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Abstract

Wind energy as a renewable source has been a topic of immense interest over the
past few decades. It is a well known fact that the wake structure influences the
performance and operation of the wind turbines located further downstream. How-
ever, modelling the wind field as a whole along with the wind turbines involves
complex geometrical models which require extensive computational resources, both
in terms of memory and time. Thus, researchers have proposed different analytical
models based on certain assumptions which, in some cases, have certain parameters
involved which are difficult to obtain. This calls for an in-between approach such
that the actual model can be built at a low cost and at the same time satisfying the
theoretical requirements of the analytical models. There are certain mathematical
approaches which can reduce this computational expense to a considerable extent
and thus, certain special fluid-structure interaction (FSI) methods come into play.
However, because of the size of a wind farm, the amount of data to be processed
still remains substantial which can be easily handled computationally only if parallel
numerical algorithms coupled with multi-core simulations are implemented.

A new model for laminar wind flow with vorticity and wake interaction has
been proposed and its advantages over the potential flow model has been presented.
This model has the ability to deal with both rotational and irrotational flow in 2D.
This model coupled with a FSI method and parallel numerical algorithms has been
used to simulate back-to-back actuator discs. The results were found to bear a
nice resemblance with the analytical wind farm models with the added advantage
of visualizing the velocity field under the light of vorticity. The added advantage is
that unlike blade-resolved models which require modelling a complex mesh around
the actuator disc, this model is simpler geometrically and as such is not expensive
computationally. A linear spatial turbulence model has also been proposed based on
Rapid Distortion Theory (RDT). The approach to develop the model uses Gaussian
closure. The model has been simulated for a 2D steady fluid flow problem and the
simulated results were found to be consistent. The laminar flow model with vorticity
and wake interaction and the spatial turbulence model can form the basis of input
to an individual wind turbine in a wind farm for subsequent analysis.



Summary

More and more nations are switching over to renewable sources of energy for a

sustainable future. Wind energy is one such source which has gained considerable

importance. In this thesis, a study on aerodynamics of wind farms has been carried

out. Ideally, such simulations should be carried out for 3D unsteady flows. But, such

models are complicated and computationally expensive. This calls for developing

methods which can simplify these expensive models. The stepwise approach to

achieve this objective would be to propose and test these models for 2D steady flow

first before moving onto the more complicated 3D and unsteady flows. It can be

understood that this entire extremely huge task. As such in this thesis only the

aspects of the first step i.e. 2D steady flows are explored.

The work starts with an extensive literature review of existing simplified

wind farm models. A shortcoming of these models is that they fail to address the

effects Fluid-structure interaction (FSI) unless blade-resolved models are developed

using commercial softwares. But again, these software models are expensive compu-

tationally which calls for looking into an approach which is something in-between.

This is where special FSI methods come into play which provide the essential math-

ematical foundation to not only mitigate the complex software models but at the

same time fulfilling the requirements of FSI. However, though using FSI reduces

computational expense substantially compared to what the situation would have

been with the blade-resolved models, for domains as large as wind farms extending

over kilometers, amount of data getting processed still remains huge. As such, a

review of parallel numerical algorithms and multi-core simulations is carried out as

well to understand the way they work and how best these tools can be added to the

advantage of the work carried out in this thesis.

The fluid flow usually consists of two main components, a mean component



and a turbulent component. Also, the flow is usually governed by some Partial

Differential Equation (PDE). Potential flow model is one such governing PDE for

irrotational flow. In this thesis, a new laminar flow model with constant vorticity

or rather a governing PDE has been proposed for the mean velocity of the fluid

which is more general and realistic and which takes care of both rotational and

irrotational flow. Finite Difference Method (FDM) has been used to discretize the

PDEs. This model is further developed in conjunction with one of the existing

analytical wind farm models as well as incorporating the wake effects and FSI. The

full potential of multi-core simulations and parallel numerical algorithms are used

for this purpose. This new model has been used to simulate upto three back-to-back

wind turbines modelled as actuator discs. The results so obtained have been found

to bear a good resemblance with the theoretical values using the analytical wind

farm model. A study with respect to the computational time has also been carried

out and the reduction in computation time has been found to be quite significant,

thereby signifying the proper implementation of multi-core simulation in the context

of this new model.

For the turbulent part, a new Rapid Distortion Theory (RDT) based model

has been proposed by modifying Reynold’s Averaged Navier Stokes (RANS) and

linearizing it using statistical approach. A Gaussian closure approach has been

used for the solution. A large number of simulations has been carried out. In this

case also, the simulations are done for 2D steady flows and the results obtained

have been found to bear a good match with the gaussian nature of the proposed

model. The laminar flow model with vorticity and wake interaction and the spatial

turbulence model can form the basis of input to an individual wind turbine in a

wind farm for subsequent analysis.
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Table 1: Mathematical operators/symbols

Operator Description

a bold character signifies vector / matrix
< a,b > dot product of vectors a and b
a× b cross product of vectors a and b
E[x] or x expectation / mean of x
xj component of a vector, x in direction, j
fx, fxx, ... first, second, ... derivatives of function f(x) w.r.t.

x
||x||2 L2 norm of a vector, x
⌊x⌋ floor value of x, x ∈ R
∼ order of magnitude
R real number
N natural number
δij Kronecker delta;

δij =

{
1; i = j
0; i ̸= j

[a, b] range of all real numbers between lower limit, a
and upper limit, b both inclusive

[a, b]× [c, d] all possible paired combinations of real numbers
from the two ranges

∇2 Laplace operator
[Φ] change (or jump) in value of a quantity, Φ at the

point of discontinuity
|x| or |x| Absolute value of a scalar, x or a vector x
|A| Determinant value of square matrix, A
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Table 2: Other Notations

Symbol Description

Ai actuator number i
a axial induction factor
L,B,H length (par. to X1), breadth(par. to X2),

height(par. to X3) of the overall domain
M−1 preconditioner
P (X, t) total pressure
P (X) mean pressure
p′(X, t) turbulent component of pressure
p, q, r −1/△X2

1 ,−1/△X2
2 ,−1/△X2

3

s −2(p+ q + r)
t time
U∞ free stream velocity
Vj(X, t) total wind velocity component in direction, j
V j(X) mean of the wind velocity vector
v′j(X, t) turbulent component of wind velocity
ṽj pseudo-velocity
X Eulerian co-ordinate
△Xj none to node distance in direction, j
α under-relaxation factor
ρ density of air (1.225kg/m3)
ν kinematic viscosity of air (1.5× 10−5m2/s)
ωωω vorticity
φ scalar potential
ϕ dependent variable of a PDE
Ω physical domain
Γ interface between two domains

Θ̆ any quantity Θ non-dimensionalized w.r.t. some
scale

µµµ vector of means of n random variables
ΣΣΣ variance-covariance matrix for n random variables
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Chapter 1

Introduction

With the increasing human population, an ever increasing demand for energy, de-

pletion in non-renewable energy sources like coal, petroleum, etc. and the pollution

caused by these have led to increasing concerns worldwide. Rising global tem-

peratures because of the pollutants and green house gases like carbon dioxide has

resulted in melting of polar ice caps. National Oceanic and Atmospheric Adminis-

tration (NOAA) published a report (Lindsey and Dahlman, 2021) which points out

that the temperature of earth has been increasing at a rate of 0.08°C per decade

since 1880. However, for the past 40 years, the rate of increase has almost doubled

to 0.18°C. The year 2020 was recorded as the second warmest year as per data on

NOAA record. Thus, over the past few decades, researchers have already started

exploring renewable sources of energy, like solar, wind, hydro, tidal, etc. and un-

derstand them in greater depth. In other words, renewable sources are the future

for clean, green and pollution-free energy and a way ahead for a sustainable future.

The importance of climate change and the increase in awareness worldwide

can even be understood from the fact that United Nations (UN) in 2015 included

‘Climate Action’ (SDG-13) as part of its Sustainable Development Goals (SDG) and

targets have been set for the member nations to work upon.

Ireland, as a member nation of UN has already started working on these

targets which is clearly reflected in Sustainable Energy Authority of Ireland (SEAI)

reports. As per Energy in Ireland, 2018 report published by SEAI, Ireland has been

able to achieve about one-third of its energy production from renewable sources by

1



Chapter 1. Introduction

2017. This has resulted in a decrease of dependency on coal by about 21.2% and

peat by about 6.4%. At the same time, energy production from renewable sources

have increased by almost 19%. The carbon dioxide emission per kWh of energy is

at an all time low of 437 g. In 2017, there has been a record 532 MW of wind energy

installations and by end of 2020, Ireland had a total installation of 4.3 GW in wind

energy sector, an increase in 180 MW compared to 2019 (Energy in Ireland, 2020

report). All this has resulted in saving e278 million worth of fossil fuel imports.

From these statistics, it can be clearly seen that investment in wind energy sector

is showing a phenomenal progress. This calls for a more detailed study of wind

turbines and wind farms so that a better optimization of the energy output can be

achieved. Hence, the present research focuses primarily on wind energy and wind

farms in particular.

To date, almost all of the Irish wind farms are onshore. Setting up a wind

farm requires considerable land area and land acquisitions are often faced with legal

hurdles. Countries like China, Denmark, Germany, Netherlands, UK already have

several commissioned offshore wind farms and many more are proposed. NSEnergy,

2021 states that as of 2020, top five countries of the world with the largest installed

wind power capacity include China (288.32 GW), US (122.32 GW), Germany (62.85

GW), India (38.63 GW), Spain (27.24 GW). This progress in the worldwide scenario

in setting up wind farms highlights their gaining popularity and at the same time

satisfying the UN’s SDG-13. As a result, researchers worldwide are putting in their

best efforts to optimize the power production from the wind farms not only from

the perspective of the aerodynamics of wind farms but also from the perspective of

the controllers of the wind turbines and the design of the wind turbine itself.

Apart from the conventional Horizontal Axis Wind Turbine (HAWT) and

Vertical Axis Wind Turbine (VAWT), various companies and research institutes are

investing a lot into creating some innovative designs for wind turbines to cater to the

small scale needs as well. A report by Gillespie, 2016 illustrates some such works, few

of which can be seen in Figure 1.1 and Figure 1.2. Each wind tree (Figure 1.1) has

the capacity to light 71 parking spaces which is equivalent to the energy requirement

of an American Home for 4 months. Figure 1.2 shows a VAWT on top of of the

decorative lights which is built and maintained by UGE with each turbine capable

of producing 1 kWh to 1.5 kWh of energy. One can imagine that implementing

renewable energy sources like wind to power such small scale applications can have
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Figure 1.1: A wind tree installed at
COP21 climate talks in Paris. (Photo

Courtesy: New Wind)

Figure 1.2: Highway outside El Paso
International Airport, Texas (Photo

Courtesy: Vicki Scuri)

a considerable positive impact on climate change without compromising the energy

demand.

Apart from these, concept of wind turbines integrated into a buildings archi-

tecture has also been put forward to meet the energy requirement of the buildings.

This can be seen in some of the modern buildings like Strata SE1 in London, United

Kingdom (Figure 1.3) and in Bahrain’s World Trade Centre (Figure 1.4). However,

such concepts are still work in progress and power generation from these integrated

turbines are still not considered to be optimum.

1.1 Scope of work

All fluid flow problems are governed by the Navier-Stokes or Euler equations (refer

Chapter 3) which are non-linear in nature. Numerically trying to solve these non-

linear equations is not only computationally expensive but also may not lead to

convergent results in some cases (e.g. for arbitrary initial and boundary conditions).

This is particularly true in the situation when the domain is a large, wind field

like the case where the wind farm as a whole is the main focus. The code of

practice for wind turbines, IEC FDIS 61400-1, recommends the use of empirical

stochastic turbulence models based on cross-spectral density functions or based on

Rapid Distortion Theory (RDT) to model the turbulence. However, using empirical

methods does not give the real picture. Since, RDT is a more realistic approach

(as it is based on Navier-Stokes Equation), an effort will be made to look at this
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Figure 1.3: Strata SE1, London
(Photo Courtesy: treehugger.com;
Frerk Meyer / Flickr / CC BY-SA

2.0)

Figure 1.4: Bahrain World Trade
Centre (Photo Courtesy:

buildinggreen.com; Ole Sangill,
Norwin A/S)

linearization method closely in the present work.

It is worth noting that the effect of wake aerodynamics on the wind turbines

installed farther downstream is yet not fully understood. The importance of wake

aerodynamics can be understood by looking at Denmark’s “Horns Rev 1” wind

farm Stromsta, 2010 (refer Figure 1.5). It can be clearly seen from the figure

that the wake aerodynamics of one wind turbine influences the other wind turbines

installed downstream. This highlights the fact that the performance of a wind

turbine depends not only on its own design but also on the the aerodynamic wake

Figure 1.5: Horns Rev 1. (Photo Courtesy: Recharge)
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of the other wind turbines installed in its vicinity. This would mean that the wind

velocity with which a turbine is working is going to be affected by the turbines

installed upstream. Hence, the present research work will focus on not only the

generation of spatial variation of turbulence in a large domain as mentioned but

also on the Fluid-structure interaction (FSI) of the laminar flow wake with vorticity

in a wind farm.

FSI models can be quite conveniently developed using commercial or open

source softwares. However, because of the complications involved in aspects like

modelling the geometry of the blades of the wind turbine, higher computational

time and memory required to run a full scale CFD model, it is not always an opti-

mal approach. A typical example could be a scenario when just a preliminary result

is required to study the impact of different arrangements of wind turbines in a wind

farm at a particular site on overall power output. Standard wind farm models do

this job but they lack proper incorporation of FSI effects. An in-between approach

is therefore required such that FSI effects can be conveniently incorporated along-

side these standard wind farm models. This is where special FSI methodologies like

Immersed Boundary (IB) Method, Immersed Interface Method (IIM), or their vari-

ants come into picture which can considerably reduce the computational resources

required. These FSI methodologies have been known for the past few decades but

their application to the field of wind farms have been extremely limited. However,

these methodologies are based on Finite Differencing Method unlike commercial or

open source softwares which are built on Finite Volume Method. This motivated the

development of a computer program to incorporate one such FSI methodology (De-

composed Immersed Interface Method). It would be evident from the subsequent

chapters that this method used in this research was originally proposed based on

Gauss-Seidel iteration. However, when the domain is as large as that of a wind farm,

other iterative algorithms like Biconjugate gradient (BiCG) or their variants per-

form much better. But, the way BiCG works, the algorithm could not be applied in

a straightforward way to incorporate DIIM. Hence, in this work a modification has

been proposed to the algorithm such that DIIM can be conveniently incorporated.

Dealing with such a large domain extending over kilometers requires ex-

tensive use of parallel numerical algorithms with multi-processor computation to

achieve computational efficiency both in terms of memory and time. Python3 has

been chosen as the preferred language for the numerical simulations as it is free, has
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object-oriented programming features and extremely powerful with a wide range of

libraries to deal with any kind of data analysis. Thus, the simulation codes can be

easily executed by anyone without any extra cost. Python libraries numpy (which

itself is based on optimised linear algebra libraries like Basic Linear Algebra

Subprograms (BLAS) / Linear Algebra Package (LAPACK)) and mpi4py

(based on optimised C library for multi-processor simulation using Message Pass-

ing Interface (MPI)) coupled with parallel numerical techniques have been used

extensively to achieve efficiency in simulations both in terms of memory and time.

1.1.1 Research Gaps and Challenges

Having realised the broad scope of the work, it is well understood that many chal-

lenges are posed and expected in the present work, few of which are mentioned

below.

• Simulation of a domain extending over kilometers is a herculean task in itself

demanding extensive computational effort.

• The boundary conditions are not well known and understood.

• Simulation of laminar flow in a domain with vorticity.

• The turbulent structure needs to be investigated in a mechanistic way.

• Numerically resolving the scales of turbulence in the context of wind farm as

a whole.

• Integrating the turbulence and the wake effects in a wind farm.

1.1.2 Aims and Objectives

In the light of the previously mentioned scope of work and the challenges, this work

will primarily aim at:-

1. Developing an understanding of iterative algorithms in a parallel setting and

multi-core simulations including appropriate modifications to these algorithms

to suit the needs of the current work.

2. Investigating the behaviour of a steady potential flow model to model the

aerodynamics in the context of wind farm.

3. Propose an equation in two-dimension (2D) to substitute the potential flow
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model and study the behaviour of laminar flow under constant vorticity.

4. Implementing FSI coupled with a new model for wind turbines modelled as

actuator discs with appropriate boundary conditions to achieve a greater com-

putational efficiency.

5. Proposing a modified version of pre-conditioned BiCGStab algorithm to ac-

commodate DIIM.

6. Developing a RDT model to study the turbulence structure in Atmospheric

Boundary Layer (ABL) using Gaussian closure.

1.1.3 Research Methodology

Evidently, in order to achieve the above objectives, study is required across a wide

range of fields. Bearing this in mind, a step-by-step approach is needed. The task

at hand is therefore broken down into the following series of steps:-

• Carry out an extensive literature review covering wind turbines and wind

farms in order to understand the way different wind farm models work analyt-

ically and how the existing wind farm softwares deal with wind farm models

including modelling the wind turbines.

• Understand fluid dynamics and behaviour of Partial Differential Equations

(PDEs), both from analytical and numerical point of view, particularly for

domains with a large number of nodes and how best these concepts can be

applied to wind farms.

• Learn the concepts of parallel numerical algorithms, iterative algorithms and

multi-core simulations by attending the relevant coursework.

• Investigate in detail the behaviour of steady potential flow model in 2D and

propose a more general model in case the potential flow model does not work

as expected.

• Modelling the discontinuity introduced into the computational domain by the

wind turbines modelled as actuator discs using the concepts of FSI and couple

it with the new proposed model and validate the performance of the model

with respect to the existing analytical wind farm models.

• Carry out a 3D analysis of a wind farm with the assumption that a wind

turbine is affected by the wake of another turbine which is directly along

the direction of the wind flow and the wind turbines installed elsewhere in
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the wind farm do not influence the aerodynamics of the wind turbines under

consideration.

• Develop a RDT model for turbulence and examine the consistency of the

results of the numerical simulation with respect to the assumptions made in

developing the PDE.

1.1.4 Thesis Outline

Bearing in mind the aims and objectives presented above, this thesis is organised

into five main chapters. To begin with in Chapter 2, an exhaustive literature review

is carried out covering three major areas i.e. wind farms, fluid dynamics and parallel

numerical algorithms.

In Chapter 3, the numerical analysis methods are discussed in detail. Thus,

this chapter begins with an introduction to the fluid flow equations followed by the

currently known discretization schemes which eventually lead to formulation of a

linear system of equations. Subsequently, the data storage strategies and the way

iterative algorithms use parallelism and how the same has been implemented in the

present research work is discussed.

Chapter 4 begins with a discussion on the application of actuator disc theory

in a wind turbine. The potential flow model has been analysed in detail from the

perspective of current research work and improvements to the flow model has been

suggested to take care of not only additional and more realistic cases but at the

same time incorporate the effect of the wind turbine in the flow model in a more

physically acceptable way.

Based on the discussion carried out in Chapter 4, in Chapter 5 a special FSI

strategy has been introduced. The method is then used to model the FSI effects

due to the presence of blades of the wind turbine on the fluid flow.

Finally, in Chapter 6, to generate the turbulence a RDT based model is

proposed which uses Gaussian closure. Simulations are run for a large number of

cases and the results have been presented. The chapter concludes with a detailed

discussion on the proposed approach.

The thesis ends with Chapter 7 where the major findings of the work are

8
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presented followed by a discussion on the possible future works.
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Chapter 2

Literature review

Study of wind farms and aerodynamic simulation of the wind field requires knowl-

edge of not only the atmospheric boundary layer and understanding the concepts

of wind farm aerodynamics but it also involves studying numerical strategies for

simulation and existing wind farm simulation tools and models and how they work.

Since aerodynamics is one key aspect, understanding the wind farms from the per-

spective of fluid dynamics is essential. The wind turbines interact continuously with

the surrounding air which is why Fluid-structure interaction (FSI) is yet another

aspect which comes into picture. Now, if only a single wind turbine is to be studied,

any normal sequential algorithm would have been enough. However, since wind

farms are in focus, parallel numerical algorithms is yet another area that needs to

be understood. As such, the literature review is organized into the following parts.

1. Wind energy

2. Fluid dynamics

3. Parallel numerical algorithms

2.1 Wind energy

Though work on wind turbines to generate electricity was done as early as the 19th

century, it was not until the late 1970s that the governments of countries like the

US, UK, Germany and Sweden started funding wind energy projects (Burton et al.,

2011). This section begins by discussing the influence of Atmospheric Boundary
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Figure 2.1: Typical evolution of the Atmospheric Boundary Layer over the course
of a day over land and under clear skies. At sunrise, heating from below sets to a
convective boundary layer, while at sunset heat loss to space terminates convection
and creates a thin Nocturnal Boundary Layer (Garratt, 1992)

Layer (ABL) on wind turbines followed by how Computational Fluid Dynamics

(CFD) has influenced wind turbine analysis over the past decades. And, finally, the

existing wind farm models proposed by different researchers is presented.

2.1.1 Atmospheric Boundary Layer

A recent report by Weaver, 2017 shows that Germany has built the tallest onshore

wind turbine with its hub at 178 m and the total height to the tip of the blade

at 246.5 m. This wind farm is located in Gaildorf, Germany. According to Mines,

2018, General Electric is working on 260m high offshore turbine which is still higher.

This means the wind profile in the Atmospheric Boundary Layer (ABL) is going to

have more prominent effect on the wind turbines. A typical figure of variation in

ABL is given in Figure 2.1.

It can be seen from the figure that the variation in the wind velocity in ABL

layer needs to be considered properly in wind energy calculations. One can notice

the change in the boundary layer development at different times of the day. This

thesis however, will not be focussed on the effect this kind of diurnal change will

have on wind farms. Rather a typical mean wind profile will be considered for the

purpose of simulations.
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In the context of wind farms, the first and foremost information one needs is

a mean wind profile prevalent in ABL. Over the years, meteorologists have proposed

several models based on experimental data. For example, Wilson and Flesch, 2004

made an effort to provide a mean wind profile for the lower atmosphere such that a

‘best fit’ model can be obtained from the data available at hand. Peña et al., 2008

used measurements of the marine wind speed profile at a site located 18 km from

the west coast of Denmark. They compared expressions for marine ABL with cup

observations and concluded that wind speed gets over-predicted over 30 m− 40 m

above Mean Sea Level (MSL) if the effect of boundary layer is ignored. Others like

Richards and Norris, 2019 have discussed the problems associated with Horizontally

Homogeneous Atmospheric Boundary Layer model in Computational Wind Engi-

neering and proposed a series of steps for determining the velocity profile. They

referred to the model proposed by Deaves and Harris, 1978 which uses a modified

version of the Asymptotic Similarity Theory for the resultant mean velocity pro-

file. Since their discussion is based from the perspective of computational wind

engineering, the mean velocity profile proposed by them is implemented in the cur-

rent research work. Another reason for choosing this velocity profile is that it is

not dependent on any field observations and has been derived based on theoretical

understanding of the ABL.

V 1 =
uτ
κ′

(
ln

(
X3

z0

)
+ 5.75

(
X3

h

)
− 1.875

(
X3

h

)2

− 4

3

(
X3

h

)3

+
1

4

(
X3

h

)4
)

(2.1)

where,

V 1 = mean wind velocity parallel to earth’s surface,

κ′ = von Karman’s constant ≈ 0.4,

ϕ = latitude of interest = 53.3498◦ for Dublin,

Ω = rate of rotation of earth = 7.292× 10−5rad/s,

CD = drag coefficient taken approximately as 0.0014 for sea (Stull, 2016),

uτ = friction velocity = M10

√
CD = M10

√
0.0014,

f = coriolis parameter = 2Ω sin(ϕ) = 1.17× 10−4rad/s (for Dublin),

h = gradient height = top of ABL = uτ/6f ,

M10 = wind speed at height of 10 m (considered 10 m/s),

X3 = height above MSL,

z0 = ground roughness length (Davenport-Wieringa roughness length = 0.0002 m

for sea (Stull, 2016)).

It is to be noted that the parameters are chosen assuming offshore wind farms so

that the effect of terrain on the mean velocity profile can be neglected. Under
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Figure 2.2: Typical Mean Velocity Profile

certain conditions, the log term in eq.2.1 could be dominant compared to the other

terms. The authors have recommended to retain at least the first two terms upto

200 m instead of considering the log term only. It is to be noted that after the

mean velocity reaches a maximum value (V 1,max) at a height (X3,max), the velocity

is assumed to become constant and the flow is fully developed. X3,max can be

obtained by differentiating eq.2.1 w.r.t. X3,

dV 1

dX3

=
uτ

κ′

(
1

X3

+
5.75

h
− 3.750

h2
X3 −

4

h3
X2

3 +
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3

h4
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1 + 5.75

X3
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− 3.75

X2
3
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X3
3

h3
+

X4
3

h4

)
⇒X3 = h(= X3,max).

(2.2)

Thus, V 1,max = (uτ/κ
′)(ln(h/z0)+ 67/24). A typical mean velocity profile obtained

from the above equation and assuming M10 = 10 m/s is shown in Figure 2.2.

2.1.2 Wind Turbines

The concept of modelling wind turbine as an actuator disc has been in use over

several decades now. Froude, 1889 proposed the actuator disc theory which is still

the most simple and widely accepted theory in the field of wind energy. The theory

works on the concept of an energy extracting actuator submerged in a fluid. Sub-

sequently, other theories like the rotor disc theory and blade element momentum
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theory (Lock et al., 1925) were proposed which take into account the effects of the

turbine rotation as well. Glauert, 1926 proposed modifications to these theoretical

methods to incorporate corrections like tip loss factor. With the advances made

in CFD, from early 1990s researchers have started looking into energy extracting

actuator disc from the perspective of numerical simulations. But, before looking

into the models and the studies carried out for the wind farms as a whole, a look

into the work done on a single wind turbine is essential. For instance, Voutsi-

nas and Rados, 1995 worked on yawed operation of wind turbines. They carried

out full 3D non-linear aero-elastic numerical investigation of Horizontal Axis Wind

Turbine (HAWT) during yawed operation and used GENUVP code which is based

on Helmholtz decomposition. They have used a numerical strategy based on time

marching and the coupling of free-wake vortex particle model coupled with a 3D

beam type structural model. Madsen, 1996 used Finite Element Method (FEM)

to model the field surrounding a single wind turbine and compare the results with

Blade Element Momentum (BEM) Theory. It was observed that tangential induced

velocity varies greatly between CFD analysis and BEM results. Also, the turbulence

mixing increases axial velocity in the wake as compared to steady value obtained

by BEM and derived a linear analytical solution for actuator disc flow. Apart from

these many other interesting works are carried out, few of which are discussed in

Section 2.2.1.

2.1.3 Wind Farms

If one considers the spatial domain of a wind farm as a whole, the time and mem-

ory required for computation on such domains are extensive, which is why such

studies require extensive use of supercomputers or clusters of several thousands of

cores. Thus, High Performance Computing (HPC) comes into picture which is sub-

sequently discussed in Section 2.3. It is a well known fact that the wake structure

of the first installed wind turbine in a wind farm influences the performance of the

wind turbines located further downstream. For this reason, apart from studying a

single wind turbine, research on the wind farm as a whole is also of importance.

Several models on performance of the wind turbines located downstream are based

mostly on empirical models.

Churchfield, 2013 from NREL presented a review of wind turbine wake mod-

els where the models are categorised into four types depending on the purpose for
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which they are to be used. These four types include models predicting power pro-

duction and Annual Energy Production (AEP), loads, control strategies and basic

physics. Out of these, the first category deals with steady state which is explored

in detail in the current work. Author has highlighted the fact that these models are

in no way each other’s competitors and higher fidelity models can serve to improve

the more simplistic lower fidelity or empirical models. In this thesis, this is what

has been demonstrated in the later chapters where Jensen’s model has been used

alongside the proposed FSI methodology.

One of the earliest work is by Jensen, 1983 who proposed a top hat model for

wake expansion and velocity deficit based on the law of conservation of momentum.

Though experimental results suggested an entrainment constant of 0.07, Jensen

suggested a value of 0.1 as the assumption that the velocity deficit of 1/3 times the

free stream velocity just behind the actuator is fairly uncertain. Based on this model,

Jensen presented a wake structure and energy outputs for 10 back-to-back wind

turbines as well as turbines placed in a circle. Katic et al., 1986 also implemented

Jensen’s model to calculate the output from wind farms. Ainslie, 1988 used Eddy

viscosity model with zero circumferential velocities and flowfield stationary with

time. In this approach, the Navier-Stokes’ equations were replaced with the thin

shear layer approximation without any viscous term. The numerical solution for this

model, though simple, showed a good resemblance with the experimental results but

the behaviour in the near wake region was too complicated to handle.

