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ABSTRACT: The current paper summarizes a code calibration project for heavy special transports on
railway bridges. The basis is the Swedish code for assessing existing bridges, which has a safety format
based on partial factors. Reliability-based models have been established for different bridge types and
failure modes, covering the most common railway bridges and relations between permanent and variable
loads. A sample of special transport vehicles from previous admission applications was considered and
modelled with stochastic properties reflecting known axle loads and gross weights. Statistical data for
stochastic variables were collected from the literature, but additional input had to be evaluated from
recent measurements. The results include safety indices for the present partial factors and a suggestion
for a reduced factor for vehicles with a known weight. With a target value of β = 3.7, applicable to
existing bridges, the partial factor for vehicles can be reduced from 1.5 to 1.3.

1. INTRODUCTION

When special transports are requested on rail-
ways, the load-bearing resistance of the bridges
along the line in question has to be assessed. An
example of a vehicle is shown in Fig. 1, a 20-axle
wagon carrying an electrical transformer. The as-
sessment is often a simplistic load effect verifica-
tion comparing the influence of the special transport
with the specified line category described in, e.g.,
CEN (2021). If the special transport has a geometry
significantly different from the line category vehi-
cle or has a much greater load, the comparison may
lead to a decision of insufficient resistance. How-
ever, the uncertainties related to the characteristics
of a known vehicle are typically smaller than those
afflicted with a general assessment for mixed traf-
fic. There is no support to handle this reduced un-
certainty in today’s codes based on the partial safety
method.

A reliability-based code calibration has been per-
formed (Leander, 2022) to investigate the possibil-
ity of suggesting a new partial factor specifically
for heavy vehicles with known characteristics and

Figure 1: A 20-axle freight wagon for transport of an
electrical transformer.

is summarised in this paper.
The calibration procedure follows established

principles outlined by, e.g., Ditlevsen and Madsen
(2007) and Melchers and Beck (2018). In short,
two parallel safety formats are analysed, one semi-
probabilistic based on partial factors and another, a
superior probabilistic format with a limit state equa-
tion and statistical distributions for the variables in-
cluded. Structural dimensions determined with the
former giving sufficient safety are then used in the
superior format to estimate an associated probabil-
ity of failure. The calibration is the optimisation
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procedure to determine partial factors reaching a
target value for the probability of failure.

The project’s research worked on finding statis-
tics for the stochastic variables relevant to railway
bridges. Guidance has been found in, e.g., publica-
tions by Vrouwenvelder and Siemes (1987), JCSS
(2001), and Sørensen (2002). Variables related to
some loads had to be derived based on recent data.

2. SWEDISH CODE FOR ASSESSMENT OF EXIST-
ING BRIDGES

Since 1996 there has been a code in Sweden ded-
icated to the assessment of existing railway bridges.
The prevailing version (Trafikverket, 2023) is in
several parts referring to related sections in the Eu-
rocode. However, amendments are incorporated to
consider existing structures in contrast to new de-
signs. It relates, e.g., to the evaluation of material
properties and loads.

A general load combination for the ultimate limit
state is defined as

SEd =
n

∑
i=1

ψγG,i Gi +ψγQ,1 Q1 +
4

∑
j=2

ψγQ, j Q j (1)

where G is the load effect of the permanent loads
i = 1 . . .n, Q1 is the load effect of the leading vari-
able action to be multiplied with the largest associ-
ated ψγ value, and Q j is load effect of the accom-
panying variable actions j = 2 . . .4 to be multiplied
with lower associated ψγ values.

The presented calibration was limited to consider
the loads self-weight (sw), ballast (bl), and train
load (trn). With partial factors from Trafikverket
(2023), Eq. (1) can be simplified to

SEd = 1.2Gsw +1.3Gbt +1.5Qtrn (2)

The purpose of the calibration was to update the
partial factor equal to 1.5 in Eq. (2) for train loads
with known characteristics.

3. LIMIT STATE EQUATIONS

A general limit state equation for the probabilis-
tic format is defined as

g = R−S (3)

where R is the resistance and S is the load effect. A
negative limit state defines a region of failure and
the probability of failure is determined as

Pf = P [g≤ 0] (4)

The associated reliability index β = −Φ−1 (Pf) is
used in this paper as a measure of safety, where
Φ−1 (·) is the inverse of the standardized normal
distribution.

