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ABSTRACT: A quick foresight or a short-term forecast of the likely functionality states of road networks 

during extreme rainfall events can provide excellent reference for proactive risk mitigation interventions. 

However, traditional physics-based flood simulation and road network analysis at community scales can 

be time-consuming, making it difficult to support real-time decision making. This study presents a novel 

solution: a data-driven surrogate model using deep learning techniques to forecast the dynamic 

functionality states of a road network during an extreme rainfall-induced flooding evolution. The 

complex spatiotemporal correlations among the functionality states of road network components during 

an extreme rainfall event, introduced by the road topology and the community’s meteorological, 

geographical and hydrological conditions, are captured by a Convolutional Long Short-Term Memory 

(ConvLSTM) network with an Encoder-Decoder framework.  This method allows for stable multi-step-

ahead predictions of road network functionality states. To demonstrate the potential application of the 

surrogate model, a case study is conducted with a flood-prone community of Lin-An in Zhejiang 

Province, China, during a heavy rainfall event. The results highlight the effectiveness of the model in 

forecasting the functionality states of road networks during extreme rainfall events. 

1. INTRODUCTION 

Extreme rainfall caused by tropical cyclones can 

result in severe flooding and pose a significant 

threat to transportation systems in coastal regions. 

Accurate prediction of the likely functionality 

states of road networks during heavy rainfall can 

provide excellent support for real-time risk 

mitigation decision-making, including evacuation 

planning, rescue operations and emergency 

supplies scheduling.  

 There are two major technical frameworks 

for addressing this problem: simulation-based 

prediction and data-based prediction. Simulation-

based prediction methods, such as those presented 

by Suarez et al. (2005), Chen et al. (2015) and 

Yang et al. (2020), establish and solve 

mathematical equations that describe the 

evolution of disasters, including rainfall-runoff, 

overflow and road network analysis. While these 

approaches have the potential to provide highly 

accurate solutions, they can be computationally 

demanding and may not be suitable for real-time 

disaster mitigation decisions at a regional scale. 

On the other hand, data-driven prediction 

methods, such as those proposed by Stamos et al. 

(2015) and Wang et al. (2020), rely on advanced 

data algorithms (such as machine learning and 

neural network methods), trained on historical 

data to make rapid predictions. These methods are 

more computationally efficient than physics-

based simulation models, but their accuracy can 

be limited by the quality and availability of 

historical data. 

In recent years, various studies have 

employed machine learning techniques to 

construct data-driven surrogate models for flood 

prediction, as demonstrated in works of Mekanik 

et al. (2013), Gude et al. (2020), Kao et al. (2020), 

Guo et al. (2021), and Yin et al. (2021). 
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Additionally, some studies have developed 

surrogate models for transportation network 

analysis, such as Mastio et al. (2018) and Shang 

et al. (2020). Despite these advancements, there 

remains a gap in availability of an end-to-end 

surrogate model that can establish a direct 

correlation between rainfall inputs and road 

network functionality states, to support 

community’s emergency response planning.  

To fill this gap, we employ data-driven 

techniques to develop an end-to-end surrogate 

model that can predict the functionality states of 

road networks directly from the precipitation 

forecast. To accomplish this, we first introduce a 

topological rasterization method that preserves 

crucial topological features of road networks. 

Next, we use the Convolutional Long and Short-

Term Memory (ConvLSTM) network to capture 

the spatiotemporal dynamics of road network 

functionality evolution during extreme rainfall 

events. Furthermore, we create an encoder-

decoder framework within the ConvLSTM 

network that can effectively integrate multiple 

variables into a multimodal input to predict the 

future functionality status of the road network. 

2. METHODOLOGY 

2.1. Topological rasterization method 

Many studies have presented valuable models for 

capturing the spatial characteristics of 

transportation networks. These include utilizing 

spatial-temporal matrices (Wang et al., 2016), 

rasterization models (Zhang et al., 2017), and 

graph neural network models (Jindal et al., 2017; 

Pan et al., 2019).  

