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ABSTRACT: Accurate information on the topology of interdependent infrastructure networks is
necessary to understand the behavior of interdependent infrastructure networks under uncertainty and
evaluate their vulnerability to disruptions. Such information is often missing or not available. To address
this issue, we propose a Bayesian approach to infer the topology of interdependent infrastructure
networks from cascading failure data. This approach utilizes the hierarchical stochastic block model to
generate the initial networks along with their corresponding prior probability and employs the
susceptible-infectious epidemic spreading model to calculate the likelihood of the observed cascading
failure sequence. Specifically, we use Metropolis-Hastings algorithm with the proposal designed
specifically for interdependent infrastructure networks, the infrastructure-dependent proposal, to obtain
the posterior distribution of network topology. A case study on inferring the topology of a synthetic
system of the U.K. interdependent power-gas system is conducted to demonstrate the effectiveness of
our approach in reconstructing the topology of interdependent infrastructure networks.

1. INTRODUCTION

1.1. Motivation and Problem Statement

Networks have recently become a crucial tool
for describing features and analyzing behaviors of
complex systems, where individual entities are rep-
resented as nodes and their connections or inter-
actions are denoted as links. Examples include
modeling online social media as social networks
to quantitatively measure central roles of entities,
(Kolaczyk, 2017), framing infrastructure networks
as multi-networks and using flow theory to assess
their performance during disasters (Ouyang et al.,
2012), and abstracting drug-disease interactions as
the biological networks to discover related drugs or
classify proteins according to their biological func-
tion. Such network-based tasks are performed us-
ing corresponding real networks as platforms where

complete information of the network topology is re-
quired (Ouyang et al., 2012). However, for some
of these real-world networks, such as infrastruc-
ture networks, complete topology information is
not available either due to security concerns or due
to lack of shared data and knowledge across dif-
ferent types of infrastructure networks (e.g., water,
power, transportation, and gas). As a result, re-
searchers have turned to network simulation meth-
ods to generate network topology used for down-
stream tasks (Fu et al., 2016). Even though net-
works generated by simulation methods are simi-
lar to the original networks, strong priors and con-
straints are also embedded in the simulated network
topology at the same time. Furthermore, network
simulation methods are only designed for generat-
ing limited types of networks, which leads to a nar-
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row range of real-world applications (Erdős et al.,
1960). Due to these limitations and the advances
in data collection and storage, recent studies have
focused on network reconstruction methods to re-
construct the network topology given partial infor-
mation.

1.2. Contributions
The ability to learn the topology of interdepen-

dent infrastructure networks will enable research
advances in data-driven approaches for infrastruc-
ture performance modeling. Given the limitations
of parametric estimation methods and the computa-
tional intractability of traditional nonparametric re-
construction methods, we devise a novel network
reconstruction approach which considers topology
constrains of real-world infrastructure networks,
and thus, significantly decreases the space of the
candidate set of networks. We apply this approach
in a Bayesian inference framework to reconstruct
the network topology based on a specific dynamic
process occurring in interdependent infrastructure
networks which is the cascading failure effect re-
sulting from disruptions. A case study on recon-
structing the topology of a synthetic system of the
U.K. gas-power networks is conducted to demon-
strate the effectiveness of our approach.

The rest of the paper is organized as follows.
Section 2 introduces the general Bayesian frame-
work in reconstructing network topology based
on the disrupted network performance. The
Metropolis-Hastings algorithm for network recon-
struction and the infrastructure-dependent proposal
are described in Section 3 with numerical results
provided in Section 4 and concluding remarks in
Section 5.

2. BAYESIAN NETWORK RECONSTRUCTION

In this section, a Bayesian framework to recon-
struct the network topology based on the disrupted
network performance is proposed. In graph the-
ory, the information of the network topology is
completely represented by its adjacency matrix A.
Therefore applying Bayes’ theorem to reconstruct
the network topology based on disrupted network
performance C is achieved by updating the knowl-
edge on the adjacency matrix A, i.e., the posterior

of A:

P(A|C) =
P(C|A)P(A)

P(C)
∝ P(C|A)P(A) (1)

where the likelihood P(C|A) measures the proba-
bility that the disruption C occurs on the network of
particular topology A; P(A) is the prior information
on the network topology; P(C) = ∑A P(C|A)P(A)
is the normalization term that indicates the total ev-
idence for the disruption data C. The calculation of
the likelihood P(C|A) and the network prior P(A)
are introduced in the following section.

