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SUMMARY 

This work reports the novel application of automated feature selection and 

explainable machine learning to identify and compare, in participants aged 50 

years or over from wave 3 of The Irish Longitudinal Study on Ageing (TILDA), 

predictors of three gait speed modalities: usual gait speed (UGS), maximum gait 

speed (MGS), and gait speed reserve (GSR = MGS - UGS).  The principal aim of the 

investigation was to identify which factors were associated with each gait 

modality, with a comparative focus on GSR.  Stepwise feature selection was 

applied to shortlists of input features covering multiple domains, including 

demographics, anthropometrics, medical history, cognition, cardiovascular 

system, physical strength, and sensory and psychological domains.   

In a first experiment using data from 2397 participants, a stepwise linear 

regression-based feature selection algorithm was applied to a shortlist of 34 input 

features in the prediction of GSR.  A mean 𝑅𝑎𝑑𝑗
2  (𝑆𝐷) 5-fold cross-validation score 

of 0.16 (0.03) was achieved with 14 variables (with 80% training and 20% test  𝑅𝑎𝑑𝑗
2   

scores of 0.18 and 0.16, respectively).  Of the 14 selected features, 11 had 

statistically significant (p<0.05) effects in the model: sex, Montreal Cognitive 

Assessment (MOCA) score, third level education, chair stands time, age, body 

mass index (BMI), grip strength, cardiac output, number of medications, fear of 

falling (FOF), and mean cognitive reaction time (CRT). 

In a second experiment, explainable machine learning was applied to an expanded 

set of 88 input features. Using data from 3925 participants, features were selected 

by a histogram gradient boosting regression-based stepwise feature selection 

algorithm.  Feature importance and input-output relationships were explored 

using TreeExplainer from the Shapely Additive Explanations (SHAP) explainable 

machine learning package.  The mean 𝑅𝑎𝑑𝑗
2  (SD) from 5-fold cross-validation score 

on training data and the 𝑅𝑎𝑑𝑗
2  score on test data were: 0.38 (0.04) and 0.41 for UGS; 

0.45 (0.04) and 0.46 for MGS; and 0.19 (0.02) and 0.21 for GSR, respectively.  

Selected features by decreasing SHAP values were education, grip strength, mean 
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CRT motor reaction time, MOCA errors, age, chair stands time, height, sex, 

accuracy proportion in the sound-induced flash illusion, FOF, orthostatic 

intolerance, Mini-Mental State Examination (MMSE) errors, and number of 

cardiovascular conditions.  

Both models selected features across multiple input domains, underscoring the 

nature of GSR as a measure of individual reserve across multiple physiological 

systems.  In the prediction of GSR, both algorithms identified the importance of 

prospectively non-modifiable factors such as advancing age, female sex, lower 

educational attainment, and existing morbidities; but also highlighted potentially 

modifiable factors such as reduced upper and lower body strength (lower grip 

strength and longer chair stands time, respectively), lower cognitive (MOCA) and 

psychomotor performance (CRT), and lower self-efficacy in the psychological 

domain (fear of falling).  

𝑅𝑎𝑑𝑗
2  scores were marginally higher with machine learning; yet the main advantage 

of this algorithm over the linear regression-based pipeline is that it allowed for the 

identification of clinically meaningful non-linearities in the visualised relationship 

between selected features and GSR.  Potential clinical cut-offs and regions of 

interest for certain features were identifiable, making the models highly 

interpretable for clinicians. 

Although the linear modelling was faster and simpler to use, results suggest that 

the tree-based explainable machine learning methodology is preferable due to its 

non-parametric nature and a model explainer such as SHAP that allows for 

visualisation of input-output relationships.  In older adults, the demonstration of 

GSR is necessary on a daily basis to maintain independent living (e.g., for being 

able to complete a road crossing or catch a means of public transport).  Overall, 

findings support a network physiology approach to the study of physiological 

reserve and could help policy makers and clinicians design strategies to promote 

resilience and functional independence in community-dwelling older adults. 
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ABBREVIATIONS, ACRONYMS, AND BRIEF EXPLANATION OF 

FEATURE NAMES  

Feature Names  

ADLs Impairments to activities of daily living  

Age Age (years) 

Antidepressants if any antidepressants were being taken 

Antihypertensives if any antihypertensives were being taken 

BMI body mass index (kg/m2) 

CAGE problematic alcohol use scale: Cutting down, Annoyance by 
criticism, Guilty feeling, and Eye-openers 

CardiacOutput_RS cardiac output at derived by Finometer during resting state (RS) 
of active stand test (L/min) 

CESD Centre for Epidemiological Studies Depression scale  

ChairStandsTime Time taken to stand from chair, walk 3 m, turn around, walk 3 m 
back, and sit down again (s) 

CRT_correct number of correct trails in the choice reaction test 

CRT_mean mean cognitive reaction time in the choice reaction test (ms) 

CRT_SD standard deviation of cognitive reaction times in the choice 
reaction test (ms) 

cs_score_a contrast sensitivity score at 1.5 cycles per degree line spacing  

cs_score_b contrast sensitivity score at 3 cycles per degree line spacing  

cs_score_c contrast sensitivity score at 6 cycles per degree line spacing  

cs_score_d contrast sensitivity score at 12 cycles per degree line spacing  

cs_score_e contrast sensitivity score at 18 cycles per degree line spacing  

dBP_RS resting state diastolic blood pressure (mmHg) 

dBP_RS_SampEn sample entropy of resting state diastolic blood pressure signal 
(unitless) 

dBP_Seated seated diastolic blood pressure (mmHg) 

dBP_SeatStandDiff difference in standing and seated blood pressure (mmHg) 

dBP_Standing standing diastolic blood pressure (mmHg) 

Edu3 level of educational attainment (3 levels: none/primary, 
secondary, or third level/higher) 

FOF fear of falling  

GripStrength maximum grip strength from 4 grip strength trails, two on each 
hand (kg) 

HADSA Hospital Anxiety and Depression Scale: Anxiety subscale 

Hearing_SR self-rated hearing  

Height height (cm) 

HHb_RS mean resting state deoxygenated haemoglobin concentration 
(μMol/L) 

HHb_RS_SampEn entropy of resting state deoxygenated haemoglobin 
concentration signal 

HR_RS mean resting state heart rate (bpm) 

HR_Mean_Free mean heart rate during free breathing (bpm) 

HR_Mean_Paced mean heart rate during paced breathing (bpm) 
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HR_rMSSD_Free root-mean-square of successive differences between RR 
heartbeat intervals during free breathing (ms) 

HR_rMSSD_Paced root-mean-square of successive differences between RR 
heartbeat intervals during paced breathing (ms) 

HR_SDNN_Paced standard deviation of NN heartbeat intervals (ms) 

HR_Span_Free span of heart rate (max HR - min heart rate) during free breathing 
(bpm) 

HR_Span_Paced span of heart rate (max HR - min heart rate) during paced 
breathing (bpm) 

HR_TotalPower_Free total spectral power of heart rate during free breathing (ms2) 

HR_TotalPower_Paced total spectral power of heart rate during paced breathing (ms2) 

HR_rMSSD_PacedFreeDiff difference between HR_rMSSD_Paced and HR_rMSSD_Free (ms) 

HR_RS_SampEn sample entropy of resting state heart rate signal (unitless) 

HR_Seated seated heart rate (bpm) 

HR_SeatStandDiff difference between standing and seated heart rate (bpm) 

HR_Standing standing heart rate (bpm) 

IADLs Impairments to instrumental activities of daily living  

LVET_RS resting state left ventricular ejection time (ms) 

MAP_RS resting state mean arterial pressure (mmHg) 

MAP_RS_SampEn sample entropy of resting state mean arterial pressure signal 

Maxslope_RS maximum slope of blood pressure vs time graph during resting 
state (mmHg/s) 

Meds number of medications (excluding supplements)  

MMSE_errors number of errors in Mini-Mental State Examination test  

MOCA_errors number of errors in Montreal Cognitive Assessment  

MRT_mean mean motor response time in choice reaction test (ms) 

MRT_SD standard deviation in motor response times in choice reaction 
test (ms) 

NumCVD number of cardiovascular diseases  

O2_RS_SampEn sample entropy of resting state oxygenated haemoglobin 
concentration signal 

O2Hb_RS resting state oxygenated haemoglobin concentration (μMol/L) 

PhasicDizziness whether the participant experienced dizziness upon standing in 
the active stand test 

PulseInterval_RS mean resting state pulse interval (ms) 

PulseWaveVelocity pulse wave velocity, measure of arterial stiffness (m/s) 

SART_Errors number of errors in the sustained attention to response task 

SART_mean mean reaction time in the sustained attention to response task 
(ms) 

SART_SD standard deviation in sustained attention to response task 
reaction times (ms) 

sBP_RS mean resting state systolic blood pressure (mmHg) 

sBP_RS_SampEn sample entropy of resting state systolic blood pressure signal 

sBP_Seated seated systolic blood pressure (mmHg) 

sBP_SeatStandDiff difference between standing and seated systolic blood pressure 
(mmHg) 

sBP_Standing standing systolic blood pressure (mmHg) 

Sex sex (female = 1) 
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Shams_2B1F_150 proportion of correct answers in the 2 beep 1 flash sound flash 
illusion test with the flash-beep pair 150 ms before the single 
beep 

Shams_2B1F_230 proportion of correct answers in the 2 beep 1 flash sound flash 
illusion test with the flash-beep pair 230 ms before the single 
beep 

Shams_2B1F_70 proportion of correct answers in the 2 beep 1 flash sound flash 
illusion test with the flash-beep pair 70 ms before the single beep 

Shams_2B1F_m150 proportion of correct answers in the 2 beep 1 flash sound flash 
illusion test with the flash-beep pair 150 ms after the single beep 

Shams_2B1F_m230 proportion of correct answers in the 2 beep 1 flash sound flash 
illusion test with the flash-beep pair 230 ms after the single beep 

Shams_2B1F_m70 proportion of correct answers in the 2 beep 1 flash sound flash 
illusion test with the flash-beep pair 70 ms after the single beep 

Smoker smoking status: never, past, current  

StrokeVolume_RS mean resting state stroke volume (mL)  

TPR_RS mean resting state total peripheral resistance (dyn⋅s⋅cm-5) 

TSI_RS mean resting state tissue saturation index (%) 

TSI_RS_SampEn sample entropy of resting state tissue saturation index signal 

UCLA University of California Los Angeles Anxiety scale   

VisualAcuity visual acuity of best eye  

VisualAcuityLeft visual acuity of left eye  

VisualAcuityRight visual acuity of right eye 

WaistHipRatio ratio of waist circumference to hip circumference (cm) 

Weight weight (kg) 

 

Other Acronyms and Abbreviations  

AS active stand 

BPM beats per minute  

CAPI computer-assisted personal interview 

CI confidence intervals  

cpd cycles per degree 

CRT cognitive reaction time (in the choice reaction time test) (ms) 

CV cross-validation 

GBT gradient boosting trees  

GSR gait speed reserve (cm/s) 

HGBR Histogram gradient boosting regression 

HR heart rate  

HRV heart rate variability  

ICE individual conditional expectation  

IQR Interquartile range  

LIME Local Interpretable Model-agnostic Explanations 

MGS maximum gait speed (cm/s) 

MMSE Mini-Mental State Examination 

MOCA Montreal Cognitive Assessment 
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MRT motor reaction time (in the choice reaction time test)  

NIRS near infrared spectroscopy 

PDP partial dependence plot 

RANSAM random sampling  

RS resting state  

SampEn sample entropy  

SART sustained attention to reaction test  

SCQ self-completion questionnaire 

SHAP Shapely Additive Explanations 

SIFI sound induced flash illusion test  

TILDA The Irish Longitudinal Study on Ageing 

TUG timed up and go 

UGS usual gait speed (cm/s) 
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1 INTRODUCTION 

Gait speed is a measure of general fitness [1]; faster gait speed is associated with 

the ability to meet occupational demands in younger adults [2], while slower gait 

speed is associated with functional decline and morbidity in older adults [3, 4]. 

Even though usual (or comfortable) gait speed (UGS) and maximum gait speed 

(MGS) are significantly intercorrelated [5], changing from comfortable to 

maximum speed requires a general effort across many body systems. The 

difference between these two gait speeds has been referred to as walking speed 

reserve or gait speed reserve (GSR) [6].   

UGS is a commonly measured gait characteristic in clinical practice and has well 

established associations with age [7], physical function [8], and frailty [9]. On the 

other hand, MGS has been associated with physical and cognitive function [2, 10].  

Gait speed reserve (GSR) may be a useful proxy measure of physiological reserve 

in humans.  For example, some studies have suggested that in community-

dwelling older adults, the simultaneous consideration of both usual and maximum 

gait speed could increase the specificity of the identification of frailty [11, 12]. The 

health associations of these three modalities of gait speed (UGS, MGS, GSR) are 

somewhat different but there appears to have been no systematic attempts 

previously to model predictors of GSR in a large representative sample of 

community-dwelling older adults where many demographic, anthropometric and 

clinical features are measured across multiple physiological systems. In older 

adults, the demonstration of GSR is necessary on a daily basis to maintain 

independent living (e.g., for being able to complete a road crossing or catch a 

means of public transport). Therefore, the identification of potentially modifiable 

factors impacting on GSR could be important for strategies to promote resilience 

and functional independence in community-dwelling older adults. 

The aim in using the three chosen gait parameters is to cover a range of aspects 

of an older adults physical, cognitive, and psychological condition.  Usual gait 

speed generally assesses how one walks normally, i.e., hopefully without too much 
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effort.  This encompasses both routine physical ability and one’s psychological idea 

of what a normal comfortable walking speed is.  Maximum gait speed on the other 

hand seeks to investigate the limit of one’s ability.  This limit may be more 

physically or mentally constructed.  Given the link between mind and body even if 

one limit comes before the other, this may eventually result in the other factor 

atrophying due to lack of use.  Gait speed reserve then acts as a potential proxy 

for overall physiological reserve.  Does an individual have much extra to give on 

top of their normal performance? 

The principal aim of this study was to investigate, in community-dwelling 

participants aged 50 years or over from wave 3 of The Irish Longitudinal Study on 

Ageing (TILDA), if UGS, MGS, and/or GSR were predicted by factors from multiple 

domains pertaining to individuals (e.g., physical, cognitive, psychological, socio-

demographic) and if so, whether differences existed between the three gait 

modalities in terms of what factors predicted each one.   

Two experiments were conducted.  Experiment 1 consisted of a linear regression-

based stepwise feature selection procedure that predicted GSR using a first 

iteration of manually selected input features across domains.  Experiment 2 

expanded the set of input features and employed a more sophisticated stepwise 

feature selection and explainable machine learning methodology to predict not 

only GSR, but also UGS and MGS.   Experiment 2 also further compared UGS, MGS, 

and GSR in terms of their statistical relationships to the clinically relevant variables 

of past and future falls and faints. In experiment 2, machine learning was used to 

first, identify the set of features that, from the initial shortlist of input features, 

best described UGS, MGS, and GSR; the shortlist of features was theory-driven and 

not purely exploratory, that is, features were selected that might have 

physiological plausibility. Then, using explainable machine learning methods, the 

selected models for UGS, MGS, and GSR were investigated to observe how each 

feature in the model was associated with the output in a non-parametric manner. 

In the context of the selected features and visualisations of the input-output 

relationships, clinical interpretations were then discussed with respect to the 
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cohort studied and the hypothesis that UGS, MGS and GSR are multisystem-driven 

phenomena.  

A comparison of strengths and weaknesses of using a more sophisticated 

explainable machine learning methodology over a simpler linear regression-based 

analysis in the context of exploring predictors of GSR was another main aspect of 

this work.    