Other models like Infinite Wind Farm Boundary Layer (IWFBL) model pro-

posed by Frandsen, 1992 or another IWFBL model by Emeis and Frandsen, 1993

based on mixing-length theory exist, but some of their parameters are indeed dif-

ficult to determine. More recently, Frandsen et al., 2006 proposed a model for an

array of wind turbines by splitting the wake into three regimes, the first is turbines’

exposure to multiple wake flow linking the flow deficit with wake expansion, the

next corresponds to wake expansion in the vertical direction only after wakes have

merged and finally, flow in balance with boundary layer for an infinitely large wind

farm.

It has been shown by Rathman et al., 2006 that in the case of large offshore

wind farms extending over more than 5 rows, wake losses are significantly higher

when compared to that of standard wind farm models. Schlez and Neubert, 2009

therefore presented some corrections to be applied to the wind farm models for
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simplified wake modelling. This includes proposing a correction for ABL, using

wind turbine density (i.e. number of wind turbines present in a particular sector)

to judge if the correction is required and applying the correction only if row-to-row

distance is closer than a threshold and downstream recovery of the wake. This

is also illustrated in the work by Johnson et al., 2009 and Brower and Robinson,

2012 and is referred to as deep array correction. Larsen et al., 2007 proposed a

wake meandering model for a single wind turbine. Though it was proposed for a

single wind turbine, authors were hopeful of its applicability to wake interactions

as well. They used a stochastic approach in their model because of the influence

of large-scale vertical and lateral turbulence on wake transportation in ABL. The

model showed a good resemblance with actual measurements. The authors claimed

to have achieved a single unified wake model for turbine power and load unlike

most other models. Subsequently, Larsen et al., 2013 applied this model to the

offshore Egmond aan Zee wind farm in Netherlands which has a total of 36 V90-

3MW wind turbines installed. Loads were compared by the authors for two different

wind directions. Since the authors considered a turbine deep inside the array with

influence from multiple wakes, they proposed a method to deal with multiple wake

interaction using eddy viscosity model. The results have shown good resemblance

with the field observations.

Bastankhah and Porté-Agel, 2014 pointed out that though commercial soft-

wares like WindPRO (Thøgersen, 2005), WAsP (Barthelmie et al., 2006), WindSIM

(Crasto et al., 2012) and few others use Jensen’s model extensively, the model is

not realistic and in fact, it is the mass conservation instead of conservation of mo-

mentum that the model implements. Hence, they proposed a Gaussian wake model

and validated their results with Large Eddy Simulation (LES) and wind tunnel ex-

periments of a miniature wind turbine as well as LES simulation of wake of a Vestas

V80-2MW turbine. Ott and Nielsen, 2014 published a report on a linearized CFD

model for wake called Fuga for offshore wind farms. The model is based on linearized

RANS with simple turbulence closure. The model even includes the atmospheric

stability and wake meandering effects. Faster solution is arrived at by using spectral

analysis. Tian et al., 2015 developed a two-dimensional wake model to predict the

velocity and turbulence distribution in the wake of a wind turbine. The approach

is based on Jensen’s model with the improvement that it incorporates a a cosine

shape function in the cross-wind direction for determining the distribution of the

wake deficit. The authors then compared the results of the model with wind tunnel
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experiments, field data, LES and k−ω model and it was found that the model gave

a good approximation of the far wake region. Sun and Yang, 2018 presented an

analytical three-dimensional wake model by considering the wind speed variation

along height. This model considers a Gaussian wake deficit. The authors carried out

the validation of their proposed model by comparing their results with published

wind tunnel experiments. Subsequently, the authors used their model for numerical

investigation of the average wind speed of a single wind turbine (Sun and Yang,

2020) and claimed that the predictions from the model are practically acceptable.

Blondel and Cathelain, 2020 also presented a wake model but based on super

Gaussian shape function. Other models like Gauss curl hybrid model proposed by

King et al., 2021 incorporates the effects of wake steering in large wind farms. Few

other models have also been proposed over time like those by Martinez-Tossas et al.,

2019 who proposed a curled wake model for wind turbine under yaw condition and

Nygaard et al., 2020 who presented two new models based on the Park model by

including turbulence explicitly and another which considers blockage contribution

from individual wind turbine to model the entire wind farm and hence, compute its

energy output.

Physically, the presence of wind turbines in the computational domain i.e.

the wind field complicates the scenario since FSI study is required to arrive at

more realistic results for the wind field in the presence of wind turbines. It is to

be noted that the basic purpose of these existing wind farm models is to arrive

at a reasonable wake structure without going into the complexities of CFD which

requires extensive computational resources and time. As a result, these models

lack the important aspect of Fluid-structure interaction of the turbines with the

wind which influences the wake structure as well. Having said that FSI methods

need to be looked at in order to gain an understanding of their advantages over the

more complicated computational models for wind farms. Further, as highlighted

earlier, sequential algorithms are of little help for these large domains because of

their high computational cost. Instead, these can be handled in a more time- and

memory-efficient way by exploiting Parallel Numerical Algorithms (PNA).
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2.2 Fluid dynamics

Fluid flow can be broadly categorised into laminar and turbulent flows. Turbulent

flows are by far much more complicated and difficult to handle. Even solutions to

simple flow problems can be non-trivial and might be difficult to model. Different

commercial softwares are available like ANSYS, ABAQUS, etc. which can model

flows like potential flow or the more common and perhaps the most vital Navier-

Stokes equation. This section begins with a discussion on laminar flow and turbu-

lence and rapid distortion theory followed by a brief review of the fluid structure

interaction methodologies and the existing numerical algorithms to resolve pressure

and velocities for the convection-diffusion problems.

2.2.1 Laminar flow model and vorticity

Researchers have tried to implement the potential flow models for analysing the

wind fields. Xu and Sankar, 2000a presented a hybrid methodology wherein the

field around wind turbine is modelled using Navier-Stokes and the remaining flow

field is modelled with potential flow. Based on this study, Xu and Sankar, 2000b

further presented a study on effects of turbulence models and transition models,

rotor performance and the effect non-axial flow has on power generation. Palmiter

and Katz, 2010 evaluated a potential flow model for propeller and wind turbine

design. They used a 3D potential flow based unsteady panel code to model the

flow over rotating blades. Their work primarily focused on two bladed turbine.

Based on the simulation, they made an effort to arrive at an optimal shape for

the propeller blades. Shane, 2011 worked on ‘Potential Flow Modelling for Wind

Turbines’. The work uses LibAero, a C++ based potential flow solver developed

by Lawton and Crawford, 2012. The model uses strategies like n-body problem

of physics and fast multipole method (by Greengard and Rokhlin, 1987) and is

based on Helmholtz equation (eigenvalue problem for Laplace operator; ∇2ϕ =

−k2f). LibAero is aimed towards wind turbine performance prediction and for use

in a Multidisciplinary Design Optimization (MDO) tool. It is based on Weissinger

Lifting Line approximation and uses vortex particles, filaments and quadrilateral

sheets for wake discretization.

van Kuik and Lignarolo, 2016 worked on potential flow solutions for actuator

discs. Their model is based on Euler and continuity equations and included wake
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expansion and pressure variation across an annulus. Further, they proposed cor-

rection to axially induced velocity. They have stressed the fact that most existing

models assume uniform axial flow. However, they illustrated in their work it is the

absolute velocity |V| which is uniform rather than the axial velocity, which is non-

uniform. Based on these potential flow solutions, van Kuik et al., 2015 compared

actuator disc and Joukowsky rotor flows and explored the need for a tip correction.

However, a laminar flow model with vorticity and wake interaction is something

which has not been explored in detail in the case of wind farms and this is an area

which has been explored in this thesis.

2.2.2 Turbulence and Rapid Distortion Theory (RDT)

Rapid Distortion Theory (RDT) is a linearized approach used to calculate rapidly

changing turbulent flows subjected to a different kind of distortions like large scale

velocity gradients or presence of body forces, etc. It is a method based on linear

analysis for calculating Rapidly Changing Turbulent flows.

Batchelor and Proudman, 1954 developed RDT for calculating distortions in

turbulence structure when fluid flow is subjected to large-scale straining motions.

Pearson, 1959 demonstrated how RDT might be useful to get an insight into the

turbulent structure especially for shear flows. The subsequent works by Deissler,

1968, Townsend, 1980, Jeandel et al., 1978 demonstrated with the aid of experi-

mental results that RDT can be applied to shear flows subjected to slowly changing

turbulence as well. Batchelor, 1982 later detailed out the theory in the book “The

Theory of Homogeneous Turbulence”. Hunt and Carruthers, 1990 categorized the

problems of turbulence into 3 classes:-

• Class I: Closed domain and deterministic boundary conditions.

• Class II: Open domain and statistical boundary conditions which can be fur-

ther subdivided into.

1. No turbulence outside domain

2. Turbulence outside domain exists but mean flow is significant.

3. Turbulence outside domain exists but mean flow is not significant.

• Class III: Initial conditions and changing boundary conditions
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They presented how the application of RDT has extended to inhomogeneous tur-

bulent flows and some of its mathematical restrictions have been overcome. From

the perspective of the wind farms, as the turbulence exists outside the domain but

the mean flow is significant, the scenario can be categorized as the case of Class II,

Type 2.

Lee et al., 1990 demonstrated how RDT can be used to calculate the second

order moments and deduce the characteristics of the eddy structures. Though not

widely applied to the field of wind energy, it has found application in various other

fields. For example, Brereton and Mankbadi, 1993 had applied RDT to developed

unsteady wall-bounded flow and Chougule et al., 2017 has modelled atmospheric

turbulence using RDT. Ainslie and Scott, 1990 had presented a review of principal

mechanisms proposed for the generation of noise in wind turbines at European Wind

Energy Conference EWEC, 1989 where application of RDT has been highlighted.

Farr and Hancock, 2014 carried out wind tunnel studies of flow upstream of the

rotor and suggested that the flow stagnation nullifies the amplification implied by

RDT. Recently, Graham, 2017 used RDT on a horizontal axis wind turbine rotor

as in wind turbine or in tidal-stream turbine. The work is interesting particularly

because in that approach the velocity spectrum and the variance were calculated

without assumptions like restrictions on the size of the longitudinal length scale

of turbulence approaching the rotor. Mann et al., 2018 studied the changes in

turbulence as wind approaches the rotor where they discuss the limitations of RDT

for a single wind turbine. It can be seen that limited literature on the application

of RDT in the context of wind farms is available and as such, this area needs to be

explored in greater detail. Thus, in the final part of this thesis, an effort has been

made to understand and implement RDT.

2.2.3 Fluid-structure interaction (FSI)

The issue with the fluid flow problems is that they start getting more complicated

once there is a body immersed in the fluid domain just like the wind turbines in this

thesis. From a mathematical point of view, the presence of a solid body introduces

discontinuity in the flow domain and this, in turn, gives rise to FSI problem wherein

the physical parameters of the fluid like the velocity and pressure are greatly affected.

From the perspective of the immersed body, like the blades of the wind turbine, their

structural behaviour is also impacted. Since the behaviour of the structure itself is
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Figure 2.3: Unstructured mesh around a section of wind turbine blade, Mittal et al.,
2016

not the main focus in this current thesis, the literature review carried out is from

the point of view of the fluid only.

Commercial softwares or any of the standard solvers can take care of the fluid

flow problems quite efficiently as long as there are no bodies immersed in the domain.

With these solvers, one way is to model a mesh all around the structure as shown

later in Figure 2.3. But, as can be understood and as discussed later in Section 2.3,

these models are time consuming and their computational cost is significant. For

this reason, Mittal and Iaccarino, 2005 have discussed the applications of special

FSI approaches to various boundary conditions, and how such methods are effective

in eliminating complex grids and lead to computationally efficient algorithms.

The phenomenon of FSI prompted researchers to devise different analytical

and numerical approaches by taking into account both the physical nature of the

fluid as well as the mathematical equations governing the fluid flow. Li, 2003 and

Kumar and Joshi, 2012 have discussed some of these different approaches available to

deal with these discontinuities in case of flows governed by the general elliptic Partial

Differential Equation (PDE) (e.g. flows like potential flow problem in the context

of fluid dynamics). To handle such discontinuities, methods like smoothing method

for discontinuous coefficient where known smoothed functions are used and the

method of harmonic averaging have also been implemented by researchers to handle

the discontinuities. However, these latter two methods become more difficult to

implement particularly in 3D. Shortcomings in these classical approaches prompted

researchers to explore other different numerical strategies.

Peskin, 1977 proposed the Immersed Boundary Method (IB) to model cases
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of fluid mechanics applied to biology problems. Subsequently, Peskin, 1981 pre-

sented the method in details in “Lectures on Mathematical Aspects of Physiology”.

The method was used to model blood flow in heart but later on the method was im-

plemented in more general fluid flow applications. Works by Beyer, 1992, Arthurs et

al., 1998, Bottino, 1998 are some interesting application of IB to fluid flow problems.

Researchers have also parallelized IB which is reflected in the work of McQueen and

Peskin, 1997. However, IB is only first order accurate and hence is not enough for

many fluid dynamics problems. This prompted researchers to further explore the

method and look for alternatives in order to make it second order accurate.

One significant contribution to devise a second order approach came from

the work done by Li, 1994 who introduced Immersed Interface Method (IIM). The

method was developed to solve PDEs numerically by using second order accurate

Finite Difference Equation (FDE). Overtime several other variants of IIM have been

developed by researchers. For example, Wiegmann and Bube, 2000 used an explicit

strategy wherein instead of focussing on finding new coefficients for FDE, focus was

mainly on the jumps of the dependent variable and its derivatives at the interface. Li

and Lai, 2001 introduced the application of IIM to the incompressible Navier-Stokes

Equations with singular forces. Berthelsen, 2004 introduced Decomposed Immersed

Interface Method (DIIM) for solving two-dimensional variable coefficients elliptic

equations on cartesian grid by introducing a correction term to the standard 5

point stencil of FDEs. In this thesis, this approach has been used, the reason for

which is discussed in the subsequent chapters.

Meanwhile improvements were made to IB as well in order to increase its

accuracy which is reflected in the works of Cortez and Minion, 2000 and Cortez

et al., 2005. Subsequently Li and Ito, 2006 demonstrated the application of IIM

to a wide range of PDEs beginning from one, two and three dimensional elliptic

interface PDEs to Stokes and Navier-Stokes problems as well as parabolic interface

PDEs. Some applications in the context of FEM and fourth order IIM have also been

demonstrated which makes this method a suitable option for FSI problems. They

also point out that though IB is simple and robust and research is undertaken on

improving its accuracy, the method lacks in the proof of complete convergence. It is

to be noted that IIM works by modifying the coefficient matrix of a linear system of

equations in order to model FSI and it was found to perform quite well for different

problems which can be seen in the works of Xu, 2008, Tan et al., 2009a and Tan
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et al., 2009b. From the application point of view of FSI in wind farms, a recent

effort has been made by Korobenko et al., 2017 to study FSI for two back-to-back

wind turbines.

2.2.4 Fluid flow algorithms

One of the challenges in any fluid flow problem is calculating the pressure. Equa-

tions of continuity, equations for momentum and energy are known but any explicit

equation related to pressure is not known. In fact, the pressure field in any fluid is

coupled to the velocity field through the momentum equations and is one of major

contributing factors towards the source term in the momentum equations. Further

the velocity components in each direction of the momentum equations are coupled

to each other. To overcome this difficulty Patankar and Spalding, 1972 proposed

SIMPLE (Semi-Implicit Pressure Linked Equations) algorithm, an iterative algo-

rithm wherein the discretized momentum equation containing the pressure term

is substituted into the equation of continuity in order to obtain an equation for

pressure. The velocity and pressure fields are then alternately solved. Correction

factors are computed at each iteration step to correct the pressure and velocity

fields until convergence is achieved. The issue with SIMPLE is that the pressure

correction factor can correct velocities reasonably well but does not do a good job

with correcting the pressure. Hence, Patankar, 1980 proposed SIMPLER (SIMPLE

Revised) to overcome this issue wherein the pressure correction is not required at

all. Instead, the pressure is computed from the guessed velocity fields initially and

the velocity field generated at the end of each iteration. In this work, SIMPLER

has been used to generate the velocity field. A detailed discussion on SIMPLER

and how it has been applied is presented in Chapter 6.

Van Doormaal and Raithby, 1984 proposed yet another variant of SIMPLE

called as SIMPLEC (SIMPLE Conistent) wherein the velocity correction equations

omit lesser significant terms. Apart from these variants of SIMPLE, Issa, 1986

proposed another approach called PISO (Pressure Implicit with Splitting of Op-

erators) which uses “one predictor step and two corrector steps”. Issa et al., 1986

have shown that though PISO requires considerably more computational effort com-

pared to SIMPLE, it is much more efficient and fast. Jang et al., 1986 and Versteeg

and Malalasekera, 2007 in their work compared the performance of these algorithms.

They found that SIMPLE is relatively straightforward but its other variants, though
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involve more calculation per iteration, their approach reduces the overall compu-

tation time compared to SIMPLE. Further, SIMPLEC and PISO have been found

to be as much as efficient as SIMPLER in certain cases but it has not yet been

ascertained as to which algorithm is the most efficient. As can be understood from

these discussions that CFD requires an understanding of various numerical strate-

gies. However, as long as the domain to be dealt with is small, normal numerical

strategies might just be enough. But, when one deals with a large domain (e.g. wind

farms), another special area in terms of numerical strategies i.e. ‘Parallel Numerical

Algorithms’ needs to be explored.

2.3 Parallel numerical algorithms

An algorithm can be considered efficient if it is able to achieve the end result without

the requirement of excessive memory and without incurring heavy computation

time. This calls for numerical algorithms to be developed in such a way that multiple

steps of an iteration can be done at the same instance of time. This is where Parallel

Numerical Algorithms (PNA) and High Performance Computing (HPC) come into

picture. PNA had been in use for quite a long time now but their use has been

limited in the field of wind farm simulations until late 1990s. These days more

and more researchers are exploring the possibilities of implementing PNA for large

scale wind farm simulations. With the advancement in computing technology and

availibility of multiple core CPUs and interconnected clusters, PNA have reached a

whole new level where multiple tasks of the same simulations are done in different

CPU cores (or processors) at the same time instance. This in particular is useful for

simulations of domains as large as wind farms where a great amount of data needs to

be processed. Thus, discussion of PNA is incomplete without MPI and GPGPU, two

vital tools which provide seamless interface to multi-core simulations. This section

therefore looks into the work done by researchers which use these numerical and

computational tools as well as discusses the existing wind farm simulation softwares

which implement such algorithms.

2.3.1 Message Passing Interface (MPI)

Before 1990’s, parallel codes were difficult to develop because of the widely vary-

ing computer architecture (Gropp et al., 1999). As a result, each research group
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worldwide developed their own version of such parallel libraries in order to consider

cross-platform portability across various computer architectures. Some of these

projects include PVM (Sunderam, 1990), PICL (Grant and Dickens, 1993) , PAR-

MACS (Calkin et al., 1994), to name a few. The most common applications of such

parallel codes were in the domain of science and research. Hence, standardizing par-

allel computation was the need of the hour. In 1992, a supercomputing conference

was held in Williamsberg Virginia (Walker, 1992) wherein a standard to develop

such parallel codes was framed and MPI came into existence. Consequently, after

receiving extensive reviews from researchers, the final standardized MPI version was

released in a report by Walker and Dongarra, 1995.

MPI is a library originally written in two versions, one for C and one for

FORTRAN. This library allows users to run the same program across multiple

processes parallely. It also allows distributed computing by distributing the data

across multiple computers (often referred to as nodes) or same computer with mul-

tiple cores. Subsequently, using these MPI standards, different research groups and

companies developed their own MPI packages. MPICH by Argonne National Labo-

ratory, US Department of Energy is one of the early such implementations of MPI.

Other MPI projects include Open MPI, Intel MPI, Windows MPI to name a few.

The MPI projects of chip manufacturers like Intel are designed to have better hard-

ware compatibility of MPI with computers using Intel processors thereby increasing

the performance of HPC. The work carried out in this thesis implements Open MPI

which is maintained by a consortium of research institutes (e.g. Auburn University,

University of Wisconsin, etc.), corporations (e.g. IBM, Intel, Broadcom, etc.) and

various other independent researchers. As can be understood from the discussion

above, MPI is particularly helpful in reducing computational time when the data

to be processed is huge.

2.3.2 General Purpose Graphics Processing Unit (GPGPU)

The General Purpose Graphics Processing Unit is a relatively new development.

There was a rapid increase in the performance of the processors like Intel and

AMD in terms of clock frequency from GFLOPS (Giga floating-point operations per

second) to TFLOPS (Tera floating-point operations per second) for more than two

decades (Kirk and Hwu, 2013). However, this improvement slowed down since 2003

due to an increase in energy consumption and heat dissipation; thereby limiting

26



2.3. Parallel numerical algorithms

the increase in clock frequency. This prompted chip manufacturers to switch to

designing multi-core CPUs to increase the CPU efficiency which in turn impacted

the development of softwares greatly (Sutter and Larus, 2005).

Since 2003, microprocessor manufacturers have started using two main ar-

chitectures (Hwu et al., 2008) viz. multi-core CPUs and GPUs.

In multi-core CPUs, the number of cores are increasing with each new gen-

eration and each core designed to handle operations sequentially. MPI relies on this

architecture to achieve parallelism on multiple cores.

The second architecture is that of the GPUs (e.g. NVIDIA GTX) which

itself is designed with multi-threading architecture with threads as large as 57,000

(NVIDIA 1080Ti with 3584cores and 16 threads) in order to achieve parallelism.

NVIDIA’s CUDA (Compute Unified Device Architecture) library enables to use the

full functionality of the GPUs. As can be understood, because of GPUs ability to

handle multiple threads gives it an upper hand in handling large parallel computa-

tions faster than MPI. However, a program with a fewer threads will undoubtedly

perform faster on CPUs than on GPUs but numerically intensive operations perform

much faster on GPUs. Thus, in 2007, NVIDIA’s CUDA was designed to execute

joint CPU-GPU operation to achieve maximum efficiency in numerical computa-

tions. More recent versions of commercial softwares like ANSYS Fluent, MATLAB

have started incorporating CUDA library into their packages. However, in this the-

sis only MPI has been used to handle large CFD domains and CUDA has not been

implemented.

2.3.3 PNA in wind farms

This ability of parallel numerical algorithms has been getting the attention of the

researches for the past two decades and they have been coming up with different

programs to analyse wind farms. PNA had been in use for quite sometime now.

For example, Hussein and El-Shishiny, 2012 proposed a computational framework

for wind farm simulation using distributed memory and massively parallel high

performance computing platforms over micro-scale using RANS and Virtual Blade

Model to model the wind turbines. The framework is able to run the models on

supercomputers. Baez-Vidal et al., 2013 did LES simulation of wind farms with

Actuator Line Method. They highlighted the fact that parallel computation of LES
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with Wind Turbine Models (WTM) demand different domain decomposition and

these do not necessarily coincide. They proposed a coupling strategy and simulated

the wind turbine wake. However, though the parallelization was found to work

properly, the simulations were not able to resolve the flows with enough accuracy.

With advances made in PNA and multi-core simulations, researchers even

worked on several blade resolved models to capture FSI effects for wind turbines.

In this approach, unstructured meshes, as shown in Figure 2.3 are used to model

the fluid around the wind turbine blades. Works of Lavely et al., 2014, Mittal et al.,

2016, Ehrich et al., 2018, to name a few, present blade-resolved models which in a

way cater to FSI of single wind turbines. Kirby et al., 2019 pushed the boundaries

for FSI even further and used blade resolved models for wind farm consisting of as

many as 96 wind turbines and ran it on 44,928 cores. However, one can see that

these blade resolved models, though are able to capture FSI, they require extensive

computational resources because of the requirement to model the unstructured mesh

around the blades which is extremely dense compared to the mesh size required for

the wind field. This is where FSI methods discussed in Section 2.2.3 can come into

play to reduce computational cost. But, even with FSI, for domains extending over

several square kilometers of area like wind farms, PNAs are unavoidable.

This prompted researchers to further look into this area. For instance, Chand

et al., 2010 developed CgWind based on PNA for LES of wind farms. It used matrix

free multi-grid approach, compact discretizations and approximate factorizations.

The work of Department of Mechanical Engineering, Danmarks Tekniske Univer-

sitet, Denmark and The Department of Wind Energy at RisøNational Laboratory

in developing Ellipsys2D/3D deserves recognition. It used the concepts of PNA

and “multiblock finite volume discretization of the incompressible Reynolds Aver-

aged Navier-Stokes (RANS) equations in general curvilinear coordinates” (Sørensen,

2015). Ellipsys3D solver, however does not model the wind turbine in itself and just

models the wind field based on RANS. The strength of PNA in handling large do-

mains can be understood from the fact that Ivanell et al., 2008 used Ellipsys3D

solver to carry out LES of NSE model in a wind farm containing upto nine wind

turbines and with meshpoints as large as six million.

Similarly, softwares like SOWFA (Simulator fOr Wind Farm Applications)

by National Renewable Energy Laboratory (NREL), USA is based upon a technical

report by Sørensen and Shen, 2002 where wind turbine blades are discretized into
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spanwise sections; lifts and drags are computed based on the incoming flow and these

forces are again projected back into the flow for simulation. Others like PALM by

Leibniz University Hannover, Germany (Maronga et al., 2015) incorporate advanced

actuator disc approach by dividing the disc into concentric circles subjected to

varying forces and is a project still under development. But, it can be seen that

these models treat the fluid and structure separately to model the wind field. Codes

like WRF-LES (by NCAR, USA) and SP-WIND (by KU-Leuven, Belgium) are also

used which implement such algorithms for carrying out simulation of wind farms.

It is worth noting that more recently researchers in wind energy domain are using

these parallel numerical tools like Ellipsys3D, SOWFA, PALM, WRF-LES, SP-

WIND extensively to understand the aerodynamics of wind farms. This clearly

shows an increased importance of PNAs in the research arena.

Having discussed the existing works covering wind turbines, wind farm mod-

els, fluid dynamics and the parallel numerical algorithms, in the subsequent chapters

the main work carried out in this thesis is presented.
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Chapter 3

Application of parallel numerical

algorithms to fluid flow

3.1 Introduction

Analytical solutions for many PDEs frequently encountered in engineering are still

not known. However, the solutions for these equations are still needed to design the

engineering system. For example, in the present research work the main focus is

on the aerodynamics of the wind field in wind farms governed by the Navier-Stokes

Equations, the analytical solution for which is not known. Regardless, a numerical

solution is still required for engineering design of the wind turbines. This is where

numerical analysis comes into picture which do not provide an exact solution but

provide a result approximate enough for designing the system. The basic approach of

a numerical analysis involves discretizing the physical domain considered for analysis

in a way such that the numerical solution closely resembles the exact solution.

However, once a domain has been discretized, its behaviour remains no longer the

same as the continuous domain and hence, a careful investigation of the discretized

system is required. The discussion here will be confined to the PDEs encountered

in the field of CFD only. Discretization methods such as Finite Difference Method

(FDM), Finite Element Method (FEM), Finite Volume Method (FVM) have their

own unique approach to discretization and numerical computation. Commercial

softwares like Ansys, Abaqus, etc. efficiently use these techniques to model the

fluid problems. But, though these softwares cater to most engineering needs, they
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cannot be used for more specific requirements particularly when it comes to the

research arena. Bearing this fact in mind, Python3 has been used instead to suit

the specific requirement of this work. As discussed earlier as the physical domain

becomes more complex or large, the data to be processed also increases and hence, to

optimize computational resources like CPU time and memory requirement, parallel

computation is essential across multiple CPU cores. Hence, this chapter begins by

discussing FDM and FVM and then moves onto the application of such parallel

computation strategies to solve the Finite Difference Equation (FDE).

