΣZZZ+|yyy−ΣΣΣZZZ+

)
JᵀZZZ

JZZZ = ΣΣΣZZZZZZ+ΣΣΣ
−1
ZZZ+ ,

(4)

f (θθθ |yyy) = N (θθθ ; µµµθθθ |yyy,ΣΣΣθθθ |yyy)

µµµθθθ |yyy = µµµθθθ +Jθθθ

(
µµµZZZ+|yyy−µµµZZZ+

)
ΣΣΣθθθ |yyy = ΣΣΣθθθ +Jθθθ

(
ΣΣΣZZZ+|yyy−ΣΣΣZZZ+

)
Jᵀ

θθθ

Jθθθ = ΣΣΣθθθZZZ+ΣΣΣ
−1
ZZZ+ .

(5)

Note that the layer-wise recursive procedure de-
fined in equations 4 and 5 only requires the storage
of the joint prior PDFs for pairs of subsequent hid-
den layers and pairs of hidden layers, along with
the parameters directly connecting into them. This
allows maintaining the computational tractability
of the uncertainty propagation and inference steps
which scale linearly with respect to the number of
weight parameters.

Despite the simplifying assumptions mentioned
above, TAGI was shown to match the performance
of feedforward neural networks (FNN) trained with
backpropagation for regression, and for classifica-
tion with convolutional neural networks (Nguyen
and Goulet, 2021b), for image generation with gen-
erative adversarial networks (Nguyen and Goulet,
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2021b), and for reinforcement learning with dis-
crete and continuous actions (Nguyen and Goulet,
2021a, 2022a). In the following section, we will
show how we can replace the local linearization
procedure from equation 2 in order to allow propa-
gating uncertainties accurately from the input to the
output of the network.

2. MIXTURE RECTIFIED LINEAR ACTIVATION

UNIT
The idea behind the mixture rectified linear ac-

tivation unit (mReLU) is to propagate the hidden
unit’s uncertainty Z ∼N (µZ,σ

2
Z) through a ReLU

ψR(z) by using a Gaussian mixture between a trun-
cated Gaussian Z̃ and a zero-valued component.

The expected value of a Gaussian truncated at
z≥ 0 is

α = −µZ
σZ

ω = 1−Φ(α) = Pr(Z ≥ 0)

β = φ(α)
max(δ ,ω)

µ̃Z = µZ +βσZ,

where, φ and Φ are the standard normal PDF and
cumulative density function (CDF), and for practi-
cal cases, δ = 10−3 is a lower bound on the proba-
bility in order to avoid numerical errors associated
with a possible division by 0 when calculating β .
The variance of the truncated PDF is given by

κ = 1+αβ −β 2

σ̃2
Z = κσ2

Z .

Figure 2 presents examples of such a truncation for
different values of µZ . The first figure on the top
rows presents the ReLU function itself, the sec-
ond, the probability mass function (PMF) associ-
ated with Pr(Z < 0), the third presents the truncated
PDFs for z≥ 0 as well as the Gaussian PDF whose
moments match the truncated Gaussian, and the
fourth presents the output Gaussian random vari-
able obtained from the mixture (Runnalls, 2007)
of the PMF for Pr(Z < 0) and the moment match-
ing Gaussian for Pr(Z ≥ 0). Figure 2a,b show how
even for negative expected values, it results in non-
zero mean and variance contrarily to the locally lin-
earized ReLU presented in equation 3. Figure 2c

shows that when the expected value is positive and
much larger than the variance, the result is equiva-
lent to the locally linearized ReLU.
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Figure 2: Illustration of the effect of the hidden unit
expected value µZ on the Mixture-ReLU.

Figure 3 reproduces a similar experiment, this
time while keeping µZ at a constant negative value
while varying σZ . For all these cases, the locally
linearized ReLU would have resulted in zero out-
put mean and variance. With mReLU, we can see
in (a) that as most of the probability content is in the
negative domain, the output is highly concentrated
around zero. Then for (b) and (c), as we increase
σZ , the output mean get shifted towards positive
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values and the output variance increases.
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Figure 3: Illustration of the effect of the hidden unit
variance σZ on the Mixture-ReLU

The relationship between {µZ,σZ} and {µA,σA}
is illustrated in Figure 4 where the special case
where σZ = 0 is equivalent to the ReLU ψR(z). We
can see how as σZ increase, the function value is
smoothed and the output uncertainty increases.

The covariance between Z̃ and another variable
H is given by

cov(Z̃,H) = κ
1/2cov(Z,H).

The probability Pr(Z > 0) is denoted by ω , so that
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Figure 4: Illustration of the effect of the hidden unit
expected value µZ and variance σZ on the Mixture-
ReLU output moments {µA,σA}.

the activation unit A is obtained from the mixture

A = ω ·0+ωZ̃,

for which the moment are

µA = ωµ̃z

σ2
A = ωσ̃2

Z +ω(1−ω)µ̃2
Z

λ = (ωκ)1/2

cov(A,H) = λcov(Z,H).