2.1. Graph Prior Model
Different types of networks with their prior

probabilities P(A) are generated by correspond-
ing graph models. The Erdos-Renyi (ER) model
generates networks with null hypothesis while two
other models, the Barabasi-Albert (BA) model and
the Watts-Strogatz (WS) model impose constraints
on the generated networks. The former gen-
erates scale-free networks by preferential attach-
ment mechanism while the latter generates small-
world networks with short average path lengths and
high clustering. However, most of real-world in-
terdependent infrastructure networks are grouped
by clusters and composed of hierarchical levels,
which requires a more complex and realistic model
such as the Hierarchical Stochastic Block model
(HSBM) (Amini et al., 2022). The HSBM splits
networks into multiple blocks and within each
block, divide nodes into hierarchical levels. For ex-
ample, the HSBM can be applied to model a system
of power-water-gas networks using three blocks,
each corresponding to water, power and gas net-
works and three layers within each block that each
represent supply, transmission and demand nodes).
The HSBM is used as the prior graph model to cal-
culate the prior probability P(A) since the topol-
ogy of interdependent infrastructure networks can
be fully characterized by HSBM. Consider a mul-
tiplex network with B blocks such that the number
of nodes in each block is nb,b ∈ B = {1,2, ...,B}.
Within each single block b, a hierarchical structure
is added so that the nb nodes in block b are fur-
ther divided into l levels. We assume that different
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blocks share the same hierarchical structure. De-
noting the block and layer labels of the node i as bi
and li, each element Ai j of the adjacency matrix A
is an independent Bernoulli random variable with
probability pi j, a function of the block and layer
labels, bi,b j, li, l j. Therefore, the prior probability
P(A) conditioned on the block and layer assign-
ments B,L of the multiplex network is calculated
as:

P(A|B,L) = ∏
∀i, j∈N,i ̸= j

pAi j
i j (1− pi j)

1−Ai j (2)

pi j = f (bi,b j, li, l j), ∀i, j ∈ N, i ̸= j (3)

where N is the set of nodes in the multiplex network
and f is the function calculating the edge probabil-
ity pi j between nodes i, j based on their block bi,b j
and layer li, l j. In interdependent infrastructure net-
works, b corresponds to individual infrastructures
such as power grid or water and gas distribution net-
works, and l corresponds to different types of facil-
ities such as power supply nodes, i.e., gate stations,
or water transmission nodes, storage tanks.

2.2. Cascading Failure Model
The knowledge on network topology is updated

using the likelihood P(C|A) with a target topology
that reproduces the diffusion of the cascading fail-
ure data. We consider the susceptible-infected (SI)
model to quantitatively analyze the cascading fail-
ure (Peixoto, 2019). The set of information cas-
cades C contains independent cascading scenario
Ci, i ∈ {1,2, ...,C} and each individual cascading
scenario is a failure sequence where Ci

t j = 1 indi-
cates that node j has already failed at time t in the
ith cascade. Node j fails when at least one of its ad-
jacent nodes fails and this failure successfully prop-
agates to node j. Consider the failure propagation
of node j from time step t to t +1, shown in Fig. 1.
The probability of node j failing, shown in Eq. 4,
is calculated as a function of the complementary
event that the failure of nodes 1,2, , ...,v− 1 does
not propagate to node j along corresponding links.

P(Ci
t+1, j = 1|Ci

t, j = 0,Ci
t,1 = 1...,Ci

t,v = 0)

= 1− (1−q1 j)(1−q2 j) · · ·(1−qv−1 j)
(4)

20

Bayesian Inference Framework - Basic

1

2

3
𝑣

𝑗
1

2

3
𝑣

𝑗
𝑡 𝑡 ൅ 1

𝑞ଵ௝

𝑞ଶ௝
𝑞ଷ௝ 𝑞௩௝

𝑞ଵ௝

𝑞ଶ௝
𝑞ଷ௝ 𝑞௩௝

𝐂௜

Figure 1: Failure propagation of node j from time step
t to t + 1. Failed nodes are shown in red while opera-
tional nodes are shown in black.

where qi j denotes the probability of failure propa-
gation along the link i j from node i to j.