Explainable machine learning is an ever-growing field [13].  At the most basic level, 

the analysis of model coefficients from linear or polynomial models is widely 

implemented; in them, it is necessary to know the strength and direction of the 

associations between inputs and output. Forest plots visually express model 

coefficients and confidence intervals.   

The growth of more complex machine learning methods has come with the 

problem of less transparency and explainability.  Global feature importance can 

be assessed via permutation testing, in which each feature is assessed by 

randomly shuffling its values across samples and measuring the change in 

performance; if there is no drop (or an increase) in performance, then the order 

in which the values are distributed across the samples is not important and 

therefore neither is the feature. On the other hand, shuffling the values of an 

important feature should decrease the performance of the model.  This approach 

can however be very misleading in the presence of collinearities.   

Tree-based models have an inherent explainability in that they are rule-based; a 

single decision tree can be totally explained by following the tree from top to 

bottom. The method quickly becomes impractical with increasing size of trees and 

the use of tree ensembles (e.g., random forests, gradient boosting).  On single 

decision trees, caution is required in interpreting them as they are prone to 

overfitting and high variance across datasets.  Other tree-specific methods assess 

feature importance by assessing how each feature contributes to making splits in 

the data.  There are various methods that determine the number of split points, 

the improvement resulting from the split, the number of samples associated with 

splits, and the distance of the split from the tree root (how early in the tree the 
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split was made).  Such metrics are quick to calculate but have drawbacks in that 

they only consider training data, and they are prone to bias towards high 

cardinality features (features with many values) as they have greater potential for 

split points. 

Partial dependence plots (PDP) are a powerful model-agnostic visual tool first 

presented by Friedman alongside his introduction of gradient boosting machines 

[14].  PDPs use a partial dependence function to calculate the marginal 

contribution feature (i.e., the difference in model output with and without the 

feature in question) of a feature with all the other features held at their means.  

This allows for a visual estimation of the input-output relationships.  Two-

dimensional contour PDPs are also very popular and allow for the interaction 

between two features to be explored.   

In a similar manner, Individual Conditional Expectance (ICE) plots [15] visualise 

how a range of values for a feature impacts the output for a given sample, i.e., 

with the other features held constant at the values that the sample holds.  ICE 

plots offer more granularity than PDPs, and ICE plots from a subset of samples are 

often displayed together.  Where PDPs display the mean effect of a feature, ICE 

shows the marginal effect of a feature on a specific sample.   

Another recent approach to explainability of is Local Interpretable Model-agnostic 

Explanations (LIME) [16].  Being model agnostic is only requiring the model itself, 

and the input and output values.  LIME attempts to build simple-interpretable 

surrogate models at the local level that can be used to explain a more complex 

model.  To explain why a model made a prediction for a given sample, LIME will 

take a subset of samples surrounding the sample of interest and build a linear 

model to predict the outcome.  The complexity of the surrogate model can be 

increased to give a higher fidelity or decreased to reduced fidelity and increase 

simplicity.  Hyperparameters such as the number of features used in the surrogate 

model, the type of model (linear regression, RIDGE, LASSO), and the number of 

samples surrounding the sample of interest, are all hyperparameters that can be 

adjusted to aim for different levels of explanation.  However, herein lies the cons 

of this approach; changing these hyperparameters can lead to different 
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explanations of what the model is supposedly doing, which leads to a lack of 

confidence in the approach.  The use of a linear surrogate model may also not be 

appropriate for some models.  

The approach utilised in this work is SHapely Additive exPlanations (SHAP) [17, 18].  

SHAP is based on Lloyd Shapley’s work during the 1950s in the field of cooperative 

game theory Shapley [19].  Shapley derived a method of fairly attributing worth to 

players in a game based on their marginal contributions.  When applied to machine 

learning, the game is the model, and the players are the features in the model.  

The values quantifying the worth are called Shapley values and are a unique 

solution to a method that will simultaneously satisfy conditions of fairness.   

Other analytical tools such as network analysis are available to explore datasets 

such as the one used in this work.  They could of course be used to probe different 

aspects of the data.  Network analysis for example would be less suited to the 

specific task of exploring how the features relate directly to the gait variables.  

Instead, it would reveal how, and to what degree, each feature in the dataset 

relates to all the others.  From this, clusters or groups of more related feature may 

emerge, and conversely some features might not be well connected to others.   As 

with the methods used in this work, there are numerical and visual ways to present 

those results.   

The thesis begins with an introduction and is followed by a section that describes 

the materials and methods for the two main experiments.  Next, the results and 

discussion for experiment 1, which are taken from my first published paper [20], 

are presented.  The following section presents the results and discussion from 

experiment 2, which is based on my second published paper [21].  After this, the 

results from work that adds bootstrapped confidence intervals onto the models 

from experiment 2 are presented.  A discussion focusing on the two GSR models 

from the two methodologies follows.  Finally, conclusions covering all experiments 

and methodologies are provided.  Some supplementary materials relating to 

experiment 2 are given in an appendix. 
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2 MATERIALS AND METHODS 

2.1 OVERVIEW OF METHODS, ORDER OF EXPERIMENTS, AND THESIS STRUCTURE 

The order of experiments used in this thesis is show in Figure 1.  This is meant to 

be used as an aid in following the thesis and not necessarily meant to be fully 

understood at this point.  Experiment 2 builds upon the dataset and methodology 

used in Experiment 1.  Then after the results of paper 2 were published, an 

additional analytical step was taken.   

 

Figure 1.  Overview of thesis experiments and results. 

The thesis is structured such that for each section (i.e., features used in 

experiments, analytical methods, and results) experiment one is presented first, 

with experiment two following such that instead of repeating anything from 

experiment one, there is a focus on what is new or different.  This is intended to 

create a better flow when describing how the data and methods evolved 

throughout my studies.   
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2.2 DATA 

2.2.1 The Irish Longitudinal Study on Ageing 

The data for the experiments conducted in this thesis were leveraged from The 

Irish Longitudinal Study on Ageing (TILDA).  TILDA is a large-scale, nationally 

representative longitudinal study on ageing in Ireland.  The aspiration of TILDA is 

to make Ireland the best place in the world to grow old by conducting research 

that can positively influence health, medicine, society, and policy.  Wave 1 of the 

study took place between October 2009 and February 2011 with the recruitment 

of 8175 community-dwelling individuals aged 50 years or over.  Additional 329 

individuals who were younger than 50 years were also included as they were the 

partner or spouse of a participant.  Participants were chosen randomly from a 

database of all Irish residential addresses using the RANSAM sampling procedure 

[22].  So far, five waves and an additional “COVID wave” have been completed.  Of 

the five main waves, waves 1 and 3 included a health centre assessment.  Wave 6 

is currently in recruitment phase and also includes a health centre assessment.  In 

every wave, all participants underwent a computer-assisted personal interview 

(CAPI) and a paper-based self-completion questionnaire (SCQ) [22].  These 

assessed demographics, medical history, psychology, social, familial, and financial 

aspects, some cognitive and physical performance, and simple cardiovascular 

health.   In waves 1 and 3 (and currently in wave 6), participants were also invited 

to attend a more extensive health centre assessment in either Cork or Dublin 

(wave 1) or Dublin (wave 3).  The health centre assessment included objective 

tests of gait, physical performance and strength, cognition, psychology, senses, 

bloods, cardiovascular health, and bone density.  The present work is based on 

data collected at wave 3, in which 4309 of a total of 6694 who took part in the 

wave also attended the health centre assessment. Whilst UGS was measured at 

both waves 1 and 3, MGS (which is required for the calculation of GSR) was only 

measured at wave 3. 

Ethical approval was granted from the Health Sciences Research Ethics Committee 

at Trinity College Dublin (granted 9 June 2014 for Wave 3; approval reference 

“Main Wave 3 Tilda Study”) and all participants provided written informed 
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consent.  All research was performed in accordance with the Declaration of 

Helsinki. 

2.2.2 Analytical Sample 

For both experiments, the analytical sample was obtained from wave 3 of TILDA, 

because this is the only wave so far with MGS data.   

For experiment 1, the analytical sample consisted of participants aged 50 years or 

older with GSR data and no missing values in the shortlist of input features.  

For experiment 2 the analytical sample consists of those aged 50 years or older 

with data for UGS and MGS (and therefore also for GSR since GSR=MGS-UGS).   

2.2.3 Gait Speed Measures 

At wave 3 of TILDA, gait speed was measured as part of a health centre 

assessment. Measurements in units of cm/s were made using a 4.88 m 

computerised walkway (GAITRite, CIR Systems, NY, USA).  A two-meter space 

before and after the walkway was used for acceleration and deceleration.  

Participants were first asked to walk at their normal (usual) pace: UGS; and then 

as fast as they safely could: MGS.  Two walking trials were obtained in each 

condition and the mean value for each was used in this analysis.  GSR was defined 

as MGS – UGS.   

 

 

 

2.2.4 Shortlisted Features 

2.2.4.1 Socio-demographics, Anthropometrics, Lifestyle, Disability and Medical 

History 

Table 1.  Socio-demographics, Anthropometrics, Lifestyle, Disability and Medical History input features 
included in experiment 1 and experiment 2. (Brief explanations of feature names can be found on page ix). 
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Experiment 1 Experiment 2 

Age Age 

Sex Sex 

Edu3 Edu3 

BMI BMI 

 Height 

 Weight 

 WaistHipRatio 

Smoker Smoker 

 CAGE 

 ADL 

IADL IADL 

nMeds nMeds 

Antidepressants Antidepressants 

Antihypertensives Antihypertensives 

nCVD nCVD 

 

2.2.4.1.1 Experiment 1 

Socio-demographic information included age in years, sex (male=0; female=1), 

and level of educational attainment (Edu3): either primary/none (Edu3=1), 

secondary (Edu3=2), or tertiary/higher (Edu3=3).   

Body mass index (BMI, in kg/m2) was included as an anthropometric measure.   

Lifestyle included smoking status (Smoker), which was coded as: never=0, past=1, 

or current=2.  Disability included the number of impairments to instrumental 

activities of daily living (IADL): preparing a hot meal; doing household chores 

(laundry, cleaning); shopping for groceries; making telephone calls; taking 

medications; and managing money such as paying bills and keeping track of 

expenses. 

Self-reported medication use was included via the number of medications 

(excluding supplements) currently being taken (nMeds), and whether 

antidepressants or antihypertensives were being taken.   

Self-reported number of cardiovascular diseases (nCVD) was also included.  The 

cardiovascular diseases included for counting are high BP, angina, heart attack, 
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congestive heart failure, high cholesterol, heart murmur, and abnormal heart 

rhythm. 

2.2.4.1.2 Experiment 2 

The features in the experiment 2 shortlist were the same as in experiment 1 with 

the addition of height, weight, waist-hip ratio, the CAGE scale for assessing 

problematic alcohol use (Cutting down, Annoyance by criticism, Guilty feeling, and 

Eye-openers) [23], and impairments with respect to personal activities of daily 

living (ADLs): dressing, including putting on shoes and socks; walk across a room; 

bathing or showering; eating, such as cutting up food; getting in or out of bed; and 

using the toilet, including getting up or down. 
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2.2.4.2 Cardiovascular System 

Table 2.  Cardiovascular input features included in experiment 1 and experiment 2.  Under experiment 2, the 
cardiovascular features are sub-categorised into Finometer, NIRS (near infra-red spectroscopy), HRV (heart-

rate variability), sphygmomanometer, and pulse wave velocity.  See page ix for Abbreviations, Acronyms.    
Ex
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2.2.4.2.1 Experiment 1 

The cardiovascular features included in experiment 1 were all included in 

experiment 2 and will just be stated here.  An explanation is given in the following 

section detailing the experiment 2 features.   

The cardiovascular features included in experiment 1 were seated systolic blood 

pressure (sBP_Seated), seated heart rate (HR_Seated), and the difference 

between seated and standing systolic blood pressure (sBP_SeatStandDiff), all 

measured using an oscillometric sphygmomanometer; as well as mean arterial 

pressure (MAP_RS), left ventricular ejection time (LVET_RS), and cardiac output 

(CardiacOutput_RS), all measured using a Finometer during the baseline resting 

state of the active stand test in addition, input features included the change in 

systolic blood pressure between supine rest and the lowest point post-stand as 

measured with the Finometer (sBP_AS_NadirDelta), sample entropy of the systolic 

blood pressure and heart rate signals during the baseline resting state of the active 

stand test (sBP_RS_SampEn and HR_RS_SampEn) [24], pulse wave velocity, and 

whether or not the participant experienced dizziness during standing as self-

reported after the active stand test (PhasicDizziness). 

2.2.4.2.2 Experiment 2 

During the health centre assessment, a cardiovascular assessment was conducted.  

An overview of the assessment is as follows.  Participants were asked to lie supine 

on a bed and rest for 10 mins.  After those 10 minutes, the heart rate variability 

(HRV) tests were conducted.  First, HRV data were recorded for 5 minutes of free 

breathing (i.e., spontaneous breathing or breathing at whatever rate feels 

comfortable) followed by 5 minutes of paced breathing guided by an audio track 

delivered via headphones.  After the HRV tests, pulse wave velocity was measured 

non-invasively.  Following this, the active stand phase began with another 10 

minutes of supine rest.  After 10 minutes, the participant was asked to stand up as 

quickly as it was safely possible and remain standing still for three minutes, after 

which the test finished.  The participant was then asked if they experienced any 

dizziness or light-headedness.  
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The resting state (RS) cardiovascular measurements in the feature shortlist were 

made during an approximate 10-minute window in which the participant was 

laying supine in a comfortably lit room at an ambient temperature of between 21 

°C and 23 °C.  The full TILDA active stand protocol in which the RS window takes 

place has been detailed elsewhere [24-26].  Throughout the RS stage, participants 

underwent non-invasive continuous haemodynamic monitoring, recorded at 

200Hz using a Finometer MIDI device (Finapres Medical Systems BV, Amsterdam, 

the Netherlands).  All RS parameters selected for the shortlist were mean values 

from the last minute of supine rest [24].  Hemodynamic parameters were: systolic 

blood pressure (sBP_RS), diastolic blood pressure (dBP_RS), and mean arterial 

pressure (MAP_RS), all in units of mmHg ; heart rate (HR_RS) in bpm ; stroke 

volume (StrokeVolume_RS) in mL; left ventricular ejection time (LVET_RS) in ms; 

pulse interval (PulseInterval_RS) in ms ; maximum slope (Maxslope_RS) in 

mmHg/s ; cardiac output (CardiacOutput_RS) in L/min ; and total peripheral 

resistance (TPR_RS) in dyn ⋅ s ⋅ cm−5. A near-infrared spectroscopy (NIRS) device 

(Portalite; Artinis Medical Systems, Zetten, the Netherlands), attached over the 

participants’ left frontal lobe area, was also employed during the RS and the 

following cerebral oxygenation features were extracted, again as the mean values 

from the final minute of rest: oxygenated haemoglobin concentration (O2Hb_RS) 

and deoxygenated haemoglobin concentration (HHb_RS), both in units of μMol/L; 

and tissue saturation index (TSI_RS), as a percentage [24]. Previously derived 

sample entropy values (a measure of the amount of disorder in the signals) for 

resting sBP (sBP_RS_SampEn), dBP (dBP_RS_SampEn), MAP (MAP_RS_SampEn), 

heart rate (HR_RS_SampEn), O2Hb (O2Hb_RS_SampEn), HHb (HHb_RS_SampEn), 

and tissue saturation index (TSI_RS_SampEn) were also shortlisted [24]. In 

addition, participants were asked if they experienced dizziness upon standing 

(PhasicDizziness: yes or no), and this feature was also included in the shortlist. 