(6)

The expected value and variance computed in
Equation 6 are exact, however, the covariance is not
because of the truncation. Figure 5 compares the
covariance obtained from Equation 6 with the the-
oretical result obtained using MC simulations. We
can see from Figure 5 that although the covariance
is not computed exactly, the approximation closely
mimic the theoretical values.

3. EXPERIMENTS

We explore the capacity of the locally linearized
ReLU & mReLU functions to correctly propagate
uncertainties through a neural network using a 1D
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Figure 5: Comparison of the mReLU (red) output mo-
ments {µA,σA,cov(A,Z)} with the theoretical values
(blue) as a function of µZ and σZ .

toy regression problem y = g(x) = x3− x/2. For
that comparative setup, we use a feedforward fully-
connected architecture with a single hidden layer
having 50 hidden units. In each case, we first learn
the function using synthetic observations so that
the epistemic uncertainty associated with weights
and biases become negligible. The reason behind
this setup is that we want to look specifically at
the effect of the input variable (x) uncertainty (σX )
on the output without interference from the pa-
rameter’s uncertainty. For that purpose, we con-
sider ΣΣΣθθθ = 000 and we query the trained network
for different input values X ∼ N (x,σ2

X), where
σX ∈ {0.05,0.10,0.25,0.50}. The output expected
value and variance are then compared with the the-
oretical values obtained using MC samples (105).

Figure 6 first present the results for the local lin-
earized ReLU function. On the top row, we can di-
rectly see the predicted expected values in red with
its ±σ coverage region, along with the theoretical
values displayed in blue. Note that the NN predic-
tions are almost coinciding with the true function
g(x) displayed in black. On the second row, we
compare in solid blue the output standard deviation
resulting from the input uncertainty associated with
X , for TAGI in solid blue and MC simulations in
dashed blue. We see that for small values of σX
with respect to the changes in curvature of the func-
tion, the locally linearized ReLU matches the the-
oretical values. However, for larger σX values, the
results do not match the theoretical values. Note
how for σX = 0.5, the theoretical expected values
depart from the function g(x) whereas the output
obtained from the locally linearized ReLU do not.

The same thing is true for the output’s standard de-
viation which goes to zero whenever the derivative
of the function equals zero, which is not theoreti-
cally correct.

Figure 7 presents the results for the same exper-
iment, this time for the mReLU. Again, for small
values of σX , the mReLU matches the theoretical
values. However, for larger σX values, we are now
able to model the departure of the output expected
value from the function g(x). Although a discrep-
ancy remains between predicted and theoretical val-
ues, the approximation is much better than with
the locally linearized approximation. The same ap-
plies for the output standard deviation, which is
highly accurate for small input uncertainties and
then underestimate the output uncertainty as σX in-
creases. Despite this approximation in the output
uncertainty, note how contrarily to the locally lin-
earized ReLU, the output’s standard deviation does
not go to zero whenever the derivative of the func-
tion equals zero.

The experiments conducted here show how the
mReLU overcomes the limitations associated with
the local linearization approach for propagating un-
certainties through a neural network.

4. CONCLUSIONS

This paper introduces the possibilities that
Bayesian neural networks can bring to the field of
surrogate modelling. Up to now, surrogate mod-
els relying on neural networks had to rely on sam-
pling methods or linear approximations in order to
propagate input uncertainties through the network.
This aspect has limited the potential of neural net-
works in comparison with other approaches such
as polynomial chaos expansion. As presented in
this paper, the tractable approximate Gaussian in-
ference (TAGI) method using the mReLU proposed
in this paper brings a paradigm shift by being the
first method that allows propagating uncertainties
analytically through a neural network. In addition
to this unprecedented feature, TAGI preserves the
capacity to quantify epistemic and heteroscedastic
aleatory uncertainties, as well as to perform prob-
abilistic sensitivity analysis through a closed-form
formulation. Although much work remains to be
done before BNN and TAGI can match the per-
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Figure 6: Locally linearized ReLU modelling the effect of input-layer uncertainty (σX ). The solid lines corre-
spond to the TAGI method and the dashed lines are Monte-carlo analyses used as references.
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Figure 7: mReLU modelling the effect of input-layer uncertainty (σX ). The solid lines correspond to the TAGI
method and the dashed lines are Monte-carlo analyses used as references.

formance of the existing state-of-the-art surrogate
model methods, the scalability offered by BNN
makes it an excellent candidate for the future in-
vestigations of complex SM problems. Users in-
terested in experimenting with TAGI can rely on
the Py/cuTAGI library (Nguyen and Goulet, 2022b)

that include all the features introduced in this paper.
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