Due to the independence between any two cas-
cading scenarios Ci,C j(i ̸= j),∀i, j ∈ {1, ...,C}, the
likelihood of cascading failure data C for the entire
network considers the failure propagation for a sin-
gle node and a single time step (Eq. 4) across all
cascading failure scenarios, over all time steps for
the entire disruption duration, and among all nodes
in the network:

P(C|A) =
C

∏
i=1

T (Ci)

∏
t=1

|N|

∏
j=1

P(Ci
t+1, j|Ci

t) (5)

where T (Ci) is the number of the time steps that the
cascading failure scenario Ci lasts; P(Ci

t+1, j|Ci
t) is

the probability of the status (failed/not failed) of
node j at time step t + 1. Considering the unin-
fected status, Eq. 4 becomes:

P(Ci
t+1, j|Ci

t)

= (1− ∏
k∈{N\ j}

(1−qk jAk jCi
t,k(1−Ci

t−1,k)))
Ci

t+1, j(1−Ci
t, j)

( ∏
k∈{N\ j}

(1−qk jAk jCi
t,k(1−Ci

t−1,k)))
(1−Ci

t+1, j)(1−Ci
t, j) (6)

where the first half represents the probability of
failure propagating to node j while the second half
represents its complementary event, the probability
of failure not propagating to node j. The comple-
mentary property is guaranteed since only one of
the two binary multiplication terms Ci

t+1, j(1−Ci
t, j)

and (1−Ci
t+1, j)(1−Ci

t, j) can be 1 and the other
is 0. The term Ci

t,k(1−Ci
t−1,k) ensures that only

nodes that have failed in the preceding time step
will influence the failure of nodes at the current
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time step, which characterizes the cascading mech-
anisms of the infrastructures such as progressive
collapse of building structures and gradual outage
of power stations (Adam 2018). For cases where
nodes that have failed several time steps ago can
still affect nodes at later time steps such as news
diffusion and epidemic spread in social networks,
one can remove the term Ci

t−1,k to incorporate these
cases into the cascading failure model.

Conditioning the network topology on the graph
prior model from Eq. 2, the Bayesian updating
equation 1 is reformulated as:

P(A|C,B,L) ∝ P(C|A,B,L)P(A|B,L)P(B,L)
(7)

When information on blocks and layers of in-
frastructure networks, B and L, is accessible, then
P(B,L) = 1. The independence of cascading fail-
ure C from B,L results in P(C|A,B,L) = P(C|A).
So the posterior of the adjacency matrix is further
simplified to:

P(A|C,B,L) ∝ P(C|A)P(A|B,L) (8)

where the graph prior P(A|B,L) is calculated using
Eq. 2 and the likelihood P(C|A) is given by Eq. 5-6.
Since Eq. 8 usually does not have any closed form
solution and the number of candidate graphs grows
exponentially with the increase of the network size,
Metropolis-Hastings algorithm is leveraged to gen-
erate samples of the posterior distribution of inter-
est, which is introduced in the following section.

3. METROPOLIS-HASTINGS ALGORITHM FOR

NETWORK RECONSTRUCTION

In the Metropolis-Hastings algorithm, the next
sample value is selected from a proposal distribu-
tion parametrized by the current sample value and
is either accepted or rejected with the accept ra-
tio determined by the value of function of the cur-
rent and candidate sample values with respect to
the desired distribution. As more samples are ac-
cepted, the distribution of values becomes a close
approximation of the desired distribution. In apply-
ing the Metropolis-Hastings algorithm to construct
the posterior distribution of network topology, each
sample value is a network adjacency matrix and we

propose a new adjacency matrix A′ from the previ-
ous adjacency matrix A using proposal distribution
Q(A′|A). The algorithm accepts the shift from A to
A′ with the ratio α , Eq. 9.

α = min{1,
P(C|A′)P(A′|B,L)
P(C|A)P(A|B,L)

· Q(A|A′)

Q(A′|A)
} (9)

The performance of the algorithm depends on the
choice of the proposal distribution Q(A′|A). A
common proposal used when implementing the
Metropolis-Hastings algorithm on networks is to
change a random node pair either by creating or re-
moving old edges. The main drawback of this pro-
posal lies in the possibility to select invalid network
samples. For example in interdependent water and
power networks, water delivery stations provide
water to power plants for cooling purposes rather
than to power substations. However, the traditional
proposal may sample a pair of nodes that include a
water delivery station and a power substation, and
connect them with an edge. Such proposal contra-
dicts the topology and operation of real-world in-
frastructure networks. In order to propose more
realistic networks, we modify the original ran-
dom sampler method to devise an infrastructure-
dependent proposal that imposes additional restric-
tions on the topology of the proposed infrastructure
networks.

