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ABSTRACT: Achieving resilient and sustainable infrastructure urges developing computational tools to 

explicitly consider performance objectives in all design and construction stages. The majority of critical 

decisions are made at earlier stages of the design. Early design can be substantially improved by 

incorporating quantitative methods to evaluate the consequences of these decisions. However, 

implementing quantitative methods poses several challenges, including imprecision of design variables 

and time- and effort-intensiveness of such assessments. This paper presents a modular framework to 

select suitable candidate structural systems, characterize their design parameters range, and communicate 

their expected hazard and environmental performance during their life cycles. The framework leverages 

a machine-learning-assisted workflow that performs mapping between crude design- and topology-

related parameters and global hazard and environmental performance indicators. Next, a sequence of 

surrogate models with varying fidelity aids in performing the convergence-divergence cycle of early 

design. Lastly, a deep learning architecture with a customized loss function maps the result of simpler 

static analysis to the detailed description of seismic performance, linking early design to the next design 

stages. A case study is presented to illustrate the application of the framework to evaluate the embodied 

carbon and seismic-related repair cost of an inventory of 720 multi-story concrete frames with varying 

topologies in Charleston, South Carolina.  

Architectural design is a mental transaction that 

transforms concepts into representation (Bueno 

and Turkienicz, 2014), through a nonlinear 

process that transitions between different 

concepts to render the desired product (Smith and 

Smith, 2014). The sequence of these transitions 

demarcates a given representation and helps the 

designer to re-think the relationship between 

different representations (Bueno and Turkienicz, 

2014), particularly at earlier stages of the design. 

Architectural design encompasses several design 

phases, starting with schematic design to design 

development and construction documents (Mehta 

et al., 2017).  

Early design is the most critical stage in 

improving building performance (Østergård et al., 

2016). An unaided early design follows the 

designer’s familiar domain of expertise, and 

subsequently, cognitive biases (Rezaee et al., 

2015). Therefore, this design process will only 

explore a small set of alternatives using limited 

criteria, which will most likely miss higher-

performing alternatives. Incorporating 

quantitative methods can address these 

shortcomings and improve the early design 

process (Zaker Esteghamati and Flint, 2021). 

Performance-based engineering (PBE) is a 

probabilistic approach to quantify buildings’ 

performance against natural hazards using 

quantitative metrics such as repair cost and 

functionality loss (Alvarez et al., 2013; Bertero 

and Bertero, 2002; Ciampoli et al., 2011). 

Therefore, PBE can inform the designer regarding 

the hazard consequences of different decisions. In 

addition, the modular nature of PBE facilitates 

incorporating different economic and 

environment-related metrics, leading to a more 

holistic design.  

Despite the advantages of PBE for early 

design, its implementation poses several 

challenges, such as time- and effort-intensiveness 

of PBE assessments and the necessity of expertise 
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on hazard impact modeling e that might not be 

available to the design team. Furthermore, a 

successful early design must explore many 

alternatives. This design space exploration will 

exhaust computational resources and pressure the 

project timeline when compounded by PBE 

assessment.    

Different decision support tools have been 

proposed to supplement early design, although 

none are optimal. Perhaps the most popular 

methods are building information models (BIM)-

based tools accompanied by interactive plugins 

and visual scripting (Cheung et al., 2012; LLatas 

et al., 2022). Knowledge-based decision support 

tools are also available that provide preliminary 

guidance on material selection and sizing 

(Schneider-Marin et al., 2022; Zabalza Bribián et 

al., 2011), or complement BIM tools to define 

preset assemblies (Rezaee et al., 2019).  

Recently, machine learning (ML) approaches 

have been introduced to address building design 

and assessments (Olu-Ajayi et al., 2022; Sun et 

al., 2021), albeit their application is still limited in 

early design (Singh et al., 2022). ML modeling 

directly learns from the data by exploiting the 

availability of a large amount of simulation data. 

Therefore, ML models can detect unforeseen 

relationships and make predictions without 

establishing a formal hypothesis.  