3.2 Fluid flow equations

Any fluid flow problem is governed by three conservation laws. For any Newtonian

fluid of density ρ, velocity, V, pressure, P , temperature, T and thermal conductivity,

k, the PDEs governed by these conservation laws are:-

1. Conservation of mass (equation of continuity)

∂ρ

∂t
+∇(ρ.V) = 0 (3.1)

2. Conservation of momentum (Navier-Stokes equation)

∂(ρVj)

∂t
+∇(ρVjV) = − ∂P

∂Xj

+∇(µ∇Vj) + SMj
; j ∈ {1, 2, 3} (3.2)

3. Conservation of energy

∂ρi

∂t
+∇(ρiV) = −P∇Vj +∇(k∇T ) +ΦΦΦ + Si (3.3)

The terms SMj
and Si are the source terms and ΦΦΦ is the energy dissipation term

and t indicates time and Vj is component of V in direction j. It can be observed

from the structure of the above PDEs that they have a common pattern which for

a general variable, Λ can be written in the form

∂(ρΛ)

∂t
+∇(ρΛV) = ∇(Γ∇Λ) + SΛ. (3.4)

These equations are referred to as the transport equations for the fluid property, Λ

and in physical sense would mean
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Rate of increase of Λ of fluid element + Net rate of flow of Λ out of fluid element

= Rate of increase of Λ due to diffusion + Rate of increase of Λ due to sources

These equations form the backbone of any fluid flow problem.

3.3 Discretization methods

A look at the structure of the PDEs introduced in the previous section clearly indi-

cates their complex nature and is indicative of the fact that an analytical solution

of such equations is difficult to obtain. This is where discretization comes into pic-

ture which aims at writing down the differential operator as Taylor series expansion

and solve those equations instead of these original PDEs. In this section, a brief

description of Finite Difference Method and Finite Volume Method, two of the most

common approaches used in the context of CFD has been introduced.

3.3.1 Finite Difference Method

The FDM, which is based on Taylor series has been implemented in the present

work. Though FEM and FVM are much more structured compared to FDM, this

approach is much useful when dealing with large domains like atmosphere where

irregular grids do not govern the model. In the present work, since large rectangular

domains in atmospheric boundary layer has been primarily dealt with, FDM has

been chosen as the preferred discretization method. Also, as will be clear from the

subsequent chapters, some of the methods that have been implemented have been

formulated using FDM and whether or not they could be directly applied using

FVM is yet to be explored.

Any real or complex function that is infinitely differentiable can be written

in the form of an infinite series referred to as ‘Taylor series’. Eq.3.5 gives the Taylor

series for functions of one and two variables i.e. f(x) and g(x, y) respectively.

f(x± hx) = f(x)± hxfx(x) +
h2x
2!

fxx(x)±
h3x
3!

fxxx +
h4x
4!

fxxxx + ... (3.5a)

g(x± hx, y ± hy) = g(x, y)± hxgx(x, y)± hygx(x, y) +
h2x
2!

gxx +
h2y
2!

gyy + hxhygxy ± ...

(3.5b)

where, hx and hy are the distances between two adjacent points in the domain along
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x and y directions respectively. If the higher order terms are neglected, the function

can be considered to be a near approximation of the original function. From eq.3.5a,

subtracting f(x− hx) from f(x+ hx) gives

f(x+ hx)− f(x− hx) = 2hxfx(x) +
h3
x

3
fxxx(x) + ...

⇒fx(x) =
f(x+ hx)− f(x− hx)

2hx

+
h2
x

6
fxxx(x) + ...

⇒fx(x) ≃
f(x+ hx)− f(x− hx)

2hx

+O(h2
x). (3.6)

Similarly, adding f(x+ hx) from f(x− hx) gives

f(x+ hx) + f(x− hx) = 2f(x) + h2
xfxx(x) +

h4
x

12
fxxxx(x) + ...

⇒fxx(x) =
f(x+ hx)− 2f(x) + f(x− hx)

h2
x

+
h2
x

12
fxxxx(x) + ...

⇒fxx(x) ≃
f(x+ hx)− 2f(x) + f(x− hx)

h2
x

+O(h2
x). (3.7)

Thus, ignoring the higher order terms, the first and the second order derivative of

function f(x) at a point x can be expressed in terms of its adjacent neighbouring

points and it is second order accurate. This approach is referred to as Central Dif-

ference in FDM wherein the value of the derivative at a certain point is dependent

on its immediate surrounding points only.

In general, for any fluid flow problem considered, the information is always

available for the boundary nodes. If the value of the dependent variable is known at

these nodes, it is referred to as Dirichlet Boundary Condition (DBC). However, in

some cases it may so happen that instead of the values at these boundary nodes, the

slope of the dependent variable at the boundary is defined which is referred to as

Neumann Boundary Condition (NBC)). This is where the One-sided Difference

(Forward Difference and Backward Difference) scheme comes into picture. The

second order forward and backward difference equations (Hanifi, 2010) for the first

derivative of f(x) is given by eq.3.8a and eq.3.8b respectively.

fx(x) ≃
−3f(x) + 4f(x+ hx)− f(x+ 2hx)

2hx

+O(h2
x) (3.8a)

fx(x) ≃
3f(x)− 4f(x− hx) + f(x− 2hx)

2hx

+O(h2
x) (3.8b)
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In a similar manner, the derivatives of function g(x, y) in 2D can be expressed as

gx(x, y) ≃
g(x+ hx, y)− g(x− hx, y)

2hx

+O(h2
x) (Central Difference) (3.9a)

gx(x, y) ≃
−3g(x, y) + 4g(x+ hx, y)− g(x+ 2hx, y)

2hx

+O(h2
x) (Forward Difference)

(3.9b)

gx(x, y) ≃
3g(x, y)− 4g(x− hx, y) + g(x− 2hx, y)

2hx

+O(h2
x) (Backward Difference)

(3.9c)

gy(x, y) ≃
g(x, y + hy)− g(x, y − hy)

2hy

+O(h2
y) (Central Difference) (3.9d)

gy(x, y) ≃
−3g(x, y) + 4g(x, y + hy)− g(x, y + 2hy)

2hy

+O(h2
y) (Forward Difference)

(3.9e)

gy(x, y) ≃
3g(x, y)− 4g(x, y − hy) + g(x, y − 2hy)

2hy

+O(h2
y) (Backward Difference)

(3.9f)

gxx(x, y) ≃
g(x+ hx, y)− 2g(x, y) + g(x− hx, y)

h2
x

+O(h2
x) (3.9g)

gyy(x, y) ≃
g(x, y + hy)− 2g(x, y) + g(x, y − hy)

h2
y

+O(h2
y). (3.9h)

Unless otherwise specified, the FDM based derivations presented in this work are

all based on the above mentioned second order accurate expressions.

3.3.2 Finite Volume Method

As pointed out in Section 3.3.1, even though the work carried out uses FDM primar-

ily, an insight into FVM is required as well since some of the algorithms commonly

used in the context of FVM are required in the current research and as such are

needed to be modified to suit FDM. The finite volume method is one of the most

widely accepted methods for CFD simulations of fluid flow problems. A brief de-

scription of how FVM works is provided in this section. The methodology is based

on conservation laws introduced in Section 3.2 as these laws govern the PDEs en-

countered in any fluid dynamics problem. This method divides the entire physical

domain getting analysed into a mesh referred to as cells within which the equations

are to be analysed. Unlike FDM which uses Taylor series to discretize the PDE
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Figure 3.1: A cell in three dimensions and neighbouring nodes [Adapted from Ver-
steeg and Malalasekera, 2007]

itself, FVM works on integration over Control Volume (CV) of these cells as shown

below∫
CV

∂(ρΛ)

∂t
dVo +

∫
CV

∇(ρΛV)dVo =

∫
CV

∇(Γ∇Λ)dVo +

∫
CV

SΛdVo. (3.10)

A typical control volume is shown in Figure 3.1. Node P indicates the node where

Λ is analysed. E,W,N, S, T,B indicate nodes and e, w, n, s, t, b indicates face of

the cell towards east, west, north, south, top and bottom respectively. Subsequent

reference and discussion related to FVM refer to the notations used in this figure.

Gauss’s divergence theorem for a vector, a states that∫
CV

∇.adVo =

∫
A

n.adA. (3.11)

Hence, the above equation can be rewritten as

∂

∂t

(∫
CV

(ρΛ)dVo

)
+

∫
A

n.(ρΛV)dA =

∫
A

n.(Γ∇Λ)dA+

∫
CV

SΛdVo (3.12)

and for steady state problems, the equation becomes∫
A

n.(ρΛV)dA =

∫
A

n.(Γ∇Λ)dA+

∫
CV

SΛdVo (3.13)

For a steady flow problem, in physical sense, w.r.t. a small cell with node centred

at P (refer Figure 3.1) the integration terms of the equation for east-west direction
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would mean computing the difference in flux across the east and west faces of the

cell i.e. ∫
A

n.(ρΛV)dA = (ρAΛV)e − (ρAΛV)w (3.14)

Putting this in eq.3.13,∫
A

n.(Γ∇Λ)dA+

∫
△CV

SΛdVo =

(
ΓA

∂Λ

∂x

)
e

−
(
ΓA

∂Λ

∂x

)
w

+ S △ V0 (3.15)

where, △V0 is the volume of a cell and S is the average value of source over △V0.

For unsteady flows, integration over time is required additionally.∫
CV

∫ t+△t

t

∂(ρΛ)

∂t
dtdVo +

∫ t+△t

t

∫
A

n.(ρΛV)dAdt =∫ t+△t

t

∫
A

n.(Γ∇Λ)dAdt+
∫ t+△t

t

∫
CV

SΛdVodt

(3.16)

The first term of the equation when integrated over time physically means evaluating

the difference in magnitude of ρΛ between time instants t and t+△t∫
CV

∫ t+△t

t

∂(ρΛ)

∂t
dtdVo = (ρΛ)P △ V0 − (ρΛ0)P △ V0 (3.17)

where, Λ0 is the value of Λ at time, t. As far as the remaining terms are concerned,

integration over time could be done w.r.t. to time, t or with respect to time,

t+△t. Alternately, value w.r.t. some weight on value at time instants t and t+△t

can also be used to evaluate these integrals. From the final forms of equations

presented above, it can be seen that there are still terms like ∂Λ/∂x. At this

stage, Taylor series come into play and depending on the nature of the problem,

appropriate finite differencing scheme is incorporated to evaluate such terms. From

these discussions, it is evident that both FDM and FVM use Taylor series to solve

the transport equations but in FDM, the PDEs are discretized straightaway whereas

in FVM, integration is performed over a control volume before incorporating the

finite difference equations.

3.4 Solving linear systems

From the previous section, it is understood that the partial derivative terms of any

linear PDE can be conveniently expressed as a set of algebraic equations for each
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and every node inside the physical domain using the FDE. In matrix form, the

resulting set of linear equations can be expressed in the form

Ax = b (3.18)

where, A is the coefficient matrix of size n×n, x ∈ Rn is the vector of unknowns to

be determined (i.e. the value of the dependent variable at all the internal nodes),

b ∈ Rn is a known vector and n is the total number of internal nodes. An ele-

ment of A can be represented by {aij : aij ∈ R} where i represents the row index

and j represents the column index and i, j ∈ {0, 1, 2, .., n − 1}. It is evident that

for domains with a large number of node points, solution to the above mentioned

system using matrix inversion is not a feasible way. Additionally, for most fluid

flow problems, A is extremely sparse because the Taylor series expansion at any

particular node inside the domain considers dependency on one or two adjacent

nodes only and not on all adjacent nodes. Thus, A is usually ill-conditioned and as

such, the matrix inversion might often destabilize the numerical solution. Further,

if the elements of A is stored in memory contiguously, quite a large amount of space

will be wasted to store the zero elements. This is where memory management and

iterative algorithms come into picture.

3.4.1 Memory management and iterative solvers

In order to avoid storing the zero entries of the linear systems, two popular ap-

proaches are in use viz. Compressed Sparse Row (CSR) and Compressed Sparse

Column (CSC). In CSR format, only the non-zero elements of A, are stored in a

contiguous real array, AA in row major order. Along with that two more integer

arrays, JA and IA are defined. JA stores the column index of the non-zero entries

in A and IA is an array of n + 1 elements such that it contains the pointers to

the beginning of each row. CSC format follows a similar pattern but in column

major order. Besides these, other formats like Ellpack-Itpack format are also quite

common and often used.

The properties of the coefficient matrix A determine the kind of iterative

solver or the numerical scheme that will be best suited for the problem in hand.

Some of these solvers include Conjugate Gradient (CG), Bi-Conjugate Gradient

Stable (BiCGStab), Generalized Minimal Residual Method (GMRES), Conjugate
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Gradient Squared (CG-S), etc. For instance, if A is symmetric, iterative methods

like Conjugate Gradient (CG) can be implemented and if assymetric, Bi-Conjugate

Gradient Stable (BiCGStab) can be used. GMRES is known to be extensively

memory consuming compared to the other algorithms. As such, the work carried

out in this thesis primarily depends on CG and BiCGStab and its variants. The

steps for BiCGStab are given below in Algorithm 1.

Algorithm 1 Bi-Conjugate Gradient Stable (BiCGStab) (van der Vorst, 1992)

Assume initial trial value for vector x, say x0.
r0 = b−Ax0.
Choose an arbitrary vector r∗ such that < r∗, r0 ≯= 0, e.g., r∗ ← r0.
ρ0 = α = ω0 = 1.
ννν0 = p0 = 0.
for j = 1, 2, 3, ... do

ρj ←< r∗, rj−1 >; β ← (ρj/ρj−1)(α/ωj−1)
pj ← rj−1 + β(pj−1 − ωj−1νννj−1)
νννj ← Apj

α← ρj/ < r∗, νννj >
s← rj−1 − ανννj

t← Az
ωj ←< t, s > /t, t >
xj ← xj−1 + αpj + ωjz; if xj accurate enough then quit
rj = s− ωjt

end for

The interesting thing about these iterative algorithms is that the matrices

are never formed explicitly and the calculation steps are done not by matrix-matrix

or matrix-vector operations but rather by solving the expression corresponding to

the unknowns. This itself saves a huge amount of memory. An important point

to note about these algorithms is that they work by splitting A into 3 other ma-

trices D,−E,−F where, D constitutes the diagonal elements only and -E and -F

represent strictly the lower and upper part respectively (refer Figure 3.2). The sig-

nificance of this partitioning will become clear in Section 3.4.2 where the concept

on preconditioner has been introduced.

3.4.2 Preconditioner

Iterative solvers lack robustness when compared to direct solvers and though they

are able to handle large systems, this shortcoming hinders their performance. This is
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Figure 3.2: Initial partitioning of A

where precondtioning comes in. Preconditioning is a technique wherein the original

linear system is transformed into an equivalent linear system which is relatively eas-

ier to solve. Consider a preconditioner, M of form M = M1M2 ≈ A. Transforming

eq.3.18 with a preconditioner would mean solving an equivalent system

Ãx̃ = b̃ (3.19)

where, Ã = M−1
1 AM2

−1, x̃ = M2x and b̃ = M−1
1 b. This is called preconditioning

from both sides. However, if M1 = I, we get a right preconditioned equation and

if M2 = I, we get a left preconditioned equation. Some of the common types

of preconditioners are Jacobi (JA), Gauss-Seidel (GS), Successive Overrelaxation

(SOR) and Symmetric Successive Overrelaxation (SSOR). These are represented

by:

MJA = D

MGS = D− E

MSOR =
1

ω
(D− ωE)

MSSOR =
1

ω(2− ω)
(D− ωE)D−1(D− ωF)

(3.20)

In the current work, the right preconditioned system has been implemented for

reasons which will be explained in relevant sections at a later stage.

Preconditioners can also be designed to suit the requirement of the problem

and can be far more complicated involving integral calculations as well. Based

on this concept of preconditioning, the different iterative algorithms like CG and

BiCGStab are also modified to have their preconditioned versions as well (known as

Preconditioned Conjugate Gradient (PCG) if A ia symmetric and Preconditioned
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Bi-Conjugate Gradient Stable (PBiCGStab) if assymetric. The numerical solution

to the flow problems presented in this thesis implement PCG and PBiCGStab.

These algorithms are presented below in Algorithm 2 and Algorithm 3.

Algorithm 2 Preconditioned Conjugate Gradient (PCG) (Saad, 2003)

Assume initial trial value for vector x, say x0.
r0 ← b−Ax0.
z0 ←M−1r0, p0 ← z0
for j = 0, 1, 2, ... do

αj =< rj, zj > / < Apj,pj >
xj+1 ← xj + αjpj; if xj accurate enough then quit
rj+1 ← rj − αjApj

zj + 1←M−1rj+1

βj ←< rj+1, zj+1 > / < rj, zj >
pj+1 ← zj+1 + βjpj

end for

Algorithm 3 Preconditioned Bi-Conjugate Gradient Stable (PBiCGStab) (van der
Vorst, 1992)

Assume initial trial value for vector x, say x0.
r0 ← b−Ax0.
Choose an arbitrary vector r∗ such that < r∗, r0 ≯= 0, e.g., r∗ ← r0
ρ0 = α = ω0 = 1
ννν0 = p0 = 0
for j = 1, 2, 3, ... do

ρj ←< r∗, rj−1 >; β = (ρj/ρj−1)(α/ωj−1)
pj ← rj−1 + β(pj−1 − ωj−1νννj−1)
y←M−1pj

νννj ← Ay
α← ρj/ < r∗, νννj >
s← rj−1 − ανννi

z←M−1s
t← Az
ωj ←< M−1

1 t,M−1
1 s > / < M−1

1 t,M−1
1 t >

xj ← xj−1 + αy + ωjz; if xj accurate enough then quit
rj ← s− ωit

end for
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3.4.3 Matrix reorderings

Reordering the matrices is a common practice in implementing parallelism. The

primary reason for reordering the matrix is to decouple the nodes so that the values

of the nodes with the same colour i.e. the nodes independent of each other can be

updated simultaneously. Matrix reorderings include different strategies like level-set

orderings, independent set orderings, multi-colour orderings. This thesis implements

the multi-coloring ordering strategy. In multi-colour ordering, it is required to be

ensured that no two adjacent nodes of a graph have the same colour and that the

minimum number of colours is used to colour the graph. Greedy multi-colouring

algorithm (refer Algorithm 4) is one such approach. Based on this multi-colouring

Algorithm 4 Greedy multicoloring algorithm (Saad, 2003)

for j = 1, 2, ..., n do
Set color(i) ← 0

end for
for j = 1, 2, ..., n do

Set color(i) ← min{k > 0|k ̸= Color(j), ∀j ∈ Adj(i)}
end for

ordering scheme, one of the most common ordering scheme is an ordering with

just two colours i.e. the red-black colouring scheme which is discussed in detail in

Section 3.5.1.

3.4.4 Multi-core processing

In Chapter 2, it has been pointed out that Open MPI has been used in the present

research work. In this section, few details of MPI which have been implemented in

this research work are discussed. Open MPI project (Gabriel et al., 2004) defines

MPI as

“Written by the MPI Forum (a large committee comprised of a cross-section between

industry and research representatives), MPI is a standardized API typically used for

parallel and/or distributed computing”.

Open MPI is an open source which merges the features of three well known projects

viz. FT-MPI from the University of Tennessee, LA-MPI from Los Alamos National

Laboratory and LAM/MPI from Indiana University and contributions from the

PACX-MPI team at the University of Stuttgart.
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The parallel computation codes developed for the simulations carried out

in this thesis use the python library mpi4py which offers a wide range of MPI

implementations including Open MPI, MPICH, etc. In this thesis, mpi4py has

been built on Open MPI version 3.1.6. The advantage is that the program can be

run on cluster of nodes and not only on a single computer with multiple cores. At

this stage, it is essential to introduce, few terms that are used quite often in the

context of MPI.

1. size: It is the total number of cores running the parallel code, say PS. e.g. if

there are 4 interconnected nodes in a cluster each with 6 cores, then the total

available cores for parallel processing is 4×6 = 24. Out of this if only 12 cores

are utilized, then the size of the MPI will be 12

2. rank: It is the identification number of the core starting from 0, 1, 2, ..., PS−1

(also referred to as processor P0, P1, P2, ..., PPS−1), assigned by the operating

system.

3. communicator: The communicator holds a group of processes which can com-

municate with one another.

MPI provides a wide range of various other functionalities. However, the

five major operations are used in the current thesis to carry out a fast and efficient

multi-core simulations include:

1. MPI Bcast: Broadcast data across all the processors.

2. MPI Send: Send data from processor Pi to processor Pj.

3. MPI Recv: Receive data from processors Pi to processors Pj.

4. MPI Scatter: Scatter data equally across all the processors from rank j (usu-

ally 0). In case a very large matrix, M of dimension n × m is required to

be processed parallely for some operation, the scatter operation will split M

into equal blocks of matrices of dimensions n/PS×m which will then be pro-

cessed by each available core at the same instance of time, thereby achieving

a faster computation time. However, as can be observed, there can be two

conditions i.e. 1.⌊n/PS⌋ = n/PS; 2.⌊n/PS⌋ ̸= n/PS. For the first case,

data can be easily distributed equally across all the cores. But, for the sec-

ond case, M is padded with a zero matrix, M0 of dimension n0 × m such

that ⌊(n + n0)/PS⌋ = (n0 + n)/PS and thus, scatter operation can be done

seamlessly.
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Figure 3.3: Typical structure of a five point stencil. The value of -4 is valid only if
the grid distances are the same in both directions.

5. MPI Gather: This operation gathers data scattered across all the cores and

stores them in processor of rank j and is inverse of the scatter operation. As

can be understood, in order to retrieve the original matrix, the zero padding

done during the scatter operation needs to be removed.

3.5 Application to elliptic PDEs

Now that memory management, iterative solvers and multi-core simulations have

been introduced, the next task is to look into how these concepts can be used in FDE

for elliptic PDEs. A typical non-homogeneous elliptic PDE (or Poisson’s equation)

in Einstein notation can be written in the form

∂2ϕ

∂Xi∂Xi

= −b(X1, X2, X3); (X1, X2, X3) ∈ Ω (3.21)

where, Ω represents the physical domain, Xj; j ∈ {1, 2, 3} indicates the coordinates

along X1, X2, X3 axes respectively and −b(X1, X2, X3) is the source term.

Let p = − 1
△X2

1
, q = − 1

△X2
2
, r = − 1

△X2
3
, s = −2(p+ q+ r) where, △X1, △X2,

△X3 are the node to node spacing in X1, X2 and X3 direction respectively. In 2D,

say in X1 −X3 plane, the second order accurate central difference scheme (eq.3.9g

and eq.3.9h) results in a 5 point stencil (refer Figure 3.3) when used to discretize

eq.3.21. The discretized equation takes the form

bi,j − sϕi,j − p(ϕi+1,j + ϕi−1,j)− r(ϕi,j+1 + ϕi,j−1) = 0. (3.22)

where, at a typical internal node denoted by (i, j) having coordinate (X1, X3), the

value of source term is−b(X1, X3) = −bi,j, the value of dependent variable is ϕi,j and
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the values of dependent variables at nodes on left, right, bottom and top of node at

(i, j) are ϕi−1,j, ϕi+1,j, ϕi,j−1, ϕi,j+1 respectively. Hoffman, 2001 has shown that the

finite difference approximation of such an elliptic PDE is consistent with the original

PDE. Like any other PDE, the solution of the aforementioned system depends on

the nature of the boundary conditions, which can be Dirichlet (DBC), Neumann

(NBC), Cauchy (CBC) or Robin (RBC). If all the boundary conditions are DBC,

the aforementioned system remains unaffected since the values of the dependent

variable, ϕ are known at the boundary. The presence of NBC or CBC however

presents a different story altogether. It modifies eq.3.22 for the penultimate nodes

(i.e. the nodes adjacent to the boundary) because instead of ϕ, the directional

derivative normal to the boundary is a known parameter at the boundary. To

address this scenario, two approaches can be used to frame the equations for the

penultimate nodes viz.

1. one sided differencing

2. central differencing considering ghost nodes

A detailed discussion and the equations for the penultimate nodes based on these

two approaches are presented in Appendix A.1.

A linear system of equations of form

AΦ = b′ (3.23)

is thus obtained where, A (dimension of n×n) is the coefficient matrix with positive

diagonal entries (except in certain special cases), Φ and b′ are column vectors of

dimension n× 1, n is the number of discrete points considered inside the boundary

where the value of ϕ needs to be determined. In the five point stencil, since the

central node is dependent only on its adjacent nodes, the matrix A is extremely

sparse and poorly conditioned. Upon introducing the boundary conditions, the

known right hand side vector b′ has contribution from the boundary conditions as

well, particularly for the penultimate nodes and thus takes the form

b′ = b− bDBC − bNBC (3.24)

where, b contains the value of the source term as defined in eq.3.22, bDBC is the

value of ϕ at the boundary multiplied with p or r in case of DBC and bNBC are
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Chapter 3. Application of parallel numerical algorithms to fluid flow

the terms under the column “Known value” in the tables of Appendix A.1. The

form of bDBC and bNBC is such that they will have all entries as zero except for

the equations corresponding to the penultimate nodes. It is to be noted that when

boundary conditions are all Dirichlet, A remains symmetrical. However, if instead of

all DBC, if there is DBC at some boundaries and NBC or CBC at other boundaries,

the coefficient matrix A becomes asymmetric because the equation structure as

shown in eq.3.22 changes to that shown in Appendix A.1. Also, it is interesting to

note that if all the boundary conditions are Neumann, A becomes singular implying

that it can have infinitely many solutions. This behaviour is expected because it

means the constant term in the function ϕ is not known at any of the boundaries

and thus instead of an unique solution multiple solutions will exist. Hence, it is

essential to have at least one boundary condition as Dirichlet to arrive at an unique

solution for the linear system.

3.5.1 Red-Black colouring scheme

The red-black colouring scheme (Saad, 2003) is a type of multi-colouring order-

ing which is useful to write numerically parallel algorithms when the central node is

dependent on the adjacent nodes only. This section discusses in detail this scheme

and how it can be useful to handle a large domain.

It is evident from the structure of eq.3.22 that the value of ϕi,j is dependent

on its immediately adjacent nodes, ϕi−1,j, ϕi+1,j, ϕi,j−1, ϕi,j+1. Bearing this fact in

mind and following Algorithm 4 the discretized domain as shown in Figure 3.4 is

obtained for a 2D domain. This means that a red node is independent of all other

red nodes and a black node is independent of all other black nodes. Now, suppose

a quantity ϕ needs to be computed at any red node. At jth step of iteration of the

iterative algorithms like Algorithm 2 or Algorithm 3, ϕ can be computed for all red

nodes in one shot.

For instance, consider nodes 5 and 15 in Figure 3.4. If sequential algorithms

were used i.e. where reordering has not been implemented, node 15 will have to wait

for computation of node 5 to be completed. In other words, all the nodes remain

coupled to one another and hence, 5 and 15 could not be updated simultaneously.

However, with red-black reordering, the equations are decoupled. After all the

values of red nodes are computed, values of all the black nodes are computed in one
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3.5. Application to elliptic PDEs

Figure 3.4: Red-black coloring scheme in a 2D domain

go. This process is repeated for every step of the iteration till the solution finally

converges.

3.5.2 Setting up the linear system

Using the concepts of red-black coloring scheme introduced in Section 3.5.1 and

using the partitioning scheme presented earlier in Figure 3.2, the matrix structure

of eq.3.23 can be split into blocks of smaller matrices which in can be expressed in

the form

AΦΦΦ =

(
Dred F

E Dblack

)(
ΦΦΦred

ΦΦΦblack

)
=

(
b′

red

b′
black

)
(3.25)

where,

D =

(
Dred 0

0 Dblack,

)
,E =

(
0 0

E 0

)
,F =

(
0 F

0 0

)
,0 = zero matrix

It is to be noted that matrices E and F are padded with zero matrices for compati-

bility of the dimensions such that A = D+E+F. In linear algebra and numerical

analysis, this approach of splitting a large matrix into blocks of smaller matrices is
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Chapter 3. Application of parallel numerical algorithms to fluid flow

an efficient way of matrix operation requiring less computational time. As a matter

of fact, BLAS depends greatly on such block operations for handling large matrices.

As discussed in Section 3.4.2, a good preconditioner is required to make the solution

of linear system eq.3.23 converge faster. For the purpose of the work carried out on

elliptic PDEs in this thesis, this linear system uses PCG if all the boundaries have

DBC and PBiCGStab if at least one boundary has NBC.

SSOR preconditioner, with ω = 1 (not to be confused with vorticity, ωωω) has

been implemented (Saad, 2003). With ω = 1, SSOR preconditioner reduces to

Symmetric Gauss-Seidel (SGS) as shown in eq.3.26.

MSSOR = (D+ ωE)D−1(D+ ωF)

⇒MSGS = (D+ E)D−1(D+ F)

⇒MSGS = (I+ ED−1)︸ ︷︷ ︸
L

(D+ F)︸ ︷︷ ︸
U

⇒M−1 = (D+ F)−1(I+ ED−1)−1 = U−1L−1 (3.26)

Simplifying lower triangular matrix, L and upper triangular matrix, U, the following

equations are obtained.