Resting heart rate variability measures were also shortlisted; these were obtained 

in two five-minute blocks as detailed elsewhere [27]. In short, for each block, 

participants were laying supine.  In the first block, participants were asked to 

breath spontaneously (free breathing), and in the second block, they were asked 

to breathe according to a pre-recorded set of auditory instructions (paced 
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breathing at a frequency of 0.2 Hz).  Measurements were obtained using a 3-lead 

electrocardiogram (Medilog Darwin, Oxford Instruments Medical Ltd, UK).  The 

data were subject to a 0.01 – 1000 Hz band-pass filtering before R peak detection 

was performed with a proprietary software [28]. The data collection and 

processing are described in detail elsewhere [27]. Time domain features were: 

mean heart rate in bpm; root-mean-square of successive differences between RR 

intervals in ms; standard deviation of NN intervals in ms; and difference between 

maximum and minimum heart rate in bpm, derived for both free (HR_Mean_Free, 

HR_rMSSD_Free, HR_SDNN_Free, HR_Span_Free) and paced breathing 

(HR_Mean_Paced, HR_rMSSD_Paced, HR_SDNN_Paced, HR_Span_Paced). The 

difference between free and paced breathing values was calculated for rMSSD 

(HR_rMSSD_PacedFreeDiff).  In the frequency domain, total spectral power in the 

0 - 0.4 Hz frequency band was measured for both free (HR_TotalPower_Free) and 

paced breathing (HR_TotalPower_Paced) in units of milliseconds squared, ms2. 

sBP, dBP and HR were also determined in a more conventional manner using a 

sphygmomanometer in seated (sBP_Seated, dBP_Seated, and HR_Seated) and 

standing (sBP_Standing, dBP_Standing, and HR_Standing) positions; all with units 

of mmHg.  The difference between seated and standing values were calculated for 

each of the measures (sBP_SeatStandDiff, dBP_SeatStandDiff, and 

HR_SeatStandDiff).   

Pulse wave velocity (PulseWaveVelocity), a non-invasive measure of arterial 

stiffness with units of m/s, was also included as a cardiovascular feature.  In TILDA, 

the average of two measurements between the carotid and femoral arteries (in 

m/s) was obtained using a Vicorder® (SMT medical GmbH & Co. Wuerzburg, 

Germany).  Full details have been described elsewhere [29, 30]. 

2.2.4.3 Physical Strength 

Table 3.  Physical strength features included in experiment 1 and experiment 2. 

Both Experiments 

Grip Strength 

Chair Stands Time  
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Upper and lower body strength were assessed via grip strength and chair stands 

time.  Grip strength was measured in kg using a hydraulic hand dynamometer 

(Baseline®, Fabrication Enterprises, Inc., White Plains, NY, USA).  The value for grip 

strength (GripStrength) was taken as the maximum value from a total of eight 

measurements with four made on each hand.  Lower body strength was assessed 

using the chair stands test, in which the time (in seconds) was recorded for the 

participants to complete five chair stands as quickly as possible, keeping the arms 

folded across their chest (ChairStandsTime).  Chair height was 46 cm. 

2.2.4.4 Cognitive and Psychological 

Table 4.  Cognitive and psychological features included in experiment 1 and experiment 2. (Brief explanations 
of feature names can be found on page ix). 

 

Experiment 1 Experiment 2 

MOCA MOCA_errors 

MMSE MMSE_errors 

CRT_mean CRT_mean 

 CRT_SD 

CRT_correct CRT_correct 

 MRT_mean 

 MRT_SD 

SART_mean SART_mean 

SART_SD SART_SD 

 SART_errors 

 CESD 

HADSA HADSA 

UCLA UCLA 

FOF FOF 

2.2.4.4.1 Experiment 1 

Global cognition was assessed using two paper-based assessments: the Montreal 

Cognitive Assessment (MOCA) [31] and the Mini-Mental State Examination 

(MMSE) [32]. Concentration and cognitive processing time were assessed using 

two computer assisted tasks: the choice reaction task (CRT) [33] and the sustained 

attention to response task (SART) [34]. The CRT required participants to hold down 

a central button until an on-screen stimulus (either the word “YES” or “NO”) 

appeared, at which time they had to press the corresponding button on a 
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keyboard.  After pressing either button, participants were then required to return 

to the central button to continue.  This was repeated approximately 100 times. In 

the SART test, participants watched a screen that displayed the numbers 1 – 9 

sequentially a total of 23 times.  A number appeared for 300 ms with an interval 

of 800 ms between numbers: the entire trial lasts approximately four minutes. 

Participants were instructed to press a button at the appearance of every number 

except for a specific number (i.e., 3).  From this the mean cognitive reaction time 

(CRT_mean) and the number of correct CRT presses (CRT_correct) were extracted.  

CRT is the time taken to release the central button in response to the stimulus.  

From the SART, mean and standard deviation of reaction time (SART_mean, 

SART_SD), and number of trails in which the participant pressed the button when 

the number 3 appeared (SART_errors) were extracted.  CRT and SART times are 

both measured in milliseconds. 

The psychological domains of anxiety, and loneliness were assessed the Hospital 

Anxiety and Depression Scale – Anxiety subscale (HADSA), and the UCLA 

Loneliness Scale (UCLA), respectively.  Fear of falling (FOF) was determined with a 

yes or no question [30].   

 

2.2.4.4.2 Experiment 2 

For experiment 2, a variation on the MOCA and MMSE features was used that 

instead of the number of correct answers (i.e., total score) indicated the number 

of errors made: MOCA_errors and MMSE_errors.   

Another aspect of the CRT is the motor reaction time.  Where the cognitive 

reaction time is the time between stimulus and releasing the central button, the 

motor reaction time (MRT) is the time between releasing the central button and 

pressing the required button.  The mean and standard deviation of the motor 

reaction time (MRT_mean and MRT_SD) across all trails were included.  Other 

additions were the standard deviation in CRT (CRT_SD) and number of errors in 

the SART (SART_errors).   
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Depressive symptoms were also added in the form of the Center for Epidemiologic 

Studies Depression Scale (CESD) [35].  

 

2.2.4.5 Sensory  

Table 5.  Sensory features included in experiment 1 and experiment 2.  In experiment 2, the sensory features 
are sub-categorised into Hearing, Visual Acuity, Contrast Sensitivity, and Shams SIFI. (Brief explanations of 

feature names can be found on page ix). 

Experiment 1 

Experiment 2 

Hearing VisualAcuity Contrast 
Sensitivity 

Shams SIFI 

Hearing_SR Hearing_SR VisualAcuityLeft cs_score_a Shams_2B1F_m70 

VisualAcuity 
 

VisualAcuityRight cs_score_b Shams_2B1F_m150 

 
 

VisualAcuityBest cs_score_c Shams_2B1F_m230 

 
  

cs_score_d Shams_2B1F_70 

 
  

cs_score_e Shams_2B1F_150 

 
   

Shams_2B1F_230 

 

2.2.4.5.1 Experiment 1 

In experiment 1, only two basic sensory features were included: self-rated hearing 

(Hearing_SR) and visual acuity.  Hearing_SR was ascertained by the question: “Is 

your hearing (with or without a hearing aid): 1. Excellent, 2. Very good, 3. Good, 

4. Fair, or, 5. Poor?”.  Visual acuity was measured for both eyes using a LogMar 

chart and the visual acuity for the best eye defined as 100 −

(min ([𝑉𝑖𝑠𝑢𝑎𝑙𝐴𝑐𝑢𝑖𝑡𝑦𝐿𝑒𝑓𝑡, 𝑉𝑖𝑠𝑢𝑎𝑙𝐴𝑐𝑢𝑖𝑡𝑦𝑅𝑖𝑔ℎ𝑡]) × 50.    

 

2.2.4.5.2 Experiment 2 

For experiment 2, the range of sensory features was expanded to include 

additional visual acuity for each eye separately, contrast sensitivity scores, and 

multi-sensory integration assessment.  

Contrast sensitivity (CS) was measured at five spatial frequencies; in cycles per 

degree (cpd) they were: 1.5 cpd (cs_score_a), 3 cpd (cs_score_b), 6 cpd 
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(cs_score_c), 12 cpd (cs_score_d), and 18 cpd (cs_score_e). The procedures for 

visual acuity and contrast sensitivity measurements are described in detail 

elsewhere [36] 

Multisensory integration was measured using the Shams sound-induced flash 

illusion (SIFI) test [37]. The procedure used in TILDA is described in more detail 

elsewhere [38]; but in short, participants were subjected to a set of beeps and 

flashes and asked to report how many flashes they perceived. Five general flash-

beep combinations were presented to the participants: 2 beeps + two flashes; 1 

beep + 1 flash; 0 beeps + 1 flash; 0 beeps + 2 flashes; and 2 beeps + 1 flash. The 

flash-beep configurations used in this analysis are the so-called ‘illusory’ 2 beep 1 

flash (2B1F) trials. In 2B1F trials, the flash is synchronous with one of the beeps; 

the other beep occurred either 70 ms, 150 ms, or 230 ms before (SIFI_2B1F_70, 

SIFI_2B1F_150, SIFI_2B1F_230) or after (SIFI_2B1F_m70, SIFI_2B1F_m150, 

SIFI_2B1F_m230) the flash-beep pair. SIFI susceptibility represented accuracy for 

judging how many flashes were presented when one flash was presented with two 

beeps (2B1F).  Lower accuracy, judging one flash as two, thus indicates higher SIFI 

susceptibility and stronger integration.  SIFI susceptibility was expressed as 

proportion correct.  As there were two trials per condition, these variables were 

considered discrete (i.e., participants scored 0, .5 or 1 proportion correct) [39].     

 

2.2.5 Falls and Faints Features – Experiment 2 

To further compare UGS, MGS and GSR in a clinical outcome context, their 

correlations with both historical and future falls and syncope were assessed.   

Historical fallers/fainters were defined as participants who reported at least one 

fall/faint in the year prior to wave 3.  

Future fallers/fainters were defined as those who reported at least one fall/faint 

between wave 3 and wave 5 (approximately four years later).    
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Each of those four variables were binary categorical with occurrence of falls/faints 

coded as ‘1’ and absence coded as ‘0’.  

 

2.3 METHODS  

The feature selection process used was built upon across the two experiments.  In 

experiment 1, the stepwise feature selection framework was implemented using 

a simple linear regression as the core regression technique.  Experiment 2 

expanded on this mainly by changing the core regression method to a machine 

learning regression.  The following sections will describe the feature selection for 

both experiments, the statistical methods used to compare past and future falls 

and faints using the three gait variables, histogram gradient boosting regression, 

the Shapely Additive Explanations (SHAP), and bootstrapping confidence intervals.   

 All operations were performed using Python 3.  The feature selection was 

executed on the Tinney High Performance Computing Cluster at Trinity College 

Dublin (https://www.tchpc.tcd.ie/hosted#tinney).  The Tinney cluster is 

maintained by the Trinity Centre for High Performance Computing (Research IT).  

This cluster is funded form a Grant from Science Foundation Ireland under Grant 

number 18/FRL/6188. 

 

2.3.1 Feature selection – experiment 1  

The data were divided via an 80/20 train/test split.  From there, using the training 

data, an automatic feature selection was employed that utilised a stepwise 

approach in which features were added to a linear regression model one at a time 

such that they maximised the mean adjusted r-squared , 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅ ̅̅

, which was 

calculated as the mean 𝑅𝑎𝑑𝑗
2  value obtained from a 5-fold cross-validation (CV). 

The 5-fold CV was introduced to reduce overfitting to the entire dataset and help 

identify the features that performed best across multiple subsets of the data.  On 

each iteration of the CV, a pipeline consisting of a standard scaler and a linear 

https://www.tchpc.tcd.ie/hosted#tinney
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regression was employed.  The features selected for the final model were those 

corresponding to the peak of a 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  vs. added features plot.  The selected features 

were used to train a model on the training data.  The model was tested on the 

remaining 20% of the data. This process was implemented using the Scikit-learn 

package (v0.19.1) for Python (v3.8.3). 

 

2.3.2 Feature selection – experiment 2  

All operations were performed using Python 3.  The feature selection was 

executed on the Tinney High Performance Computing Cluster at Trinity College 

Dublin.   

The main process of the stepwise feature selection is the same as in the previous 

section but this time, a histogram gradient boosting regressor was used instead of 

a simple linear regression and at the cross validation step a 100-iteration 

hyperparameter search was performed, whereby each iteration was subject to a 

5-fold CV.  Standard scaling was not applied as it was not necessary.  The 

hyperparameter tuning aims to find better performing hyperparameters for the 

HGBR model and is in the form of a 100-iteration randomised search over a set of 

predefined hyperparameter distributions:  

    {'max_iter': [2000], 

    'loss': ['least_squares'], 

    'random_state': [42], 

    'early_stopping': [True], 

    'learning_rate': loguniform(0.005, 0.1), 

    'max_leaf_nodes': randint(2, 10), 

    'min_samples_leaf': randint(100,200)} 
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The evaluation metric employed was adjusted-𝑅2 (𝑅𝑎𝑑𝑗
2 ).  This metric is used to 

avoid the continual increase in 𝑅2 that occurs with the addition of new features 

regardless of whether they significantly increase the variance explained by the 

model.  For each temporary model, the best parameters are chosen based on the 

mean 𝑅𝑎𝑑𝑗
2  from CV ( 𝑅𝑎𝑑𝑗

2 ).  After selecting a new feature, a process then checks 

to see if any of the previously selected feature have been made redundant, and if 

so, they are removed.   

For the purpose of performance monitoring, on each iteration of the loop, the 

current best model is fit to the entire training dataset and evaluated on both the 

training and test sets to give training and test 𝑅𝑎𝑑𝑗
2  scores.  These scores do not 

influence the feature selection.   

 

2.3.3 Statistical Associations Between Gait Speed Modalities and Faller/Fainter 

Status   

The normality of the distribution of the three gait speed variables was determined 

using the 1-sample Kolmogorov-Smirnoff test.  All three gait speed variables 

resulted to be non-normally distributed.  Hence, to examine the bivariate 

associations between UGS, MGS, and GSR and historical and future occurrence of 

falls and faints, the non-parametric two-sided independent samples Mann-

Whitney U-test was utilised.  

 

2.3.4 Overview of Machine Learning Steps – experiment 2  

A general overview of the machine learning steps are as follows.  The machine 

learning regression model employed is called Histogram Gradient Boosting 

Regression.  In a stepwise fashion, features are tried out one by one in this model 

and the best one is selected and added; this step is repeated over and over until 

the model does not get any better.  The final model is trained on the set of features 

that give the best performance.  This final model is then passed through an 
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explainable machine learning step whereby a method from the SHAP package 

called TreeExplainer is used to observe the relationships between each of the 

features in the model and the output of the model.      

 

2.3.5 Histogram Gradient Boosting Regression 

The regression model employed for this analysis was the histogram gradient 

boosting regressor (HGBR) from Scikit-learn [40] version 0.24. The Scikit-learn 

implementation is based on Microsoft’s light gradient boosting machines [41].   