4. INFRASTRUCTURE-DEPENDENT PROPOSAL
Different types of networks have different topol-

ogy features. The infrastructure-dependent pro-
posal samples networks considering topology con-
straints of the infrastructure networks. We first an-
alyze the basic structure of the interdependent in-
frastructure networks, from which we abstract the
topology constraints 1-7 used for constructing the
infrastructure-dependent proposal.

Interdependent infrastructure networks are com-
prised of multiple single networks with interdepen-
dent links representing their mutual interactions.
Each individual network has a hierarchical struc-
ture with three levels corresponding to three types
of nodes representing supply, transmission and de-
mand facilities. Suppose that we have a set of net-
works M and a set of their interdependency I, sup-
ply, transmission and demand nodes are denoted as
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s, t,d. Based on the operations of individual net-
works and their interdependencies, we determine
seven constraints on the topology of the proposed
networks.

Typically, resources are generated or extracted
from the nature at supply nodes and transported
via transmission nodes to demand nodes where re-
sources are further distributed to local residents.
Therefore, every supply node i ∈ Nm

s is connected
by a path to at least one demand node j ∈ Nm

d ,
and vice versa, according to constraints 1-2. Every
transmission node i ∈ Nm

t is connected by a path
from at least one supply node j ∈ Nm

s and to at least
one demand node k ∈ Nm

d , corresponding to con-
straints 3-4. Similarly, in interdependent networks
m ∈ I, we have the same constraints for connectiv-
ity from the supply nodes to demand nodes, 6-7.
The resources move from the supply nodes at the
high level to the demand nodes at the bottom level
without flowing back, which results in only forward
edges and thus no cycles, 5. The infrastructure-
dependent proposal is formed by improving the tra-
ditional random proposal by considering the seven
constraints.

1. ∀m ∈ M,∀i ∈ Nm
s ,∃ j ∈ Nm

d , i
path→ j

2. ∀m ∈ M,∀i ∈ Nm
d ,∃ j ∈ Nm

s , j
path→ i

3. ∀m ∈ M,∀i ∈ Nm
s ,∃ j ∈ Nm

t , i
path→ j

4. ∀m ∈ M,∀i ∈ Nm
t ,∃ j ∈ Nm

s , j
path→ i

5. ∀m ∈ M,no cycles

6. ∀m ∈ I,∀i ∈ Nm
s ,∃ j ∈ Nm

d , i
path→ j

7. ∀m ∈ I,∀i ∈ Nm
d ,∃ j ∈ Nm

s , j
path→ i

In the Metropolis-Hastings algorithm, we select a
node pair (i, j) at random at each iteration, add or
remove the edge between that node pair (i, j) and
get a new network as the candidate, the candidate
network is accepted if the addition or removal of
this edge does not violate the seven constrains. Oth-
erwise, this candidate is rejected, and we propose a
new node pair and check the feasibility of the pro-
posed topology. All node pairs are chosen with

equal probability, so in Eq. 9, Q(A′|A) = 2
N(N−1)

for all A and A′ that differ by one edge (Gray
et al. 2019). Therefore, the transition of the
infrastructure-dependent proposal is symmetric and
Eq. 9 is further simplified to:

α = min{1,
P(C|A′)P(A′|B,L)
P(C|A)P(A|B,L)

} (10)

where the likelihoods P(C|A′),P(C|A) are
calculated using Eq. 5-6 and the priors
P(A′|B,L),P(A|B,L) are calculated using Eq. 2-3.

5. EXPERIMENT EVALUATION

In this section, the proposed Bayesian infer-
ence approach is applied along with the new
infrastructure-dependent proposal to infer the topo-
logical structure of a synthetic interdependent
power-gas networks. Results demonstrate the capa-
bility of our approach in reconstructing the network
topology.