L = I+ED−1 =

(
Inr×nr 0nr×nb

0nb×nr Inb×nb

)
+

(
0nr×nr 0nr×nb

Enb×nr 0nb×nb

)(
[D−1

red]nr×nr 0nr×nb

0nb×nr [D−1
black]nb×nb

)

=

(
Inr×nr 0nr×nb

[ED−1
red]nb×nr Inb×nb

)
(3.27)

U = D+ F =

(
[Dred]nr×nr 0nr×nb

0nb×nr [Dblack]nb×nb

)
+

(
0nr×nr Fnr×nb

0nb×nr 0nb×nb

)

=

(
[Dred]nr×nr Fnr×nb

0nb×nr [Dblack]nb×nb

)
(3.28)

The inverse of matrices L and U can be easily computed as

L−1 =

(
Inr×nr 0nr×nb

−[ED−1
red]nb×nr Inb×nb

)
;U−1 =

(
[D−1

red]nr×nr −[D−1
redFD

−1
black]nr×nb

0nb×nr [D−1
black]nb×nb

)
.

(3.29)

In the above equations, suffixes r × r, r × b, b × r, b × b denote the dimension
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of the matrices where, r, b refer to the total number of the red and black nodes

inside the domain (excluding the boundary nodes). As pointed out earlier, since the

matrices are not formed explicitly, while implementing the preconditioner to any of

the iterative algorithms, it is applied in two steps i.e. first by computing w = L−1A

and then by computing z = U−1w.

3.5.3 Multi-core simulations

Now that the linear system and the preconditioner is defined, the next task is to

carry out the multi-core simulations. This is achieved by splitting the matrix op-

eration across all processors. It can be observed that the steps in the iterative

algorithms include several matrix operations like computing the residue, multipli-

cation of different vectors with the preconditioner, M−1 or the coefficient matrix A.

One can imagine that if the dimension of ΦΦΦ is substantial, each and every such ma-

trix operation would incur significant computational cost. This is where multi-core

simulations using MPI comes into play which can curtail the computational time

significantly. For instance, when the residual for red nodes are computed i.e. the

operation [b′
red − DredΦΦΦred − FΦΦΦblack]nr×1 is performed, MPI Scatter can be done

across PS cores. This means instead of performing a single operation for a vector

of dimension nr × 1 in a single processor, the operation is now equally split into

blocks of vectors each of dimension (nr + n0)/PS × 1 and is computed by each of

the total PS cores available at the same instance of time.

Thus, using MPI, the algorithm steps for all red nodes (or black nodes) are

not processed sequentially but parallelly. From the above discussion, it is evident

that if a single processor was used, it would have taken time, t to process one

iteration. But, with multi-core simulations, for PS processors, every iteration step

will now take approximate time of t/PS instead. A detailed analysis of the gain in

speed is presented later in Chapter 5.

3.6 Application to other PDEs

Other forms of PDEs like parabolic or hyperbolic can be approached in a similar

manner. However, since the physical nature of such PDEs are dependent on the

direction of propagation, one-sided differencing schemes are a better representation

of these PDEs. With Algorithm 4, it can be shown that these kind of PDEs would
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Chapter 3. Application of parallel numerical algorithms to fluid flow

require three or more colors. and hence, the red-black coloring scheme can no longer

be implemented. For the purpose of the work carried out in this thesis, this aspect

with more than two colours has not been explored in greater detail. As such, in

this thesis, when PDEs of form other than elliptic are encountered, preconditioners

have not been used and instead Algorithm 1 has been used for multi-core simulation

using the approach mentioned in Section 3.5.3.
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Chapter 4

Modelling laminar flow with

vorticity

Much work on the theories for the analysis of wind turbines had been done. With

the availability and easy access to more powerful computational resources, CFD

has become extensively popular. It is not unknown that these CFD models can

become extremely complicated and difficult to handle for domains as large as wind

farms. Hence, there is still scope for further improvement to these CFD models.

The reason for discussing the concepts of parallel numerical analysis and multi-core

simulations in the previous chapter will become clear from their applications in this

and the subsequent chapters.

But first, before going into these details further, a couple of classical concepts

need to be introduced in the context of wind farms and fluid dynamics. As such

this chapter begins with a brief introduction to the classical actuator disc theory

and the potential flow problem before moving ahead into more intricate details and

the new proposed model.

4.1 Actuator Disc Theory

Froude, 1889 proposed the actuator disc theory which is still the most simple and

widely accepted theory in the field of wind energy. The theory works on the con-

cept of an energy extracting actuator submerged in a fluid (refer Figure 4.1 and
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Chapter 4. Modelling laminar flow with vorticity

Figure 4.1: The energy extracting
stream-tube of a wind turbine (Adapted

from Burton et al., 2011)

Figure 4.2: An energy extracting
actuator disc and stream-tube (Adapted

from Burton et al., 2011)

Figure 4.2).

The reason for assuming an expanded wake in these figures is to maintain the

law of conservation of mass due to a reduction in the velocity of the wind since the

kinetic energy has been extracted from it by the actuator disc. It is also assumed

that there is no inflow into or outflow from the domain either from the top or the

bottom boundary. In other words, the vertical component of velocity on both the

top and the bottom edges of the domain is 0. Further, the presence of the actuator

disc itself in the fluid, introduces a velocity drop in the free stream velocity which

is given by −aU∞, where a is referred to as the axial induction factor and U∞

is the mean free stream velocity. Accordingly, the mean velocity at the face of the

actuator changes to

UD = U∞(1− a). (4.1)

At this stage, it is important to note that the discussion carried out in this chapter

is confined to the mean velocity only, the reason being the actuator disc theory

considers the streamtube which implies the existence of laminar flow. Thus, the

fluctuating or the turbulent component for the time being is considered to be 0 but

a detailed discussion on this will be taken up later in the final chapter of this thesis.

In Figure 4.2, applying Bernoulli’s equation at a section upstream and downstream

of the actuator gives
1

2
U

2

∞ +
p∞
ρ

=
1

2
U

2

D +
p+D
ρ

(4.2)

1

2
U

2

W +
p∞
ρ

=
1

2
U

2

D +
p−D
ρ

(4.3)

where, ρ is the density of the fluid, p∞ is the free stream pressure, UD and UW are
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4.1. Actuator Disc Theory

the mean velocities at the disc location and at the wake respectively and p+D and

p−D are the pressures at the face and just behind the actuator. Subtracting these

equations gives the pressure difference across the disc i.e.

(p+D − p−D) =
1

2
ρ(U

2

∞ − U
2

W ). (4.4)

The mass flow rate is the same everywhere along the stream tube and thus

ρA∞U∞ = ρADUD = ρAWUW

where, A∞ = area of the streamtube far upstream, AD = area swept by the actuator

disc, AW = area of the expanded streamtube behind the actuator. There is a change

in momentum as the free stream velocity changes from U∞ to UW which is given

by

Rate of change of momentum = (U∞ − UW )ρADUD (4.5)

The thrust, T or the force acting on the disc is the difference in pressure between

the disc faces multiplied by the area of the disc i.e.

T = (p+D − p−D)AD = (Rate of change of momentum)AD

= (U∞ − UW )ρADUD

= (U∞ − UW )ρADU∞(1− a).

(4.6)

Substituting the pressure difference from eq.4.4 in eq.4.6, the wake velocity can be

obtained as
1

2
(U∞ + UW ) = U∞(1− a)

⇒UW = (1− 2a)U∞.
(4.7)

Substituting UW back into eq.4.6,

T = 2ρADU
2

∞a(1− a). (4.8)

Power can be obtained from the thrust using the equation

P = TUD = 2ρADU
3

∞a(1− a)2. (4.9)

53



Chapter 4. Modelling laminar flow with vorticity

The power coefficient is then defined as

CP =
P

1
2
ρU

3

∞AD

= 4a(1− a)2. (4.10)

The maximum value of CP can be obtained by setting dCp/da = 0 which gives

a = 1/3. Thus, CP,max = 0.593 is obtained which is commonly referred to as

Lanchester-Betz limit.

The thrust, T can be non-dimensionalized to give the thrust coefficient, CT which

is defined by

CT =
T

1
2
ρU

2

∞AD

⇒ CT = 4a(1− a).

(4.11)

It is to be noted that though wind turbines physically consist of two or

more blades which rotate about the hub in order to extract the kinetic energy from

the wind, none of the equations or derivations shown above takes into the account

rotation or even the presence of blades in the extraction of energy from the winds.

This is where theories like the rotor disc theory or blade element theory comes into

picture which considers the effect of rotation of wind turbine blades and consider the

effect of lift and drag forces in order to evaluate the performance of the wind turbine

as a whole. However, in this chapter the discussion has been confined strictly to the

actuator disc theory only because the main focus of this thesis is on steady state

analysis. As such, effects of rotation will not come into picture.

4.2 The Potential Flow Problem

Any fluid flow parameter always has a mean and a turbulent component. However,

before looking into these aspects in greater detail, in the context of wind turbines,

a study is required into the relatively simpler flow models. One such flow is the

potential flow model for flows with zero vorticity where the velocity components

are expressed in terms of the scalar potential field. The reason for introducing the

potential flow at this stage is its implementation in the context of wind farms in

past works which is evident from the research work discussed in the literature review

earlier. Therefore, in this section the relevance of the potential flow model in the

context of the cases studies undertaken here has been discussed.
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From the concepts of fluid dynamics, it is known that potential flow is irro-

tational and directional derivatives of the potential function φ provide the velocity

field in the relevant direction. The velocity component parallel to a co-ordinate

axis, Xj in terms of φ is defined by V j = φXj
= ∂φ/∂Xj; j ∈ {1, 2, 3}. The sign

convention followed in this thesis is shown in Figure 4.3 . For a 2D irrotational flow,

say for instance in X1 −X3 plane, the vorticity, ωωω given by the curl of the velocity

field becomes 0 i.e.

ωωω =∇∇∇×V =

(
∂V 3

∂X1

− ∂V 1

∂X3

)
j = 0j (4.12)

where, i, j,k are the unit vectors parallel to X1, X2 and X3 axes respectively. Poten-

tial can also be defined in terms of a line integral of the the velocity vector (Waters,

2014) i.e.

φ(X1, X3, t) = φ0(t) +

∫ x

0

V.dX = φ0(t) +

∫ x

0

(V 1dX1 + V 3dX3) (4.13)

where, φ0(t) is arbitrary (constant for steady potential flow). The simulations car-

ried out in this work are for steady state flow and henceforth, any function referred

to is considered to be independent of time, t unless noted otherwise. The path of

integration does not govern the value of φ which can easily be proved using Green’s

Theorem.∮
C

V.dS =
x

S

(∇∇∇×V).ndA;n: unit outward vector normal to area dA

⇒
∮
C

(V 1dX1 + V 3dX3) =
x

S

−
(
∂V 3

∂X1

− ∂V 1

∂X3

)
dX1dX3 = 0

(4.14)

where, S is the area enclosed by the curve C.

It is known that the potential flow problem is of the form of a homogeneous

elliptic PDE (or more popularly a Laplace equation), which in Einstein notation

can be represented by
∂2φ

∂Xi∂Xi

= 0 (4.15)

where, Xi; i ∈ {1, 2, 3} refers to the axis parallel to the hub of the wind turbine,

perpendicular to the hub in horizontal direction and parallel to the wind turbine

tower respectively.
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Chapter 4. Modelling laminar flow with vorticity

Figure 4.3: Co-ordinate system of three bladed wind turbine (Nielsen, 2017). Sim-
ulations presented in this thesis use similar convention but the origin is considered
at the upstream side of the overall domain.

4.2.1 Simulation model

For a CFD simulation like the case for the wind farms, ideally a 3D model is best

suited. The prime objective of this thesis is to investigate the aerodynamics of a wind

farm which inherently signifies the presence of a large physical domain and hence a

greater amount of data. However, as the domain becomes larger, greater numerical

challenges arise and the simulations become more computationally intensive. Hence,

this case needs to be investigated in the light of existing well established analytical

models first. But, most of these analytical models are based on 2D analysis. As

such, 2D cases are chosen to start with the investigation of these large domains.

The domain can be considered to be a rectangle subjected to a shear flow in

atmospheric boundary layer. The origin of the domain can be considered to be at the

bottom left corner. Using potential flow model, the first task is to simulate a shear

flow and study its effect on wind turbines assuming that the original shear profile

is regained after few actuator diameters of the last installed wind turbine. In this

thesis, the shear wind profile given by eq.2.1 observed in atmospheric boundary layer

has been considered. In the following sections, a detailed analysis of the potential

flow model eq.4.15 for the present scenario is undertaken.
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4.2. The Potential Flow Problem

Figure 4.4: Schematic diagram of an actuator disc submerged in a fluid domain

4.2.2 Detailed analysis of the model

In Chapter 3, a detailed discussion on the structure of the discretized Laplace equa-

tion has been presented. In this section, the application of that discretized system in

the context of the potential flow is undertaken. It is to be noted that the numerical

scheme works smoothly as long as the discretized physical domain is continuous.

However, introducing the actuator discs into the domain makes it discontinuous

which poses certain numerical challenges. Rather than the aerodynamics of the

wind field and performance of the wind farms, these challenges are first looked into.

But, before moving onto discussing these aspects in greater details, few terms need

to be defined.

Let Ai be an actuator submerged in a fluid domain, Ω containing multiple

actuators (refer Figure 4.4 where i ∈ {0, 1, 2, ...} denotes the actuator number. Each

actuator is bounded by four boundaries denoted by ΓAi,l
, ΓAi,r

, ΓAi,b
, ΓAi,t

on left,

right, bottom and top respectively. The domain is subjected to a mean shear flow

of V 1. The challenges beginning from the geometrical model of the actuator disc to

the nature of the boundary conditions and the mathematical nature of the potential

flow model itself are discussed below.

1. Geometrical model of the actuator disc and internal boundary con-

ditions

The actuator disc can be modelled in quite a few ways.

(a) One convenient option to model the actuator disc is to create an interior

opening in the domain with height = diameter of the disc and thickness

= average width of blade and assign NBC i.e. V 1 = φX1 on ΓAi,l
and

ΓAi,r
and V 3 = φX3 on ΓAi,b

and ΓAi,t
. The values of φX1 can be assumed
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Figure 4.5: Geometrical model with potential, φ as dependent variable

considering a reasonable value for axial induction factor, a. However, φX3

has to be based on some assumption. An example of this scenario can

be seen Figure 4.5 where a single actuator disc submerged in a domain

Ω of size 300 m × 975 m is considered with φX1 = 4 m/s on ΓAi,l
and

φX1 = 3 m/s on ΓAi,r
.

(b) Another option could be to model the actuator as a solid disc of zero

thickness with φX1 and φX3 in both directions at the grid points. Just

like in the previous option, in this case also, φX3 has to be based on

some assumption. But, in this case, another complication arises. Since,

the actuator thickness is zero, an abrupt change in the value of φX1

occurs as the velocity just in front of the actuator and just behind the

actuator are different as per the actuator disc theory. Numerically, this

would require some sort of smoothening function to mitigate which is

altogether a different aspect and requires an in-depth investigation from

mathematical perspective.

Nonetheless both these options give rise to an internal closed boundary with

all boundaries having NBC. As pointed out earlier in Section 3.5 that as soon

as closed boundary with all NBC is encountered, the solution starts to diverge.

This requires modelling the discontinuity introduced by the actuator as a FSI

problem or alternately ensure that φ is known on at least one interior bound-
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4.2. The Potential Flow Problem

ary. This would mean for every actuator within the domain φ is needed to be

defined for at least one of its edge in the form of some arbitrary constant or a

function. However, the problem is that the relation between the values of φ

for each of these actuators is unknown and cannot be determined beforehand.

2. External boundary conditions

As discussed earlier, the actuator disc theory assumes no inflow or outflow

from the top and the bottom boundaries. Hence, at first glance, the following

boundary conditions for the external boundaries might seem obvious.

(a) Bottom boundary: V 1

∣∣
X3=0

= φX1 = 0;V 3

∣∣
X3=0

= φX3 = 0

Integrating both the above equation gives the value of φ

φ =

∫
φX1dX1 =

∫
0dX1 = f(X3)

φ =

∫
φX3dX3 =

∫
0dX3 = f(X1)

which is possible if and only if φ = f(X3) = f(X1) = k, where k =

constant i.e. DBC can be specified for φ

(b) Top boundary: The top boundary can be assigned boundary conditions

in two ways:

i. Assigning NBC with φX3

∣∣
X3=H

= 0; where H = overall height of the

fluid domain considered.

ii. Additionally, if it is assumed that at such a far off height, V 1 ideally

remains the same throughout i.e. φX1

∣∣
X3=H

= V 1,H (where V 1,H is

the mean velocity at height H), then just like the bottom boundary

DBC can be defined in this case as well.

φ =

∫
φX1dX1 =

∫
V 1,HdX1 = V 1,HX1 + f(X3)

φ =

∫
φX3dX3 =

∫
0dX3 = f(X1)

Equating the above two equations give φ = V 1,HX1

If for top boundary, NBC is assumed, there is no concern. But, if DBC

is considered for the top boundary and which is the more accurate con-

dition, the issue is that the relation between φ = k (i.e. DBC for bottom

boundary) and φ = V 1,HX1 is not known.

(c) Left and right boundaries: For these two boundaries, since the mean
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velocity profile is known, the boundary conditions can be NBC with

φX1

∣∣
X1=0

= φX1

∣∣
X1=B

= V 1(X3), where B = overall width of the domain.

Now, even if the boundary conditions are assigned as stated above, few other

problems still need to be addressed.

(a) Assigning DBC = k at bottom boundary does not ensure that numerical

simulation would yield V 3

∣∣
X3=0

= 0. One way around this is to impose

NBC = 0 additionally. In other words, CBC needs to be provided at the

bottom boundary.

(b) Similarly, assigning NBC = 0 at top boundary does not ensure V 1

∣∣
X3=H

=

V 1,H . It just ensures V 3

∣∣
X3=H

= 0. The only way to propagate both the

information V 1 = φX1 = V 1,H and V 3 = φX3 = 0 into the overall domain

numerically is to impose CBC just like for bottom boundary. However,

this would required DBC to be defined as well and as discussed earlier,

the relation between constants V 1,H and k is not known.

(c) Finally, the effect of the velocity components tangential to the domain

boundary or in other words, the gradient of φ parallel to the boundary

has no effect on the solution of the velocity field.

3. Compatibility at corner nodes

With only one parameter φ governing the values of both V 1 and V 3, another

issue is the complexity in satisfying the compatibility at the corner nodes of

the domain. The values of φ assumed at the boundary nodes should be such

that the value for V 1 w.r.t. both boundaries forming the corner should also

satisfy the requirement of V 3.

In Figure 4.6 consider a corner node, say node 0. It is known that V 1 = V 3 = 0

at X3 = 0, and hence it needs to be ensured that nodes 0, 18, 1, 21, 6 have

exactly same value of φ (only then by using eq.3.9b and eq.3.9e, V 1 = V 3 = 0

can be ensured). Same criteria is required w.r.t. Node 20 as well. Similarly,

for corner node 33, to avoid inflow from top boundary V 3 = 0 needs to be

ensured which means, φ has to be the same for nodes 27, 12, 33. Same can

be said for corner node 17. It is difficult to ensure that all these criteria are

satisfied at the same time and numerically these would introduce great many

constraints in the problem definition.
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Figure 4.6: Node Distribution

4.3 Model reformulation

Keeping in view the issues presented in the previous section, the potential flow

problem needs to be re-framed. The idea presented in this section is influenced by

Basu, 2016. The equation of continuity in fluid dynamics which is based on the law

of conservation of mass is given by

∂V 1

∂X1

+
∂V 3

∂X3

= 0. (4.16)

The vorticity, ωωω of fluid in 2D is defined by

ωωω = ωωω(X1, X3) =

(
∂V 3

∂X1

− ∂V 1

∂X3

)
j. (4.17)

Differentiating the equation of continuity w.r.t. X1 and the equation for vorticity

w.r.t. X3, the following equations are obtained.

∂2V 1

∂X2
1

+
∂2V 3

∂X1∂X3

= 0;
∂2V 3

∂X3∂X1

− ∂2V 1

∂X2
3

= ωωωX3 (4.18)

Subtracting these two equations, a PDE for V 1 is obtained.

∂2V 1

∂X2
1

+
∂2V 1

∂X2
3

= −ωωωX3 (4.19)
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Similarly, differentiating the equation of continuity w.r.t. X3 and the equation for

vorticity w.r.t. X1, the following equations are obtained.

∂2V 1

∂X3∂X1

+
∂2V 3

∂X2
3

= 0;
∂2V 3

∂X2
1

− ∂2V 1

∂X1∂X3

= ωωωX1 (4.20)

Again, adding these two equations, a PDE for V 3 is obtained.

∂2V 3

∂X2
1

+
∂2V 3

∂X2
3

= ωωωX1 (4.21)

Thus, two elliptic PDEs, with V 1 and V 3 as dependent variables are obtained.

This new formulation overcomes all the issues highlighted in Section 4.2.2. The

advantages of this new formulation are

1. Geometrical model actuator disc

Since, two elliptic PDEs are now available with V 1 and V 3 as dependent vari-

ables, there is no need to consider NBC at the boundaries because the velocity

functions are known at the boundaries straightaway and hence, they can be

assigned as DBC resulting in a symmetric coefficient matrix, A. Symmetric

solvers like PCG can therefore be implemented which are relatively faster in

case when just the velocity field needs to be simulated in the absence of the

actuators or when the velocity field in the vicinity of the actuator is known.

2. Boundary conditions

Unlike the case with the potential flow model, where some arbitrary value for

potential is required to be imposed in order to start the simulations and where

CBC is needed to satisfy the criteria for both V 1 and V 3 at the boundaries

resulting in more complications and making the system more rigid, the current

formulation is far more flexible. Also, there is no need to think about the

gradient of the dependent variable parallel to the boundaries as it has no

physical implication as such.

3. Compatibility at corner nodes

Since two separate PDEs are getting solved and DBC are known at the bound-

aries straightaway, there is no need to check for compatibility at the corner

nodes as such.

4. A more general model

In most practical fluid flow problems, vorticity is inevitable. The cross-section
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of the blades of a wind turbine is in the shape of an aerofoil with the chord

length gradually decreasing from the root towards the tip. Aerofoils operate

on the principal of pressure difference between the top and bottom surfaces

with the lift force acting at the bottom and the drag force at the top. How-

ever, at the tip of the aerofoil, leakages occur since air flows from lower to

the upper side resulting in an increase in tangential velocity. As a result, a

continuous sheet of vortices is formed in the wake behind the wind turbine

blade. Helmholtz’s second theorem states that a vortex line cannot end in a

fluid; it must extend to the boundaries of the fluid or form a closed path. The

closed path of these vortices forms far downstream as per Prandtl’s lifting line

theory and eventually these vortices breakdown.

As can be understood, the presence of the aerofoil induces the formation of

vortices in the flow field. In other words, the interaction between the air (fluid)

and the aerofoil (structure) is responsible for the vortex formation. However,

modelling the aerofoil itself or the blade is computationally expensive. The

model presented in this work is an attempt to inculcate this fluid-structure

interaction by using an approach which is computationally less intensive com-

pared to the standard blade resolved CFD models and without the need for

modelling the actual aerofoil but at the same time including its effects by ap-

plying appropriate boundary conditions at the interface of the actuator disc

and the fluid domain. Hence, this formulation can be applied to a wider range

of problems unlike the potential flow which is more specific and applicable for

irrotational flow only. As a matter of fact, the current formulation can even

address the case of potential flow if ωωω(X1, X3) = 0.

4.3.1 Numerical analysis

Having laid the foundation for the equations of the mean velocity required to de-

scribe the full flow field, the next task is to run the simulations for a large domain

governed by these newly formulated set of equations. To start with, the flow field

for V 1 is computed first and the behaviour of the model and the numerical simula-

tion is discussed. The reason for choosing V 1 is that the energy extracted from the

wind is primarily dependent on this component of the velocity. In this section, the

basis of defining the geometry for the simulation has been discussed first followed

by the boundary conditions needed to run the simulation and finally the results of
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Chapter 4. Modelling laminar flow with vorticity

the simulation carried out has been presented.

4.3.1.1 Geometry

As pointed out in literature review, the overall heights of wind turbines have reached

as high as 260 m and blade lengths as large as 75 m. Bearing this fact in mind,

the diameter of the actuator discs in this simulation are considered to be 150 m

with hub height at 150 m above MSL. For a typical 5 MW wind turbine, at the

widest section, the blade can be as large as 4 m (Resor, 2013). Since the blade

profile varies throughout its entire length, it can be argued that an average value

for the actuator thickness should be chosen for the numerical model. However, it is

to be noted that the exact behaviour of the fluid in the immediate vicinity of the

actuator is unpredictable. As such, choosing the thickness on a higher side seems

to be a good option to bypass this region of uncertainty from the numerical results.

Accordingly, the thickness of the discs considered for the purpose of the simulations

undertaken is fixed at 4 m. It is to be noted that the disc rotation and its effect in

creating a counter-rotating wake is not considered since focus is on the steady state

behaviour.

It is a normal practice to position the wind turbines at a distance varying from

three to five times the actuator diameter. Thus, centre to centre distance between

the discs have been considered to be 5×150 = 750m. Also, the disturbances induced

to velocity field because of the presence of the discs are usually considered to be

greatly reduced after four-five actuator diameters. Bearing this fact in mind, the

downstream domain length beyond the centre of the last actuator disc is considered

to be 5×150 = 750m. An additional domain length of 3×150 = 450m is considered

upstream from the centre of the first actuator disc. Thus, the total domain length,

L = upstream length + (no. of discs - 1) x c/c distance of disc + downstream length

= 450 + (3− 1)× 750 + 750 = 2700 m.

In a similar manner, the domain height above the top of the actuator disc

is considered to be 5 × 150 = 750 m. Thus, the overall domain height, H = hub

height + actuator radius + additional top height = 150 + 75 + 750 = 975 m The

node to node distance has been considered as △X1 = 1 m and △X3 = 2 m. Since,

△X3 has been assumed as 2 m, H has been considered as 976 m instead to suit the

requirement of the grid spacing. A finer grid or a still larger domain could also be

considered. However, for the time being the simulation is done just to highlight some
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of the key aspects of the present approach of geometrical modelling by considering

the actuator disc as a solid disc.

4.3.1.2 Boundary conditions

In any system defined by differential equations, it is the boundary condition which

governs the final solution by directing the generalised solution of the differential

equation towards a unique result. The importance of applying proper boundary

conditions can also be understood from the fact that two different fluid flow problem

can have different solutions even though they are governed by the exact same set of

PDEs if their boundary conditions are different. This section discusses the boundary

conditions considered for the simulations.

Three back-to-back actuators are considered with the the values of V 1 defined

both at ΓAi,l
and ΓAi,r

; i ∈ {0, 1, 2}. For the time being, NBC = 0 is assumed for

ΓAi,b
and ΓAi,t

. Wind is assumed to blow along the direction of positive X1 axis.

The mean velocity profile as defined by eq.2.1 is assigned at the left inlet. Assuming

that this original mean wind profile is regained at the exit of the domain, the right

outlet is assigned the same velocity profile. As far as the bottom boundary is

concerned, the velocity value has been set as 0 and the velocity at the boundary

has been assumed to be the constant throughout.The domain with these boundary

conditions is shown in Figure 4.7).

4.3.2 Results

Simulations are now carried out successively first for one, then for two and then for

three back-to-back actuators. As highlighted earlier in Chapter 3, elliptic PDEs are

unconditionally stable. Hence, as expected, the iterative algorithms converge at a

relatively stable pace. In all the three cases, the solutions converged quite nicely

within only a few iterations even for a domain with such a large number of nodes.

This is reflected clearly in the plot of the residual shown in Figure 4.8.

From Figure 4.9, an interesting thing can be observed i.e. there is zone in

the wake of the actuator where the values of V 1 is extremely low and it can be seen

to extend over most of the area. The values are seen to be reasonable for the nodes

which are nearer to the outlet boundary. This can be attributed to the fact that the
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Figure 4.7: Domain and boundary conditions for the newly formulated model

Figure 4.8: Plot of residual norm with increase in iterations for simulation with 3
actuators
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Figure 4.9: Contour plot of V1(m/s) with 1 actuator disc

Figure 4.10: Contour plot of V1(m/s) with 2 actuator discs

actuator disc has been modelled as a solid disc. This behaviour is also evident for the

case with two (Figure 4.10) and three actuator discs (Figure 4.11) as well wherein

the zones of low velocity can be observed in the wake of the downstream actuators

as well. Apart from the regions far away from the actuator in X3 direction, the

regions of non-zero velocity can be observed only for a local region in the vicinity

of the downstream actuators which is obvious given the fact that V 1 (which is

forcefully imposed as some arbitrary value) is defined as a boundary condition for

these actuators.