Introduced by Friedman in 2001, gradient boosting machines [14] have emerged 

as the one of the most effective and popular machine learning techniques for use 

with tabular data. These methods have emerged to be at the top of leader boards 

in terms of performance in modelling tabular data (outperforming or equalling 

neural networks with reduced complexity[18]) but are also versatile, having been 

used for time-series and survival analysis [42]. Gradient boosting is a machine 

learning technique in which models are built sequentially to predict the residuals 

(actual – predicted values) of the previous model.  Usually, a baseline prediction is 

made using the expected model output (i.e., the mean output value), and then the 

residuals from that prediction (actual – predicted) become the output values for 

the next boosting regressor; the residuals from that regressor then become the 

output values for the following regressor, as so on until either no further 

improvement in performance metric is achieved or a maximum number of boosts 

is reached.  Gradient-boosted trees (GBT) are a gradient boosting method in which 

the regressor technique employed is tree-based.  Most gradient boosting methods 

are tree-based.  HGBR is based on Light Gradient Boosting Machines (LightGBM) 

from Microsoft [43].  Trees have benefits in that they do not require normalisation 

or scaling of input values and are robust to outliers [14].  Simple decision trees 

have advantages of being interpretable by following the decision path, but this 

advantage quickly becomes impractical as the size of the tree grows, or ensembles 

of trees are used in prediction.  Single decision tree models are prone to 

overfitting, but ensembles of trees address this problem by producing many trees 
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each learning different rules about the data to help increase the generalisability 

of the model.  GBT’s are ensemble methods.  LightGBM and HGBR employ 

histograms techniques to bin input feature values, which allows for faster 

computation of tree split points and also provides native support for categorical 

features and missing data.  Essentially, the model learns an association between 

missing data for a particular feature and the output feature. The support for 

missing data helps to avoid the need for data imputation or removal of features.   

The categorical data support avoids the need for dummy variables and one-hot 

encoding which can drastically increase the dimensionality of the input feature 

space. 

Unlike ordinary linear regression, more advanced machine learning techniques 

such as gradient boosting have several hyperparameters that control aspects of 

the model’s functionality.  Some hyperparameters are quite robust and the default 

settings are usually sufficient, but others need to be tuned to suit the application.  

The term ‘hyperparameter’ is used instead of just ‘parameter’ because in machine 

learning vocabulary, a ‘parameter’ refers to an input feature or variable.  The 

histogram gradient boosting hyperparameters that were tuned in this work were: 

max_iter, loss, random_state, early_stopping, learning_rate, max_leaf_nodes, 

and min_samples_leaf.   

The max_iter hyperparameter refers to the maximum number of iterations (i.e., 

decision trees) that the algorithm will be allowed to complete.  The argument to 

early_stopping is either true or false and tells the machine that if there is no 

improvement in performance above a certain tolerance then the iterations can 

stop early and save time and energy.  There are stochastic processes in the HGBR 

algorithm and the random_state hyperparameter sets the kernel from which 

pseudo-random numbers are generated; this allows for exact reproducibility of 

the stochastic processes.  The loss function used by the regressor is set using loss.  

A loss function determines how a “best fit” line is drawn through the data.  The 

choices are ‘least_squares’, which minimises the sum of squared errors between 

data and fit line; ‘absolute_error’, which minimises the sum of absolute errors; 

and ‘poisson’, which minimises a Poisson distributed error, which is common when 
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modelling count data.  Single decision trees are very prone to overfitting which is 

why ensembles of trees are used instead.  When the ensemble is built sequentially 

however, the danger of overfitting remains and so the output from each tree is 

scaled down by the learning_rate to prevent a single tree from overfitting to the 

data and ensures that multiple trees contribute to the overall prediction.  The 

“max_leaf_nodes” hyperparameter limits the number of leaf nodes in a given tree.  

Leaf nodes are nodes that do not undergo any further splitting.  Loosely speaking, 

more leaf nodes can tend towards more overfitting for that tree.  Finally, 

min_samples_leaf puts a lower limit to the number of samples that must be 

considered for a given leaf mode; more samples can help to reduce overfitting, 

but too many can produce underfitting.   

2.3.6 Explainable machine learning 

The explainable machine learning method used in this work is call Shapley Additive 

Explanations (SHAP), which is based on Lloyd Shapley’s 1950s work on cooperative 

game theory where he derived a method of fairly attributing worth to players in a 

game based on their marginal contributions.  When applied to machine learning, 

the game is the model, and the players are the features in the model.  The values 

quantifying the worth are called Shapley values and are a unique solution to a 

method that will simultaneously satisfy conditions of fairness.   

1. Local accuracy/efficiency 

For a given sample, the sum of contributions from each feature plus the mean 

model output produce the prediction for that sample. 

2. Missingness/dummy player 

If there is no difference in prediction with or without a given feature, that feature’s 

worth is equal to zero. 

3. Symmetry 

If two features alter the prediction in the same way, they are both attributed equal 

worth. 
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4. Consistency/monotonicity 

If a model changes such that the contribution of a feature has a greater impact on 

the output, the worth of that feature cannot decrease. 

The use of SHAP for explainability allows for model interpretations that are built 

from the local level (the level of each sample) upwards from which global 

interpretability emerges.  SHAP values are computed by the SHAP TreeExplainer 

package for each feature and sample, i.e., the SHAP values are computed locally.  

The SHAP package provides graphical methods for observing how a model arrived 

at a prediction by presenting how the contributions from each feature add up to 

the predicted value.  A SHAP value represents how much of a positive or negative 

impact (in units of the outcome variable) a feature had for a specific sample.  From 

this, one can derive global metrics of contribution or importance for each feature 

that reflect the impact of that feature across many samples.  The default manner 

for assessing global feature importance is through mean absolute SHAP values, 

|𝑆𝐻𝐴𝑃|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .   

The nature of SHAP values being true to local impacts of features means that low-

frequency, high-impact effects do not go unnoticed.  For example, a particular 

feature might, for most samples, have a low impact; however, for some small 

subset of samples the feature might have a very large impact. SHAP interaction 

values are also readily available that explain the impact of interactions between 

two features.  SHAP values are presented as having a positive or negative impact 

on the output of the model with respect to the expected model output i.e., the 

mean output of the model.  So, for an individual sample, the SHAP value for a 

particular feature might be for example, -2.5; this should be interpreted as: the 

value of that feature for that sample is associated with a model output that is -2.5 

units less than the model’s mean output. 

SHAP also has its limitations.  SHAP values are not magical representations of 

reality and much like a regression coefficient need to be understood in the context 

of the model and the question asked by the model.  In the context of tree-based 

models, it is important to remember that a kind of feature importance has already 
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been implemented during the building of the model.  The tree split points are 

made by seeing which splits along which features give the best gain in 

performance.  This is important when considering collinearities. If given two highly 

collinear features, the tree will pick one based on either a slight additional gain in 

performance from one of them, or a stochastic process.  In this case, the 

unselected feature will have no importance in the model whereas in reality the 

feature is practically the same as the other.  In a different scenario, we have two 

moderately/highly correlated features that are both selected by the tree because 

despite their correlation, even after chosen the better of the two, the second 

feature still adds a benefit on top of the first.  In this case, SHAP can overcome the 

collinearity and attribute worth to each feature.  Another limitation of SHAP (and 

LIME) is that it has been shown that mechanisms exist by which dishonest users 

can fool feature perturbation-based explainers [44].   

All SHAP values shown in the results are for the test data.   

 

2.3.6.1 Bootstrapped Confidence Intervals for SHAP values – addition to experiment 

2 

In order to assess the uncertainty surrounding the SHAP value results, 95% 

confidence intervals (CI) on the main contribution from each feature were 

constructed using a bootstrapping method.  Bootstrapping is an iterative process 

whereby sampling with replacement is repeatedly performed on a dataset and a 

statistic of some kind is obtained on each iteration.  The distribution of the 

bootstrapped statistics is then used to obtain an aggregate statistic e.g., perform 

1000 iterations of sampling with replacement, on each iteration calculate the 

mean of the bootstrap sample, and after the 1000 iterations are complete 

calculate the mean and 95% confidence intervals of the 1000 bootstrap mean 

values.   Sampling with replacement means that after an individual sample has 

been drawn, it is placed back into the pool so that it is possible to draw it again.  

In the world of machine learning, producing bootstrapped confidence intervals 

generally entails a process whereby the model is trained and test using a bootstrap 
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sample on each iteration.  The confidence intervals for SHAP values were 

calculated as the mean and 95% CI of SHAP values at each unique feature value 

e.g., age=50, age=51, age=52, etc.  The CIs were calculated on the SHAP values 

representing the contribution of a feature without the influence of interactions 

with other features.  In this work, 1000 bootstrap iterations were performed in 

which the bootstrapped training datasets contain the same number of samples as 

the original training set.   

3 PUBLISHED PAPERS 

Section 4 Experiment 1 –  was published as a short paper entitled “A Linear 

Regression-Based Machine Learning Pipeline for the Discovery of Clinically 

Relevant Correlates of Gait Speed Reserve from Multiple Physiological Systems” 

[20], published as part of the IEEE’s European Signal Processing Conference 2021 

(EUSPICO 2021):   

J. Davis, S. P. Knight, R. Rizzo, O. A. Donoghue, R. A. Kenny and R. Romero-Ortuno, "A linear 

regression-based machine learning pipeline for the discovery of clinically relevant correlates of gait 

speed reserve from multiple physiological systems," 2021 29th European Signal Processing 

Conference (EUSIPCO), 2021, pp. 1266-1270, doi: 10.23919/EUSIPCO54536.2021.9616187. 

Section 5 Experiment 2 –  was published as a full paper entitled “Comparison of 

gait speed reserve, usual gait speed, and maximum gait speed of adults aged 50+ 

in Ireland using explainable machine learning” [21] published in Frontiers of 

Network Physiology. 

J. R. C. Davis et al., "Comparison of Gait Speed Reserve, Usual Gait Speed, and Maximum Gait Speed 

of Adults Aged 50+ in Ireland Using Explainable Machine Learning", Frontiers in Network 

Physiology, Original Research vol. 1, 2021-November-05 2021, doi: 10.3389/fnetp.2021.754477. 

In this thesis, a small addition has been made to the content of the latter paper, 

namely the figure containing histograms of three gait variables.  
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4 EXPERIMENT 1 – A LINEAR REGRESSION-BASED STEPWISE 

FEATURE SELECTION FOR THE PREDICTION OF GAIT SPEED 

RESERVE  

4.1 RESULTS 

4.1.1 Analytical Sample 

Of the 4309 participants who took part in the TILDA wave 3 health centre 

assessment, 3925 aged 50+ completed both the usual and maximum walking tests 

required to generate the GSR data (Figure 2).  Of those, 2397 (61%) were included 

in the linear regression analysis as they had no missing values for any of the 

features.  Female sex made up 52.9% of the 2397 participants.    

 

Figure 2.  Histogram of gait speed reserve (cm/s) in 2397 TILDA wave 3 participants aged 50 years or over 
included in experiment 1. 
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4.2 SELECTED FEATURES  

 

Figure 3.  Automated feature selection curve.  The x-axis shows the names of the features in the order they 
are selected for the model.  All features to the left of a given feature are included in the model with that 

feature.  The y-axis represents 𝑹𝒂𝒅𝒋
𝟐 .  Mean and standard deviation (SD) of 𝑹𝒂𝒅𝒋

𝟐  values from the 5-fold CV 

are shown.  The green lines indicate the peak mean score and the feature at which it occurred.  The red lines 
indicate the 95% on the peak mean score and the feature at which it is achieved.  (Brief explanations of 

feature names can be found on page ix). 

 

Figure 3 shows the 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅ ± 𝑆𝐷 as features are added to the model.  The features 

appear on the x-axis in a cumulative manner, i.e., the 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  value at a given x-

coordinate corresponds to that of a model containing the feature at that 

coordinate plus all the other features to its left.  The maximum 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  of 0.16 ±

0.03 was achieved in the feature selection with 14 features. A linear regression 

model containing these 14 features returned an 𝑅𝑎𝑑𝑗
2  of 0.18 and 0.16 on the 

training and test data, respectively. However, just the first seven predictors built 

95% of the peak 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  score.  In order of addition to the model, these seven 

features were: grip strength, MOCA score, third level education, chair stands time, 

sex, age, and BMI.  
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4.2.1 Model Coefficients  

The effect sizes with 95% confidence intervals of the regression coefficients from 

a model trained using all 14 selected features are shown in Figure 4.  The input 

features are standardised, and the effect size (shown along the x-axis) is in terms 

of GSR (units of cm/s).  The y-axis orders the model features in order of decreasing 

coefficient magnitude from top to bottom.  The 11 statistically significant 

coefficients (shown in green in Figure 4) are: sex, third level education, MOCA, 

chair stands time, age, BMI, grip strength, cardiac output at resting state, number 

of medications, fear of falling, and mean choice reaction time. Female sex, longer 

chair stands time, older age, higher BMI, higher number of medications, fear of 

falling, and longer mean cognitive reaction time were associated with a decrease 

in GSR; whilst third level education, higher MOCA score, greater grip strength, and 

higher baseline cardiac output were associated with increased GSR.   

 

Figure 4.  Visual summary of regression coefficients for the standardised input features.  The y-axis presents 
the final model features in order of descending coefficient magnitude from top to bottom.  The x-axis shows 
the coefficients effect size with 95% confidence interval in terms of absolute GSR with units of cm/s.  Green 
markers represent statistically significant (p<0.05) effects.  Sex is coded as male = 0 and female =1.    (Brief 

explanations of feature names can be found on page ix). 

4.3 DISCUSSION OF EXPERIMENT 1 

A linear regression-based machine learning pipeline was developed for the 

discovery of clinically relevant predictors of GSR across multiple physiological 

systems in TILDA wave 3 participants. The first 7 of the 14 selected predictors (grip 
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strength, MOCA score, third level education, chair stands time, sex, age, and BMI) 

explained 95% of the maximum 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅  achieved (0.16).  When examining the 

regression coefficients, it was found that 11 variables were statistically significant: 

sex, third level education, MOCA, chair stands time, age, BMI, grip strength, 

cardiac output at resting state, number of medications, fear of falling, and mean 

choice reaction time.  

Results show that there were significant associations between GSR and features 

from multiple physiological systems (e.g., cognitive, psychological, 

musculoskeletal, cardiovascular), which supports that GSR is driven by multiple 

systems and hence could be useful as an indicator of overall physiological reserve.  

Results are consistent with previous MGS research showing significant differences 

in maximum walking speed for different ages and between men and women [45, 

46].  They are also consistent with previous findings that higher BMI and physical 

workload among those with lower education contributed most to the educational 

disparities in age-related decline in MGS [47]. Cognitive performance has also 

been cited as a significant predictor of MGS [10] and this study suggests that the 

MOCA may be more predictive than the MMSE test in this regard. Recent work 

has suggested that longer choice reaction time may be associated with 

longitudinal mobility decline [33]. Furthermore, results underscore that even 

though MGS can be expected to be reduced in individuals with weaker lower 

extremity muscle strength [48, 49], upper limb strength assessment also needs to 

be considered for GSR prediction. Indeed, previous studies have shown that the 

movement velocity of the upper limbs is a significant determinant of MGS, 

suggesting that the ability to move any region of the body rapidly might be a 

critical factor in MGS [50]. The importance of both upper and lower limb muscles 

as predictors of GSR offers clinical opportunities for strengthening exercises as a 

way to improve physiological reserve [51]. Fear of falling being predictive of 

decreased GSR is also clinically plausible, which offers opportunities for 

psychological interventions to improve self-efficacy [52]. These results also 

suggest that there is clinical scope for cardiovascular health optimisation in the 

context of GSR improvement.  Indeed, there is evidence in the literature that 
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evaluating MGS in conjunction with UGS is useful for risk stratification in 

cardiovascular disease patients [53]. 

A limitation of experiment 1 is that due to the inclusion of participants with only 

complete data for the 34 initial features, the analytical sample size was reduced 

to 61% of the original sample.   In addition to reducing the sample size it could also 

bias towards healthier participants as it is typically unhealthier participants with 

more missing data.  In future work, this limitation could be addressed by exclusion 

of features (where clinically acceptable) with excessive proportion of missing data, 

or by performing multiple imputation of missing data.  In addition, even though 

GSR had significant predictors in the study, the total variance explained (judged by 

𝑅𝑎𝑑𝑗
2 ) was low to moderate [54], suggesting that there is further scope for 

consideration of additional variables. Future feature discovery should attempt to 

increase the amount of variance explained with additional predictors and/or 

implementation of the study in external cohorts.  However, the level of explained 

variance is in keeping with previous observations that MGS as a single-item tool is 

limited to fully predict future falls in community-dwelling older persons [55]. 