Rasterization models transform a road 

network into a raster image by dividing the road 

network area into grid cells through geospatial 

gridding. The resulting image reflects the 

functionality state of each node (an intersection) 

of road network through the pixel value of the 

corresponding grid. While this simplistic 

approach preserves intact topological information 

of a road network, the raster image tends to be 

sparse and retains a large amount of redundant 

information, i.e., empty grids without road. In 

disastrous situations where decision-makers are 

more concerned with topology-based 

functionality metrics such as connectivity (or 

accessibility) of roadways, the sparse raster data 

can make it difficult for a surrogate model to learn 

the critical spatial relationships among the 

roadway nodes that are key to the metrics of 

concern.  

To address this issue, a novel topological 

rasterization process is proposed. This approach 

focuses particularly on preserving connectivity 

relationships of the roadway nodes while 

disregards other information (e.g., distances or 

directions) which is redundant to the prediction of 

roadway accessibility.  

 

 
Figure 1: Topological rasterization method 

 

In the proposed approach, each grid of a 

raster image represents a node of the road network. 

All adjacent grids represent nodes that are 

connected by roads (e.g., as shown in Figure 1(a), 

the node represented by grid 𝐴  has 8 adjacent 

nodes). For examples, Figure 1(b)-(e) show 

representations of road intersections with three or 

four roads. Particularly, for intersections (or 

nodes) directly connected to other 5 or even more 

independent nodes (which are not interconnected), 

we create augmented nodes, such as 𝐴′ in Figure 

1(f), to increase the number of connection ports 
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for these nodes. These intersections typically have 

more significant impact on the accessibility of the 

road network and thus occupy larger areas in the 

raster image. The accessibility of node 𝐴  is 

thereby calculated as the average of the pixel 

values of all its augmented nodes.  

As this rasterization approach disregards 

other spatial features of roadways, such as relative 

location and distance of adjacent nodes, it is not 

suitable for prediction of functionality metrics 

that require an understanding of traffic flow or 

travel trajectories. On the other hand, this method 

is efficient for emergency response situations 

where roadway accessibility is of particularly 

concern. 

2.2. Convolution Long and Short-Term memory 

networks (ConvLSTM) 

The Long Short-Term Memory (LSTM) network 

is a type of Recurrent Neural Network (RNN) 

introduced by Hochreiter et al. (1997). It excels in 

processing time-series data and has been 

successful in overcoming the gradient explosion 

or vanishing problem that occurs in traditional 

RNNs. However, LSTMs struggle with complex 

spatial relationships (Pascanu et al., 2013). To 

address this limitation, Shi et al. (2015) proposed 

the hybrid Convolutional LSTM (ConvLSTM), in 

which spatial information at each time is encoded 

and captured through convolutional operations 

while learning temporal relationships. The 

ConvLSTM has since become the mainstream 

method in the field of spatio-temporal prediction, 

and is used in this study as the building block for 

the data-driven surrogate model. 

2.3. Network structure of data-driven surrogate 

model 

Forecasting the road network accessibility during 

an extreme rainfall event requires the 

consideration of meteorological variables. 

Sutskever et al. (2014) proposed to use an LSTM-

based Sequence to Sequence deep learning model 

for natural language processing tasks, which 

offers greater flexibility in input and output states.  

This model consists of independent RNN models, 

known as encoder and decoder, that allow for 

input and output sequences to be processed 

separately. Building on this work, researchers 

have used multiple encoders or decoders to 

process multimodal inputs or outputs (Kao et al., 

2020; Yin et al., 2021). 