Another issue needs to be pointed out. In Figure 4.12, the boundary of the

actuator is indicated by the blue line. As per the boundary conditions assumed,

DBC is assumed at ΓAi,l
and NBC is assumed at ΓAi,t

. This would mean node 5435

needs to satisfy two criteria i.e. DBC w.r.t. ΓAi,l
and NBC w.r.t. ΓAi,t

. Ideally, if
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Figure 4.11: Contour plot of V1(m/s) with 3 actuator discs

Figure 4.12: Node layout near the top of an actuator
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central differencing is used for NBC, this would mean that values at nodes 4038 and

6736 should be the same. Similarly, nodes 4039 and 6738 should also have the same

values w.r.t. corner node 5437. With the current setting, it is difficult to ensure

that both these conditions are satisfied at the same time. This highlights the fact

that DBC needs to be assigned at all the 4 faces of the actuator which is practically

not feasible.

With respect to Figure 4.12, another contradiction in the choice of equations

for numerical analysis can be observed. Nodes Ni = {5386, 5436, 5387}, where NBC
is defined can be included as part of the equation system getting solved by consider-

ing ghost nodes and central differencing as presented in Appendix A. However, this

approach is physically consistent only if the behaviour of the ghost nodes and these

set of boundary nodes, Ni are governed by the same PDE or rather the same physical

model. But, that is not the case in the present approach of modelling the actua-

tor where our assumption is that the behaviour of the zone contained within the

boundaries of the actuators is unknown or that the actuator is a solid disc. As such,

using one-sided differencing is the only option to tackle the boundary conditions at

these nodes. Now, if one-sided differencing is chosen, issue arises with respect to the

corner nodes 5435 and 5437 which should ideally be governed by central differencing

scheme because it is dependent on nodes which are guided by central differencing

schemes. Numerically, for nodes on the same boundary, ΓAi,t
should all be governed

by either central differencing or one-sided differencing. However, as explained corner

nodes are getting governed by central differencing and the other nodes by one-sided

differencing. This is yet another reason why such physically inconsistent results are

observed in terms of extensive zones of low magnitude velocities in the wake of the

actuators. From the observations and the points highlighted above, it is evident

that this kind of approach to model the computation domain would require DBC

to be defined at all the interfaces of the actuators which is practically not feasible.

4.4 Discussions

In this chapter, a brief introduction to the classical actuator disc theory and the

potential flow model has been presented. Issues with the 2D potential flow model

using FDM in modelling the ABL in the presence of the actuators has been inves-

tigated. The potential flow model has been found to be quite problematic in its

ability to handle the model accurately. The challenges faced by the potential flow
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model has been addressed by introducing a new flow model which also has the form

of a Poisson’s equation and which not only takes care of the case of potential flow

but can also handle any type of fluid flow where vorticity is known. Numerically,

this new model does not pose any additional challenge as being elliptic, it is also

unconditionally stable.

It is evident from the results of the numerical simulations presented earlier

in Section 4.3.2 that the way the actuators have been modelled and the boundary

conditions assigned, the velocity profile along all of its bounding surfaces has to

be known beforehand which is practically not feasible. As such a more realistic

systematic assessment for the V 1 is required to arrive at a reasonable value.

Besides, in reality the actuator disc is not a solid body but rather a porous

object through which the fluid passes. So, even though a converged velocity field is

obtained, the results are not a true representation of the physical scenario. Alter-

nately, even if the geometric model of the actuator is visualized as if it is not a solid

disc but rather a zone where the behaviour of the velocity is unknown and omitting

this zone from the analysis, it cannot be denied that the velocity field within this

unknown zone will influence the velocity field getting simulated.

In either case, the approach presented in modelling the actuator is not ac-

curate. Ideally, the interfaces or the surfaces ΓAi,l
,ΓAi,b

,ΓAi,r
,ΓAi,t

bounding the

actuator enclose a zone wherein the behaviour of the fluid is different from that of

the fluid outside this boundary. This scenario needs to be taken care of in order to

make the numerical model more realistic and consistent with the actuator disc the-

ory. It is not unknown that the solution of two different fluid flow problems might

be governed by the same set of equations but their solution might be altogether

different depending on the boundary conditions assigned to them. The current case

can be visualized in a similar manner wherein the zone outside the bounding surface

of the actuator is governed by one set of boundary conditions and the zones con-

fined within each individual actuator (three in the present case) is governed by three

other set of boundary conditions. In other words, four different sets of boundary

conditions govern the four different zones of the fluid domain but have a common

governing PDE with each zone interacting with each other such that all the four

sets of boundary conditions and the governing PDE are satisfied together.

From the above discussions, it is imminent that geometrical modelling alone
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does not suffice to achieve the required outcome and instead something is required

to be done in the numerical approach itself. From the perspective of fluids, each

and every zone bounded by the actuator is a zone of discontinuity. As pointed out

earlier in Chapter 2 creating a complex mesh around the actuator blades is of course

one way but then these are computationally expensive. This is where special FSI

methodologies come into picture which are ideally designed to take care of these

kind of discontinuities in the fluid domain. In the next chapter, this aspect has

been addressed and the numerical simulation for the new formulation presented in

this chapter has been carried out in the light of the FSI strategies.
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Chapter 5

Fluid-structure interaction for

back-to-back actuators

From the discussions in the previous chapter, it is evident that modelling the actua-

tor disc is not a straightforward task. The region bounded within the boundaries of

the actuator or rather a zone in and around the vicinity of the actuator behaves quite

differently with respect to the rest of the domain and influences the velocity field of

the overall domain. As such, the aerodynamics of such discontinuous fluid domains

are required to be looked into. This is where FSI comes into picture. Of course,

as discussed earlier in Chapter 2, FSI can be carried out by using blade-resolved

models but then these models are computationally expensive.

A full three-dimensional (3D) CFD model of the entire wind farm which

might consist of hundreds of turbines is computationally expensive both in terms

of processing time as well as the memory and the number of processors required.

During the preliminary engineering analysis and design stage when detailed site

data is not available, investing in such computational resource is not worthwhile.

Nonetheless one or more arrangement of the wind turbines in the wind farm is

still required to be investigated in order to demonstrate the pros and cons of each

arrangement from the perspective of power production. This is where the analytical

two-dimensional (2D) models mentioned earlier in Chapter 2 become useful. The

primary aim of these models is that during this preliminary analysis stage, they give

an insight into the approximate power output of a wind farm without the need to

develop the full 3D CFD model. An interesting fact about the analytical models
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is that none of them include the effect of the presence of blades. Therefore, the

current work aims at proposing an approach so that these models can be further

refined to include the effect, the blades might have on the flow field, so that the

preliminary estimate of power production from a wind farm using these models are

more realistic. The present work is intended to achieve the same by not going into

complexities of the aero-elasticity of the blades (Korobenko et al., 2017; Sayed et al.,

2019), which of course provide useful information, but rather trying to include its

effect geometrically by considering a zone where the behaviour of wind is different

compared to the rest of the domain.

The objective of the work carried out in this chapter is to introduce a hybrid

approach of using the wind farm models coupled with these FSI strategies in order

to arrive at a more realistic velocity field for the new formulation presented in the

previous chapter at a relatively low computational cost. However, before imple-

menting FSI algorithms for simulating the wind farms, few concepts relevant to the

work done need to be introduced. This chapter, therefore begins with the discussion

of one of the earliest and the most basic wind farm models i.e. Jensen’s model and

the modifications proposed to it, followed by FSI algorithms before carrying out the

simulations for back-to-back actuator discs.

5.1 Jensen’s model and modifications

In Chapter 2, a detailed review of different wind farm models proposed by re-

searchers have been presented. However, Jensen’s model is discussed here as this

model has been chosen for the present work. As will be clear from the upcoming

discussions that FSI algorithms require certain parameters to be defined which can

be easily done with the aid of these wind farm models, thereby making the velocity

fields obtained using these models more realistic compared to the strictly analytical

results obtained using these theoretical models wherein FSI effects are not getting

considered.

Like most fluid flow problems, the ABL also has a mean and turbulent compo-

nent. The work is based on the fact that the mean velocity in ABL is predominantly

responsible for the power production from wind turbines and the contribution from

turbulence when compared to the mean velocity is not that much significant. How-

ever, turbulence does affect the fatigue life performance of the blades, which however
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Figure 5.1: Overlapping wakes for back to back actuators as proposed by Jensen
(Adapted from Jensen, 1983 with modifications)

is not the focus here. The Reynolds number in the present case is very large i.e.

Re = vD/ν ∼ 102 × 10/10−5 = 108 and as such viscosity has no role to play unless

the scales of turbulence to be resolved are small enough to investigate the local

effects on the blades for detailed analysis. Jensen’s model does not consider the

effects of either vorticity or viscosity and is based on the mean velocity of ABL.

Though the model was initially proposed for actuators of equal radius by

Jensen, the concept can be extended to actuators of varying radius. It is to be borne

in mind that the primary objective of this chapter is to study the new formulation

proposed in the previous chapter using FSI strategies and check its performance

with respect to the original Jensen’s model of wind farms with actuators of equal

radii. As such, testing the model with respect to a field with varying actuator radii

has not been taken up in the current work.

At this stage, few notations are required to be introduced. The radius of each

actuators is denoted by r0. Here, r denotes the overall radius of the expanded wake

at any typical section and ri,j denotes radius of the wake at actuator j generated by

actuator i. For any typical actuator Ai; i = {0, 1, 2, ...}, fi and wi represent sections

just in front and behind the actuator and V 1,i, V 1,i,d and V w,i represent velocity

upstream, at and downstream of actuator respectively. V́i is the weighted velocity

of air entrained from the previous overlapping wakes before approaching Ai. [V 1]f,i,

[V 1]w,i, [V 1]t,i and [V 1]b,i represent the jump in velocity or the change in velocity at

the front (ΓAi,l
), back (ΓAi,r

), top (ΓAi,t
) and bottom (ΓAi,b

) interface of the wind

and the actuator respectively.
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Consider the case presented in Figure 5.1 where back-to-back actuators are

shown with overlapping wake effects. Jensen used the law of conservation of momen-

tum and proposed a linear wake expansion model for the velocity deficit assuming

r = r0+αx, where, α(= 0.1) is an entrainment constant. Thus, when applied at w0

and f1, one obtains;

πr20,1V 1,1 = πr20V w,0 + π(r20,1 − r20)U∞ (5.1)

where, U∞ is the mean free stream velocity outside the expanded wake, and r0,1 =

r0 + αx0. From eq.4.7, it is known that V w,0 = (1 − 2a)U∞; where, a is the axial

induction factor. Substituting these values of r0,1 and V w,0, V 1,1 in above equation,

r20,1V 1,1 = r20V w,0 + (r20,1 − r20)U∞

⇒V 1,1

U∞
=

(
r0
r0,1

)2
V w,0

U∞
+

[
1−

(
r0
r0,1

)2
]

⇒V 1,1

U∞
= 1− k

[
1− V w,0

U∞

]
⇒V 1,1

U∞
= 1− k

[
1− (1− 2a)

U∞

U∞

]
(5.2)

where k =
(

r0
ri,i+1

)2
=
(

r0
r0+αx0

)2
; i ∈ {0, 1, ...}. As stated in the previous chapter,

the optimum value of a = 1/3 enables an actuator to achieve its maximum power

output. So, Jensen based the derivations for the value of a = 1/3 i.e. V w,0 = U∞/3.

In other words, the velocity in the wake is one-third of the freestream velocity

creating the thrust on the disc. Experimental measurements by Høistrup, 1983

when used to calibrate α produced a value of 0.070. However, Jensen considered

α = 0.1 as the assumption V w,0 = U∞/3 is fairly uncertain. In general, for any

value of a = {a : 0 < a ≤ 1/3, a ∈ R}, eq.5.2 simplifies to

V 1,1

U∞
= 1− 2ak. (5.3)

A similar approach by considering sections w1 and f2 would give

πr21,2V 1,2 = πr20V w,1 + π(r21,2 − r20)V́2 (5.4)

Jensen claimed that V́2 ≈ U∞ since the spacing between the actuators is usually
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large and V́2 is a(r0/αx0)
2U∞ less than U∞; a factor which can be neglected. Thus,

the above equation can be written in a manner similar to eq.5.2

r21,2V 1,2 = r20V w,1 + (r21,2 − r20)U∞

⇒V 1,2

U∞
= 1− k

[
1− V w,1

U∞

]
⇒V 1,2

U∞
= 1− k

[
1− (1− 2a)

V 1,1

U∞

]
(5.5)

Proceeding in a similar manner, the governing equation for Ai by considering sec-

tions wi−1 and fi

πr2i−1,iV 1,i = πr20V w,i−1 + π(r21,i − r20)V́i (5.6)

from which, for An, the velocity at the face of the actuator comes out to be

V 1,i

U∞
= 1− k

[
1− V w,i−1

U∞

]
= 1− k

[
1− (1− 2a)

V 1,i−1

U∞

]
(5.7)

The value of a can vary from actuator to actuator. However, in the study carried

out in this chapter, the impact of the variation in the value of a has not been taken

up and it is assumed that all the actuators have achieved the maximum power

output with a = 1/3. Now, if the spacing reduces Jensen’s model cannot be applied

straightaway as the assumption V́i ≈ U∞ is no longer valid and needs to be modified.

For this case, it is reasonable to assume V́i+1 ≈ V 1,i just behind Ai. From eq.5.3, it

can be observed that the free stream velocity field on the downstream actuator is

1 − 2ak times the free stream velocity field of the upstream actuator. In a similar

way, it can be considered that with respect to Ai+1 onwards, the free stream velocity

with respect to Ai is changed from U∞ to V 1,i.

V 1,i+1/V 1,i = 1− 2ak. (5.8)

This implies, for n+ 1 closely spaced back-to-back actuators in a wind farm,

V 1,n+1 = (1− 2ak)V 1,n = (1− 2ak)(1− 2ak)V 1,n−1 = ... = (1− 2ak)nU∞. (5.9)
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Figure 5.2: Irregular interface Γ dividing overall domain Ω into Ω+ and Ω−

5.2 Decomposed Immersed Interface Method

Berthelsen, 2004 proposed Decomposed Immersed Interface Method (DIIM) for el-

liptic PDEs of form

∂(βϕX1)

∂X1

+
∂(βϕX3)

∂X3

= −b(X1, X3); (X1, X3) ∈ Ω (5.10)

where, ϕ is the dependent variable and the 2D domain, Ω is defined by [c, d]× [e, f ].

Coefficients β = β(X1, X3) and the source term, −b(X1, X3) are continuous and

smooth on each subdomain enclosed by a boundary. For instance, in Figure 5.2,

the values of β(X1, X3) and b(X1, X3) might be different for Ω+ and Ω−. From,

the equation structure of eq.4.19 and eq.4.21, it is evident that β(X1, X3) = 1 for

the simulations undertaken. As such, the discussion here will be confined for this

specific value of β and the impact it will have if its value were different at each

subdomain will not be looked into. For grid nodes spaced equally, the node to node

distance can be defined by △X1 = (d− c)/(M − 1),△X3 = (f − e)/(N − 1), where

M,N are the number of grid points along axes X1 and X3 respectively. Thus,

X1 = c+ i△X1; 0 ≤ i < M

X3 = e+ j △X3; 0 ≤ j < N (5.11)

Berthelsen demonstrated the strategy for smaller domains with discontinuities and

claimed that it can be extended to other forms of PDEs as well. However, the

problems presented in Berthelsen’s work were confined to fluids with a single dis-

continuity and the method has not been explored in greater detail. Hence, the

performance of DIIM with multiple discontinuities in the context of a relatively

larger domain is validated first before moving on to a domain as large as that of a

wind farm. It is to be noted that the IIM strategies (including DIIM) are formulated
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5.2. Decomposed Immersed Interface Method

for domains discretized using Finite Difference Method (FDM).

5.2.1 A brief introduction

In this section, a brief description of the DIIM strategy has been presented, some of

the terms and notations used in the context has been explained and the equations

involved are presented before analysing it in greater detail are highlighted. The

method is based on a prior knowledge of two main conditions i.e. the change in

value of ϕ and the change in the derivative of ϕ along the normal, n passing through

the point of intersection of the gridlines and the fluid-structure interface, Γ (refer

Figure 5.2). These changes, often referred to as ‘jump’ are defined by

[ϕ] = lim
(X1,X3)→Γ+

ϕ(X1, X3)− lim
(X1,X3)→Γ−

ϕ(X1, X3) = w(X1, X3) (5.12)

[ϕn] = lim
(X1,X3)→Γ+

ϕn(X1, X3)− lim
(X1,X3)→Γ−

ϕn(X1, X3) = v(X1, X3) (5.13)

where, [ϕ] = jump in value of ϕ, [ϕn] = jump in value of derivative in direction n.

With reference to Figure 5.2, it can be seen that Γ divides the overall domain, Ω into

sub-domains Ω+ and Ω− which refer to the region outside and inside respectively of

the region enclosed by Γ. This method relies on level set function ξ = ±d, where d

is the shortest distance of an irregular node from Γ.

In general, IIM strategies classify the nodes inside a domain as regular and

irregular. A node is classified as regular if all its dependent nodes are on the same

side of Γ. For instance, with respect to the standard 5-point stencil for elliptic

PDEs, if a node lying in Ω+ lying on the left side of Ω− and very near to Γ is

considered, then its right side node will naturally lie inside Ω−. As such, this node

will be classified as irregular. Similarly, if hyperbolic or parabolic PDEs are looked

at, which do not depend on 5-point stencil or even for elliptic PDEs with higher

order differencing, a node, Ni will be classified as regular only if the FDE framed

for Ni is dependent on a set of surrounding nodes, S such that {Ni, S} ∈ Ω+ or

{Ni, S} ∈ Ω− and irregular if {Ni ∈ Ω−, S ∈ Ω+} and {Ni ∈ Ω+, S ∈ Ω−}.

For eq.5.10 and corresponding to β = 1, the finite difference equation using

the standard 5 point stencil can be written as

ϕi+1,j − 2ϕi,j + ϕi−1,j

△X2
1

+
ϕi,j+1 − 2ϕi,j + ϕi,j−1

△X2
3

= −bi,j − Ci,j
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Chapter 5. Fluid-structure interaction for back-to-back actuators

⇒bi,j + Ci,j − sϕi,j − p(ϕi+1,j + ϕi−1,j)− r(ϕi,j+1 + ϕi,j−1) = 0. (5.14)

It can be observed that unlike structure of eq.3.22, there is an additional term, Ci,j

in eq.5.14. Ci,j is a correction term which DIIM introduces for the irregular nodes

at every stage of an iterative algorithm. Ci,j in turn consists of components from

both directions and is defined by

Ci,j = CX1
i,j + CX3

i,j (5.15)

The term CXk
i,j ; k ∈ {1, 3} is defined by

CXk
i,j = Sϕ

[
C1

△X2
k

+
C2

△Xk

]
(5.16)

where,

Sϕ =

{
−1 , ξi < 0

1 , ξi ≥ 0
(5.17)

and

CXk
1 =


[ϕ]− λ[ϕXk

]á△Xk + 1
2 [ϕXkXk

]á2 △X2
k , if (ξi ≥ 0 and 0 ≤ á < 1/2)

or (ξi < 0 and 0 < á ≤ 1/2)

[ϕ] + λ[ϕXk
](1− á)△Xk + 1

2 [ϕXkXk
](1− á)2 △X2

k , if (ξi ≥ 0 and 1/2 ≤ á < 1)

or (ξi < 0 and 1/2 < á ≤ 1)

(5.18)

CXk
2 =


λ[ϕXk

] + 1
2
[ϕXkXk

](1− 2á)△Xk, if (ϕi ≥ 0 and 0 ≤ á < 1/2)

or (ϕi < 0 and 0 < á ≤ 1/2)

0, otherwise

(5.19)

The parameters λ and á are defined as

• If Γ lies between Xi,j and Xi+1,j or Xi,j and Xi,j+1,

λ = 1, á = ξi/(ξi − ξi+1)

• If Γ lies between Xi−1,j and Xi,j or Xi,j−1 and Xi,j,

λ = −1, á = ξi/(ξi − ξi−1)

where, ξi = ±d is the level set function, d = shortest distance from an irregular

node to Γ. It is to be noted that correction CXk
2 is required only if the flux is

discontinuous at Γ. The approximation of the correction term, Ci,j needs to be
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5.2. Decomposed Immersed Interface Method

under-relaxed in order to ensure the numerical stability. This is done by introducing

an under-relaxation parameter, α.

C l
i,j = C l−1

i,j − α(C l−1
i,j − Cnew

i,j ) (5.20)

where, l and l − 1 denote the step number of iteration. The simulations presented

in this thesis use α within the range 0.01− 0.05.

Eq.5.14 can be expressed as a linear system just like eq.3.23 with the addi-

tional term C added to b′, where C is a vector of Ci,j for irregular nodes and 0 for

regular nodes. Advantage of DIIM over other IIM methods is that eq.5.14 has the

same coefficient matrix as eq.3.23. In other words, the equation for a central node

still remains coupled to the immediate surrounding nodes only and not on any ad-

ditional nodes. This implies that the multicoloring algorithm to achieve parallelism

i.e. red-black ordering can still be applied to this new system. However, unlike

eq.3.23, C makes the vector b′ solution dependent at every iteration step. Evi-

dently, iterative algorithms discussed in Chapter 3 cannot be applied straightaway.

In the subsequent section, the modifications and choice of algorithm is therefore

investigated in greater detail.

5.2.2 Choice of algorithm

As the system matrix is symmetric and positive-definite, the choice of algorithms

would normally be the method of conjugate gradients (Hestenes and Stiefel, 1952).

However, DIIM introduces a stabilizing correction term C which changes at each

iteration. This did not pose any additional algorithmic challenges in Berthelsen,

2004 because the authors embed the strategy in a stationary iterative method such

as Gauss-Seidel. The correction is thus seen as a modification of the correction at

the present iteration with no wider algorithmic consequences.

Conversely, the method of conjugate gradients exploits the fact that the resid-

ual at each step is the direction of steepest descent for the error, and this direction is

then orthogonalized against the most recent residuals to avoid backtracking. This is

disrupted when a new DIIM correction is applied to the residual at each iteration.

More fundamentally, the application of the correction terms induces an iteration

which is for a non-symmetric system, for which conjugate gradients is no longer

appropriate.
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One way to see this is to interpret the correction to the residual, r = b′−AΦ+

C as the result of the application of an unknown, varying right-preconditioner; i.e.,

r = M−1(b′−AΦ). This is what is known as a flexible preconditioner. Embedding

flexible preconditioning in a conjugate gradients iteration produces a method known

as flexible conjugate gradients (Notay, 2000). However, it has been pointed out

that the use of the flexible preconditioner interferes with naturally-arising short

recurrence and optimality of conjugate gradients because the iteration becomes

one for an implicitly-defined non-symmetric, right-preconditioned matrix. Thus,

conjugate gradients is replaced with a solver for non-symmetric problems that is

compatible with flexible preconditioning to accommodate the correction. The short-

recurrence right-preconditioned BiCGStab method van der Vorst, 1992 is chosen,

which has been shown to be compatible with flexible preconditioning Vogel, 2007.

Thus, effectively a right PBiCGStab is implemented to carry out the itera-

tions. If the actuator was not present, with this algorithm, the residual, r = b′−AΦ

would have been updated at the end of each iteration step with the updated vec-

tor Φ. However, to incorporate correction to the irregular nodes, the residual is

modified to r = b′ −AΦ−Cl−1 +Cl instead, where l denotes the iteration step.

5.2.3 Validation for single internal discontinuity

The first task is to validate whether parallelization and the approach for resid-

ual correction for PBiCGStab using DIIM gives acceptable results. To do so, a

commonly studied elliptic PDE problem, ∇2ϕ = 0 (Li and Ito, 2006, Wiegmann

and Bube, 2000, Berthelsen, 2004) with [ϕ] = 0 and [ϕn] = 2 in a square domain

Ω, [−1 m, 1 m]× [−1 m, 1 m] and mesh size of 80× 80 is considered. The exact so-

lution of this problem is given by eq.5.21. Figure 5.3 show the boundary conditions

assigned to the domain. The circle indicates Γ bounding a region within which the

behaviour of the fluid is different with respect to the rest of the domain.

ϕ(X1, X3) =

{
1 , X2

1 +X2
3 < 1

4

1 + log
(
2
√
X2

1 +X2
3

)
, X2

1 +X2
3 ≥ 1

4

. (5.21)

At this stage, it is essential to highlight the way Γ is treated in the numerical

simulation. DIIM is based on the interpolation carried out along the normals drawn
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Figure 5.3: Domain with boundary conditions for the DIIM validation problem with
single internal discontinuity

Figure 5.4: Normal at the interface with
interpolation nodes to compute CX1

i,j

Figure 5.5: Normal at the interface with
interpolation nodes to compute CX3

i,j
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at the interfaces which are indicated by the green lines as shown in Figure 5.4 and

Figure 5.5. For instance, in order to compute CX1
82 , following steps are carried out:-

1. Since, focus is on correction along X1, the coordinate of the point of inter-

section, (X∗
1 , X

∗
3 ) of gridline parallel to X1 and passing through 82 and Γ is

determined first.

2. The normal, n passing through (X∗
1 , X

∗
3 ) is now determined.

3. Two points are chosen on each side of Γ along the normal i.e. {P+
1 , P+

2 } ∈ Ω+

and {P−
1 , P−

2 } ∈ Ω−. For interpolation to work properly, it is essential that

these points are positioned in a way such that all the nodes surrounding them

are on the same side of Γ. In Figure 5.4, these points are denoted by red ∗ as
82 is a red node.

4. Berthelsen suggested that a second order Lagrangian polynomial of order two

is sufficient enough to achieve the desired accuracy. As such, it is vital that

{P+
1 , P+

2 } or {P−
1 , P−

2 } are not surrounded by the same set of grid nodes or

else the second order Lagrangian polynomial cannot be formulated. Thus, two

polynomials are obtained, one w.r.t. {P+
1 , P+

2 } and another w.r.t. {P−
1 , P−

2 }.
5. The values, U+

1 , U
+
2 , U

−
1 , U

−
2 at P+

1 , P+
2 , P−

1 , P−
2 are computed using these poly-

nomials. Differentiating these two polynomials gives the normal flux which are

then utilized to compute U+
∗ and U−

∗ i.e. value at (X∗
1 , X

∗
3 ) w.r.t. Ω

+ and Ω−

respectively.

6. Finally, these values are used to approximate the jumps along X1.

In a similar manner, CX3
82 can be computed but this time considering the gridline

parallel to X3 passing through node 82 and following a similar set of steps.

Figure 5.6 shows the numerical solution of this problem computed using the

modified residual correction with PBiCGStab as explained in Section 5.2.2. The

circular interface is modelled approximately as a polygon of 40 sides circumscribed

by the circle. As such, two scenarios might arise viz.

1. the normal passes through the side of this polygon: In this case, a line perpen-

dicular to side of the polygon is assumed to be the normal. However, ideally

as per the problem statement, the normal should have been the line joining

the centre of the circle and Γ. But, since instead of a circle, an equivalent

approximate polygon is considered, the normal is chosen as such.
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Figure 5.6: Numerical solution for validation

2. the normal passes through the vertex of the polygon: In this scenario, the line

joining the centre of the circle and the vertex is considered as the normal.

For the purpose of this simulation, choice of α = 0.01 is found to be approppriate for

the solution to converge. It is observed that the maximum deviation at a node from

the exact solution is only 1.7% which indicates that the modifications proposed to

PBiCGStab in order to couple it with DIIM has excellent performance.

5.2.3.1 Convergence and grid refinement analysis

Next a convergence and grid refinement analysis for the problem is carried out

before proceeding with the actuator disc. The purpose of this check is to ascertain

whether PBiCGStab performs satisfactorily for varying mesh sizes. To check this,

the criterion for the iterations to stop is fixed at OCΦ ≤ 10−13 where,

OCΦ ∼
∣∣||Φl−1||2 − ||Φl||2

∣∣
||Φl−1||2

× 100; l = iteration no.