Another limitation to consider is that measurement of GSR restricts analysis to 

TILDA participants who attended the health assessment centre.  Those who did 

not attend are likely to be frailer than those who did [56].   

Given the observed association between GSR and sex, a stratification by sex may 

have revealed more nuanced differences between the two groups.  Furthermore, 

an analysis by age groups could be considered to explore whether associations 

with GSR might vary with age.  In addition, in future work one could compare 

current results with those from non-linear and non-parametric machine learning 

models (as in experiment 2).   

According to previous research, an older persons’ probability of being frail (by 

Fried’s physical frailty phenotype) with an insufficient GSR could be around 40% 

[12], which further bolsters the clinical relevance of the present results, since 

many of the identified associations are potentially modifiable on a prospective 

basis. Indeed, obesity prevention, cardiovascular risk reduction, cognitive training, 

appropriate prescribing and monitoring of medication, neuro-psychological 
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interventions against fear of falling, and muscle strengthening could all potentially 

improve GSR in older populations.  GSR could also have safety implications during 

daily activities that require a sudden increase in pace such as crossing the road, 

running for the bus, reacting to hazards, etc., and hence be important to maintain 

older people’s functional independence.  These results demonstrate the 

importance of a network physiology approach for the understanding of frailty and 

resilience in ageing, where systems work together towards the generation of 

physiological reserve [57]. 
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5 EXPERIMENT 2 – COMPARISON OF THE PREDICTORS OF GAIT 

SPEED RESERVE, USUAL GAIT SPEED, AND MAXIMUM GAIT 

SPEED USING STEPWISE FEATURE SELECTION AND EXPLAINABLE 

MACHINE LEARNING 

Having completed experiment 1 with a linear model at its core, an interest arose 

to use non-parametric machine learning to explore non-linearities that might be 

present in some of the relationships between input features and GSR.  A further 

aim was to also model the parent features of GSR: UGS and MGS.  The question as 

to whether the latter two are also multisystem phenomena was of interest as well 

as a comparison of the domains and features that predicted each gait modality.    

Of note regarding the presentation of the results, the method for feature selection 

describes a situation whereby features can be removed from the model if they are 

made redundant by the addition of new features; this did not occur in any of the 

models and as such, all features named henceforth with regard to feature 

selection are to be understood as features added to the model.   

5.1 RESULTS 

5.1.1 Analytical Cohort 

In TILDA wave 3, 4309 participants completed the health centre assessment [24], 

where the gait speed tests were conducted.  After exclusion of participants aged 

less than 50 years or with missing data for either UGS or MGS, there were 3925 

participants, with 2156 (55%) being female.  A flowchart of the included sample 

can be seen in Figure 5.   
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Figure 5.  Analytical sample inclusion flowchart for experiment 2. 

  

The educational attainment breakdown was as follows: third/higher: 1685 (43%), 

secondary: 1571 (40%), and primary/none: 669 (17%).  The analytical cohort had 

a mean (SD) age of 64.5 (7.8) years, UGS of 136.7 (19.2) cm/s, MGS of 171.0 (26.9) 

cm/s, and GSR of 34.3 (16.6) cm/s.  The histograms of these measures are shown 

in Figure 6. 
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Figure 6 .  Histograms of usual gait speed (UGS), maximum gait speed (MGS), and gait speed reserve (GSR) in 
3925 participants included in experiment 2. 

5.1.2 Group differences in faller and fainter status 

21.3% of wave 3 participants were historical fallers, 3.8% historical fainters, 31.9% 

future fallers, and 5.4% future fainters.  Table 6 shows the results of the 

association between UGS, MGS, GSR, and these clinical variables.  Differences 

between historical fallers were all statistically significant, with a largest median 

difference for MGS.  Statistical significance of p<0.05 was demonstrated in 

historical fainters for UGS and MGS only, with the largest difference also for MGS.  

A similar pattern emerged for future fallers and fainters.  A previous study that 

found that combining UGS and MGS to calculate an individual's GSR did not 

provide additional insight into fall status [58]. However, results herein suggest that 

GSR was also useful to capture falls in this TILDA wave 3 sample. 

 

 

Table 6.  Group statistics and results of independent samples Mann-Whitney U-test for historical and future 
falls and faints occurrence.  (IQR: interquartile range) 

Historical falls and faints 



 51 

 

Non-
fallers 

(median 
(IQR)) 

Fallers 
(median 

(IQR)) 

Difference 
in group 
median 

Mann-Whitney 
p-value 

Non-
fainters 
(median 

(IQR)) 

Fainters 
(median 

(IQR)) 

Difference 
in group 
median 

Mann-Whitney 
p-value 

UGS 
(cm/s) 

139.3 
(24) 

133.1 
(26) 

6.2 <0.001 
138.3 
(25) 

133.0 
(19) 

5.3 0.005 

MGS 
(cm/s) 

174.5 
(33) 

166.2 
(36) 

8.3 <0.001 
172.55 

(34) 
165.95 

(34) 
6.6 0.010 

GSR 
(cm/s) 

33.0  
(20) 

30.4 
(22) 

2.6 <0.001 
32.3 
(20) 

28.95 
(23) 

3.35 0.118 

Future falls and faints 

 

Non-
fallers 

(median 
(IQR)) 

Fallers 
(median 

(IQR)) 

Difference 
in group 
median 

Mann-Whitney 
p-value 

Non-
fainters 
(median 

(IQR)) 

Fainters 
(median 

(IQR)) 

Difference 
in group 
median 

Mann-Whitney 
p-value 

UGS 
(cm/s) 

139.7 
(23) 

134.8 
(27) 

4.95 <0.001 
138.4 
(24) 

134.1 
(30) 

3.7 <0.001 

MGS 
(cm/s) 

175.1 
(33) 

168.0 
(36) 

7.05 <0.001 
173.2 
(33) 

165.7 
(39) 

6.0 <0.001 

GSR 
(cm/s) 

33.20 
(21) 

31.4 
 (21) 

1.85 <0.001 
32.7 
(21) 

31.1 
(21) 

1.6 0.209 

 

5.1.3 Usual Gait Speed 

The peak 𝑅𝑎𝑑𝑗
2 (𝑆𝐷) achieved for the UGS model was 0.38 (0.04), with training and 

test scores of 0.43 and 0.41, respectively.  The expected model output was 136.6 

cm/s.  The features chosen for the model, in order of selection as per Figure 7 were 

age, chair stands time, BMI, grip strength, number of medications, resting state 

pulse interval, mean motor reaction time, height, depression score, sit-to-stand 

difference in diastolic blood pressure, and left visual acuity.    

 

Figure 7.  Visualisation of the feature selection process for the usual gait speed model.  From left to right on 

the x-axis, the features are in order of addition to the model.  The y-axis shows the dimensionless 𝑹𝒂𝒅𝒋
𝟐  

metric.  Mean 5-fold cross-validation scores with error bars showing ± SD are shown in black, train scores in 
dashed blue, and test scores in dotted red.  (Brief explanations of feature names can be found on page ix). 
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A SHAP summary plot is shown in Figure 8; each point on the x-coordinate 

represents a samples SHAP value, and its colour signifies the value of the feature 

for that sample, with light brown being high, black being low, and nan (missing) 

values appearing grey. On the y-axis, features are arranged from top to bottom in 

order of decreasing mean absolute SHAP value: chair stands time, age, body mass 

index, number of medications, grip strength, resting state pulse interval, height, 

mean motor reaction time, CESD depressive symptoms score, difference in seated 

and standing diastolic blood pressure, and visual acuity in the left eye. The figure 

suggests that upper limits (light brown) of certain variables (e.g., chair stands time, 

age, body mass index, number of medications) are more negatively impactful than 

their lower limits, which are positively impactful.  The opposite is the case for 

upper limits of grip strength, for example. 

 

Figure 8.  SHAP summary plot for the final usual gait speed model.  Features are ordered from top to bottom 
by decreasing mean absolute SHAP value.  For each feature, each point represents a single sample in the test 
data.  A sample’s x-coordinate displays the SHAP value for that sample with respect to a given feature.  The 

colour of a sample indicates the value of the feature, with light brown being high, black low, and grey 
missing.  (Brief explanations of feature names can be found on page ix). 

 

Scatter plots of SHAP value vs. feature can be seen for all features in Figure 9.  

SHAP values (left y-axis) vs. input feature value (x- axis) with underlaid histogram 

(right y-axis shows histogram counts) are shown for each feature in the UGS 
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model. Features are arranged top-to-bottom and left-to-right in order of 

decreasing mean absolute SHAP value. At the zero point on the left y-axis (SHAP 

value = 0), the corresponding x-coordinate values for that feature are associated 

with having no impact on the model (i.e., they are associated with the mean model 

output).  The vertical spread observed in the SHAP values vs. input feature plots 

indicates the presence of interaction effects.  Although not chosen for the model 

the data points are coloured by sex.   

 

Figure 9.  SHAP values (left y-axis) vs. input feature value (x- axis) with underlaid histogram (right y-axis 
showing histogram counts) for each feature in the usual gait speed model. Features are arranged top to 

bottom and left to right in order of decreasing mean absolute SHAP value.  Points are coloured by sex: male 
is black ‘+’ and female is orange ‘x’.  (Brief explanations of feature names can be found on page ix). 

 

To further investigate the interaction effects suggested by vertical spreading in 

Figure 9, a plot (Figure 10) of features ordered by decreasing mean absolute SHAP 

interaction value was produced; in it, features are ranked from left to right in order 

of decreasing mean absolute SHAP interaction values (orange dotted line). Also 

shown in dashed blue are the mean maximum absolute SHAP interaction values, 

which can highlight the effects of outliers.  
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Figure 10.  Features ranked from left to right in order of decreasing mean absolute SHAP interaction values 
(orange dotted line) for the usual gait speed model.  Also shown by blue dashed line are the mean maximum 
absolute SHAP interaction values, which can highlight the effects of outliers.  (Brief explanations of feature 

names can be found on page ix). 

 

 

The scatter plots of the top four interaction effects in the model (i.e., age, chair 

stands time, body mass index, and grip strength) are shown in Appendix A.  In the 

scatter plots, the points are coloured according to the value of the main 

interaction feature.  The interactions are computed for the features in whatever 

numerical form they exist in, but for ease of visualisation, continuous features are 

coloured according to what quartile a particular samples value falls in; black 

indicates the value is in the lowest quartile and light brown the highest quartile.  

In each figure, the subplots are ordered from top-left to bottom-right by 

decreasing mean absolute SHAP interaction value.  
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5.1.4 Maximum Gait Speed 

The peak 𝑅𝑎𝑑𝑗
2 (𝑆𝐷) achieved for the MGS model was 0.45 (0.04), with training and 

test scores of 0.54 and 0.46, respectively.  The expected model output was 170.9 

cm/s.   

 

Figure 11.  Visualisation of the feature selection process for the maximum gait speed model.  From left to 
right on the x-axis, the features are in order of addition to the model.  The y-axis shows the dimensionless 

𝑹𝒂𝒅𝒋
𝟐  metric.  Mean 5-fold cross-validation scores with error bars showing ± SD are shown in black, train 

scores in dashed blue, and test scores in dotted red.  (Brief explanations of feature names can be found on 
page ix). 

 

Features chosen for the model, in order of selection were: age, grip strength, chair 

stands time, body mass index, education, mean motor reaction time in the choice 

reaction time test, number of medications, height, the standard deviation of the 

mean reaction time in the sustained attention to response task, resting state heart 

rate, fear of falling, MOCA errors, orthostatic intolerance during active stand, 

smoking status, total power of the heart rate during paced breathing, the root 

mean square of successive differences between heartbeats during paced 

breathing, and best visual acuity. Figure 11 shows the visualisation of the feature 

selection process for this model. 
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Figure 12.  SHAP summary plot for the maximum gait speed model.  Features are ordered from top to 
bottom by decreasing mean absolute SHAP value.  For each feature, each point represents a single sample in 

the test data.  A sample’s x-coordinate displays the SHAP value for that sample with respect to the given 
feature.  The colour of a sample indicates the value of the feature, with light brown being high, black low, 

and grey missing.  (Brief explanations of feature names can be found on page ix). 

 

In the SHAP summary plot for the MGS model shown in Figure 12, the feature 

importance ranked in order of decreasing mean absolute SHAP values was: age, 

chair stands time, grip strength, body mass index, height, number of medications, 

mean motor reaction time in the choice reaction time test, orthostatic intolerance 

during active stand, education, the standard deviation of the mean reaction time 

in the sustained attention to response task, fear of falling, MOCA errors, smoking, 

mean heart rate pre-active stand, the root mean square of successive differences 

between heartbeats during paced breathing, visual acuity, and total power of the 

heart rate during paced breathing.   
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Figure 13.  SHAP values (left y-axis) vs input feature value (x- axis) with underlaid histogram (right y-axis 
shows histogram counts) for each feature in the maximum gait speed model. Features are arranged top to 

bottom and left to right in order of decreasing mean absolute SHAP value. Points are coloured by sex: male is 
black ‘+’ and female is orange ‘x’. (Brief explanations of feature names can be found on page ix). 

 

 

Figure 13 shows the SHAP values versus input feature values with underlaid 

histogram for each feature in the MGS model. Figure 14 shows a plot of features 

ordered by decreasing mean absolute SHAP interaction value, and Appendix B 

contains the scatter plots of the top four interaction effects in the model. 
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Figure 14.  Features ranked from left to right in order of decreasing mean absolute SHAP interaction values 
(orange dotted line) for the maximum gait speed model.  Also shown by blue dashed line are the mean 

maximum absolute SHAP interaction values, which can highlight the effects of outliers.  (Brief explanations 
of feature names can be found on page ix). 

 

5.1.5 Gait Speed Reserve 

The peak 𝑅𝑎𝑑𝑗
2 (𝑆𝐷) achieved for the GSR model was 0.19 (0.02), with training and 

test scores of 0.22 and 0.21, respectively.  The model expected output was 34.2 

cm/s.  

 

Figure 15.  Visualisation of feature selection process for gait speed reserve.  From left to right on the x-axis, 

the features are in order of addition to the model.  The y-axis shows the dimensionless 𝑹𝒂𝒅𝒋
𝟐  metric.  Mean 5-

fold cross-validation scores with error bars showing ± SD are shown in black, train scores in dashed blue, 
and test scores in dotted red. (Brief explanations of feature names can be found on page ix). 



 59 

 

Figure 15 shows the visualisation of the feature selection process.  In order of 

selection, the features chosen were mean motor reaction time in the choice 

reaction time test, grip strength, education, chair stands time, MOCA errors, 

accuracy proportion in the sound induced flash illusion (two beeps and one flash 

with stimulus-onset asynchrony of +150 ms), fear of falling, height, age, sex (0 = 

male; 1 = female), orthostatic intolerance in the active stand test, MMSE errors, 

and number of cardiovascular conditions. 

 

Figure 16.  SHAP summary plot for the final gait speed reserve model.  Features are ordered from top to 
bottom by decreasing mean absolute SHAP value.  For each feature, each point represents a single sample in 

the test data.  A sample’s x-coordinate displays the SHAP value for that sample with respect to the given 
feature.  The colour of a sample indicates the value of the feature, with light brown being high, black low, 

and grey missing.  (Brief explanations of feature names can be found on page ix). 