The stochastic variables considered were de-
scribed by distribution functions and statistical mo-
ments. The mean values are throughout the paper
related to the nominal values, the characteristic val-
ues used for loads and material properties, or di-
mensions specified on design drawings. This rela-
tion can be described as

µY = k ynom (5)

where µY is the mean value of the stochastic vari-
able Y , k is a bias factor, and ynom is the nominal
value used for the variable Y in conventional (code
based) assessments.

3.1. Loads
Splitting the load effect S in Eq. (3) into the sep-

arate loads give

S =Csw Gsw +Cbl Gbl +Ctrn DQtrn (6)

with Gsw and Gbl representing the self-weight of
the structure and ballast, respectively, Qtrn repre-
sents the train load, and D is a dynamic factor. The
C variables in Eq. (6) are model uncertainties asso-
ciated with the calculation of load effect in struc-
tural analyses. These were given lognormal distri-
butions in the calibration with a mean value of unity
and a coefficient of variance (CoV) equal to 0.05.
This agrees with model uncertainties suggested by
Vrouwenvelder and Siemes (1987) and Vejdirek-
toratet (2004) for permanent loads. For train loads
in general, a higher CoV could be motivated. How-
ever, when the specific vehicle is known, the same
CoV as for permanent loads was judged appropri-
ate.
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3.1.1. Permanent loads

The self-weights of the structure and ballast de-
pend on the material density and volume. For con-
crete, three variables were considered, as presented
in the first rows of Table 1. The references for
the statistical properties are shown in the same ta-
ble. For steel members, the density and the cross-
section area were modelled with uncertainties, also
stated in Table 1.

Table 1: Stochastic variables for the load effect. The
sources refer to [1] JCSS (2001), [2] Nowak et al.
(2011), [3] Alpsten (1972), [4] Vrouwenvelder and
Siemes (1987).

Variable Dist. Mean CoV Source
Concrete
- Density N γc 0.04 [1]
- Width N 1.01bnom 0.04 [2]
- Height N 0.99hnom 0.04 [2]
Steel
- Density N γs 0.01 [1]
- Area N 0.99Anom 0.03 [3]
Ballast
- Density N 0.94γbl 0.04
- Area N Anom 0.05
Train load
Ftrn Wbl 0.95Fnom 0.02
D LN 0.85Dnom 0.10
Model uncertianties
Csw LN 1 0.05 [4]
Cbl LN 1 0.05
Ctrn LN 1 0.05

The ballast is the gravel between the track and
the bridge. The dimensions of this layer can differ
substantially between bridges. Trafikverket (2023)
states that a density of 18 kN/m3 should be used and
that the thickness should be determined upon as-
sessment. Therefore, the calibration assumed that
the ballast dimensions are fairly well considered
in assessments. The parameters for ballast in Ta-
ble 1 stem from a mean value of 17 kN/m3 and the
same CoV as for concrete density, and general un-
certainty of the ballast cross-section area of 5 %.

3.1.2. Train loads
The trains were considered as moving axle loads

with specified intermediate distances. The operator
must specify these properties for an admittance ap-
plication regarding a special transport. This means
the uncertainties can be limited to a particular vehi-
cle and do not have to cover various types. More-
over, the vehicle’s presence is given and, typically,
also the number of passages over the considered
bridge. Nevertheless, the actual values of the axle
loads are afflicted with uncertainty. The operator
likely states maximum or high fractile values in the
admittance process to not compromise safety.

Data from weighted iron ore wagons were anal-
ysed to determine relevant statistical properties of
axle loads for certain vehicles. The data was col-
lected as a part of an investigation to increase the
axle loads on the iron ore line in northern Sweden
to 32,5 metric tonnes. The bogie loads of 25 660
wagons of type Fanooo, see Fig. 2, were recorded
and made available for statistical curve fitting.

Figure 2: Two connected iron ore wagons of type
Fanoo. The axle distances are given in meters.

The two axle loads in each bogie were assumed
the same, rendering a sample size of 51 320 values
for the curve fitting. The data is shown as a his-
togram in Fig. 3 together with a Weibull distribution
showing the best fit of several tested distributions.
The target weight of 32.5 tonnes is also indicated
in the figure. The mean value was found to be 0.95
times the target value Fnom, and the CoV was deter-
mined to be 0.02.