Table 5.1 presents the values of OCΦ with increasing mesh sizes and various

values of α. It can be clearly seen from the table that the value of α determines
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Table 5.1: Grid Refinement Analysis

Mesh Size (△Xi△Xi△Xi (m)) ααα OCϕOCϕOCϕ

40× 40 (0.0500) 0.01 10−13

80× 80 (0.0250) 0.01 10−14

120× 120 (0.0167)
0.01 Diverges

0.0105− 0.03 Converges then Diverges
> 0.03 Diverges

160× 160 (0.0125)
0.01 Diverges
0.011 Converges then diverges

> 0.012 10−13

200× 200 (0.0100)
0.02 Converges then diverges
0.03 Converges then diverges

> 0.04 10−13

the nature of convergence of the solution. Also, the number of iterations taken is

dependent on α. Thus, choosing α judiciously is important to ascertain the conver-

gence of the solution. For some cases, it is observed that the solution converges to

the correct solution but then starts diverging again. Possible explanation for this

could be the excitation of the stable solution by the correction factor as the number

of iterations are increased. Thus, instead of OCΦ, some other parameter needs to

be used to decide the point at which the algorithm needs to be terminated in order

to get an acceptable solution.

It is observed that L2 norm of residual vector, ||rl||2 does not always approach
zero even when OCΦ has approached zero. This happens because the vector b′ is

non-stationary and is solution dependent. Thus, instead of OCΦ, iteration is based

on minimization of the value of ||rl||2. For this validation problem, criterion for

iteration to stop is modified to ||rl||2 ≤ 0.1(≈ 0). Table 5.2 gives the optimal

values of α correct to three decimal places with this new criterion. It can be seen

that scenarios for solutions diverging, after converging to the correct solutions, are

eliminated. It is observed that in some cases Cl causes ||rl||2 to remain nearly

the same over several iterations but much away from 0 which is indicative of very

slow convergence. Also in certain cases, as with the mesh size of 120 × 120, it

is observed that ||rl||2 stabilizes near a value which is way away from zero. In

this case, from Figure 5.7, it can be seen that the values for nodes inside Ω− has

not fully developed. But, if the iterations are allowed to continue, the solution

diverges. The reason for this could be attributed to two possible reasons. Firstly, as

pointed out by Berthelsen, one drawback of DIIM is that in certain rare scenarios

the values estimated at Γ become too inaccurate. This could probably be one such
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Figure 5.7: Contour plot showing solution not getting developed properly inside Ω−

even after 600 iterations for mesh size of 120× 120

Table 5.2: Optimal Values of α

Mesh size △Xi△Xi△Xi (m) ααα

40× 40 0.0500 0.01
80× 80 0.0250 0.01

120× 120 0.0167 ||rl||2 never approaches 0
160× 160 0.0125 0.011
200× 200 0.0100 0.018

case. Secondly, the way the circular interface is modelled i.e. modelling it as a

polygon instead of an exact circle makes the normals with respect to the polygon

slightly different from what they would have been if the actual circle was modelled.

However, regardless of this shortfall, the approach is still accurate enough for most

of the cases.

5.2.3.2 Performance of PNA

The next important aspect is to investigate the computational efficiency of the

algorithm. Table 5.3 shows the time taken per iteration when the iterative algorithm

is run serially and on 2, 4 and 6 cores. It is evident that the number of unknowns

increase, there is a reduction in the processing time. Of course using the maximum

possible number of cores does not essentially ascertain lower processing time when

the number of unknowns are less. This can be seen from the case of mesh size of
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Table 5.3: Analysis of Computational Time

Mesh Size (△Xi△Xi△Xi) Interior Nodes Time (in sec) taken per iteration for
1 core 2 cores 4 cores 6 cores

40× 40 (0.0500) 1.521× 103 0.20− 0.22 0.20− 0.22 0.20− 0.22 0.20− 0.22
80× 80 (0.0250) 6.241× 103 0.38− 0.40 0.43− 0.44 0.47− 0.49 0.48− 0.51
120× 120 (0.0167) 1.416× 104 0.81− 0.86 0.76− 0.79 0.83− 0.85 0.86− 0.89
160× 160 (0.0125) 2.528× 104 1.08− 1.11 1.10− 1.14 1.06− 1.10 1.10− 1.12
200× 200 (0.0100) 3.960× 104 1.38− 1.45 1.38− 1.40 1.33− 1.38 1.42− 1.48

AD case: 2700× 975 (1) 2.628× 106 9.75− 10.43 5.82− 6.28 4.15− 4.20 3.67− 3.83

Time taken is for a Intel® Core™i9-8950HK CPU @ 2.90GHz × 12 processor.

80× 80 where using more cores in fact increases the processing time because of an

increase in the number of communication between processors relative to the number

of equations in the linear system. Similarly, for mesh size of 160×160 and 200×200,
4 cores are seen to be optimal. From Chapter 4, it can be seen that a typical size of

the domain for a wind farm considered for this thesis is as large as 2700×975. With

the size of discretization adopted the number of nodes is as large as 106 Evidently for

each and every matrix operation carried out, this operation would incur a significant

computation time. It is observed that the processing time is reduced significantly

with 6 cores when such a great deal of data is dealt with. Compared to a sequential

process , there is almost a reduction of 60% in the time taken per iteration when 6

cores are used. One can imagine how much impact this can have in total time taken

for the solution to converge. A plot showing the comparison of CPU time is given

in Figure 5.8.
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Figure 5.8: Performance comparison for multi-cores
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5.2.4 Validation for multiple internal discontinuities

Berthelsen, 2004 demonstrated DIIM for single internal discontinuities only. In the

previous section, the numerical results obtained by modifying PBiCGStab for such a

case has been validated with respect to analytical results. However, if the approach

is to be applied for wind farms, a scenario for multiple internal discontinuities needs

to be investigated as well. The usual approach to test the stability and performance

of an iterative algorithm is to examine it at two levels viz.

1. Case-1: smaller value of the jumps

2. Case-2: larger value of the jumps

The results of the numerical simulation can be validated with certainty if the an-

alytical solution to the PDE is known beforehand. An analytical solution for ϕ is

given by

ϕ = (c1e
pX1 + c2e

−pX1)(c3 cos pX3 + c4 sin pX3) (5.22)

where, c1, c2, c3, c4 are constants is one of the many functions which satisfy eq.5.10 for

the case when b(X1, X3) = 0 (Grewal, 2012). Accordingly, the following analytical

function satisfying eq.5.10 is chosen.

ϕ(X1, X3) =

{
(0.5ekX1 + 1.5e−kX1)(2 cos kX3 + 7 sin kX3) , {X1, X3} ∈ Ω+

k′
i , {X1, X3} ∈ Ω−

i

(5.23)

where, k = 0.009 and Ω−
i denotes a typical zone of discontinuity inside the global

domain. Therefore, the jumps as required by DIIM come out to be

[ϕ]Ω−
i
= (0.5ekX1 + 1.5e−kX1)(2 cos kX3 + 7 sin kX3)− k′

i

[ϕn]Ω−
i ,X1

= k(0.5ekX1 − 1.5e−kX1)(2 cos kX3 + 7 sin kX3)

[ϕn]Ω−
i ,X3

= k(0.5ekX1 + 1.5e−kX1)(−2 sin kX3 + 7 cos kX3)

where, [ϕ]Ω−
i
is the jump in value of ϕ along the interface, [ϕn]Ω−

i ,X1
and [ϕn]Ω−

i ,X3

are the jumps in the derivatives in the direction normal to the vertical and the

horizontal interface i.e. along X1 and X3 direction respectively for Ω−
i ,

A domain, Ω of size 150 m× 50 m is considered with node to node distance
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Figure 5.9: Domain with multiple discontinuities

Figure 5.10: Contour plot of numerical values of ϕ for a domain with multiple
interior discontinuities and with smaller jump values

of 0.5 m in both the directions and DBC as defined by eq.5.23 is assigned at the

external boundaries (refer Figure 5.9). The three coloured rectangles shown inside

Ω are the regions of discontinuities denoted by Ω−
i ; i = {0, 1, 2}. The internal

discontinuities, Ω−
i are considered at arbitrary locations within the overall domain

in order to understand if the spatial distribution of the discontinuities have any

adverse numerical implication.

Case-1: To test this case, k′
i is considered as {1, 2, 3} for the regions Ω−

i ; i =

{0, 1, 2} respectively. From Figure 5.10 and the results presented in Table 5.4, it

can be observed that the numerical results show an excellent match with the ana-

lytical values. The solution also converged well within 350 iterations which is not

substantial and which is expected given the fact that the value of the jumps are

small.

90



5.2. Decomposed Immersed Interface Method

Table 5.4: Case-1: Values at a few selected coordinates

Region X1 X3 Theoretical Numerical

Ω+

10 3.5 4.2569 4.2149
10 45.5 8.8643 8.8535
125 3.5 4.4991 4.5044
125 45.5 9.3686 9.3831

Ω−
0

15.5 10.5 1 0.9965
18 13.5 1 1.0023

Ω−
1

63.5 30 2 1.6602
67 32.5 2 1.7173

Ω−
2

95 24 3 2.6890
97 17.5 3 2.5886

Figure 5.11: Contour plot of numerical values of ϕ for a domain with multiple
interior discontinuities and with larger jump values

Case-2: For this case, k′
i is considered as {11, 19, 15} for the regions Ω−

i ; i =

{0, 1, 2} respectively. From Figure 5.11 and the results presented in Table 5.5, it

can be observed that the numerical results are a bit away from the analytical values

but they are not too far off implying the validity of DIIM in such a case as well.

Also, unlike Case-1, the number of iterations are as large as 2500 in this case which

is expected because of a larger difference in the values at the interface.

These two cases clearly suggest that DIIM can perform well in a parallel

setting for larger domains with multiple discontinuities using the modification pro-

posed to the residual of PBiCGStab. As such, it is appropriate to say that the

approach can be implemented to simulate multiple actuators using the new model

proposed in Chapter 4.
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Table 5.5: Case-2: Values at a few selected coordinates

Region X1 X3 Theoretical Numerical

Ω+

10 3.5 4.2569 4.1851
10 45.5 8.8643 8.8163
125 3.5 4.4991 3.9383
125 45.5 9.3686 8.6598

Ω−
0

15.5 10.5 11 10.8076
18 13.5 11 10.7308

Ω−
1

63.5 30 19 16.7266
67 32.5 19 16.7345

Ω−
2

95 24 15 11.2049
97 17.5 15 11.4500

5.3 Simulation of back-to-back actuator discs

In this section, the simulations carried out for back-to-back actuators is presented.

The challenge is that since the wind profile at the face of the downstream actuators

are not known, the simulation for the three actuators could not be carried out

directly. Jensen’s model considers U∞ = constant. However, in the simulations

carried out, the focus is on a shear flow i.e. U∞ = V 1(X3) as defined by eq.2.1. The

value of a = 1/3 is considered throughout. Though both V 1 and V 3 represent the

full flow field, in this work, the horizontal velocity component, V 1 has only been

simulated, as the power output from an energy extracting actuator disc is dependent

mainly on this component.

5.3.1 Geometry

Though the approach is valid for multiple actuators, in this thesis, the study for upto

three back-to-back actuator discs each of diameter, � = 150 m with a hub height

of 149.3 m is presented. The spacing between adjacent actuators is considered to

be 5�. A zone of 3� is considered in front of the first actuator to allow for the

free flow of the wind towards the actuator. An additional zone of 5� is considered

downstream of the last actuator following which it is assumed that the initial velocity

profile is regained. The height of the domain is fixed by considering a zone of 5�

above the topmost point of the disc. Accordingly, the domain size of 2700 m×975 m
is considered. Node to node spacing along the X1 and X3 axes are considered to be

△X1 = 1 m and △X3 = 2 m respectively, which is a fine enough resolution for such

a large domain. As can be seen, the total number of nodes is close to a million.
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Figure 5.12: Domain showing the positions of the actuator discs and assumed bound-
ary conditions

It is to be noted that the velocity profile changes sign as X3 → 0 m with a

discontinuity at X3 = 0 m. One way to circumvent this issue is to assume the values

of V 1 near to the surface as 0. However, doing so would introduce a discontinuity

in the boundary condition which in turn might incur instabilities in the numerical

simulation. Instead, the model can be developed ignoring this small zone, the

effect of which is practically negligible in such a large domain. Figure 5.12 shows

the boundary conditions for the simulations presented in this work. The left and

right boundaries of the domain are assigned a velocity as defined by eq.2.1. The

bottom and top boundaries are assumed to have constant velocities throughout for

X3 = 1 m and X3 = 975 m respectively obtained by using eq.2.1. Thus, the domain,

Ω is defined by the region [0 m, 2700 m]× [1 m, 975 m].

5.3.2 Defining jumps

From the perspective of DIIM, the wind turbines can be considered to be the regions

of discontinuities in the domain of the wind bounded by the interface, Γ where the

change in velocity occurs. It has been discussed earlier in Section 4.3.1.1 that the

root width of blades of such large turbines can range from 3m to 4m. Thus, a zone of

width of the order of the root width of the blade is considered within which the free
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stream velocity changes as defined by eq.5.24 and eq.5.25. The boundary defined

by a rectangle of height equal to the diameter of the actuator and width equal to

the root width of the blade with its centre located at the hub height from the MSL

defines Γ. It is assumed that there is no change in the derivative of the V 1 in a

direction normal to Γ. The jumps for Ai can hence be defined as

1. Case 1: Actuators are spaced far enough such that V́i ≈ U∞

[V 1]f,i = U∞ − V 1,i,d = aU∞;

[V 1]w,i = V w,i − V 1,i,d = −aU∞ (5.24)

2. Case 2: Ai−1 and Ai are spaced such that V́i ≈ V 1,i−1

[V 1]f,i = V 1,i − V 1,i,d = aV 1,i = a(1− 2ak)i−1U∞

[V 1]w,i = V w,i − V 1,i,d = −aV 1,i = −a(1− 2ak)i−1U∞ (5.25)

In both the cases [V 1]t,i = [V 1]b,i = 0. As will be seen from the simulation results

that this approach of using Jensen’s model to evaluate the jumps show a good

resemblance with the theoretical values.

5.3.3 Convergence criteria

Iterative approaches require appropriate stopping critera to both detect when the

solution has been resolved to a required level of accuracy and also to prevent an

onset of divergent behavior due to issues of stability or floating-point arithmetic. For

many iterative methods, there are worst-case bounds on the number of iterations

based on eigenvalue distribution in the case of a normal matrix (which includes

the case of, e.g., symmetric matrices) and additionally non-orthogonality of the

eigenvectors in the case of non-normal matrices.

The simulations use BiCGStab method which combines two different ap-

proaches (BiCG and restarted GMRES) and is still amenable to some of this anal-

ysis. However, the DIIM approach introduces adjustments to the residual which

can be interpreted as the action of a dynamically induced implicit “flexible” pre-

conditioner. Thus, an implicit or explicit representation of the system matrix is not

available with which to apriori analyze expected convergence behavior or stability. A
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more heuristic approach is adopted by studying the residual to ascertain if sufficient

convergence has been achieved and to detect any divergence due to instability.

Accordingly, the following criteria has been set for convergence.

• Criteria 1: The value of residual norm, ||r||2 ∼ 10−2.

• Criteria 2: The relative value of ||r||2/||Φ||2 ∼ 10−5.

where, ||r||2 and ||Φ||2 are the L2 norms of the residual and the solution vectors

respectively. Some supplemental iterations (approx. 100− 200) are performed, and

it is observed that the residual has stabilized when these criteria are satisfied.

One additional issue one must be cognizant of is that these convergence crite-

ria are related to the discretized problem of algebraic equations which approximate

the physical model in question. The convergence tolerances therefore also should

not be more stringent than the error induced by the process of modeling reality or

the discretization process.

5.3.4 Results

The results of the simulations carried out for back-to-back actuators are now looked

into. The challenge is that since the velocity profile at the face of the downstream

actuators are not known, the simulation for the three actuators could not be carried

out straight away. Jensen’s model considers U∞ = constant. But, one of the

most important aspect of this work is to demonstrate that DIIM can be applied

to any general case and need not be confined to any specific or constant value of

U∞. As such, in the simulations carried out, the primary focus is on a shear flow

i.e. U∞ = V 1(X3) as defined by eq.2.1, one which is more realistic in ABL. As

mentioned earlier, a = 1/3 is considered throughout all the simulations.

5.3.4.1 Single actuator

First the simulation is run for a single actuator located at X1 = 448.3m. From

eq.5.24, the jumps conditions are

[V 1]f,0 = U∞ − V 1,0,d = U∞ − (1− a)U∞
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Figure 5.13: Plot of V 1 (m/s) considering A0 at X1 = 448.3 m

Figure 5.14: Change in velocity profile both upstream and downstream of A0

= aU∞ = 1/3U∞(X3)

[V 1]w,0 = V w,0 − V 1,0,d = (1− 2a)U∞ − (1− a)U∞

= −aU∞ = −1/3U∞(X3). (5.26)

The plot of the velocity field incorporating the effects of FSI is shown in Figure 5.13.

Figure 5.14 shows that the shear profile of the wind is maintained for a reasonable

distance. As expected, this profile starts getting affected approximately from X1 =

325m and the effect becomes more prominent closer to the actuator. At X1 = 449m,

that is just after the jump at the interface occurs, drop in the velocity is observed

as expected. The value of the velocity averaged over the height, after the drop

is around 10m/s which is nearly equal to the theoretical value of V 1,0 = (1 −
a)U∞ = (2/3)(1/2r0)

∫ 224.3

74.3
V 1(X3)dX3 = 9.28m/s. Similarly, the average velocity
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at the wake i.e. at X1 = 453m is observed to be approximately 5.5m/s which is

nearly equal to the average theoretical value of 4.64m/s. These results validate the

approach of DIIM to model FSI in the context of the classical actuator disc theory.

However, an interesting fact is observed from Figure 5.13 i.e. the presence of

stationary points in the velocity field and the formation of vortex. Such stationary

points are generated by the presence of vorticity. In fact, these points are going to

affect the amount of energy extracted from the downstream actuators, a parameter

not considered by the existing wind farm models.

5.3.4.2 Two actuators

For the case with more than one actuator, the classical actuator disc theory cannot

be applied straightaway as U∞ = V 1(X3) is no longer valid. This is where Jensen’s

model can be put to use. At this stage, two parameters need to be validated first:-

1. Average value of V 1 obtained numerically in the wake of A0 compared with

Jensen’s model

2. V́1 → U∞ as the distance from actuator A0 increases

For this purpose, numerical integration using Simpson’s rule was carried out to

determine the average value of the velocity within the expanded wake at X1 =

{650 m, 950 m, 1198 m, 1300 m, 1500 m, 1900 m}. The coordinates of the lower

and upper limits of the expanded wake i.e. the limits within which the numerical

integration is carried out to determine the average velocity is shown in Table 5.6.

Table 5.6: Average value of velocity as distance from actuator increases

X1(m)X1(m)X1(m) rrr X3,lX3,lX3,l X3,uX3,uX3,u Average velocity (m/s)
V J V JC Numerical

650 95 54.3 244.3 8.10 − 9.95
950 125 24.3 274.3 10.54 − 11.50
1198 149.8 −0.5 299.1 11.55 11.57 12.73
1300 160 −10.7 309.3 11.84 12.25 13.19
1500 180 −30.7 329.3 12.26 13.40 14.02
1900 220 −70.7 369.3 12.80 13.40 14.00

X3,l;X3,u: Lower and upper X3 coordinate of wake as proposed by Jensen.

Jensen’s work is based on a freely expanding wake. So, for larger dis-
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tances from actuator, X3,l tends to become negative which is physically inconsistent.

Hence, a correction to the average velocity obtained from Jensen’s model is required.

This is done by conserving the mass within the expanded wake.

2rρV J = ρX3,uV JC ⇒ V JC = 2rV J/X3,u (5.27)

where, ρ is the density of air, V J is the velocity for freely expanding wake, V JC is

the corrected velocity. As V JC → U∞, this correction is no longer required as it

can be assumed that the wake effect has died out and the original velocity has been

regained. From the results presented in Table 5.6, it can be observed that

1. average value of V 1 in the wake of A0 computed numerically shows a good

resemblance with the values obtained from Jensen’s model.

2. as the distance from the actuator increases, the value of the average velocity

increases such that at X1 = 1500 m, the value (14.02 m/s) nearly reaches

the average value of U∞ = 13.40 m/s, thus, validating the fact that Jensen’s

model can be considered to assign the jumps for A1.

Next, two cases are investigated such that A1 is placed at a distance where

1. average value of V́1 ≈ U∞;

2. average value of V́1 ≈ V 1,1

Case-1: A1 at X3 = 1500.3 m

For this case, the two actuators are considered to be placed far apart from each other

such that the wake effect of A0 on A1 has minimized to a great extent. Figure 5.15

shows the velocity field for two actuators considering a = 1/3 for both A0 and

A1. A0 is placed at X1 = 1500.3 m considering the fact that V 1,1 ≈ U∞, an as-

sumption consistent with Jensen’s model for downstream actuators. The numerical

simulations show a nice convergence.

Case-2: A1 at X3 = 1198.3m

In this case, when A1 lies within the wake of A0, the axial induction factor needs to

be examined. It is observed that for a = 1/3 that the convergence of the numerical

solution is only upto the order of 10−4 and the residual does not stabilize. This

means that it might not be possible to have a = 1/3 inside the wake and the power
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Figure 5.15: Plot of V 1 (m/s) considering A0 at X1 = 448.3 m and A1 at X1 =
1500.3 m

Figure 5.16: Plot of V 1 (m/s) considering A0 at X1 = 448.3 m and A1 at X1 =
1198.3 m

production will be even less. Accordingly, a needs to be modified to an acceptable

value. Eq.5.25 gives this value of modified axial induction factor as a(1− 2ak)2−1 =

0.27. Contour plot for this modified value of a is shown in Figure 5.16. As expected,

the residual stabilizes with this value of a.

Now when this case is compared with respect to Case-1, it can be clearly seen

that zones of low magnitudes of velocity are prevalent and the values of velocity have

even become negative implying a change in direction of the flow path.
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Figure 5.17: Plot of V 1 (m/s) considering A0 atX1 = 448.3m, A1 atX1 = 1198.3m
and A2 at X1 = 1948.3 m

5.3.4.3 Three actuators

Now that the applicability of both classical actuator disc theory and Jensen’s model

in the context of FSI has been established, the next step is to model a case with

three back-to-back actuators in order to check the performance of DIIM for a greater

number of actuator discs. As per eq.5.25, the modified axial induction factors for

this case are 0.27 for A1 and 0.23 for A2. A stable solution is obtained as expected.

Zones of low velocity are observed above A1 and A2 actuators signifying deficit of

wind energy locally.

5.3.4.4 Comparison with FLORIS

The NREL’s FLOw Redirection and Induction in Steady- state (FLORIS) model

(NREL, 2021) describes the steady-state properties of wakes in wind farms. It was

developed to optimize wind turbine control settings and turbine positions, taking

into account the effect of wakes on downstream turbines. To optimize the control

settings, the model includes the influence of pitch, rotor speed, and yaw settings on

the wake’s steady-state speed and direction. It is presented in detail in Gebraad

et al., 2016. FLORIS’s standard wake model is basically an extension of the Jensen

model. In this section, the results of implementing DIIM with respect to a wind

farm model modelled using FLORIS is compared.

Figure 5.18 shows the wake structure for each of the four cases dealt with in

the previous sections. It can be clearly seen that none of the plots show the effect
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of vorticity. The reason being, though Jensen’s model provides an outline of the

expected wake structure, it does not consider the impact vorticity has on the velocity

field in any way i.e. whether the flow is rotational or irrotational is not reflected in

the velocity field. Further, the model itself does not take into account the effect the

presence of blades will have on the velocity field. The proposed approach, on the

other hand is able to capture these details by using eq.4.19 to incorporate vorticity

coupled with the simplified FSI approach (DIIM) to incorporate the effect of the

presence of the geometry of the blades for preliminary analysis. This can clearly

be observed by comparing Figure 5.13, Figure 5.15, Figure 5.16, Figure 5.17 with

Figure 5.18-I, II, II, IV respectively.
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Figure 5.18: Plot of V 1 (m/s) using Jensen’s model in FLORIS
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Figure 5.19: Change in velocity profile (m/s) both upstream and downstream of A0

(using FLORIS)

The change in velocity profile for the case with one actuator is now compared.

The change in velocity profile using DIIM both upstream and downstream of the

actuator, A0 is shown in Figure 5.14. Compared to Figure 5.19 generated using

FLORIS, a significant change in the profile is observed. For instance, the effect

the actuator has on the upstream velocity at X1 = 400 m is clearly not reflected

when FSI effects are ignored in FLORIS model. Further, the velocity profile just

upstream and downstream (i.e. at X1 = 449 m and at X1 = 453 m respectively) of

the actuator are seen to be identical in FLORIS. However, because of the effects of

vorticity and FSI, the magnitude of velocity and hence, the thrust at X1 = 449 m

is observed to be on the higher side compared to the case when these effects are

ignored.

5.4 Discussions

In this chapter, a formulation for FSI simulation in two dimensional wind fields over

a domain which is large in size, by adapting the Decomposed Immersed Interface

Method has been proposed. In Chapter 4, it was seen that the way the actuator discs

were modelled resulted in extensive zones of low velocity which was unrealistic and

physically impossible. Now, from the contour plots in this chapter which implement

DIIM, it is clear that the FSI approach is working and more realistic results are

obtained and the issue of extensive zones of low velocity has been resolved. It

is important to note that the locations of the actuators are chosen as fractional
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numbers like 448.3 m, 1500.3 m, 1198.3 m, 1948.3 m. The reason for this is to

ensure that the interfaces do not coincide with the grid lines.

Also, the application of FSI to a large domain with wind turbines modelled

as actuator discs using the concepts of parallel numerical algorithms and Message

Passing Interface to achieve a fast and memory efficient simulation for a wind field

with constant vorticity has been demonstrated. The advantage of using multi-core

parallel process to achieve significantly lower runtime when compared to a sequential

process has also been presented.

Further, the simulation is done for a more realistic physical model and is

not based on any empirical model or assumptions. Unlike empirical models, the

approach used in these simulations can be used to simulate a practical wind energy

related problem more realistically. Different IIM strategies work on modifying the

coefficient matrix. However, Decomposed IIM works by correcting the residual

at each iteration and hence is convenient to apply with most existing iterative

algorithms. An attempt has been made to optimize the under-relaxation parameter

for a large wind field subjected to shear flow but it was found that the under-

relaxation parameter is case dependent as with most fluid dynamics problems. The

under-relaxation factor is found to be within the range of 0.01 − 0.05 for all the

simulations.

In this work, an FSI strategy using DIIM in the presence of vorticity and

demonstrated how this can be implemented to simplify complex CFD wind farm

models has been demonstrated. Modifications to Jensen’s model have been proposed

to compute the appropriate jump conditions for the purpose of FSI analysis when

wake-wake interaction is not pre-dominant. The values of the velocity field has been

computed theoretically using the actuator disc theory and modifications to Jensen’s

model and it is found that the results obtained numerically using FSI strategies are

in close resemblance with these theoretical values. Presence of stationary points

in the fluid are detected in the contour plots signifying the presence of vorticity

and the impact of FSI. This fact also illustrates the importance of FSI in the wind

farm models and how this interaction influences the generation of vortices. The

analytical wind farm models alone would not have been able to predict these vortices.

Though the simulations are carried out for a fixed value of axial induction factor,

the approach can still be used for cases where the axial induction factor varies from

turbine to turbine. It is expected that other wind farm models like the Gaussian
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models can be similarly implemented alongwith DIIM.
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Chapter 6

A linearized model of turbulence

using Rapid Distortion Theory

6.1 Introduction

In the chapters discussed so far, the aerodynamics of the ABL was discussed from

the perspective of mean velocity only and turbulence was not taken in to account.

However, turbulence is also an important aspect which cannot simply be ignored

and is a common phenomenon associated with almost every fluid flow problem. As

such in this chapter, turbulence has been investigated and a new model using Rapid

Distortion Theory (RDT) has been proposed. But, before proceeding, a few con-

cepts need to be highlighted. Velocity and pressure are two important parameters

which govern a multi-physics problem like aerodynamics. Although other parame-

ters like temperature also affect the behaviour of fluids, this thesis is centred around

steady state analysis of aerodynamics of wind farms. As such diurnal fluctuations

in temperature do not come into play. Since turbulence introduces fluctuations in

these physical parameters of the fluid, it has to be treated differently. Thus, any

physical parameter, Φ of fluid can be visualized in terms of a mean and a fluctuating

component which is commonly referred to as Reynolds Decomposition i.e.