5.1. Data
The interdependent power-gas networks are gen-

erated by the HSBM where the whole system has
two blocks, each corresponding to the power and
gas networks. The gas network is simplified from
the National Transmission System (NTS) of U.K.,
the geographical boundary of which spans between
(50.01◦N, 58.62◦N) in latitude and (−5.68◦W,
1.66◦E) in longitude. The gas network has 9 sup-
ply nodes, 29 transmission nodes and 9 demand
nodes corresponding to gas storage facilities, com-
pressor and gas terminal, respectively. The network
topology is directly obtained fromQadrdan et al.
(2010). For the power network, the topology of
the IEEE RTS96 24-bus system for a single area
is adopted which includes 10 supply nodes, 4 trans-
mission nodes and 10 demand nodes, correspond-
ing to power generators, 12 or 23kV substations and
electric load, (Zlotnik et al., 2016)).

Due to security concerns and the use of a syn-
thetic power network, the location of network com-
ponents are unknown. Therefore, we simulate the
node locations by applying the annealing simula-
tion algorithm to optimize the overall distance be-
tween local residents and their nearest facilities.
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We consider two types of interdependencies for
the power and gas networks. First, power demand
nodes (electric load facilities) provide electricity to
gas supply nodes (gas storage facility) for their reg-
ular operation such as extracting natural gas from
underground. Second, gas demand nodes (gas ter-
minal) provide natural gas to power supply nodes
(power generator) for the purpose of generating
electricity. Both types of interdependencies are
considered by accounting for the distance between
each facility. The synthetic interdependent gas and
power networks to be reconstructed is visualized in
Fig. 2. We denote the target adjacency matrix, i.e.
the adjacency matrix of this synthetic interdepen-
dent power-gas networks, that we aim to infer as
A∗ hereafter. In applying the Metropolis-Hastings
algorithm to estimate the posterior distribution of
the adjacency matrix A, an adjacency matrix A0 is
initialized as the starting point to begin the sam-
pling process. To ensure a nonzero value of the
likelihood P(C|A), the initial adjacency matrix A0

is required to structure the observed cascading sce-
narios C, i.e. P(C|A0)> 0. Therefore, we generate
A0 by connecting nodes that fail at consequential
time steps in the cascading scenarios C. The cas-
cading scenarios C encode the information of the
network topology and prompts the MCMC chain to
converge towards the adjacency matrix of the syn-
thetic interdependent networks A∗. The data of cas-
cading scenarios C is simulated using the SI epi-
demic model where we set some initial failed nodes
and perform the failure propagation with the condi-
tional failure probability q in Eq. 6 as 0.4. Setting
the conditional failure probability either too high
or too low results in either very fast or slow fail-
ure propagation, both of which result in fewer fail-
ure sequences. In order to obtain enough cascading
data to update our knowledge on the network topol-
ogy, by draft trails, we find q = 0.4 is a medium
value for generating cascading scenarios with rea-
sonably long failure sequences. To demonstrate the
dependency of the performance of reconstructing
network topology on the amount of cascading sce-
narios C, we design three experiments: (i) E10

6 : 10
cascading failure scenarios, each of which has at
least 6 time steps (ii) E20

8 : 20 cascading failure sce-

narios, each of which has 8 time steps, and (iii) E30
10:

30 cascading failure scenarios, each of which has
10 time steps.
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Figure 2: The synthetic interdependent gas-power net-
works in the U.K. The nodes in green and red represent
facilitiesof the gas and power networks. Purple line
refer to interdependent links between gas and power
nodes

5.2. Results
In order to determine an appropriate number of

iterations for the convergence of the Metropolis-
Hastings algorithm, we calculate the features for
each newly proposed network and compare their
values with those from the target network to mea-
sure how far the current network proposal is from
the target network. Since the average degree indi-
cates the connectivity level of the network and is the
basic measure in computing many high-level net-
work features such as the clustering coefficient and
the diameter, we select the average degree as the
representative network feature and draw its trace
plot for the three experiments, Fig. 3. The aver-
age degree of the reconstructed networks in E10

6 and
E20

8 , the blue and orange chains, converge roughly
around 0.042 while in E30

10, the green chain, the
value converges precisely around 0.04, which is
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closer to the average degree of the target interde-
pendent networks represented by the black dashed
line. Increasing the number of cascading scenarios
with longer time steps in the 3rd experiment em-
beds abundant node-pair information that covers a
wider range of network topology compared to less
information from fewer cascading scenarios with
shorter time steps in the 1st and 2nd experiments.
Due to the lack of data in E10