Regarding the dynamic factor D in Eq. (6), the
statistical background of the model in codes such
as the Eurocodes (CEN, 2010) and Trafikverket
(2023) is unclear. A literature review by Leander
(2022) suggests a lognormal distribution, a CoV
of 0.10 and a mean value associated with a nom-
inal value equal to the 95 per cent fractile (µD =
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Figure 3: Axle loads for fully loaded iron ore wagons
with a target weight of 32.5 tonnes.

0.85Dnom). The nominal value was calculated as

Dnom = 1+ϕ
′+0.5ϕ

′′ (7)

where ϕ ′ considers the bridge’s dynamic behaviour
with a perfect track, and ϕ ′′ is a factor consider-
ing rail irregularities. Furter details can be found in
Annex C of the Eurocode EN 1991-2 (CEN, 2010).

3.2. Concrete bridges
The resistance R in Eq. (3) depends on bridge

type and failure mode. For bridges with load-
bearing slabs or beams in concrete, failures due
to bending moment and shear force were verified.
Considering the former, the resistance was formu-
lated as (Nowak et al., 2011)

MR,c =CM,c As fy

(
d−κ

As fy

b fc

)
(8)

where CM,c is the model uncertainty related to the
resistance, and κ is a factor considering the stress-
strain relation for concrete. All other variables in
Eq. (8) can be found in the governing codes.

The effective depth of the cross-section d was
used as the design variable for the calibration. The
reinforcement content As was assigned to 0.5 % of
the effective area of concrete bd. The statistical
properties of the stochastic variables are listed in
Table 2.

Regarding failure due to shear force, models for
verification can differ between governing codes.
For the assessment of existing bridges, Trafikver-
ket (2023) refers to the Eurocode and the dated

Table 2: Stochastic variables for concrete resistance.
The sources refer to [1] Nowak et al. (2011), [2]
Ditlevsen and Madsen (2007), [3] JCSS (2001), [4]
Vrouwenvelder and Siemes (1987), [5] Braml et al.
(2009).

Variable Dist. Mean CoV Source
General

b N 1.01bnom 0.04 [1]
d N 0.99dnom 0.04 [1]

fy, fyw LN 1.13 fy,nom 0.03 [1]
Bending moment

As Det - -
fc LN 1.20 fc,nom 0.14 [1]
κ LN 0.55 0.05 [2]

CM,c LN 1.20 0.15 [3]
Shear force

Asw Det - -
ρ Det - -
fct LN 1,43 fct,nom 0,20 [4]

cotθ Det 1,2 - [5]
CV,c LN 1,4 0,25 [3]

Swedish handbook for concrete structures (Bover-
ket, 2004). For structures with stirrups the resis-
tance can be calculated as (CEN, 2008)

VR,c(a) =CV,c
Asw

s
0.9d fyw cotθ (9)

where CV,c is the model uncertainty related to the
resistance. The equation describes the reinforce-
ment resistance. The associated verification of the
compressed concrete should be considered in a de-
sign situation, but it is rarely decisive why it was
disregarded in the calibration.

Initial investigations showed insufficient reliabil-
ity when Eq. (9) was used. Therefore, the veri-
fication model from Boverket (2004) was also in-
cluded, formulated as

VR,c(b) =CV,c 0.3ξ (1+50ρ) fct bd (10)

This equation describes the resistance of a concrete
member without stirrups considering the bending
moment reinforcement content ρ and the tensile
strength of concrete fct. The statistical properties
of the stochastic variables are listed in Table 2.
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3.3. Steel bridges
Bridges with steel beams were verified as if they

were carrying the whole load, regardless of whether
they had a concrete slab. The difference is the load
effect, where concrete slab bridges have to sustain
the self-weight of the slab and ballast, in contrast,
to open deck bridges, where the sleepers are resting
directly on the steel beams.

Considering an elastic verification and cross-
section class 3, the moment resistance can be cal-
culated as

MR,s =CM,sWel fy (11)

where CM,s is the model uncertainty related to the
resistance. The statistical properties of the stochas-
tic variables were derived based on data from Alp-
sten (1972). Results for several material qualities
are presented in Leander (2022), but herein, values
only for steel with fy,nom = 260 MPa are considered
and listed in Table 3.