This paper describes a data-driven 

framework to conduct a performance-based early 

design. Throughout this paper, early design refers 

to a combination of schematic and design 

development phases, emphasizing the latter. The 

framework exploits the complex and implicit 

relationship between geometry, design, hazard, 

and environmental performance. The 

framework’s primary workflow extracts this 

relationship by training supervised ML models on 

performance inventories, combining these models 

with other surrogate models to perform a 

sequential appraisal of the design space. The 

performance inventory compiles PBE 

assessments consistent with building taxonomy 

and site, and is supported by a knowledge-based 

module. The knowledge-based module organizes 

prior knowledge (such as published PBE 

assessments) in relational databases to provide 

data for data-driven models, or to directly aid with 

deriving knowledge-based surrogate models. The 

developed surrogate models are then implemented 

in a sequence to explore the design space. Lastly, 

a deep learning model maps the result of 

simplified analysis to detailed performance-based 

assessments suitable for later stages of the design. 

A case study illustrates the application of the 

framework to explore the design of mid-rise 

concrete office buildings in Charleston, South 

Carolina, from seismic vulnerability and 

environmental performance perspectives.  

1. FRAMEWORK OBJECTIVES 

The underlying concept of the proposed 

framework is to combine PBE and ML modeling, 

where ML models overcome the computational 

challenges and offer a fast means to extend and 

scale PBEE over the design space. As shown in 

Figure 1, the resultant data-driven performance-

based seismic design framework provides four 

advantages over traditional heuristics.  

First, the proposed framework can compile a 

large set of design alternatives using sampling-

based approaches. The sampling-based 

approaches also allow space reduction to decrease 

the sheer effort needed for the high cardinality of 

real-world design problems. Second, the 

Figure 1: Framework objectives 
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framework can consider multiple performance 

objectives, such as environmental, economic, and 

hazard-related performance, allowing for a 

holistic design approach. Third, the framework 

can characterize the range of hazard performance 

range for different early design decisions by 

applying PBE to the approximate description of 

design alternatives. Such extensions provide a 

significant advantage over the current use of PBE 

at the later stages of design. Lastly, the framework 

allows for scrutinizing different sources of 

uncertainty (e.g., material properties, modeling, 

hazard characterization, and intensity) and 

identifying their impact on the performance of 

candidate designs. This explicit treatment of 

uncertainty increases the designer’s confidence in 

the design guidance provided by the framework.  

2. FRAMEWORK OVERVIEW 

The proposed framework provides risk-informed 

insights on the best possible structural systems 

and preliminary estimates on system design and 

configuration (e.g., weight, footprints). Figure 2 

shows the schematics of the proposed framework. 

The underlying notion of the proposed framework 

is to use surrogate models to estimate the 

performance range based on crude design and 

geometry information. Here, “surrogate” is 

referred to all simplified models that can provide 

a mapping between input (i.e., design and 

geometry data) and output (i. e., performance 

metrics) such as knowledge-based or data-driven 

models. These surrogate models must tolerate 

imprecise and limited information of early design.  

The primary workflow leverages supervised-

learning ML algorithms to build surrogate models 

from PBE assessment data. The PBE data can be 

generated by alternate pathways (detailed 

assessment or simplified models) and is supported 

through a knowledge-based module. The 

knowledge-based module organizes prior 

knowledge (e.g., existing PBE assessment) in 

relational databases. As a result, the framework 

provides a fast means to explore design space, 

where the designer only needs to change the 

statistical surrogate model input accordingly to 

get an instant assessment. 

As shown in Figure 2, the framework also 

combines different surrogate models to perform 

convergence-divergence cycles. Typical early 

design iterates between convergence cycles, 

where the designer removes unfavorable design 

alternatives, and divergence cycles where they 

expand the design pace by introducing new 

alternatives A sequence of surrogate models can 

be applied, where the models with lower fidelity 

are used at the earlier stage (i.e., larger design 

space) to remove redundant alternatives. For 

example, knowledge-based models (e.g., 

performance range based on available data of 

similar systems) can be used to screen design 

alternatives (i.e., convergence), and then low-

order dynamic models, such as single-degree-of-

freedom (SDOF) systems, can be generated for a 
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few of selected candidates to perform a parametric 

study (i.e., divergence).  

In the last stage, the framework uses a deep 

learning engine to estimate the hazard 

performance of the selected alternatives (from 

parametric analysis) based on a simplified static 

analysis denoted as pushover analysis. The deep 

learning model uses a customized encode-decoder 

architecture using Long Short-term Memory 

(LSTM) algorithm (Soleimani-Babakamali and 

Zaker Esteghamati, 2022). The deep learning 

engine maps the resulting force-deformation 

relationship from pushover analysis into 

probabilistic seismic demand models, which can 

be readily mapped to seismic damage or loss 

through pre-defined damage states and 

vulnerability functions.  