 

 
Figure 2: The network structure of the data-driven 

surrogate model 

 

This study develops a deep learning network 

that forecast future accessibility of road network 

by incorporating roadway accessibility states and 

precipitation data in the past hours as well as the 

precipitation forecast of the future hours. The 

neural network, as shown in Figure 2, consists of 

three independent RNNs, i.e., two encoders and 

one decoder, which are composed of with 

ConvLSTM units. For the T-steps ahead 

prediction task, the first RNN (Encoder_1) 

extracts spatiotemporal features from past 

roadway accessibility states (from 𝑌0  to 𝑌𝑛) and 

outputs a hidden state representation, 𝐻𝐺 . The 

second RNN (Encoder_2) learns the 

spatiotemporal features of rainfall sequence data, 

including actual precipitation records (from 𝑋0 to 

𝑋𝑛 ) and precipitation forecasts (from 𝑋𝑛+1  to 

𝑋𝑛+𝑇 ). This encoder outputs T hidden states, 

𝐻𝑋𝑖 (𝑖 = 1,2, ⋯ , 𝑇), each containing information 

about the precipitation sequence from 𝑋𝑛+1  to 

𝑋𝑛+𝑖 . The hidden states 𝐻𝐺  and 𝐻𝑋𝑖  are then 

combined to form a new hidden state vector, 
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𝐻𝐺_𝑋𝑖 , which servs as the input to the third RNN 

(Decoder). The Decoder with its ConvLSTM 

units, is capable of predicting the future nodal 

accessibilities of the road network.  

3. CASE STUDY 

3.1. Introduction of the study area 

 

 
Figure 3: Road network in the community of Lin-An  

 

This section highlights the creation and 

implementation of a surrogate model utilizing the 

methodology discussed in Section 2, using a 

flood-prone community of Lin-An Town in 

Zhejiang Province, China as a case study. 

 Lin-An Town covers an area of 139.1 

square kilometers and is situated in a mountainous 

basin landscape with a dense network of rivers 

and abundant groundwater and precipitation 

(average annual precipitation is 1590mm), 

making it susceptible to severe flood. The road 

network of Lin-An Town consists of 69 road 

nodes and 70 road segments, totaling 

approximately 115 km, as depicted in Figure 3. 

The community is further divided into 22 traffic 

analysis zones. 

3.2. Surrogate modeling process 

The development of the surrogate model involves 

the following 4 steps: 

1. Simulation of inundation scenarios using 

physics-based simulation techniques; 

2. Connectivity analysis of the road network to 

understand the impact of inundation; 

3. Preprocessing the above training data for 

model development; 

4. Training a neural network for accurate 

predictions of roadway accessibility for future 

hours. 

The latter two steps are part of the 

construction phase of the data-driven model, as 

outlined in Section 2. The first two steps, which 

include disaster simulation and roadway 

accessibility analysis, are the data generation 

phase of the modeling process. The following 

section describes the data generation methods and 

the physics-based models employed in this 

particular case study. 

3.2.1. Data generation: physics-based 

simulation and road network function 

analysis 

Initially, we generate 8500 precipitation 

sequences with 1-hour resolution and 72-hour 

length based on the design rainfall patterns and the 

precipitation records during historical tropical 

cyclones in Lin-An Town. Of all the sequences, 

the 1-hour peak precipitation ranges from 20 mm 

to 80 mm, while the 72-hour cumulative 

precipitation ranges from 165.5mm to 876.2 mm. 

Based on the characteristics of the watershed 

in Lin-An Town, we utilizes the Soil 

Conservation Service (SCS) model (Ponce et al., 

1996) to forecast rainfall-runoff and the 

LISFLOOD-FP model (Shustikova et al., 2019) to 

simulate the inundation process. After acquiring 

the disaster scenarios, we extract the inundation 

states of roads by imposing inundation on the 

roadway topology using ArcGIS, and evaluate 

service level of roads based on a water depth-

traffic disruption function proposed by Pregnolato 

et al. (2017), and calculate the resilience-based 

metric of WIPW used in Zhang et al. (2016) to 

reflect accessibility of each node in the road 

network. 

Subsequently, we use these 8500 original 

data groups, including rainfall sequences and 

corresponding roadway’s nodal accessibilities, to 

train a surrogate model. 
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3.2.2. Model training：data processing and 

neural network parameter settings 

The pre-processing of the original data was 

necessary before training the surrogate model. 

The study calculates the accessibility, 𝜉 ∈ [0,1], 
of each node during heavy rainfall events, with  0 

being no accessibility and 1  being full 

accessibility as under normal operational 

condition. The results of the road network 

topological rasterization introduced in 2.1 are 

used to map the hourly precipitation and nodal 

accessibility to corresponding pixels, creating 

8500 sets of precipitation raster maps and nodal 

accessibility raster maps.  