6 and E20
8 , the pos-

terior of edges between certain node pairs remains
the same as the prior whereas in E30

10, the posterior
of these edges is updated with data of the corre-
sponding node pairs, drawing the distribution closer
to the target posterior. Additionally, the increasing
amount of cascading failure data in E30

10 incorpo-
rates more knowledge of the network topology into
the prior and after each iteration, driving the the
posterior closer to objective. As a result, compared
to the first two experiments, the value of the average
degree converges to the target with fewer iterations
in E30

10, i.e., less iteration numbers in the warm-up
state. To evaluate the performance of the network
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Figure 3: Trace plot of the average degree under three
experiments

reconstruction, we further convert it into a prob-
lem of predicting network adjacency matrix. We
filter out the network samples in the warm-up stage
and obtain the posterior distribution of the network
topology. Suppose that the set of networks in the
posterior distribution is A , the edge probability pi j
for each pair of nodes (i, j) is calculated by count-
ing the number of graphs with the edge between i, j

and dividing it by the total number of graphs in the
posterior, Eq. 11.

pi j =

∑
A∈A

I{Ai j = 1}

|A |
(11)

In Eq. 11, I{Ai j} is the binary term, which equals
to 1 when Ai j = 1 and 0 when Ai j = 0.

We plot the edge probability for each pair of
nodes in the network and display them on the
heatmap of the adjacency matrix shown in Fig. 4.
The top-left corner of the figure shows the original
networks where the edges are densely distributed
in certain areas with other blank areas showing no
connections, which clearly reflects the hierarchical
block structure as described by the HSBM model.
The constraints of the infrastructure-dependent pro-
posal ensures that in all three experiments, the ad-
jacency heatmaps conform to the block structure in
the original network. Since E30

10 uses more cascad-
ing failure data to update the network topology, we
collect more information about the network topol-
ogy and thus have higher confidence in the pre-
dicted edges. Therefore, the heatmap of the adja-
cency matrix is darker in E30

10 than in the other two
experiments, indicating higher edge probability.

Based on the adjacency heatmap, we set up a
probability threshold p and classify node pairs into
two categories: node pair connected by an edge
if pi j ≥ p and node pair not connected if pi j < p.
We further count the number of edges for each pair
of nodes that are correctly classified and plot the
precision-recall curve in Fig. 5. The best F1-score
for each of the three experiments is 0.42, 0.82 and
0.85, respectively, which is consistent with the pre-
vious observation that as the amount of cascading
data increases, the performance of the reconstruc-
tion improves.

6. CONCLUSION AND FUTURE WORK
This paper presents a Bayesian estimation ap-

proach for reconstructing the posterior distribu-
tion of the topology of interdependent infrastruc-
ture networks based on data of cascading failures.
The HSBM model is used to capture the clustering
and hierarchical structure of the interdependent in-
frastructure networks. The intractability caused by
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For the conference

Experiment Precision Recall F1-score Time (s)
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2 0.818 0.813 0.815 20923.265
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Figure 4: The heatmap of the adjacency matrix where
both of the x and y axes represent the node number.
Top-left: the original networks with hierarchical block
structure (s-t: the supply to transmission edges, s-d: the
supply to demand edges, t-d: the transmission to de-
mand edges, d-d: the demand to demand edges, green
color represents nodes in the gas network and the red
color represents nodes in the power network, the cross-
network edges are represented by d-s with different
colors); top-right: E10

6 ; bottom-left: E20
8 ; bottom-right:

E30
10.
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Figure 5: The precision-recall curves for the three ex-
periments

the exponential growth of the candidate graphs is
solved by a new infrastructure-dependent proposal
where we improve the traditional random proposal
by adding seven topological constraints of the inter-
dependent infrastructure networks.

Future work will explore the expansion of the
proposed reconstruction approach by incorporating
node features that relax the assumption of constant
propagation probability of failure across all pairs of
nodes.

7. REFERENCES
Amini, A., Paez, M., and Lin, L. (2022). “Hierarchi-

cal stochastic block model for community detection
in multiplex networks.” Bayesian Analysis, 1(1), 1–
27.
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