3. DATA NEEDS 

The proposed framework uses different types of 

data to support the surrogate models. Preparing 

data, including acquisition and preprocessing, is 

the first and perhaps the most critical step of any 

ML-based framework. Few open databases 

currently provide adequate data on building 

taxonomies, hazard types, and performance 

measures.   

Relational databases (RDBs) are a promising 

platform to present future hazard performance 

databases. RDBs offer better data sharing and 

collaboration. In addition, RDBs organize data 

more efficiently using interrelated data tables and 

shared fields (i.e., keys). There have been a few 

attempts to use RDBs to structure performance 

data. For example, Esteghamati et al. compiled an 

open relational database, INSSEPT (Zaker 

Esteghamati et al., 2020), to aggregate 222 PBEE 

case studies from 39 papers. Such a database can 

provide the seismic performance of the different 

structural systems over a broad geographical 

region. Omoya et al. provided recovery and 

damage parameters of 3695 buildings after the 

2014 Napa earthquake as a relational database 

(Omoya et al., 2022).   

Besides hazard performance data, there is a 

severe need to collect data on other aspects of a 

building’s performance, such as environmental 

impacts. Life cycle assessments (LCAs) provide a 

systematic approach to evaluating environmental 

impacts, although LCA studies significantly vary 

over their definition of scope and system 

boundary, obstructing their reuse. Esteghamati et 

al. compared six commercial buildings with 

varying foundation, structural, and envelope 

systems, and combined the result with similar 

studies from the literature. Nevertheless, due to 

small sample size, the classical statistical test did 

not have adequate power to differentiate between 

the impacts of different systems (Zaker 

Esteghamati et al., 2022). Such observation 

emphasizes the importance of collecting and 

curating LCA data for future data-driven 

modeling.  

4. ILLUSTRATIVE EXAMPLE 

A case study of mid-rise concrete frames was 

studied to assess the framework’s applicability. 

The investigation aimed to identify the range of 

geometry (e.g., height, floor area) and design 

parameters (e.g., average section sizes) that yield 

the best performance for earthquake hazard and 

environmental performance. Here, earthquake 

hazard performance was quantified in terms of 

life-cycle repair cost, whereas environmental 

impact was measured as embodied carbon due to 

the building service life of 50 years.  

An inventory of 720 two-dimensional 

analytical models of concrete frames was 

generated in OpenSees (McKenna, 2011) using an 

automated workflow. The workflow uses Latin 

Hypercube Sampling (LHS) to cover geometric 

configuration and a pseudo-directional approach 

to populate the design parameters based on 

nonlinear dynamic analysis. The analytical 

models use plastic hinge formulation, where 

frame members were modeled as elastic elements 

with two nonlinear hinges at both ends. The 

parameters of these nonlinear hinges were derived 

based on regression equations derived from 

previous experimental studies  (Haselton et al., 

2008). All frames were checked based on 

minimum code requirements to ensure they 

conform to basic safety objectives (e.g., allowable 

drift, and adequate strength). Additional 
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information on frame modeling and design can be 

found elsewhere (Zaker Esteghamati and Flint, 

2021).  

The compiled inventory was then subjected 

to 80 site-specific synthetic ground motions 

derived from geologically-realistic hazard 

assessment (Chapman and Talwani, 2006). The 

results were post-processed to derive maximum 

displacement and acceleration responses at story 

levels. Fragility functions (i.e., the probability of 

exceeding a damage state) were then calculated 

through a univariate and logistic regression for 

non-collapse and collapse cases, respectively. The 

fragility functions were then used to derive the 

annual expected repair cost (EAL) based on the 

HAZUS vulnerability function following an 

assembly-based approach (Ramirez et al., 2012). 

Three assemblies of structural, non-structural 

drift-sensitive, and non-structural acceleration-

sensitive were selected.  

Supervised ML models were trained on the 

compiled performance inventory. The input was 

taken as height, floor area, the weight of lateral 

systems, the average area of beams over the entire 

building and at the first floor, and the average 

reinforcement ratio of beams, whereas the 

response was taken as annual repair cost. The 

result shows that support vector machines (SVM) 

and extreme gradient boosting (XGB) algorithms 

provide the highest accuracy. Figure 3 compares 

the prediction of SVM and XGB on the test set. 