 

In the SHAP summary plot for the GSR model shown in Figure 16, the feature 

importance ranked in order of decreasing mean absolute SHAP values was level of 

educational attainment, grip strength, mean MRT, MOCA errors, age, chair stands 

time, height, sex, accuracy proportion in the sound induced flash illusion, fear of 

falling, orthostatic intolerance, MMSE errors, and number of cardiovascular 

conditions.  
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Figure 17.  SHAP values (left y-axis) vs input feature value (x- axis) with underlayed histogram (right y-axis 
shows histogram counts) for each feature in the gait speed reserve model. Points are coloured by sex: male is 

black ‘+’ and female is orange ‘x’.  (Brief explanations of feature names can be found on page ix). 

 

Figure 17 shows the SHAP values versus input feature values with underlaid 

histogram for each feature in the GSR model. The absence of vertical spread in the 

SHAP vs. feature scatter plots is due to the maximum leaf nodes hyperparameter 

being set equal to two for the histogram gradient boosting model.  This results in 

there being no interaction terms since the predictions made by each tree only 

considered features independently (i.e., a maximum leaf node limit of two means 

that for a given tree only a single split is made along a single feature).   



 61 

 

Figure 18.  Bar graphs showing the group mean differences in SHAP values between subgroups with 95% 
confidence intervals for each feature in the gait speed reserve model.  (A) shows the differences in sex, (B) 

shows the differences between participants with third/higher level of educational attainment and all others, 
and (C) shows the differences between participants with first level/no education and all others.  (Brief 

explanations of feature names can be found on page ix). 

 

The group mean differences in SHAP values for each feature along with 95% 

confidence intervals can be seen in Figure 18 for: (A) sex, (B) third level education 

vs. all others, and (C) first/no education vs. all others. For sex, the grip strength 

feature produced a larger difference in means than sex itself with grip strength 

having a less positive impact for women.  Height, mean MRT, fear of falling, and 

SIFI accuracy, were all significant and all exhibited a negative mean impact 

difference.  On the other hand, for education there was a positive group mean 

difference for women in comparison to men.  When comparing third/higher 

educational attainment to the rest, education itself seemed to make the only 

significant difference.  However, when comparing primary/no educational 

attainment to secondary and tertiary educational attainment in Figure 18 (C), 

several other significant differences other than education were observed: MOCA 

errors, age, mean MRT, MMSE errors, illusion accuracy, orthostatic intolerance, 

fear of falling, and number of cardiovascular diseases. 
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5.1.6 Summary of experiment 2 results 

The distribution of features between the three models is displayed in Figure 19 in 

the form of a venn diagram.  The top left set in blue contains the UGS features, the 

top right set in red contains the MGS features, and the bottom centre set in green 

contains the GSR feautres.  Firstly, there are features unique to each model: 

PulseInterval_RS, CESD, dBP_SeatStandDiff, VisualAcuityLeft for the UGS model; 

SART_SD, HR_RS, Smoker, VisualAcuity, and HR_rMSSD_Paced, 

HR_TotalPower_Paced for MGS; and Shams_2B1F_150, Sex, MMSE_errors, and 

NumCVD for GSR.  In the centre, common to all three models are Age, 

GripStrength, ChairStandsTime, MRT_mean, and Height.   Features common only 

to UGS and MGS are BMI and Meds, and those common only to MGS and GSR are 

Edu3, MOCA_errors, FOF, and PhasicDizziness.  There are no features that are 

common only to UGS and GSR.   

 

 

Figure 19.  Venn diagram of the features selected across the three models: UGS (usual gait speed), MGS 
(maximum gait speed), GSR (gait speed reserve).  (Brief explanations of feature names can be found on page 

ix). 
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5.2 DISCUSSION OF EXPERIMENT 2 

5.2.1 Overall summary of findings 

In experiment 2, using data from wave 3 of TILDA, a gradient boosting trees-based 

stepwise feature selection pipeline was employed for the discovery of clinically 

relevant predictors of UGS, MGS, and GSR using a shortlist of 88 features across 5 

domains. The features selected for the respective models explained MGS and UGS 

to a greater extent than GSR.  As shown in Figure 19 there were common features, 

but also some features unique to each of the three models.   

5.2.2 Model Prediction  

Based on model 𝑅𝑎𝑑𝑗
2  values, GSR (19%) was less predictable than MGS (45%) and 

UGS (38%).  While not aware of previous published data for comparison with GSR 

prediction, a previous study by Bohannon reported linear regression R2 values of 

13% for UGS and 41% for MGS [48]. Experiment 2 results agree in that the MGS 

model yielded a larger prediction score than that of UGS. 

5.2.3 Common Features 

Across the three models, there were five common selected features: age, grip 

strength, chair stands time, mean motor reaction time in the choice reaction time 

test, and height.  The top four features with the most impactful interactions (by 

mean absolute SHAP interaction value) were the same for the UGS and MGS 

models: age, chair stands time, grip strength, and BMI. 

Our results agree with Bohannon’s previous findings that UGS and MGS decline 

with increasing age [48].  Other authors have also shown similar findings for UGS 

[7, 59, 60].  As per SHAP value vs. feature plots, increasing age was negatively 

associated with UGS, MGS, and GSR at ≥68, ≥68, and ≥66 years, respectively.  

Height is also unsurprising as a common predictor; indeed, taller people have 

longer legs and can achieve longer strides and higher velocity in any gait modality.  

Consequently, gait speed is often normalized by height [48, 61, 62].  
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It is also clinically plausible that higher grip strength (as a marker of upper limb 

strength) and shorter chair stands time (more representative of lower limb 

endurance) were common determinants of all three performance metrics. Indeed, 

sarcopenia (low muscle mass and/or strength), of which both grip strength and 

the five chair stands test are indicative measures [63], has been associated with 

reduced gait speed and poor functional outcomes in older people [64-66]. In 

experiment 2 models, slower chair stands time was associated with a decline in 

UGS, MGS, and GSR once time increased beyond 14.2 s, 13 s, and 10.6 s, 

respectively; whilst increases in UGS, MGS, and GSR began at values of 13.4 s, 13 

s, and 10.6 s, respectively.  Grip strength of ≤26 kg was associated with slower 

UGS, MGS and GSR while grip strengths of ≥35 kg, 27 kg, and 27 kg, respectively, 

were associated with faster performance.  These values for grip strength, while 

interesting from an absolute point of view, have a reduced clinical significance 

given the large differences in grip strength between men and women.  Except for 

height, the other features relationships to the model output appear quite 

homogeneous with respect to sex.   

Higher mean motor reaction time in the choice reaction time test was associated 

with lower speed in all three models.  In previous research, shorter CRT has been 

associated with faster gait speed after adjusting for potential confounders and 

suggests that in older adults, engaging more frequently in cognitively stimulating 

activities may improve neuromotor performance and mobility [67].  In addition, 

experiment 2 results resonate with previous TILDA work utilising traditional linear 

statistics showing that participants in the slower MRT group (<250 ms) at wave 1 

seemed to have faster mobility decline as assessed by the timed up and go at wave 

3, approximately four years later [33]. Of note, in the latter study, the MRT cutoff 

was set arbitrarily, but in the present study the negative/positive impact 

thresholds for UGS, MGS and GSR were 299 ms, 231 ms, and 229 ms, respectively. 

The less physically demanding UGS model was only negatively influenced above a 

relatively slower MRT threshold.   

The counter-intuitive results of higher grip strength, quicker chair stands time, and 

quicker MRT being associated with an increase in UGS when compared to MGS 
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may be revealing of the underlying determining mechanisms of both acts; MGS 

may be a more physically determined act than UGS and easier to improve on than 

UGS.   

Common between UGS and MGS models were BMI and number of medications, 

in the clinically expected directions, i.e., obesity and number of medications had a 

negative impact on gait speed.  As regards obesity, research has suggested that 

obese adults may select their walking speed to minimise pendular energy 

transduction, energy cost, and perceived exertion during walking [68]. In the UGS 

and MGS models, a BMI ≥29 kg/m2 had negative impact association.  

Hypothetically, it is possible that in TILDA, obese individuals equally reduced their 

UGS and MGS, which could possibly explain why BMI was not a feature in the GSR 

model. As regards number of medications, a similar mechanism could apply.  In 

any case, findings are in keeping with previous research showing that drug 

interactions may increase the likelihood of gait speed decline among older adults 

[69]. In the UGS and MGS models, more than two medications had a negative 

impact association.  This is below the usual polypharmacy definition of 5+ regular 

medications and the negative impact association with medications could be 

related to the underlying health conditions rather than due to the medications 

themselves.  Of note, visual acuity featured in both UGS (left) and MGS (best), but 

not in GSR, which could have a similar underlying reason (i.e., both UGS and MGS 

equally limited). 

There were no features exclusively shared by UGS and GSR, but there were four 

features in the intersection of MGS and GSR: education, MOCA errors, fear of 

falling, and orthostatic intolerance.  As regards the former two, tertiary education 

was associated with increased gait speed, and primary and secondary levels with 

a decrease.  Greater than three MOCA errors negatively impacted both models.  

Interestingly, better MOCA performance is associated with higher education [70] 

and places greater emphasis on frontal executive function and attention tasks 

than the MMSE [71]. Planning for the MGS task may require greater attention and 

executive function than performing the UGS task [10], and this may explain MOCA 
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being related to GSR and MGS. Two or more MMSE errors were associated with 

GSR decrease. 

Analogously, orthostatic intolerance and fear of falling may selectively limit the 

more demanding MGS task, but not the more comfortable UGS task.  Orthostatic 

intolerance can be caused by orthostatic hypotension, which in some studies has 

been associated with reduced gait speed [72].  In addition, orthostatic intolerance 

can be a feature of vestibular disorders such as benign paroxysmal positional 

vertigo (BPPV) [73], and research has suggested that the gait characteristics of 

BPPV can be attributed to an inadequate, cautious gait control [74], which may 

preferentially manifest in the MGS task. Fear of falling can also become stronger 

when facing the MGS task, compared to walking at UGS [75].  

5.2.4 Unique features 

Features exclusive to UGS were depression, diastolic blood pressure change from 

sitting to standing, and resting state pulse interval.  Higher levels of depressive 

symptoms have been associated with worse performance in specific quantitative 

gait variables in community-residing older adults, including lower velocity [76]. In 

the model, CESD negatively impacted UGS when CESD>2 points. 

Similarly, TILDA work showed that slower recovery of BP after standing (systolic 

and/or diastolic) was independently associated with poorer gait performance [72]. 

On the other hand, a higher pulse interval indicates a higher heart rate variability 

and a more parasympathetic-driven autonomic cardiac control, which has been 

associated with healthier states [77] and mirrors the fact that for the UGS model, 

higher pulse intervals had positive influence. In the model, a baseline pulse 

interval of 799 ms or less had a negative impact on UGS (this is roughly 75.1 bpm: 

60 seconds per minute / 0.799 seconds per beat).  

Exclusive to the MGS model were the standard deviation of the mean reaction 

time in the sustained attention to response task, smoking, the mean heart rate 

pre-active stand, the total power of the heart rate during paced breathing, and the 

root mean square of successive differences between heartbeats during paced 

breathing.  In a previous study, community-dwelling participants who displayed 
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poorer sustained attention walked more slowly during both single and dual gait 

tasks [78].  In the model, standard deviation of the mean SART reaction time 

<157.7 ms was associated with slower MGS.  Research has shown that in habitual 

smokers, smoking acutely reduces baseline levels of vagal-cardiac nerve activity 

and completely resets vagally mediated arterial baroreceptor-cardiac reflex 

responses [79], which could be in keeping with heart rate and heart rate variability 

features being selected in this model. A baseline heart rate of 67.9 bpm or more 

had a negative impact on MGS in the model.  Comparing this to the pulse interval 

of 799 ms (equivalent to 75.1 bpm) associated with the beginning of negative 

impact association in the UGS model, we see that in terms of an increasing heart 

rate MGS begins to decline earlier than UGS.   

Finally, features exclusive to GSR were accuracy proportion in the sound induced 

flash illusion (two beeps and one flash with stimulus-onset asynchrony of +150 

ms), sex, MMSE errors, and number of cardiovascular diseases.  Male sex was 

associated with increased GSR.  Alternatively, this may also be because the 

variance explained by the GSR model was relatively low and the effect of sex might 

disappear when additional features are selected as in other models. One or more 

cardiovascular diseases was negatively associated with GSR, which is in keeping 

with the possibility that this type of disease may limit MGS more than UGS.  As 

noted by a previous study [49], the difference between UGS and MGS is 

predominantly dictated by the latter. A notable exclusive associate of GSR was the 

proportion of accuracy in the sound induced flash illusion.  This can be interpreted 

in the context that worse visual–somatosensory integration is associated with 

worse balance in older people [80], and that an increase in susceptibility to the 

sound-induced flash illusion during standing relative to sitting was present in older 

adults prone to falling [81].    

5.2.5 Strengths of the Methodology and Study 

A main strength of the methodology is the use of the Histogram Gradient Boosting 

Regressor machine learning model that: bins values for faster computation; offers 

native support for categorical features without the need for one-hot encoding 

(dummy variables); has native support for missing values not requiring removal of 
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features/samples or imputation procedures; obviates the need to scale features 

as it is based on decision trees; allows for non-linear relationships, making no 

assumptions about underlying structure; and is capable modelling feature 

interactions. The native support for both categorical features and missing data, 

together with not needing to perform scaling, reduces the time and effort required 

during data pre-processing.  This is especially useful in the feature selection stage 

of a study where many features that do not end up in the model would otherwise 

still have to undergo those pre-processing steps.   

The use of a tree-based machine learning model such as HGBR leads to another 

strength in that it allowed for exploration of the input-output relationships by way 

of the TreeExplainer explainable machine learning method from SHAP.  So far, 

TreeExplainer is the only SHAP method that allows for exact computation of 

Shapley values, which with theoretical grounding in game theory, are used to 

assess the contributions of features to the model output.  SHAP values allow for 

visualisations of input-output relationships and of the contributions of feature 

interactions.  They can also be used to derive feature importance metrics that are 

built up from the contributions from each individual sample in the test data. 

With the SHAP value versus feature plots, one can recognise the presence of what 

could be considered as ‘floor’ and ‘ceiling’ effects in the features.  This highlights 

the importance of using non-linear models in this type of research, as even if the 

relationship observed within the ‘active’ region of the feature is indeed linear, a 

linear model cannot detect the plateau regions and would instead return a model 

coefficient that underestimates the effect size in the ‘active’ region.  Potential 

clinical cut-offs and regions of interest for certain features are identifiable, as 

detailed above, making the models highly interpretable for clinicians.  Beyond the 

technical aspects, the visualisations made possible by the explainable machine 

learning methods are also a strength for the more clinical reader.  Having run a 

complex machine learning model, not only the associations captured between 

features and model output can be observed, but also the relationships between 

feature interactions and the output.  Cut-offs, regions of interest, clusters, trends 

are all on show which can allow for better insight and hypothesis generation.   
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Another strength of the study is the comparison of UGS, MGS, and GSR in terms 

of features selected to describe them from a range of 88 features across multiple 

domains. The TILDA data leveraged allowed for a large and granularly 

characterised sample size of 3925 participants, which represents a worthwhile 

contribution to the existing literature. 

5.2.6 Limitations of Methodology and Study 

However, while these cut-offs and regions of interest may be able to inform the 

clinician, it is possible that they may vary between populations.  In terms of the 

analytical sample, this only included TILDA wave 3 participants who underwent 

the health centre assessment where gait speed tests were conducted. Even 

though at wave 1 TILDA was designed as a nationally representative cohort of 

people aged 50 or more years living in Ireland [30], the analytical sample at wave 

3 may no longer be population-representative, and therefore results are not 

necessarily generalisable to the Irish population. Indeed, TILDA work showed that 

participants attending the health assessment centre were generally fitter than 

those having a health assessment in their homes [82], which means that other 

features may have been selected in the models if frailer people had been included 

in the analytical sample. 