The surrogate model is designed to predict 

nodal accessibility for the future 6 hours, using the 

past 24 hours of precipitation measurements and 

nodal accessibility states as well as the future 6 

hours of rainfall forecast as the input data (i.e., 

𝑛 = 24 , 𝑇 = 6  in Figure 2). A sliding time 

window method is applied to divide each 72-hour 

time series into 40 30-hour groups. The roadway 

nodal accessibility raster data of the first 24 hours 

serves as the input for Encoder_1, the total of 30 

hours of precipitation raster data serve as the input 

for Encoder_2, and the roadway nodal 

accessibility raster data of the future 6 hours 

serves as the label data. 

This study implements the neural network 

using the GPU version of Pytorch. The parameters 

of surrogate model are set as follows. Encoder_1, 

which contains 24 ConvLSTM units, has a 

convolution kernel size of 3 × 3 and the hidden 

state length of 64; Encoder_2, which contains 30 

ConvLSTM units, has a convolution kernel size of 

3 × 3  and the hidden state length of 32; The 

Decoder, which contains 6 ConvLSTM units, has 

a convolution kernel size of  3 × 3 and the hidden 

state length of 64. The dropout rate of 0.2 is set to 

prevent overfitting. The learning rate utilizes an 

exponential decay strategy, with the initial 

learning rate of 0.1 and a minimum learning rate 

of 10−6. The batch size is set to be 256 and the 

loss function used is the mean-square error (MSE). 

 The test error of the surrogate model quickly 

converges within the first 40 epochs and stabilized 

at the 100th epoch. 

3.3. Result analysis 

Figure 4 presents the surrogate model’s prediction 

of the future 6-hour roadway nodal accessibility 

of a particular rainfall sequence. The accessibility 

index of a traffic analysis zone is calculated as the 

average of the nodal accessibility of all nodes in 

the zone. The experimental result shows that the 

ConvLSTM model is capable of effectively 

forecasting the dynamic accessibility state of each 

roadway node during heavy storms.  

To demonstrate the ConvLSTM model’s 

ability to learn spatial information, we constructed 

a comparative model using the same neural 

network structure as depicted in Figure 2 but 

replaced each unit with a traditional fully 

connected LSTM (FC-LSTM) which only 

processes raster data as a one-dimensional vector 

instead of a graph. It is discovered, as in Figure 4, 

that the ConvLSTM model outperforms the FC-

LSTM in predicting the road network 

accessibility in terms accuracy. Furthermore, as 

depicted in Figure 5 in the 24-hour accessibility 

prediction of a selected node, the ConvLSTM 

model exhibits lower prediction errors and 

captures the dynamic accessibility states of the 

roadways more accurately, in comparison with the 

FC-LSTM.  
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Figure 4: A example for the roadway accessibility 

forecast, including (a) the groud truth accessibility 

states, (b) the prediction by ConvLSTM and (c)by 

FC-LSTM. 

 

 
Figure 5: The accessibility forecast for a selected 

node in the road network 

4. CONCLUSIONS 

The research establishes an end-to-end data-

driven surrogate model that utilizes deep learning 

methods to improve the computational efficiency 

of physics-based inundation simulation and road 

network analysis for real-time decision-making in 

disaster mitigation. A road network topology 

rasterization method is proposed to effectively 

extract relevant spatial information for decision 

makers, eliminating redundant spatial 

relationships and improving model learning 

efficiency. This study develops a ConvLSTM-

based neural network with encoder-decoder 

structure, which enables simultaneous learning of 

multiple variables, capturing the spatiotemporal 

correlations and enabling multi-step prediction of 

future road network accessibility states. To 

demonstrate the model-building process, an 

illustration through a flood-prone coastal 

community is presented. The prediction results 

demonstrate excellent potential of the surrogate 

for predicting roadway accessibility during 

extreme rainfall events.  
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