On average, XGB and SVM provide an adjusted 

R-squared of 0.86 and 0.96, where model root 

mean squared errors are $283 and $285, 

respectively. The developed ML models can also 

measure the sensitivity of estimated performance 

to the input parameters. For example, Figure 4 

shows the importance of different features on 

EAL predicted by the XGB model. It can be 

observed that the most important predictors of 

seismic loss are floor area, building dimension, 

height, and total weight.  

ML prediction error can be decomposed into 

bias and variance. Here bias shows how the 

average prediction deviates from the true response 

values, whereas variance quantifies the variation 

in an ML model’s prediction. Figure 5 shows that 

the two best models (XGB and SVM) have low 

bias and variance for collapse loss, and similar 

variance for structural and non-structural 

acceleration-sensitive losses. However, SVM 

shows a slightly lower bias for both structural and 

non-structural acceleration-sensitive assemblies. 

 A simple linear regression was found 

adequate to relate embodied carbon due to initial 

construction and hazard-related repair to building 
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weight. The regression shows that an additional 

0.3 tons of CO2 will be produced for each 

additional ton in building weight. This is mainly 

due to the small value of hazard-related carbon 

emissions (i.e., about 1% of initial construction 

values). Therefore, the linear relationship between 

weight and embodied carbon suggests that the 

designer should select the alternatives with the 

lowest weight.   

Figure 6 shows how SVM models demarcate 

the design space by providing a loss range based 

on a preliminary estimate of the input variable. 

Here, story height was fixed (6- and 4-story), and 

upper and lower bound values were provided for 

other parameters based on previous experience. 

As shown in Figure 6, SVM with imprecise 

information can distinguish the median repair cost 

between the two topologies. In addition, the 

primary insights from SVM indicate that 

structural systems with larger lateral weight 

(larger beams and column sections) led to smaller 

EAL for both building topologies. It should be 

noted that while the results are intuitive, they 

suggest that ML models captured a realistic 

relationship between hazard performance and 

design parameters.  

Figure 7 shows the sequential application of 

prior literature, developed SVM model, and 

equivalent SDOFs to estimate the seismic loss 

range for a 6-story concrete building. As Figure 7 

shows, the sequence can provide an estimate close 

to one obtained from the detailed analysis of a set 

of 6-story building models for this site. However, 

the sequential application could not accurately 

capture the variation in loss, and over-estimated 

the median loss for this building typology.  

The deep learning engine was then used to 

estimate the demand model based on the pushover 

analysis of design alternatives. The deep learning 

model was trained on pushover data from detailed 

finite element models. These demand models can 

then be used to derive fragility and repair values. 

Figure 8 shows the application of this engine for 

a frame in the compiled inventory. The R-squared 

of the estimated fit from the deep learning model 

is only 1.4% smaller than the one obtained from 

detailed analysis. This observation shows that 

deep learning models can successfully estimate 

performance without performing dynamic 

analysis. Therefore, the designer can use the deep 

learning model to readily map the result of the 

parametric study at the divergence cycle to 

performance endpoints, bridging to later stages of 

design.  
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5. CONCLUSIONS 

This study presented an ML-assisted framework 

to estimate the hazard and environmental 

performance of building design alternatives as 

part of a risk-based early design. The framework 

consists of four main workflows: (1) a relational 

open performance data inventory that aggregates 

prior performance-based assessments and data, 

(2) a supervised training workflow that develops 

ML models mapping performance metrics to 

imprecise descriptors of building design and 

geometry, (3) a sequential workflow that applies 

surrogate models with lower fidelity at earlier 

stages, and (4) a deep-learning based engine that 

provides a fast means to map the result of simpler 

static analysis to seismic performance metrics. A 

preliminary application of the framework to a 

building inventory in Charleston, SC, resulted in 

the following findings:  

1. ML models could demarcate the seismic 

hazard performance range (in terms of 

repair cost) of a building taxonomy at a 

given site using only imprecise geometry 

and design information.  

2. The best ML models (XGB and SVM) 

show smaller bias and variance to predict 

collapse loss and larger bias and variance 

to predict repair cost due to damage to 

non-structural acceleration-sensitive 

assemblies.  

3. Floor area, total weight, and height show a 

relatively higher impact on the XGB 

prediction of the total repair cost.  

4. It is feasible to map the result of simpler 

static analysis to probabilistic demand 

models through an encoder-decoder deep 

learning architecture. Such capability 

allows to rapidly map the results of 

parametric studies to detailed assessments 

suitable at later stages of design.   
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