Table 3: Stochastic variables for steel resistance. The
sources refer to [1] Alpsten (1972), [2] JCSS (2001).

Variabel Dist. Mean CoV Source
Wel N 0,99Wel,nom 0,03 [1]
Aw N 0,99Aw,nom 0,03 [1]
fy LN 1,17 fy,nom 0,09 [1]

CM,s LN 1 0,05 [2]
CV,s LN 1 0,05 [2]

The shear force was verified using the elastic re-
sistance and neglecting web buckling as

VR,s =CV,s
Aw fy√

3
(12)

where CV,s is the model uncertainty related to the
resistance. The statistical properties of the stochas-
tic variables are listed in Table 3.

4. CALIBRATION CASES
This process aimed to calibrate the assessment of

individual bridges for specific vehicles. It required
covering a range of bridge types and their fail-
ure modes, different ratios between permanent and
variable loads, and various load configurations for
a range of statical systems. The bridge types cov-
ered were concrete frame and beam bridges, steel

bridges with concrete slabs, and open deck steel
bridges. Examples of cross-sections are shown
in Fig. 4, depicting actual bridges in the Swedish
bridge stock.

(a) Concrete slab bridge.

(b) Concrete beam bridge. (d) Steel bridge with concrete slab.

(c) Open deck steel bridge.

Figure 4: Examples of bridge types considered.

The statical systems considered are shown in
Fig. 5. Concrete bridges were modelled as frames,
simply supported and continuous beams up to 11
spans. Steel bridges were modelled as simply sup-
ported and continuous beams up to 17 spans. In to-
tal, 54 different bridge cases were considered. All
of them are described by Leander (2022).

i = 1
L1 L2

i = 2 ...

a cb fed

a b c

H

L

a b c

L

(i) Frame. (ii) Simply supported beam.

(iii) Continuous beam.

Figure 5: Examples of statical systems considered. The
letters a-f indicate the locations verified.

An assembly of 22 vehicles from previous admit-
tance applications was considered to cover a repre-
sentative range of possible characteristics for future
special transports. It ranged from heavy electrical
transformer transports, as in Fig. 1, to more fre-
quently occurring timber transports, as in Fig. 6.
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All 22 vehicles are described by Leander (2022).
The nominal values of the axle loads were taken
from the data sheets of the vehicles. The uncer-
tainty of these values was then described by the Ftrn
variable in Table 1.

Figure 6: Two connected timber transport wagons of
type Laaps, with nominal axle loads of 25 tonnes and
axle distances given in meters.

5. RESULTS
The calibration process comprised the following

main steps:
1. structural analyses for each bridge case and ve-

hicle;
2. determination of design variables to fulfill the

partial factor safety format;
3. stochastic analysis, using the design variables,

to determine the reliability index;
4. comparison with target reliability and updating

of the partial factors. If needed, starting over
from Step 2.

Due to space limitation all steps cannot be reviewed
in detail. Selected results from steps 2 and 3 are
presented.

5.1. Stochastic analysis
The stochastic analyses (Step 2) were initially

performed using the first-order reliability method
(FORM) and Monte Carlo simulation. Compar-
isons of the outcome showed good agreement, sug-
gesting that FORM was sufficient for the calibra-
tion process. Moreover, it has the advantage of giv-
ing the sensitivity factors (α factors) as an interme-
diate step in the calculation.

An example of α factors is shown in Fig. 7 for
one of the concrete frame bridge cases and the load
from an electrical transformer. The sensitivity fac-
tors show the influence of the uncertainties of each
stochastic variable. The variables with red bars

in the figure have a negative impact on reliability,
while the variables with blue bars have a positive.
Considering the bending moment, the model uncer-
tainty of the resistance CM,c has the most signifi-
cant influence, before the uncertainty of the effec-
tive height d and the yield stress of the reinforce-
ment fy. On the negative side, the dynamic factor
D and the model uncertainties of the train load Ctrn
and the self-weight Csw have noticeable influences
on the reliability. The uncertainty of the trains’ axle
loads Ftrn has a modest impact.