Despite having many advantages, the machine learning methodology also has 

limitations.  The features selected need to be considered in terms of the ‘package’ 

of features chosen for the final model.  Furthermore, it cannot be assumed that 

features not chosen for a model are necessarily non-predictive of the outcome 

variable.   

Even though measures were put in place to help reduce overfitting (cross-

validation on training data used in choosing features and hyperparameters, and 

models evaluated on a held-out test dataset), in the absence of an external 

validation sample, the risk of overfitting still exists.  Despite using held-out test 

data, the absence of an external validation test means that the generalisability of 

the results is unknown.  The confidence intervals of the effects and associations 

are also not known in this work; however, application of bootstrapping methods 
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may be used in future work to address this limitation.  A rigorous time complexity 

analysis was not performed but given its stepwise nature, the computation time 

of the feature-selection step scales with the square of the number of features 

considered.  The number of hyperparameter iterations and the k-fold cross-

validation in place also scale up the computation time, however, parallelising the 

code in future work could greatly reduce computation time. The computation time 

can also be reduced by the early stopping function that halts the feature selection 

if there is no improvement or a decline for two consecutive attempts.  However, 

when (or if) this criterion is met depends on the data.   

Furthermore, the models are dependent on the predictors that were entered.  

Even though the ‘shortlist’ of predictors was quite comprehensive (i.e., 88 features 

across 5 domains in experiment 2), consideration may not have been given to 

other potentially relevant predictors that were either not measured or realised. In 

view of GSR being less predictable than UGS and MGS, it is possible that including 

additional features in the GSR model (perhaps personality/social/lifestyle factors) 

would improve the model prediction. Height-normalised gait speed could have 

been considered in the models, but this is not something that I chose to consider 

a priori given the intended data-driven approach.  

Another limitation is regarding sex differences in grip strength and height.  Height 

may not be too much of an issue as it is non-modifiable and is a common choice 

for gait speed normalisation; but the thresholds observed in grip strength with 

respect to positive or negative deviation from the mean in UGS, MGS, or GSR are 

heavily distorted by sex.  A sex-stratified investigation of grip strength in this 

context may be of clinical benefit in the future given its modifiable nature and its 

high importance in all three models.   

Finally, it must be made clear that despite the use of word ‘impact’ when 

explaining the relationship of input features to the output, all results are 

associations and causal relationships cannot be assumed.   



 71 

5.2.7 Potential Clinical Relevance 

The five features selected for all three models (age, grip strength, chair stands 

time, mean motor response time, and height) showed common factors affecting 

UGS, MGS, and GSR. 

Whilst there are similarities between the three gait speed models, the differences 

in features chosen for each model suggest that there are physiological differences 

in the nature of the three gait variables.  This was also suggested in the different 

clinical associations between the gait speeds and clinical outcomes such as falls 

and faints.  In the domain of psychology and cognition, UGS and MGS differed the 

most, with UGS being associated with depressive symptoms, whilst MGS was 

associated with cognitive performance in the SART and MOCA tests (MOCA was 

also associated with GSR).  Education was associated with MGS and GSR but not 

with UGS.  Fear of falling being present in MGS and GSR but not in UGS could 

suggest that the fear may not be in relation to usual day-to-day activity and 

walking but instead towards moving out of one’s “comfort zone.” The unique 

presence of MMSE and a sound-induced flash illusion variable in the GSR model 

could suggest that GSR is comparatively more related to the cognitive and sensory 

domains.  The sound-induced flash illusion test assesses multi-sensory integration.  

It may be possible that UGS is more reflective of baseline health and perhaps is 

more sensitive to negative health outcomes, leaning more towards the frailty end 

of the frailty-fitness spectrum [83]. MGS and GSR, on the other hand, may reflect 

more of the fitness end of the spectrum; the ability to go beyond baseline towards 

better fitness and more reserve but not necessarily less frailty.  A potential clinical 

take away from this work is that modifiable associates could be targeted for a 

particular gait characteristic with a view to improving the higher-level aspects of 

health such as frailty or fitness that is more linked to that variable.  Given that each 

of the gait speed variables was predictive of potentially different health outcomes, 

this work shows avenues for ultimately targeting modifiable predictors of clinically 

meaningful outcomes for older people’s functional independence. 
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6 BOOTSTRAPPED CONFIDENCE INTERVALS ON SHAP VALUES. 

These analyses were produced after the completion of the paper that the previous 

chapter are based on.  A better idea of the uncertainty surrounding the effects of 

each feature was deemed necessary.  Although the results presented in 

experiment 2 had some level of uncertainty measurement surrounding the 

performance of the model (through 5-fold cross validation on the training data, 

and evaluation on training and test data) it did not contain any information on the 

robustness of the input-output relationships themselves.  The confidence intervals 

show how the input-output relationships (as determined by SHAP) for a given 

feature, vary across the 1000 bootstrapped test data sets.   

 

6.1 USUAL GAIT SPEED 

The mean and 95% confidence intervals (CI) surrounding the main, non-

interacting, contributions from each feature on the UGS model output are 

visualised in Figure 20.  Of note, one sees that above ~ 1100 ms PulseInterval_RS 

loses significance, as does dBP_SeatStandDiff above ~15 mmHg.  VisualAcuityLeft 

appears to be almost totally insignificant at the 95% CI level.   
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Figure 20.  Bootstrapped mean and 95% confidence intervals for the SHAP values of the main (non-
interacting) impacts of each feature in the prediction of usual gait speed.  Each subplot pertains to an input 
feature and contains the mean and 95% CI values (left y-axis) and a histogram of the input feature (right y-
axis).  The SHAP values are in units of cm/s i.e., the same units as maximum gait speed.  (Brief explanations 

of feature names can be found on page ix). 

 

6.2 MAXIMUM GAIT SPEED 

The mean and 95% CI surrounding the main, non-interacting, contributions from 

each feature on the UGS model output are visualised in Figure 21.  The lowest four 

features in terms of mean absolute SHAP value importance (HR_RS, 

HR_rMSSD_Paced, VisualAcuityBest, HR_TotalPower_Paced) appear to have an 

insignificant impact at the 95% CI level across most, if not all, of their range of 

input values.   
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Figure 21.  Bootstrapped mean and 95% confidence intervals for the SHAP values of the main (non-
interacting) impacts of each feature in the prediction of maximum gait speed.  Each subplot pertains to an 
input feature and contains the mean and 95% CI values (left y-axis) and a histogram of the input feature 

(right y-axis).  The SHAP values are in units of cm/s i.e., the same units as usual gait speed.  (Brief 
explanations of feature names can be found on page ix). 

 

 

6.3 GAIT SPEED RESERVE 

The mean and 95% CI surrounding the main, non-interacting, contributions from 

each feature on the GSR model output are visualised in Figure 22.  The mean and 
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95% CIs are displayed.  Of note is that nCVDs appears non-significant above nCVD 

= 0.  The CI’s for nCVD are also asymmetric about the mean (the mean is closer to 

the upper CI bound) and quite wide.  

 

Figure 22.  Bootstrapped mean and 95% confidence intervals for the SHAP values of the main (non-
interacting) impacts of each feature in the prediction of gait speed reserve.  Each subplot pertains to an input 

feature and contains the mean and 95% CI values (left y-axis) and a histogram of the input feature (right y-
axis).  The SHAP values are in units of cm/s i.e., the same units as gait speed reserve.  (Brief explanations of 

feature names can be found on page ix). 

6.4 DISCUSSION 

The bootstrapped confidence intervals mostly show robustness in the main effects 

of the features in each model and generally support the previous results.  There 

were however some features that lacked confidence at the 95% level.  These 

features are the nCVD for the GSR model; VisualAcuityLeft for the UGS model; and 

HR_RS, HR_rMSSD_Paced, VisualAcuityBest, and HR_TotalPower_Paced for the 
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MGS model. The CIs being asymmetric about the mean for nCVD could be due to 

the fact that a lot of participants probably have a cardiovascular disease of 

relatively low severity (high cholesterol, high blood pressure), and a smaller 

number of participants have comparatively more severe cardiovascular diseases 

such as history of congestive heart failure.  The more common, lower severity 

diseases may have a smaller impact on GSR than that of the less common high 

severity diseases.  The overall effect of nCVD on GSR is however not significant.  

The CI’s also suggest that for some features, such as PulseInterval_RS in the UGS 

model, there are regions of values of the feature that have a more robust impact 

on the model output, and other regions that do not have significant effects.   

The visual acuity features (VisualAcuityBest and VisualAcuity) were non-significant 

in the UGS and MGS models, respectively.  The MGS model had the most features 

deemed insignificant; in addition to VisualAcuityBest there were three resting 

state cardiovascular features: HR_RS, HR_rMSSD_Paced, and 

HR_TotalPower_Paced.   
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7 DISCUSSION 

Experiment 1 was a first iteration of the concept of using feature selection to 

explore the multisystem nature of gait speed reserve (if there was indeed one to 

be found).  It used a simple linear regression at its core and employed a 5-fold 

cross validation when evaluating each feature to avoid overfitting.   

Table 7.  Summary of scores and features selected for the usual gait speed, maximum gait speed, and both 
gait speed reserve models.  Features are ordered from top to bottom by decreasing mean absolute SHAP 

value.  The gait speed reserve features from experiment 1 are in descending order of linear model coefficient 
magnitude.  Features in bold are deemed significant; underlined features are those selected for both gait 

speed reserve models.  (Brief explanations of feature names can be found on page ix). 

 
Experiment 1 Experiment 2 

  
Gait Speed Reserve 

Gait Speed 
Reserve 

Usual Gait Speed Maximum Gait Speed 

CV Mean 

 Radj
2  (SD) 

0.16 (0.03) 0.189 (0.02) 0.377 (0.04) 0.453 (0.04) 

Train Radj
2  0.18 0.224 0.427 0.545 

Test Radj
2  0.16 0.208 0.411 0.456 

  Sex GripStrength ChairStandsTime Age 

 Edu3_Third/higher Edu3 Age ChairStandsTime 

 MOCA ChairStandsTime BMI GripStrength 

 ChairStandsTime MOCA_errors nMeds BMI 

  Age SIFI_2B1F_150 GripStrength Height 

  BMI FOF PulseInterval_RS nMeds 

  GripStrength Height Height MRT_mean 

  CardiacOutput_RS Age MRT_mean PhasicDizziness 

  nMeds Sex CESD Edu3 

  FOF PhasicDizziness dBP_SeatStandDiff SART_SD 

  PhasicDizziness MMSE_errors  VisualAcuityLeft FOF 

  CRT_mean nCVD   MOCA_errors 

  SART_SD     Smoker 

  Smoker     HR_RS 

       HR_rMSSD_Paced 

       VisualAcuityBest 

    HR_TotalPower_Paced 

 

The linear regression yields a simple process in terms of speed, no 

hyperparameters to tune, and convenience in terms of evaluating and interpreting 

the model using regression coefficients.  The drawbacks of such a method include 
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having to deal with missing data by either dropping samples (which is the 

approach that was taken) or imputation, the restriction of only being able to model 

linear associations, and the way categorical features are incorporated using one-

hot encoded dummy variables.     

Experiment 1 was ultimately superseded by experiment 2 in terms of 

methodology, number of features considered for selection, and in its inclusion of 

usual and maximum gait speed.  The methodology allowed for a larger sample size 

due to the ability to handle missing data in the input features, a more 

sophisticated modelling of relationships between inputs and outputs, and a way 

to visualise and explore the learned relationships. The results of the two 

experiments are not directly comparable due to differences in sample and 

considered features but since there are similarities between the two, it suggests a 

robustness regarding them.   

All four models selected features from multiple domains with several features 

appearing in every model and some that were unique to one or two of the gait 

variables.  A summary of selected and significant features and metrics for all 

models is presented in Table 7. 

7.1 GAIT SPEED RESERVE MODELS  

The linear regression-based feature selection applied to a shortlist of 34 features 

in experiment 1 yielded a 𝑅𝑎𝑑𝑗
2̅̅ ̅̅ ̅̅ ± 𝑆𝐷 score from 5-fold CV of 0.16 ± 0.03, and  

𝑅𝑎𝑑𝑗
2   scores of 0.18 and 0.16 on the training and test data, respectively.   

The histogram gradient boosting trees-based feature selection performed on 88 

features achieved an 𝑅𝑎𝑑𝑗
2 ± 𝑆𝐷 from 5-fold CV of 0.19 ± 0.02 and with training 

and test 𝑅𝑎𝑑𝑗
2  scores of 0.22 and 0.21, respectively.   

There was only a very modest improvement in performance for the experiment 2 

model.  Perhaps there were other features that were not included in these 

experiment that could better explain GSR, but the issue could be rooted in the 

variability of the UGS and MGS used to derive GSR.  There is some amount of 
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randomness or variability surrounding exactly how fast an individual will walk at a 

given time, and when deriving a feature like GSR, those random effects and 

variabilities may combine to produce a greater amount of variability around the 

derived feature.   

Across the two methodologies, the selected features were mostly similar and 

covered multiple domains.   

In experiment 1, 14 features were selected and 3 of them (phasic dizziness, 

standard deviation in SART, and smoking status) were not statistically significant 

in the final linear regression model.  In experiment 2, 13 features were selected 

and from inspection of confidence intervals around SHAP values, one feature 

(number of cardiovascular diseases) appeared insignificant across the full range of 

input values. 

Although a direct comparison cannot be made between the two experiments’ 

results due to differing sample sizes and input feature shortlists, it seems worth 

observing what similarities exist between them in the prediction of GSR.    

The features selected in both experiments were sex, educational attainment, 

MOCA, chair stands time, age, grip strength, fear of falling, and phasic dizziness.  

Other similarities were the selection of BMI in experiment 1 and height in 

experiment 2, and the selection of CRT_mean in experiment 1 and MRT_mean in 

experiment 2.  With respect to these similarities, neither height, weight, nor 

MRT_mean were included in the experiment 1 shortlist.   

Although causal inference is possible on observational data, it is however not 

possible to make any causal inferences from the experiments conducted in this 

work.  To make a causal inference on the relationship between a variable and an 

outcome, a specific model must be constructed, following the rules of causal 

inference with directed acyclic graphs or some similar method, such that an 

appropriate set of controls are used.  This must be done separately for each 

variable of interest; and no causal inferences can be made about the relationship 

between control variables and the outcome.  However, with all that being said, we 
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are still free to discuss and hypothesise about the potential causal links between 

variables and outcomes.   

Sex may be generally assumed to be linked to gait speed via factors such as 

strength and height, but since both grip strength and height/BMI were selected 

alongside sex, it begs the question of what other sex differences may influence 

gait speeds, possibly psychological aspects or competitiveness.  Grip strength itself 

is likely not causal to gait speeds but overall strength and vitality (which grip 

strength may be a marker of) could be.  Height and BMI have potential causal links 

as longer legs are associated with faster gait.  Chair stands time has a logical causal 

relationship to gait performance as better chair stands performance is a marker of 

better lower body strength and ability.  MOCA is a test of global cognition and a 

possible link to gait performance here is related to one’s ability to comprehend 

the task being given to them and also to assess their surrounding environment 

enough to comfortably perform the task.  Fear of falling more obviously is causal 

to gait performance as those with such a fear are going to limit their gait speeds 

in order to ensure that they maintain balance and control.  Possibly linked to fear 

of falling in some cases, those who experience orthostatic dizziness may have 

greater caution when walking, especially if they were seated beforehand.  Aside 

from this aspect though, phasic dizziness is a complex variable with possible 

contributions from cardiovascular health, nutrition, sleep, stress, and psychology 

and so a potential causal link to gait speed is not clear; once again, phasic dizziness 

may just represent broader physical and mental health.  Level of educational 

attainment again does not likely have a direct causal link to gait speed (i.e., getting 

a degree probably does not increase one’s gait speed) but it is perhaps indicative 

of one’s social situation and ability to pursue goals.  A key aspect to keep in mind 

with educational attainment is that in the TILDA cohort, depending on when it was 

that certain levels of education were attained, the variable can act as a proxy for 

socio-economic status. For some older generations, education was not as it is 

today and for some even completing a second level education was not an option.  