Φ = Φ + Φ′. (6.1)

The issue with turbulence is that because of its disorderly nature, even if the same

experimental setup is used, the realization of the fields is going to be different every
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time. This is where ergodicity comes into picture. Ideally, this would mean that the

mean referred to here is the ergodic mean considered over a large set of realizations of

the experiment. Thus, some sort of averaging is required, be it spatial or temporal.

Reynolds, 1895 used certain averaging conditions not all of which were formulated

correctly. But, based on Reynolds’s work, Monin and Yaglom, 1971 stated that the

following five relations known as Reynolds conditions must be satisfied.

f + g = f + g (6.2a)

af = af ; a = constant (6.2b)

a = a; a = constant (6.2c)

∂f

∂s
=

∂f

∂s
; s is X1, X2, X3, t (6.2d)

fg = fg (6.2e)

where, f = f(X1, X2, X3, t) = f + f ′ and g = g(X1, X2, X3, t) = g + g′ and {f, g} ∈
Φ. These conditions form the basis of the derivations that have been undertaken in

this chapter. Using these equations, it is easy to show that the following relations

hold true.

f = f.1 = f (using eq.6.2e) (6.3a)

f ′ = f − f = f − f = f − f = 0 (using eq.6.2a and eq.6.3a) (6.3b)

fg = f g (using eq.6.2e) (6.3c)

fg′ = f g′ = 0 (using eq.6.2e and eq.6.3b) (6.3d)

From the above expressions, it is evident that the mean of the fluctuating compo-

nent, Φ′ is always 0. An important result that can be deduced from these averaging

conditions and one which is used quite frequently is the covariance of f and g.

fg = (f + f ′)(g + g′) = f g + f ′g′ + fg′ + gf ′

= f g + f ′g′ + fg′ + gf ′

= f g + f ′g′ (6.4)
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6.2 Multivariate random fields and moments

As is evident from the ergodicity of the turbulence, its nature is best described by

statistical measures rather than by some deterministic quantity. As such, few con-

cepts from the perspective of statistical mechanics need to be highlighted first before

moving on to the derivations pertaining to the proposed model. Determining the

precise statistical specification for any random field is cumbersome and difficult to

estimate. For this reason, practically studies are restricted to simpler statistical pa-

rameters which describe some particular statistical property of the flow. Moments

of the probability distribution is one such parameter. For N jointly distributed

random variables, ui; i ∈ {0 ≤ i ≤ N} with probability density function (pdf),

p(u1, u2, ...uN), the moment is defined as

Bk1k2...kN = uk1
1 uk2

2 ...ukN
N

=

∫ ∞

−∞

∫ ∞

−∞
...

∫ ∞

−∞
uk1
1 uk2

2 ...ukN
N p(u1, u2, ...uN)du1du2...duN (6.5)

where, ki ∈ N and order of the moment =
∑

ki. Thus, the mean can be visualized

as the moment of first order. However, the central moment is another moment that

is used quite often and is defined by

bk1k2...kN = (u1 − u1)k1(u2 − u2)k2 ...(uN − uN)kN (6.6)

The second order moment b2 is referred to as the variance, σ2
ui

and its square root

σui
is referred to as the standard deviation. Similarly, the second order moment

of two variables uj and uk defined by b11 = σujuk
= (uj − uj)(uk − uk) is referred to

as the covariance.

Gaussian random fields are one of the most common observed in nature. For

this reason, gaussian distribution is considered to model the turbulence. For N

jointly distributed random variables, ui; i ∈ {0 ≤ i ≤ N} the gaussian probability

density function (pdf) is defined by

p(u1, u2, ..., uN) =
1√

(2ϕ)N .|ΣΣΣ|
exp

{
−1

2
(U− µµµ)TΣΣΣ−1(U− µµµ)

}

=
1√

(2ϕ)N .|ΣΣΣ|
exp

{
−1

2

N∑
j,k=1

gjk(uj − aj)(uk − ak)

}
(6.7)
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where, {aj, gjk} ∈ R, U = [u1 u2 ... uN ]
T and µµµ = [µ1 µ2 ... µN ]

T are vectors of

random variables, ui and their respective means, ΣΣΣ is the variance-covariance matrix

of size N ×N of the random variables and |ΣΣΣ| denotes its determinant value. From

the concepts of linear algebra, it is known that the determinant value of a matrix

is the product of its eigen values i.e. if λi; i ∈ {0 ≤ i ≤ N} are the eigen values of

ΣΣΣ, then

|ΣΣΣ| =
N∏
i=1

λi ⇒ |ΣΣΣ|1/2 =
N∏
i=1

λ
1/2
i

It is evident from the above expression that λi > 0 as p ∈ R and hence, ΣΣΣ should

be positive semi-definite. It can be easily seen that all central moments of odd

order are 0. Isserlis, 1918 deduced the central moments of even order for jointly

distributed gaussian variables, wi; {i : i ∈ N, 1 ≤ i ≤ 2K} (out of which some might

be identical) with mean 0 and presented a general rule;

w1w2...w2K =
∑

wi1wi2 wi3wi4 ... wi2K−1
wi2K (6.8)

In other words, the even moment can be expressed as the sum of the product of

the covariances of all possible pairs of 2K random variables. Thus, the fourth order

moment can be expressed as

b1111 = w1w2w3w4 = w1w2 w3w4 + w1w3 w2w4 + w1w4 w2w3 (6.9)

It has been shown earlier in eq.6.3b that mean of the turbulent components is 0.

Thus, using the above equation, the fourth order moment of turbulent components

can be expressed as

u′
1u

′
2u

′
3u

′
4 = u′

1u
′
2 u′

3u
′
4 + u′

1u
′
3 u′

2u
′
4 + u′

1u
′
4 u′

2u
′
3 (6.10)

6.3 A RDT based model

It is not unknown that non-linear PDEs like the Navier-Stokes equations which

define the fluid flow consume considerable computational time. This is why lin-

earization like RDT comes into picture. In this section, equations for the turbulent

components have been derived using Reynolds conditions introduced in the previous

section. Air can be considered as an incompressible, homogeneous Newtonian fluid

having total velocity field Vj. From equation of continuity of an incompressible
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fluid,
∂Vj

∂Xj

= 0 (6.11)

Applying Reynold’s averaging (Monin and Yaglom, 1971) to the the above equation;

∂V j

∂Xj

= 0 (6.12)

Eq.6.11 can be re-written as
∂V j

∂Xj

+
∂v′j
∂Xj

= 0 (6.13)

Subtracting eq.6.12 from eq.6.13;

∂v′j
∂Xj

= 0 (6.14)

Ignoring body forces, the well known Navier Stokes equations are given by:

∂Vj

∂t
+ Vk

∂Vj

∂Xk︸ ︷︷ ︸
Advection

= − 1

ρ
.
∂P

∂Xj︸ ︷︷ ︸
Source

+ ν
∂2Vj

∂Xk∂Xk︸ ︷︷ ︸
Diffusion

(6.15)

eq.6.15 is also a form of convection-diffusion equation where the advection, source

and diffusion are as shown. However, unlike a standard convection-diffusion equa-

tion, there is no separate equation for source term. Using eq.6.11, the advection

term of eq.6.15 can be modified and written as,

∂Vj

∂t︸︷︷︸
Term-1

+
∂(VjVk)

∂Xk︸ ︷︷ ︸
Term-2

= −1

ρ
.
∂P

∂Xj︸ ︷︷ ︸
Term-3

+ ν
∂2Vj

∂Xk∂Xk︸ ︷︷ ︸
Term-4

(6.16)

Taking mean of eq.6.15, the Reynold’s Averaged Navier Stokes equations are ob-

tained:
∂V j

∂t︸︷︷︸
Term-1

+
∂(V jV k + v′jv

′
k)

∂Xk︸ ︷︷ ︸
Term-2

= −1

ρ
.
∂P

∂Xj︸ ︷︷ ︸
Term-3

+ ν
∂2V j

∂Xk∂Xk︸ ︷︷ ︸
Term-4

(6.17)

Subtracting eq.6.17 from eq.6.16the following simplification can be obtained:

Term-1:
∂(Vj − V j)

∂t
=

∂v′j
∂t
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Term-2:
∂[VjVk − (V jV k + v′jv

′
k)]

∂Xk

=
∂[V kv

′
j + V jv

′
k + v′jv

′
k − v′jv

′
k]

∂Xk

Term-3:
∂(P − P )

∂Xj

=
∂p′

∂Xj

Term-4:
∂2(Vj − V j)

∂Xk∂Xk

=
∂2v′j

∂Xk∂Xk

Thus, the following equation is obtained

∂v′j
∂t

+
∂

∂Xk

(V kv
′
j + V jv

′
k︸ ︷︷ ︸

Linear or
Rapid Terms

+ v′jv
′
k − v′jv

′
k︸ ︷︷ ︸

Non-Linear or
Slow Terms

) = −1

ρ
.
∂p

∂Xj

+ ν
∂2v′j

∂Xk∂Xk

(6.18)

Let [V ] = [V 1 V 2 V 3]
T = [V 1(X3) 0 0]T and [v] = [v′1 v′2 v′3]

T .

The Linear or Rapid terms of the first equation can be written as

∂(V kv
′
j + V jv

′
k)

∂Xk

=


(
∂(V 1v

′
j)

∂X1

+
∂(V 2v

′
j)

∂X2

+
∂(V 3v

′
j)

∂X3

)
︸ ︷︷ ︸

Term-L1

+

(
∂(V jv

′
1)

∂X1

+
∂(V jv

′
2)

∂X2

+
∂(V jv

′
3)

∂X3

)
︸ ︷︷ ︸

Term-L2

 (6.19)

Since V 2 = 0 and V 3 = 0, Term-L1 reduces to

∂(V 1v
′
j)

∂X1

= v′j
∂V 1

∂X1

+ V 1

∂v′j
∂X1

= V 1

∂v′j
∂X1

(As V 1 is a function of X3 only)

Term-L2 can be modified as below:-

1. For j=1,

∂(V 1v
′
1)

∂X1

+
∂(V 1v

′
2)

∂X2

+
∂(V 1v

′
3)

∂X3

= V 1

 ∂v′1
∂X1

+
∂v′2
∂X2

+
∂v′3
∂X3︸ ︷︷ ︸

=0 as per eq.6.14

+v′3
∂V 1

∂X3

= v′3
∂V 1

∂X3
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(As V 1 is a function of X3 only, the partial derivatives w.r.t. X1 and X2 become 0)

2. For j = 2 & j = 3, this term vanishes as V 2 = 0 and V 3 = 0

The Non-Linear or Slow terms can be written as

∂(v′jv
′
k − v′jv

′
k)

∂Xk

=

∂(v′jv′1)∂X1

+
∂(v′jv

′
2)

∂X2

+
∂(v′jv

′
3)

∂X3︸ ︷︷ ︸
Term-NL1

−

∂v′jv
′
1

∂X1

+
∂v′jv

′
2

∂X2

+
∂v′jv

′
3

∂X3︸ ︷︷ ︸
Term-NL2


 (6.20)

Term-NL1 can be simplified further using eq.6.14

v′1
∂v′j
∂X1

+ v′2
∂v′j
∂X2

+ v′3
∂v′j
∂X3

+ v′j

 ∂v′1
∂X1

+
∂v′2
∂X2

+
∂v′3
∂X3︸ ︷︷ ︸

=0 as per eq.6.14

 = v′1
∂v′j
∂X1

+ v′2
∂v′j
∂X2

+ v′3
∂v′j
∂X3

In a similar way, Term-NL2 can be written as

∂v′jv
′
1

∂X1

+
∂v′jv

′
2

∂X2

+
∂v′jv

′
3

∂X3

=
∂(v′jv

′
1)

∂X1

+
∂(v′jv

′
2)

∂X2

+
∂(v′jv

′
3)

∂X3

= v′1
∂v′j
∂X1

+ v′2
∂v′j
∂X2

+ v′3
∂v′j
∂X3

In tensor notation,

∂v′j
∂t

+ V 1

∂v′j
∂X1

+ v′3
dV j

dX3

δj1 + v′k
∂v′j
∂Xk

− v′k
∂v′j
∂Xk

= −1

ρ

∂p′

∂Xj

+ ν
∂2v′j

∂Xk∂Xk

(6.21)

The pressure fluctuation, p′ can be obtained by taking divergence of both sides (i.e.

using operator ∂/∂Xl)

∂

∂Xl

[
∂v′j
∂t

+ V 1

∂v′j
∂X1

+ v′3
∂V j

∂X3

+ v′k
∂v′j
∂Xk

− v′k
∂v′j
∂Xk

]
=

∂

∂Xl

[
−1

ρ

∂p′

∂Xj

+ ν
∂2v′j

∂Xk∂Xk

]
⇒ ∂

∂t

∂v′j
∂Xl

+ V 1
∂

∂X1

∂v′j
∂Xl

+
∂V 1

∂Xl

∂v′j
∂X1

+ v′3
∂

∂X3

∂V j

∂Xl

+
∂v′3
∂Xl

∂V j

∂X3

+ v′k
∂

∂Xk

∂v′j
∂Xl

+

∂v′k
∂Xl

∂v′j
∂Xk

−

(
∂v′k
∂Xl

∂v′j
∂Xk

+ v′k
∂

∂Xk

∂v′j
∂Xl

)
= −1

ρ

∂2p′

∂Xl∂Xj

+ ν
∂2

∂Xk∂Xk

∂v′j
∂Xl
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Putting l = j = 1, 2, 3 and adding the three equations, the first, second,

fourth, sixth and last term on left hand side and second term on right hand side

become 0.

∂2p′

∂Xj∂Xj

= −ρ

(
∂V 1

∂Xj

∂v′j
∂X1

+
∂v′3
∂Xj

∂V j

∂X3

+
∂v′k
∂Xj

∂v′j
∂Xk

− ∂v′k
∂Xj

∂v′j
∂Xk

)

= −ρ

(
2
dV 1

dX3

∂v′3
∂X1

+
∂v′k
∂Xj

∂v′j
∂Xk

− ∂v′k
∂Xj

∂v′j
∂Xk

)
(6.22)

6.3.1 Linearization

For linearization, the non-linear term can be approximated as

(v′jv
′
k − v′jv

′
k) ≃ κ(V kv

′
j + V jv

′
k).κ > 0 (6.23)

Therefore, eq.6.18 can be written as

∂v′j
∂t

+ (1 + κ)
∂

∂Xk

(V kv
′
j + V jv

′
k) = −

1

ρ
.
∂p′

∂Xj

+ ν
∂2v′j

∂Xk∂Xk

(6.24)

which can be simplified to

∂v′j
∂t

+ (1 + κ)

(
V k

∂v′j
∂Xk

+ v′k
∂V j

∂Xk

)
= −1

ρ
.
∂p′

∂Xj

+ ν
∂2v′j

∂Xk∂Xk

(6.25)

and equation for pressure becomes

∂2p′

∂Xj∂Xj

= −ρ(1 + κ)

(
∂Vk

∂Xj

∂v′j
∂Xk

+
∂V j

∂Xk

∂v′k
∂Xj

)
(6.26)

κ can be determined so that the variances of the left and right hand sides become

equal. The following criteria equates the sum of the variances of all components of

the turbulence with the same weight.

(v′jv
′
k − v′jv

′
k)(v

′
jv

′
k − v′jv

′
k) = κ2(V kv′j + V jv′k)(V kv′j + V jv′k) (6.27)

The left hand side of the above equation can be written as:

(v′jv
′
k − v′jv

′
k)(v

′
jv

′
k − v′jv

′
k) = v′jv

′
kv

′
jv

′
k − 2v′jv

′
k.v

′
jv

′
k + v′jv

′
k.v

′
jv

′
k
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= v′jv
′
kv

′
jv

′
k − 2v′jv

′
k.v

′
jv

′
k + v′jv

′
k.v

′
jv

′
k

= v′jv
′
kv

′
jv

′
k − 2v′jv

′
k.v

′
jv

′
k + v′jv

′
k.v

′
jv

′
k

= v′jv
′
kv

′
jv

′
k − v′jv

′
k.v

′
jv

′
k

If v′j and v′k are considered to follow joint gaussian pdf, then as per eq.6.10, the

fourth order moment i.e. the first term of the equation gets simplified to

v′jv
′
kv

′
jv

′
k = v′jv

′
k.v

′
jv

′
k + v′jv

′
j.v

′
kv

′
k + v′jv

′
k.v

′
kv

′
j = 2v′jv

′
k.v

′
jv

′
k + v′jv

′
j.v

′
kv

′
k

Thus,

(v′jv
′
k − v′jv

′
k)(v

′
jv

′
k − v′jv

′
k) = v′jv

′
k.v

′
jv

′
k + v′jv

′
j.v

′
kv

′
k

The right hand side of the above equation can be simplified as follows:

(V kv′j + V jv′k)(V kv′j + V jv′k) = V kv′jV kv′j + V jv′kV jv′k + 2V kv′j.V jv′k

From the subscripts, it can be observed that the first two terms are identical i.e.

V kv
′
jV kv

′
j = V jv

′
kV jv

′
k = V mV mv

′
lv

′
l. Using similar subscripts, the last term can be

written as V lV mv
′
lv

′
m. Using eq.6.2, the above expression simplifies to

V kv′jV kv′j + V jv′kV jv′k + 2V kv′j.V jv′k = 2(V mV mv′lv
′
l + V mV lv′lv

′
m)

= 2V m(V mv′lv
′
l + V lv′lv

′
m)

= 2V m(V mv′lv
′
l + V lv′lv

′
m)

= 2V m(V mv′lv
′
l + V lv′lv

′
m)

Thus,

(v′jv
′
k − v′jv

′
k)(v

′
jv

′
k − v′jv

′
k) = κ2(V kv′j + V jv′k)(V kv′j + V jv′k)

⇒v′jv
′
k.v

′
jv

′
k + v′jv

′
j.v

′
kv

′
k = 2κ2V m(V mv′lv

′
l + V lv′lv

′
m)

⇒κ =

√
v′jv

′
j.v

′
kv

′
k + v′jv

′
k.v

′
jv

′
k

2V m(V m.v′lv
′
l + V l.v′lv

′
m)

(6.28)

With respect to eq.6.21, the linearized form is

∂v′j
∂t

+ (1 + κ)

(
V 1

∂v′j
∂X1

+ v′3δj1
dV j

dX3

)
= −1

ρ
.
∂p

∂Xj

+ ν
∂2v′j

∂Xk∂Xk

(6.29)
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And for pressure, eq.6.22 becomes

∂2p

∂Xj∂Xj

= −ρ(1 + κ)

(
dV 1

dXj

∂v′j
∂X1

δj3 +
dV 1

dX3

∂v′3
∂X1

δj1

)
(6.30)

6.4 Non-Dimensionalizing

An usual approach to run numerical simulations on these sort of fluid flow equations

is by non-dimensionalizing the fields so that one does not have to worry about the

units or the effect they might have in terms of the order of magnitude of their values

in numerical simulation. This can be done by using the scaling relations

v̆j =
v′j − Vr

Vs

; X̆j =
Xj −Xr

Xs

; t̆ =
t− tr
ts

; p̆ =
p′ − Pr

Ps

where, the terms .̆ denote the dimensionless velocity, distance, time and pressure

terms and the terms with the subscripts r and s denote the reference values and

the corresponding scale factors respectively. Once the length and velocity scales are

defines, the time scale need not be defined explicitly and can instead be derived

from these by using the relation

ts =
Xs

Vs

Before moving onto non-dimensionalizing the equations derived in the previous sec-

tion, the derivative operators need to be expressed in terms of non-dimensionalized

quantities as well. The partial derivative of any two quantities denoted by Θ and

Φ with respect to their non-dimensional counterpart Θ̆ and Φ̆ and having a scale

factor of Θs and Φs can be written in the form

∂Θ = Θs∂Θ̆; ∂Φ = Φs∂Φ̆.

Hence, the following operator can be obtained

∂

∂Φ
=

1

Φs

.
∂

∂Φ̆
.

Differentiating again,

∂2

∂Φ2
=

∂

∂Φ

[
∂

∂Φ

]
=

1

Φs

.
∂

∂Φ̆

[
1

Φs

.
∂

∂Φ̆

]
=

1

Φ2
s

.
∂2

∂Φ̆2
.
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Accordingly, for derivative of order n, the following derivative operator is obtained.

∂n

∂Φn
=

1

Φn
s

.
∂n

∂Φ̆n

Thus, nth order derivative of Θ w.r.t. Φ in terms of their non-dimensionalized

counterpart can be written as

∂nΘj

∂Φn
=

Θs

Φn
s

∂nΘ̆j

∂Φ̆n

Setting the reference values as 0 and using the expression eq.2.1 and eq.2.2, V 1 and

dV 1/dX3 can be non-dimensionalized as

V̆1 =
V 1

Vs
=

uτ
Vsκ′

(
ln

(
X3

z0

)
+ 5.75

(
X3

h

)
− 1.875

(
X3

h

)2

− 4

3

(
X3

h

)3

+
1

4

(
X3

h

)4
)

(6.31)

dV 1

dX3

=
Vs

Xs

dV̆1

dX̆3

=
uτ

κ′

(
1

X3

+
5.75

h
− 3.750

h2
X3 −

4

h3
X2

3 +
X3

3

h4

)
(6.32)

Using this approach, the equation of continuity; eq.6.14 can be non-dimensionalized

as
∂vj
∂Xj

= 0⇒ Vs

Xs

∂v̆j

∂X̆j

= 0⇒ ∂v̆j

∂X̆j

= 0 (6.33)

Similarly, the momentum equations, eq.6.21 can be non-dimensionalized to

V 2
s

Xs

(
∂v̆j

∂t̆
+ V̆1

∂v̆j

∂X̆1

+ v̆3
dV̆j

dX̆3

δj1 + v̆k
∂v̆j

∂X̆k

− v̆k
∂v̆j

∂X̆k

)
= −1

ρ

Ps

Xs

∂p̆

∂X̆j

+ ν
Vs

X2
s

∂2v̆j

∂X̆k∂X̆k

(6.34)

Dividing throughout by νVs/X
2
s , the following equation is obtained:-

VsXs

ν︸ ︷︷ ︸
Re

(
∂v̆j

∂t̆
+ V̆1

∂v̆j

∂X̆1

+ v̆3
dV̆j

dX̆3

δj1 + v̆k
∂v̆j

∂X̆k

− v̆k
∂v̆j

∂X̆k

)
= −PsXs

µVs

∂p̆

∂X̆j

+
∂2v̆j

∂X̆k∂X̆k

⇒

(
∂v̆j

∂t̆
+ V̆1

∂v̆j

∂X̆1

+ v̆3
dV̆j

dX̆3

δj1 + v̆k
∂v̆j

∂X̆k

− v̆k
∂v̆j

∂X̆k

)
= − Ps

ρV 2
s

∂p̆

∂X̆j

+
1

Re

∂2v̆j

∂X̆k∂X̆k

(6.35)
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where, Reynolds number, Re = VsXs/ν. Accordingly, the linearised form of mo-

mentum equations can be written as(
∂v̆j

∂t̆
+ (1 + κ)

(
V̆1

∂v̆j

∂X̆1

+ v̆3
dV̆j

dX̆3

δj1

))
= − Ps

ρV 2
s

∂p̆

∂X̆j

+
1

Re

∂2v̆j

∂X̆k∂X̆k

(6.36)

From this final form of the equation, it would be appropriate to set the pressure

scale Ps as ρV
2
s rather than assuming some arbitrary value. A suitable choice of the

scaling factors Xs and Vs is required to execute the numerical simulation effectively.

A detailed discussion on the same is done subsequently in Section 6.7.

6.5 Discretization

From Chapter 3, it is known that any derivative can be expressed either by one-

sided differencing scheme or by central differencing scheme. However, the choice of

the scheme depends on the nature of the problem itself. In this section, a discussion

on the choice of the appropriate differencing schemes for the equations of continuity

and momentum are presented.

6.5.1 Continuity equation

In the case of fluids, an important physical aspect is its direction of flow and the same

should be reflected in the FDE approximation of its governing PDEs. Numerically

it can be shown that the central differencing scheme cannot be used to express the

derivatives in the equation of continuity, eq.6.14 in order to reflect the direction of

flow but one-sided differencing schemes can. Thus, one-sided first order differencing

scheme is implemented which is often referred to as the first order upwind scheme.

∂v′j
∂Xj

= 0⇒
v′t1 − v′t1l−1

△X1

+
v′t2 − v′t2m−1

△X2

+
v′t3 − v′t3n−1

△X3

= 0 (6.37)

It can be argued that a higher order differencing or at least a second-order differ-

encing acheme might have been more accurate. However, many exsisting fluid flow

algorithms use first order differencing for continuity equations. Also, the main task

at hand is to check the performance of the proposed RDT model in light of the

already existing algorithms and not to improve upon its accuracy. It can be noted

that all the terms in the above equations are considered at time instance t. The
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impact of t will be clear when the discussion on the momentum equations are done

in Section 6.5.2.

6.5.2 Momentum equations

In this section, the FDE of eq.6.29 is examined closely. Let the fluctuating com-

ponent of Φ in jth direction at a node (l,m, n) in space and at time instance, t be

denoted by Φt
j. Similarly, for neighbouring nodes, suffixes are added only for the

node whose co-ordinate changes w.r.t. (l,m, n). For example, the parameters at

(l − 1,m, n), (l − 2,m, n), (l,m− 1, n) are denoted by Φt
jl−1

, Φt
jl−2

, Φt
jm−1

.

The momentum equation consists of derivatives for both velocity and pres-

sure. The nature of the pressure is that it is not dependent on direction. Thus, a

central differencing approach can be used for the first order pressure derivative in

space and it is second order accurate.

An interesting thing to note in the momentum equation is the presence of a

derivative with respect to time. Central differencing for this term does not make

any sense as time always moves forward. Naturally the corresponding FDE of such a

derivative will use forward differencing which in turn will have a term at time t and

another at time t + 1. This is referred to as ‘forward marching’ in time. A second

or a higher order differencing in time which would have resulted in dependency on

time step t−1 is not required because the result at time step t already has the effect

of time step t− 1 temporally.

Now the question arises whether the remaining terms are to be considered

at time instance t or at time instance t + 1. This is where two approaches to for-

mulate the FDE come into picture viz. implicit and explicit. The implicit approach

considers all the terms at time step t+ 1 i.e.

∂v′j
∂t

+ (1 + κ)

(
V 1

∂v′j
∂X1

+ v′3δj1
dV j

dX3

)
= −1

ρ
.
∂p′

∂Xj

+ ν
∂2v′j

∂Xj∂Xj

⇒
v′t+1
j − v′tj
△t

+ (1 + κ)

(
V 1

v′t+1
j − v′t+1

jl−1

△X1

+ v′t+1
3 δj1V jX3

)
=

− 1

2ρ△Xj

[(p′t+1
l+1 − p′t+1

l−1 )δj1 + (p′t+1
m+1 − p′t+1

m−1)δj2 + (p′t+1
n+1 − p′t+1

n−1)δj3].

Evidently when the quantities are computed at time step t + 1, except for v′tj , all
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the other quantities are unknown. This makes the equations more complicated and

highly coupled with the quantities computed at time step t. It is known that this

approach is unconditionally stable. However, numerically, such intensively coupled

equations would incur greater computational time for a single iteration of any iter-

ative algorithm used to solve these equations. This is where the explicit approach

comes into picture.

In explicit approach, the approximated FDE for the spatial derivatives in the

above equation are considered at time step t instead of time step t+ 1 i.e.