Csw CM,cCbl Ablγc γbl D b d fy fc κ
–0,4

0

0,4

0,8

Ctrn Ftrn

α

Figure 7: Sensitivity factors for bending moment eval-
uated for a concrete frame bridge, a span length of
15.7 m, loaded by an electrical transformer Q48+Q49.

An example of one of the steel bridge cases and a
train with timber wagons are shown in Fig. 8. Con-
sidering the bending moment, the uncertainty of the
yield stress of the material fy has the most signif-
icant influence before the model uncertainty of the
resistance CM,s. On the negative side, the model un-
certainty of the self-weight Csw, concrete area Ac,
and dynamic factor D significantly influences the
reliability. As for the concrete case, the uncertainty
of the trains’ axle loads Ftrn has a modest influence.

Reliability indices associated with the existing
partial factor of 1.5 on train loads are shown in
Fig. 9 for all concrete bridges considering the bend-
ing moment. All 22 vehicles were included but are
represented in the figure with the mean value. The
β values vary between 4.2 and 4.8, with a mean
value of 4.5. The reliability index decreases with
increasing span length, and a review of the results
shows that increasing self-weight also negatively
influences reliability. The trends are consistent be-
tween the statical systems.

The reliability indices in Fig. 10 represent the
concrete bridges considering shear force with the
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Csw CM,s Wel AsCbl Ac Ablγc γblγs D fyCtrn Ftrn

Figure 8: Sensitivity factors for bending moment evalu-
ated for a simply supported steel bridge with a concrete
deck, a span length of 22 m, loaded by a timber trans-
port of type Laaps.
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Figure 9: Reliability index over the span length for 24
concrete bridge cases considering bending moment.

Eurocode model, Eq. (9). The β values vary be-
tween 3.4 and 3.9, with a mean value of 3.7. The
reliability level is distinctly lower than for the bend-
ing moment.
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Figure 10: Reliability index over the span length for 24
concrete bridge cases considering the Eurocode shear
force verification model, Eq. (9).

Reliability indices for the steel bridges with con-
crete slabs are shown in Fig. 11, considering bend-
ing moments. The β values vary between 4.0 and
4.6, with a mean value of 4.2.

Sensitivity factors and reliability indices for all
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Figure 11: Reliability index over the span length for
15 stel bridges with concrete slabs considering the
bending moment verification model, Eq. (11).

bridge cases and verification models are presented
in detail by Leander (2022).

5.2. Calibration
For a decision on partial factors, target reliabil-

ity needs to be assigned. The standard ISO 2394
(ISO, 2015) was used as a reference in this respect.
For consequence class 4, tentative target values are
listed as βT = 3.7, 4.4 and 4.7, associated with high,
medium and small costs of safety measures, respec-
tively. The partial factor for train load has been
varied to estimate the value required to reach each
safety level.

The results for concrete bridges considering
bending moment are shown in Fig. 12 as the re-
liability index β over the partial factor for train
load ψγtrn. The curve represents the average of all
concrete bridges and all 22 vehicles. A value of
ψγtrn = 1 gives a reliability index of β = 3.8. With
a target of βT = 4.4 and 4.7, the corresponding par-
tial factors should be 1.43 and 1.66, respectively.
A summary of the factor values over all considered
cases is shown in Table 4.

Table 4: Partial factor ψγ for train load associated
with different target reliability indices.

Target βT
Verification 3.7 4.4 4.7
Concrete, bending (8) 1 1.43 1.66
Concrete, shear (9) 1.52 2.20 2.53
Concrete, shear (10) 1 1.47 1.84
Steel, bending (11) 1.25 1.58 1.73
Steel, shear (12) 1.24 1.48 1.60
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Figure 12: Reliability index β over the partial factor
for train load ψγtrn, valid for concrete bridges under
bending moment.

6. CONCLUSIONS

The reliability-based calibration of the partial
factor for heavy special transports rendered the fol-
lowing conclusions:
• The reliability index β varies between bridge

types and failure modes, with values above
four in general. The variation between differ-
ent special transports is small.
• The lowest reliability was reached for shear

force of concrete bridges with stirrups, giving
values low as β = 3.4.
• If a target value of βT = 3.7 is accepted, the

partial factor for the train load can be reduced
from 1.5 to 1.3. It is on the condition that the
shear resistance of concrete bridges with stir-
rups is not decisive.
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