Therefore, with educational attainment being to some degree a proxy for socio-

economic status, it may be representative of factors such as stress, nutrition, 

employment, and healthcare throughout an individual’s lifetime, all of which may 
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impact current overall physical and mental health, which could in turn effect gait 

performance.   Despite grip strength being the first feature selected in experiment 

1 and sex being fifth, in the final model the linear model coefficient for sex was 

the biggest and that of grip strength was seventh (after BMI).  In experiment 2, 

grip strength was selected second (after mean motor response time) and sex 

tenth. As judged by SHAP importance, those features remained in similar positions 

(sex being placed ninth, just after height).  The explainable machine learning 

model suggests that even though grip strength is strongly predicted by sex, it is 

grip strength that has the greater association with GSR and not sex specifically. 

The differences in mean SHAP value for female vs. male sex (Figure 18 (A)) support 

this by showing that the difference of the impact of grip strength between men 

and women is greater than the difference of the impact of sex between sexes.  

Other statistically significant group mean differences between men and women 

were height (just below sex in terms of SHAP importance), mean motor response 

time, fear of falling, and SIFI multisensory integration, all of which had greater 

positive impacts in men.  Education however, showed a significantly greater 

impact in women.   Although sex in the model could act as a proxy for other factors 

associated with sex or gender, there could be more fundamental sex differences 

that impact gait speed reserve and further work could explore this. The lack of the 

linear model’s ability to capture more nuanced relationships as in the explainable 

machine learning method may be why some of the effects of other features such 

as grip strength and height could have been encapsulated by sex.   

Educational attainment was present in both models.  The third-level/higher 

dummy variable was selected in the linear regression model which is consistent 

with that level of educational attainment showing the biggest impact for 

education in the explainable machine learning model.  Figure 18 (B) and (C) 

explore education further by displaying the group mean SHAP value differences 

for third level/higher education vs. first/none and second level (B) and first 

level/none vs. second and third level/higher education (C).  There were no 

significant differences in the former group comparison, but the latter showed 

significant group mean SHAP values for (in order of magnitude of difference) 

MOCA, age, mean motor response time, MMSE, SIFI multisensory integration, 
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phasic dizziness, height, fear of falling, and sex.  All but sex showed a negative 

difference, i.e., the impact of the features was smaller for the first level/none 

group; higher education was more positively impactful for women than for men.  

It’s worth reiterating here that for the generations involved in TILDA, educational 

attainment can often be used as a proxy for socio-economic status; typically, those 

from higher socio-economic backgrounds would be more likely to attain a higher 

level of education, and vice versa for those from lower economic backgrounds.  

Phasic dizziness (orthostatic intolerance) was initially selected by the linear 

regression model but was deemed non-significant at the 95% CI level.  

Consistently, looking at the explainable machine learning model results, it is seen 

that phasic dizziness 95% CIs are bordering non-significance. 

In terms of 𝑅𝑎𝑑𝑗
2 , the machine learning approach produced a slightly better score 

with less uncertainty.  Although the higher score might be expected from the 

machine learning model, it is, however, not possible to concretely compare them 

due to differences in the feature shortlist.  Moving forward from performance 

metrics to a perhaps more important aspect, the types of relationships that were 

captured and then displayed by the explainable machine learning methodology 

point to a significant advantage of that method over the simpler linear regression 

method.  Taking age as a point of comparison, in experiment 2 there are different 

regions observed in the relationship between it and GSR: a region of slow decline, 

followed by a sudden steeper decrease between 63 and 70; followed roughly by a 

plateau region.  In the linear model, the general average slope of the relationship 

does give a good idea that GSR declines with age but cannot provide the more 

nuanced multi-region relationship. Another example is chair stands time.  The 

SHAP value plots showed that most of the range of values for chair stands time 

was quite unimpactful: between ~11 s and 16 s (which covers most of the centre 

of the distribution) the features had no impact on GSR, the right tail of the 

distribution showed a small negative impact on GSR.  The left tail however showed 

a large positive impact on the model.  Put more simply, across most of the 

distribution of chairs stand times there was no change in GSR; however, there was 

a big positive impact for very fast times, and a small negative impact for very slow 
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times.  A possible reason for this might be that UGS and MGS decline similarly with 

slower chair stands times but that those with very fast chair stands have a greater 

capacity for a very fast MGS.    

The explainable machine learning model did not offer any information on 

interactions between features because for the final model the hyperparameter 

tuning resulted in a hyperparameter that effectively restricted the depth of the 

tree such that features could not interact.  This could be due to random chance, 

or because including feature interactions worsened the performance.  Future 

work could manually set the hyperparameters to allow for feature interaction so 

that this can be studied.    

The use of highly visual methods in the inspection and interpretation of models 

requires or invokes a different philosophy than that of a standard linear regression 

model and its coefficients.  The more complex machine learning models can learn 

relationships that are not easily boiled down to a single number.  They instead 

require the analyst or expert to take a step back and view the relationship as a 

whole.  Whilst still considering the values associated with features’ impact on the 

model output, a more intuitive sense of the relationship may be gained visually, 

observing different regions of impact or the shape of the relationship.   

In relation to potentially using these results for the improvement of older persons 

care, the main suggestion would be to routinely measure usual and maximum gait 

speeds and gait speed reserve, and if declines are observed, be they gradual or 

sudden, perhaps look to the variables and domains identified in this work as 

possible avenues for further investigation or rehabilitation.    

Future work could include analyses stratified by sex or age group, and the study of 

different aspects of gait characteristics and dynamics such as cadence and 

variability.  Other high-level indicators of general health, physical strength, and 

performance such as grip strength and chair stands could be studied in a similar 

way.  The timed-up-and-go (TUG) test, which requires the participant to stand up, 

walk 3 m, turn around, walk 3 m back, and then sit down could also be of interest 

to explore as it is a more person-involved task that arguably requires more lower 
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body strength, balance, spatial awareness, and cognitive input.  TUG was not 

included in the present work as a predictor due to its strong correlation and 

similarity with the gait tasks.   Personality is another factor not included in this 

work that could play a role in one’s gait speeds.  Personality could impact the way 

individuals interpret and response to the tasks and could possibly be a factor in 

walking speeds itself. Another advancement from this work could be to investigate 

the causal effects of some of the selected features though careful and dedicated 

causal inference modelling.   
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8 CONCLUSIONS 

In experiment 1, a stepwise linear regression-based machine learning pipeline was 

used to select the most important gait speed reserve predictors from 34 

shortlisted features from multiple domains. Variables were selected one at a time 

such that they maximised the mean 𝑅𝑎𝑑𝑗
2  score from a 5-fold cross-validation. A 

peak score of (0.16 ± 0.03) was achieved with 14 variables (giving 𝑅𝑎𝑑𝑗
2  of 0.18 and 

0.16 on 80% training and 20% test data, respectively). Of the 14 selected features, 

11 had statistically significant (p<0.05) effects in the model: sex, MOCA, third level 

education, chair stands time, age, BMI, grip strength, cardiac output, number of 

medications, fear of falling, and mean choice reaction time.  The three selected 

but statistically insignificant features were phasic dizziness, standard deviation in 

sustained attention to response task times, and smoking status. 

In experiment 2, a non-parametric machine learning based stepwise feature 

selection was used to find the sets of predictors from an expanded shortlist of 88 

input features that resulted in the best explained variance in UGS, MGS, and GSR.  

Explainable machine learning methods were then used to analyse and explore 

each of the models.  The variables selected with a histogram gradient boosting 

regressor based machine learning stepwise feature selection explained a greater 

proportion of variation in MGS and UGS than GSR.  There were common features 

to all three models (i.e., age, grip strength, chair stands time, mean motor reaction 

time in the choice reaction time test, and height), but also some unique features 

to each of them.  By SHAP feature importance, the top four features were chair 

stands time, age, BMI, and number of medications to the UGS model; age, chair 

stands time, grip strength, and height to the MGS model; and level of educational 

attainment, grip strength, mean motor response time, and MOCA errors to the 

GSR model.  Overall, findings on all three models were clinically plausible and 

support a network physiology approach [84] to the understanding of predictors of 

performance-based tasks.  Each model contained features from multiple 

physiological systems, and this supports the hypothesis that GSR as well as UGS 

and MGS are multisystem-driven phenomena.  By employing an explainable 
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machine learning model, observations may help clinicians gain new insights into 

the possible determinants of physiological reserve in community-dwelling older 

adults.  Of the features selected, some are prospectively non-modifiable (e.g., age, 

sex, height, educational attainment).  Others, however, may be directly modifiable 

through changes in lifestyle, engaging in physical exercise, or cognitive stimulation 

(e.g., BMI, weight, smoking, chair stands time, grip strength, MOCA, motor 

response time, SART).  For some variables, it may be useful to focus on ensuring 

that an older person avoids reaching threshold values that are associated with a 

rapid decline in gait speed.  Conversely, if engaging in rehabilitation, those 

threshold values may be the targets so as to reach a more stable situation with 

respect to walking speed.  Having explored the predictors of GSR and found 

multisystem associations, further work could investigate whether GSR is a useful 

measure in predicting additional adverse health outcomes (other than falls) and if 

it can contribute to informing on overall physiological reserve.   

The machine learning approach allowed for the stepwise selection of the set 

features that best explained a target variable in a non-parametric manner that can 

also capture high-order interactions. Explainable machine learning allowed for the 

selected models to be visualised to observe the input-output relationships, and 

the relationship between feature interactions and the model output. Using a tree-

based machine learning model enabled the use of the TreeSHAP explainable 

machine learning package, which uses the tree structure to be able to compute 

exact Shapley values in low-order polynomial time.   

The use of bootstrapped confidence intervals on the SHAP values of the main 

effects from each feature allowed for a better exploration of the relationship 

between the features and the outputs.  Uncertainty can vary across the range of 

input values for a given feature.  A visual inspection of the 95% CI plots informed 

on the overall confidence of a features effect.  Some features displayed non-

significance across almost their entire input value range (resting state heart rate, 

root-mean-sum-of-squared-differences between successive heartbeats during 

paced breathing, best visual acuity, total power of heartbeat during paced 

breathing for maximum gait speed, and left visual acuity for usual gait speed, and 
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number of cardiovascular diseases for gait speed reserve), and others were seen 

to be significant in certain ranges of input value (resting state pulse interval and 

difference between seated and standing diastolic blood pressure for usual gait 

speed).   

The linear model and the machine learning model selected similar features from 

multiple domains (sex, age, education, height/BMI, MOCA, grip strength, chair 

stands time, and fear of falling) in the prediction of gait speed reserve.  The linear 

modelling was faster and simpler, but the explainable machine learning method 

was capable of non-parametrically modelling non-linear relationships, inherently 

capturing feature interactions, and various forms of visualisation of modelled 

relationships.  These can help to provide better insights into the role of features in 

a model and can allow analysts and clinicians to interact and interpret the models 

in both more granular and holistic ways.  Overall, findings of this investigation 

support a network physiology approach to the study of physiological reserve and 

could help policy makers and clinicians design strategies to promote resilience and 

functional independence in community-dwelling older adults. 
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10 APPENDICES 

10.1 APPENDIX A 

Scatter plots of the four top interaction effects on the usual gait speed model (i.e., 

age, chair stands time, body mass index, and grip strength).  In the scatter plots, 

the points are coloured according to the value of the main interaction feature.  The 

interactions are computed for the features in whatever numerical form they exist 

in but for ease of visualisation, continuous features are coloured according to what 

quartile a particular sample’s value falls in; black indicates the value is in the lowest 

quartile and light brown the highest quartile.  In each figure, the subplots are 

ordered from top-left to bottom-right by decreasing mean absolute SHAP 

interaction value. 

10.1.1 Age Interactions 

 

Appendix A Figure 1.  SHAP values for the interaction between age and all features in the usual speed model.  
The x-axes present the values of a feature in the units of that feature.  The colour of a sspoint indicates what 

quartile for age that sample falls in with black being lowest and light brown being highest.  The y-axis 
displays the SHAP value of the interaction.   
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10.1.2 Chair Stands Time Interactions 

 

Appendix A Figure 2.  SHAP values for the interaction between chair stands time and all features in the usual 
speed model.  The x-axes present the values of a feature in the units of that feature.  The colour of a point 
indicates what quartile for chair stands time that sample falls in with black being lowest and light brown 

being highest.  The y-axis displays the SHAP value of the interaction.   

 

10.1.3 BMI Interactions 

 

Appendix A Figure 3.  SHAP values for the interaction between BMI and all features in the usual speed model.  
The x-axes present the values of a feature in the units of that feature.  The colour of a point indicates what 

quartile for BMI that sample falls in with black being lowest and light brown being highest.  The y-axis 
displays the SHAP value of the interaction.   
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10.1.4 Grip Strength Interactions 

 

Appendix A Figure 4.  SHAP values for the interaction between grip strength and all features in the usual 
speed model.  The x-axes present the values of a feature in the units of that feature.  The colour of a point 
indicates what quartile for grip strength that sample falls in with black being lowest and light brown being 

highest.  The y-axis displays the SHAP value of the interaction.   

 

10.2 APPENDIX B 

Scatter plots of the four top interaction effects on the maximum gait speed model 

(i.e., age, grip strength, chair stands time, and body mass index).  In the scatter 

plots, the points are coloured according to the value of the main interaction 

feature.  The interactions are computed for the features in whatever numerical 

form they exist in but for ease of visualisation, continuous features are coloured 

according to what quartile a particular sample’s value falls in; black indicates the 

value is in the lowest quartile and light brown the highest quartile.  In each figure, 

the subplots are ordered from top-left to bottom-right by decreasing mean 

absolute SHAP interaction value. 
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10.2.1 Age Interactions 

 

Appendix B Figure 5.  SHAP values for the interaction between age and all features in the maximum speed 
model.  The x-axes present the values of a feature in the units of that feature.  The colour of a point indicates 
what quartile for age that sample falls in with black being lowest and light brown being highest.  The y-axis 

displays the SHAP value of the interaction.   
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10.2.2 Grip Strength Interactions 

 

Appendix B Figure 6.  SHAP values for the interaction between grip strength and all features in the maximum 
speed model.  The x-axes present the values of a feature in the units of that feature.  The colour of a point 
indicates what quartile for grip strength that sample falls in with black being lowest and light brown being 

highest.  The y-axis displays the SHAP value of the interaction.   
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10.2.3 Chair Stands Time Interactions 

 

Appendix B Figure 7.  SHAP values for the interaction between chair stands time and all features in the 
maximum speed model.  The x-axes present the values of a feature in the units of that feature.  The colour of 

a point indicates what quartile for chair stands time that sample falls in with black being lowest and light 
brown being highest.  The y-axis displays the SHAP value of the interaction.   
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10.2.4 BMI Interactions 

 

Appendix B Figure 8.  SHAP values for the interaction between BMI and all features in the maximum speed 
model.  The x-axes present the values of a feature in the units of that feature.  The colour of a point indicates 
what quartile for BMI that sample falls in with black being lowest and light brown being highest.  The y-axis 

displays the SHAP value of the interaction.   

 
 

 

 