∂v′j
∂t

+ (1 + κ)

(
V 1

∂v′j
∂X1

+ v′3δj1
dV j

dX3

)
= −1

ρ
.
∂p′

∂Xj

+ ν
∂2v′j

∂Xj∂Xj

⇒
v′t+1
j − v′tj
△t

+ (1 + κ)

(
V 1

v′tj − v′tjl−1

△X1

+ v′t3 δj1V jX3

)
=

− 1

2ρ△Xj

[(p′tl+1 − p′tl−1)δj1 + (p′tm+1 − p′tm−1)δj2 + (p′tn+1 − p′tn−1)δj3]

− ν[p(v′tjl+1
+ v′tjl−1

) + q(v′tjm+1
+ v′tjm−1

) + r(v′tjn+1
+ v′tjn−1

) + sv′tj ]

⇒(v′t+1
j − v′tj ) + (1 + κ)△ t

(
V 1

v′tj − v′tjl−1

△X1

+ v′t3 δj1V jX3

)
=

− △t

2ρ△Xj

.[(p′tl+1 − p′tl−1)δj1 + (p′tm+1 − p′tm−1)δj2 + (p′tn+1 − p′tn−1)δj3]

− ν △ t[p(v′tjl+1
+ v′tjl−1

) + q(v′tjm+1
+ v′tjm−1

) + r(v′tjn+1
+ v′tjn−1

) + sv′tj ]. (6.38)

Clearly this approach reduces the coupling between the nodes both spatially and

temporally because all the terms in the FDE are now known and v′t+1
j is the only

term that is computed from the historical data. As such, compared to the implicit

approach the computational cost also reduces. But, this reduced coupling comes at

the cost of stability and thus requires a stability analysis. In case of inviscid fluids,

the above PDE becomes hyperbolic and can be written as

(v′t+1
j − v′tj ) + ζ(v′tj − v′tjl−1

) + (1 + κ)△ tv′t3 δj1V jX3
=

− △t

2ρ△Xj

.[(p′tl+1 − p′tl−1)δj1 + (p′tm+1 − p′tm−1)δj2 + (p′tn+1 − p′tn−1)δj3]. (6.39)

The above equation can be rearranged such that the velocity, v′t+1
j can be expressed
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in terms of the quantities at the previous time step. which can be rearranged as

v′t+1
j =(1− ζ)v′tj + ζv′tjl−1

− (1 + κ)△ tv′t3 δj1V jX3

− △t

2ρ△Xj

.[(p′tl+1 − p′tl−1)δj1 + (p′tm+1 − p′tm−1)δj2

+ (p′tn+1 − p′tn−1)δj3] (6.40)

where, convection number, ζ = (1 + κ)V 1
△t

△X1
. As per Courant–Friedrichs–Lewy

(CFL) condition, to ensure stability of the discretized equation, ζ ≤ 1. But, if

steady-state flow is considered, this criteria does not come into picture as the term
∂v′j
∂t

becomes 0. As only steady-state flow is considered in the current thesis, a

detailed investigation into CFL criteria is not undertaken.

6.6 SIMPLER Algorithm

Since only steady state flow is considered, for clarity the superscript t is henceforth

removed. Accordingly, the discussion and the equations presented in this section

are in line with steady state form of the non-dimensionalized equation eq.6.35.

As discussed earlier, Patankar and Spalding, 1972 first introduced SIMPLE (Semi

implicit pressure linked) algorithm. Though SIMPLER has been implemented in

the present work, an insight into SIMPLE is required beforehand so that the reason

for using SIMPLER can be established.

SIMPLE begins by guessing the initial velocity fields; v̆∗j and pressure field p̆∗.

The discretized momentum equations are then solved using these guessed values.

Subsequently, using pressure correction equations, the pressure correction, p′′ at

each node is obtained. Using these values of p′′, the values of velocity correction, v′′j

are obtained. The new corrected velocity and pressure fields are then obtained by

using

v̆j = v̆∗j + v′′j

p̆′ = p̆∗ + p′′ (6.41)

The newly generated velocity and pressure fields are subsequently utilized in the next

step of the iteration to further refine the values of v′′ and p′′. The steps are repeated

until a converged solution is obtained. The steps to be carried out are outlined
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in Algorithm 5. αpc is the under-relaxation parameter needed to ensure numerical

Algorithm 5 SIMPLE

Input: v̆∗j , p̆
∗

while i=1,2,3,... do
Solve the momentum equations to obtain v̆∗j
Solve for p′′

p̆new = p̆∗ + αpcp
′′

Compute v′′j
v̆j,new = v̆∗j + v′′j
if converged then

break
else

p̆∗ = p̆new
v̆∗j = v̆j,new

end if
end while

stability. The momentum and pressure correction equations can be solved using any

of the suitable iterative solvers presented earlier in Chapter 3. BiCGStab has been

used as the preferred solver in this work. Additionally, the under-relaxation for

the momentum equations is done by using the relation v̆j,new = αv̆j + (1− α)v̆n−1
j ,

where v̆n−1
j is the value of v̆j at end of iteration-n−1, v̆j is the computed value from

iteration n without any under-relaxation and v̆j,new is the final under-relaxed value

at the end of iteration-n of each iteration step of BiCGStab.

The issue with SIMPLE algorithm is that if the pressure field guessed ini-

tially is too far off, the solution will take much longer to converge. This motivated

Patankar, 1980 to revise SIMPLE algorithm and propose SIMPLER. Just like SIM-

PLE, the momentum equations are also under-relaxed in this case. However, it is

interesting to note that the pressure field is computed from the velocity fields and as

such there is no chance that the pressure field will be far off from the actual value.

Hence, the pressure field is not required to be corrected.

Comparing the two algorithms, one can note that BiCGStab needs to be run

twice for every iteration of SIMPLE but thrice in the case of SIMPLER. At first

glance, it might therefore seem that SIMPLER requires more computation time for

every iteration and must not be preferred but then SIMPLER is much more efficient

as the pressure field is not just any random field but values obtained from assumed

velocity field and though the computation time per iteration is higher, the overall
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Algorithm 6 SIMPLER

Input: v̆∗j
while i=1,2,3,... do

Compute the pseudo-velocities, ṽj
Solve for p̆
p̆∗ = p̆
Solve the momentum equations to obtain v̆∗j
Solve for p′′

Compute v′′j
v̆j,new = v̆∗j + v′′j
if converged then

break
else

v̆∗j = v̆j,new
end if

end while

time required to reach a converged solution for both pressure and velocity field is

less in SIMPLER. As such SIMPLER has been used as the preferred algorithm.

Of course SIMPLEC or PISO could also have been used but as highlighted earlier

the performance of these algorithms are flow dependent and it is hard to justify

which algorithm (SIMPLER/SIMPLEC/PISO) would perform better in the current

scenario.

6.6.1 Staggered grid applied to FVM

Before moving onto the derivations, one aspect that FVM implements while using

SIMPLE or its variants is the use of staggered grid. From the perspective of FVM,

it is interesting to note that if the values of the scalar quantities like pressure are

read at the same node as the velocity values, the true nature of the scalar field is

not captured properly. This can be illustrated in the case of a pressure field shown

in Figure 6.1.

The pressure gradient term for node P is given by

∂P

∂x
=

Pe − Pw

δx
=

PE+PP

2
− PP+PW

2

δx
=

PE − PW

2δx
= 100− 100 = 0

This result gives an impression that there is an absence of any pressure gradient

in the vicinity of node P but that is not the case. As such, the numerical analysis
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Figure 6.1: Pressure field in a 2D problem [Adapted from Versteeg and Malalasekera,
2007]

in this scenario generates an incorrect impression of the pressure gradient. To

overcome this issue, Harlow and Welch, 1965 proposed the idea of a staggered grid.

The idea behind staggered grid is to compute the scalar components like pressure,

temperature, etc. at node points and velocity components on a grid staggered

with respect to the grid capturing scalar components (i.e. at cell faces). A typical

staggered grid is shown in Figure 6.2.

The pressure values are located at the intersection of the firm I and J grid

lines (e.g. point P) and the velocity values are computed at the intersection of a firm

line and a dotted line. Since, FDM is used throughout this work, linear interpolation

done to obtain the value of Pe or Pw i.e. Pe = (PE + PP )/2 is not required to be

done as will become clear from the derivations carried out in Section 6.6.2. As such

a staggered grid is not required to be considered in the present scenario. There

is of course another importance of staggered grid. In certain cases, if the velocity

boundary conditions are known, then with staggered grid, the pressure boundary

conditions need not be defined and instead can be derived from the velocity values

of two adjacent cells.

6.6.2 Formulating equations for SIMPLER

It is to be noted that equations for computing pseudo-velocity or any of the correc-

tions like pressure or velocity correction equations for SIMPLER have been mostly

used in the context of FVM. Since, in the present work FDM has been implemented,

the equations for SIMPLER need to be modified to suit FDM. Hence, in this sec-
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Figure 6.2: Staggered Grid System in a 2D problem [Adapted from Versteeg and
Malalasekera, 2007]

tion, a step-by-step derivation of the equations required for running SIMPLER has

been derived for steady state problem.

The momentum equations can be written as

(1 + κ)

(
V̆1

v̆j − v̆jl−1

△X̆1

+ v̆3δj1V̆jX̆3

)
=

− Ps

2ρV 2
s △ X̆j

[(p̆l+1 − p̆l−1)δj1 + (p̆m+1 − p̆m−1)δj2 + (p̆n+1 − p̆n−1)δj3]

− 1

Re
[p(v̆jl+1

+ v̆jl−1
) + q(v̆jm+1 + v̆jm−1) + r(v̆jn+1 + v̆jn−1) + sv̆j]

⇒a(v̆j − v̆jl−1
)− bj =

− Ps

2ρV 2
s △ X̆j

.[(p̆l+1 − p̆l−1)δj1 + (p̆m+1 − p̆m−1)δj2 + (p̆n+1 − p̆n−1)δj3]

− 1

Re
[p(v̆jl+1

+ v̆jl−1
) + q(v̆jm+1 + v̆jm−1) + r(v̆jn+1 + v̆jn−1) + sv̆j]

⇒v̆j = v̆jl−1
+ bj/a

− Ps

2aρV 2
s △ X̆j

.[(p̆l+1 − p̆l−1)δj1 + (p̆m+1 − p̆m−1)δj2 + (p̆n+1 − p̆n−1)δj3]

− 1

a.Re
[p(v̆jl+1

+ v̆jl−1
) + q(v̆jm+1 + v̆jm−1) + r(v̆jn+1 + v̆jn−1) + sv̆j]
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⇒
(
1 +

s

a.Re

)
v̆j =

(
− p

Re.a
v̆jl+1

+
(
1− p

Re.a

)
v̆jl−1

− q

Re.a
(v̆jm+1 + v̆jm−1)

− r

Re.a
(v̆jn+1 + v̆jn−1) + bj/a

)
+

dj
2
.[(p̆l+1 − p̆l−1)δj1 + (p̆m+1 − p̆m−1)δj2 + (p̆n+1 − p̆n−1)δj3]

⇒v̆j =
(
− p

Re.a
v̆jl+1

+
(
1− p

Re.a

)
v̆jl−1

− q

Re.a
(v̆jm+1 + v̆jm−1)

− r

Re.a
(v̆jn+1 + v̆jn−1) + bj/a

)
/D+

dj
2D

.[(p̆l+1 − p̆l−1)δj1 + (p̆m+1 − p̆m−1)δj2 + (p̆n+1 − p̆n−1)δj3] (6.42)

where,

a = (1+κ)V̆1/△X̆1; bj = −(1+κ)v̆3δj1V̆jX3
; dj = −Ps/(V

2
s ρa△X̆j); D =

(
1 + s

a.Re

)
.

The terms p, q, r, s are the same as defined in previous chapters in the context of

Laplace operator.

From the above equation for v̆j, it can also be seen that the term bj is non-

zero only if j = 1. Since, bj is dependent on v̆3, it is essential that its value is known

before the set of equations are solved for v̆1. Accordingly, the sequence of solving

the momentum equations while using SIMPLER should be set as v̆3, v̆2 and v̆1. If

looked at closely, it can be seen that the momentum equations is of the form

v̆j =
∑ anbv̆jnb

D
+

dj
2D

.[(p̆l+1 − p̆l−1)δj1 + (p̆m+1 − p̆m−1)δj2+

(p̆n+1 − p̆n−1)δj3] (6.43)

In the context of SIMPLER, the term ṽj =
∑

anbv̆nb/D is referred to as pseudo-

velocity where the subscript nb indicates neighbouring nodes i.e. v̆jnb
is the velocity

of the neighbouring nodes and anb is the coefficient.

The next step is obtaining the pressure equation. The discretized equation for

pressure can be obtained by putting the above obtained expressions of the velocity

components in the equation of continuity.

v̆1−v̆1l−1

△X̆1
+

v̆2−v̆2m−1

△X̆2
+

v̆3−v̆3n−1

△X̆3
= 0

⇒ ((ṽ1 +
d1
2D

(p̆l+1 − p̆l−1))− (ṽ1l−1
+

d1l−1

2Dl−1
(p̆− p̆l−2)))/△ X̆1+

((ṽ2 +
d2
2D

(p̆m+1 − p̆m−1))− (ṽ2m−1 +
d2m−1

2Dm−1
(p̆− p̆m−2)))/△ X̆2+

((ṽ3 +
d3
2D

(p̆n+1 − p̆n−1))− (ṽ3n−1 +
d3n−1

2Dn−1
(p̆− p̆n−2)))/△ X̆3 = 0
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Thus,

(ã1l−1
+ ã2m−1 + ã3n−1)p̆ =

ã1(p̆l+1 − p̆l−1) + ã2(p̆m+1 − p̆m−1) + ã3(p̆n+1 − p̆n−1)+

ã1l−1
p̆l−2 + ã2m−1 p̆m−2 + ã3n−1 p̆n−2 − 2b̃ (6.44)

where, ãj =
dj

D△X̆j
; b̃ = − ṽ1−ṽ1l−1

△X̆1
− ṽ2−ṽ2m−1

△X̆2
− ṽ3−ṽ3n−1

△X̆3

Since SIMPLER begins by guessing an initial velocity field, v̆∗ and computing

a guessed pressure field, p̆∗ using the pressure equation, the momentum equations

can be written as

v̆∗j =
∑ anbv̆

∗
jnb

D
+

dj
2D

.[(p̆∗l+1− p̆∗l−1)δj1+(p̆∗m+1− p̆∗m−1)δj2+(p̆∗n+1− p̆∗n−1)δj3] (6.45)

Subtracting eq.6.45 from eq.6.43;

(v̆j − v̆∗j ) =
∑ anb(v̆jnb

− v̆∗jnb
)

D
+

dj
2D

.[((p̆l+1 − p̆∗l+1)− (p̆l−1 − p̆∗l−1))δj1+

((p̆m+1 − p̆∗m+1)− (p̆m−1 − p̆∗m−1))δj2 + ((p̆n+1 − p̆∗n+1)− (p̆n−1 − p̆∗n−1))δj3]

⇒v′′j =
∑ anbv

′′
jnb

D
+

dj
2D

.[(p′′l+1 − p′′l−1)δj1 + (p′′m+1 − p′′m−1)δj2 + (p′′n+1 − p′′n−1)δj3]

Dropping the first term of RHS gives the equation for velocity correction i.e.

v′′j =
dj
2D

.[(p′′l+1 − p′′l−1)δj1 + (p′′m+1 − p′′m−1)δj2 + (p′′n+1 − p′′n−1)δj3] (6.46)

This step forms the backbone of SIMPLER. Had this term been retained, it would

have brought in the velocity corrections of the adjacent nodes which in turn are again

dependent on pressure correction of neighbouring nodes and as such the equation

would have become implicit. Dropping this term bypasses this issue making the

equation partially implicit and hence the word semi-implicit was used by Patankar.

The corrected velocity can therefore be written as

v̆j = v̆∗j +v′′j = v̆∗j +
dj
2D

.[(p′′l+1−p′′l−1)δj1+(p′′m+1−p′′m−1)δj2+(p′′n+1−p′′n−1)δj3] (6.47)

The corrected velocity should also satisfy the continuity equation. Substituting this

in continuity equation,

v̆1 − v̆1l−1

△X̆1

+
v̆2 − v̆2m−1

△X̆2

+
v̆3 − v̆3n−1

△X̆3

= 0
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⇒((v∗1 +
d1
2D

(p′′l+1 − p′′l−1))− (v∗1l−1
+

d1l−1

2D
(p′′ − p′′l−2)))/△ X̆1+

((v∗2 +
d2
2D

(p′′m+1 − p′′m−1))− (v∗2m−1
+

d2m−1

2D
(p′′ − p′′m−2)))/△ X̆2+

((v∗3 +
d3
2D

(p′′n+1 − p′′n−1))− (v∗3n−1
+

d3n−1

2D
(p′′ − p′′n−2)))/△ X̆3 = 0

Thus,

(ã1l−1
+ ã2m−1 + ã3n−1)p

′′ =

ã1(p
′′
l+1 − p′′l−1) + ã2(p

′′
m+1 − p′′m−1) + ã3(p

′′
n+1 − p′′n−1)+

ã1l−1
p′′l−2 + ã2m−1p

′′
m−2 + ã3n−1p

′′
n−2 − 2b′′ (6.48)

where, b′′ = −
v∗1−v∗1l−1

△X̆1
−

v∗2−v∗2m−1

△X̆2
−

v∗3−v∗3n−1

△X̆3
and v∗j = v̆j for boundary nodes.

With these basic discretized equations now in place, an important point needs

to be highlighted. Since the derivations above are based on FDM, even though the

equation structures match with those of FVM, they are not exactly identical. For

instance, the term b′′ in FVM approach reflects the flux and hence, the area of the

cell face comes into picture in the expression of b′′ but in this case it is not so.

6.6.3 Boundaries

Now that the basic equations for SIMPLER are established, the next step is to have

a closer look at the equations for the nodes on and next to the boundaries.

6.6.3.1 Nodes next to inlet boundaries

In eq.6.44, it can be observed that the value of pressure at any interior node is

dependent on the pressure of one node downstream and two nodes upstream. If

the penultimate nodes next to the inlet boundaries (i.e. nodes immediately next

to the boundaries) are considered, information on only one node upstream i.e. the

boundary node is available. So, for these nodes, the pressure equation needs to be

modified to overcome this issue.

Consider for example Figure 6.3. In this figure, the boundaries at X1 = 0

and X3 = 1 are the inlets. Nodes 10, 19 lie next to the inlet boundary perpendicular

128



6.6. SIMPLER Algorithm

Figure 6.3: Nodes in a 2D plane extracted from a larger 3D domain

to direction of flow of v̆1. If v̆1 at this boundary is known, the pressure equation

can be reformulated as

v̆1−v̆1l−1

△X1
+

v̆2−v̆2m−1

△X2
+

v̆3−v̆3n−1

△X3
= 0

⇒ ((ṽ1 +
d1
2D

(p̆l+1 − p̆l−1))− v̆1l−1
)/△X1+

((ṽ2 +
d2
2D

(p̆m+1 − p̆m−1))− (ṽ2m−1 +
d2m−1

2D
(p̆− p̆m−2)))/△X2+

((ṽ3 +
d3
2D

(p̆n+1 − p̆n−1))− (ṽ3n−1 +
d3n−1

2D
(p̆− p̆n−2)))/△X3 = 0

⇒ (ã2m−1 + ã3n−1)p̆ = ã1(p̆l+1 − p̆l−1) + ã2(p̆m+1 − p̆m−1) + ã3(p̆n+1 − p̆n−1)+

ã2m−1 p̆m−2 + ã3n−1 p̆n−2 − 2b̃

where, b̃ = − ṽ1−v̆1l−1

△X̆1
− ṽ2−ṽ2m−1

△X̆2
− ṽ3−ṽ3n−1

△X̆3
.

In this case, it can seen from the first term of the expression for b̃ i.e. − ṽ1−v̆1l−1

△X1
that

for boundary nodes, ṽ1 = v̆1. Similarly, it can be shown that for inlet boundaries

perpendicular to v̆2 and v̆3, ṽ2 = v̆2 and ṽ3 = v̆3 respectively. Further the terms

ã1l−1
, ã2m−1 and ã3n−1 vanish for nodes next to inlet boundaries perpendicular to

X1, X2 and X3 axes respectively. In other words, the equation of pressure at the

nodes next to inlet boundary perpendicular to Xk can be written as

(ã1l−1
ϵk1 + ã2m−1ϵk2 + ã3n−1ϵk3)p̆ =

ã1(p̆l+1 − p̆l−1) + ã2(p̆m+1 − p̆m−1) + ã3(p̆n+1 − p̆n−1)+

ã1l−1
p̆l−2ϵk1 + ã2m−1 p̆m−2ϵk2 + ã3n−1 p̆n−2ϵk3 − 2b̃ (6.49)

where, ϵkj = 1− δkj. Similarly, the pressure correction equation for these nodes also
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Table 6.1: Values of b̃ for nodes next to inlets perpendicular to Xk

k b̃ b′′

1 −
[
ṽ1−v̆1l−1

△X̆1
+

ṽ2−ṽ2m−1

△X̆2
+

ṽ3−ṽ3n−1

△X̆3

]
−
[
v∗1−v̆1l−1

△X̆1
+

v∗2−v∗2m−1

△X̆2
+

v∗3−v∗3n−1

△X̆3

]
2 −

[
ṽ1−ṽ1l−1

△X̆1
+

ṽ2−v̆2m−1

△X̆2
+

ṽ3−ṽ3n−1

△X̆3

]
−
[
v∗1−v∗1l−1

△X̆1
+

v∗2−v̆2m−1

△X̆2
+

v∗3−v∗3n−1

△X̆3

]
3 −

[
ṽ1−ṽ1l−1

△X̆1
+

ṽ2−ṽ2m−1

△X̆2
+

ṽ3−v̆3n−1

△X̆3

]
−
[
v∗1−v∗1l−1

△X̆1
+

v∗2−v∗2m−1

△X̆2
+

v∗3−v̆3n−1

△X̆3

]
1,2 −

[
ṽ1−v̆1l−1

△X̆1
+

ṽ2−v̆2m−1

△X̆2
+

ṽ3−ṽ3n−1

△X̆3

]
−
[
v∗1−v̆1l−1

△X̆1
+

v∗2−v̆2m−1

△X̆2
+

v∗3−v∗3n−1

△X̆3

]
2,3 −

[
ṽ1−ṽ1l−1

△X̆1
+

ṽ2−v̆2m−1

△X̆2
+

ṽ3−v̆3n−1

△X̆3

]
−
[
v∗1−v∗1l−1

△X̆1
+

v∗2−v̆2m−1

△X̆2
+

v∗3−v̆3n−1

△X̆3

]
1,3 −

[
ṽ1−v̆1l−1

△X̆1
+

ṽ2−ṽ2m−1

△X̆2
+

ṽ3−ṽ3n−1

△X̆3

]
−
[
v∗1−v̆1l−1

△X̆1
+

v∗2−v∗2m−1

△X̆2
+

v∗3−v∗3n−1

△X̆3

]
1,2,3 −

[
ṽ1−v̆1l−1

△X̆1
+

ṽ2−v̆2m−1

△X̆2
+

ṽ3−v̆3n−1

△X̆3

]
−
[
v∗1−v̆1l−1

△X̆1
+

v∗2−v̆2m−1

△X̆2
+

v∗3−v̆3n−1

△X̆3

]

gets modified to

(ã1l−1
ϵk1 + ã2m−1ϵk2 + ã3n−1ϵk3)p

′′ =

ã1(p
′′
l+1 − p′′l−1) + ã2(p

′′
m+1 − p′′m−1) + ã3(p

′′
n+1 − p′′n−1)+

ã1l−1
p′′l−2ϵk1 + ã2m−1p

′′
m−2ϵk2 + ã3n−1p

′′
n−2ϵk3 − 2b′′ (6.50)

It is to be noted the nodes which have more than one surrounding node

lying on inlet boundaries will have the influence from all of these boundaries. For

instance, for node 10, the surrounding node 9 lies on X1 and 1 lies on X3. So, in

this case the pressure equation will become

ã2m−1 p̆ = ã1(p̆l+1 − p̆l−1) + ã2(p̆m+1 − p̆m−1) + ã3(p̆n+1 − p̆n−1) + ã2m−1 p̆m−2 − 2b̃

Table 6.1 shows the value of b̃ and b′′ for these nodes. An interesting point to

observe is that the node which has its l− 1/m− 1/n− 1 all lying on inlets will have

the diagonal entry in coefficient matrix A as 0. If Figure 6.3 is visualised as not

being part of a 3D domain but a 2D domain in its entirety, then the scenario for node
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6.7. Analysis of the discretized equations

Figure 6.4: Structure of coefficient
matrix for pressure equation

Figure 6.5: Structure of coefficient
matrix for velocity equation

10, will be similar i.e. the coefficient of pressure will be 0. However, even though

the diagonal entry is 0, it does not have any effect on the numerical performance

of BiCGStab and it is still possible to obtain a non-zero value for pressure at this

node because it is coupled to other interior nodes as well. Validation of the results

for this kind of matrix structure is carried out and the results have been found

to match with the theoretical results (refer Appendix B.1). Typical structure of

the coefficient matrix, A for pressure and velocity equations has been shown in

Figure 6.4 and Figure 6.5. The blue and white space in this structure denote non-

zero and zero entries respectively.

6.7 Analysis of the discretized equations

Having established the FDEs, the next step is to analyze the behaviour of the

equations. Since v′j is random, an obvious choice for v′j and p′ at the boundaries of

the domain would be to assign gaussian data since such data often occur in nature.

Yet another reason for choosing gaussian data is many of its statistical properties

are known and well established.

As stated earlier, since the mean of the fluctuating component is always 0, the

velocity and pressure fields at the boundaries can be assumed to be v′j ∼ N (0, σ2
vj
)

and p′j ∼ N (0, σ2
p) where, σ

2
vj
and σ2

p are the variances for velocity and pressure fields

respectively. The magnitude of the gaussian data generated for velocity components

or the pressure at the boundaries depend on these variances and hence, their values

could be extremely small or extremely large. Choosing an appropriate scale factor

is therefore important so that the numerical analysis can be carried out without

excessive loss due to truncation of the floating points.
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6.7.1 Impact of under-relaxation factor

It is a known fact that choosing an extremely small value for α might cause the

solution to converge extremely slowly. On the other hand, choosing a large value for

α often might cause the iterative algorithms to oscillate and even diverge. The choice

of α is therefore not only problem dependent but also depends on the magnitude of

the variable getting solved. Since, parameters like velocity and pressure are under-

relaxed using

Φnew = αΦn + (1− α)Φn−1

a careful examination of how α influences the progress of the solution is essential. If

α = 1,Φnew = Φn and if α = 0,Φnew = Φn−1. As the solution reaches convergence,

Φn ≈ Φn−1 and thus, Φnew ≈ Φn. However, modifying the value of Φ at the

end of every iteration mathematically means modifying the coefficient matrix. For

instance, from the under-relaxed value of v̆j;

v̆nj =
v̆new
αvj

−
(1− αvj)

αvj

v̆n−1
j

Substituting this value in the discretized equation for velocity viz. eq.6.43;

Dv̆j =
∑

anbv̆jnb
+

dj
2
.[(p̆l+1 − p̆l−1)δj1 + (p̆m+1 − p̆m−1)δj2 + (p̆n+1 − p̆n−1)δj3]

⇒ Dv̆j,new
αvj

=
∑

anbv̆jnb
+

dj
2
.[(p̆l+1 − p̆l−1)δj1 + (p̆m+1 − p̆m−1)δj2 + (p̆n+1 − p̆n−1)δj3]+

D(1− αvj )

αvj

v̆n−1
j

This change in turn influences the pressure equation as well. Numerically, if the

range of values of Φ is small (like in our case where focus is on turbulence), this

might result in a solution which is erratic even though the residual approaches a

value close to zero. Appendix B.1 gives one such example where under-relaxation

parameter has been implemented in BiCGStab.

6.7.2 Scale Factors

As discussed earlier, there are three main scale factors viz. the length scale, Xs,

the velocity scale, Vs and the pressure scale, Ps. From a preliminary observation

of the structure of eq.6.36, it can be envisaged that if the diffusion term is to have
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any impact on the equation, it would be possible for very low values of Reynolds

number. To achieve the same, the velocity and length scales need to be set to very

low values primarily because ν for air is very less (≃ 1.5 × 10−5m2/s). If the Vs is

set to a large value, then it would require an extremely small Xs which means a

finer grid and hence, greater computational time. Alternately, if Xs is set to a large

value, it would mean Vs is required to be set to a very small value which would

then mean a large value for v̆j and still larger value for V j. Such large scaled values

might incur numerical instabilities due to floating point truncation errors. Hence, a

balance in choice of the scale needs to be established so that the numerical analysis

can be carried out with a reasonable grid size and avoiding any major computational

expense without any excessive floating point truncation error.

6.7.2.1 Length Scale

Since the turbulent component is dealt with here, an obvious choice for Xs would be

the grid size rather than the domain size. A finer grid size is expected to resolve the

small scales of turbulence. Since at this stage, the problem is visualized from the

perspective of numerical simulation, the first task is to fix the parameters necessary

for proper functioning of the iterative algorithm (BiCGStab) rather than doing

a grid refinement analysis. Accordingly, the following criteria can be set for the

simulations

Xs = min{△X1,△X2,△X3} or Xs = max{△X1,△X2,△X3}

The basic principle of any discretization strategy is that the aspect ratios of any

discretized physical domain are not too far off which means the order of node to node

distance in any direction are consistent i.e. △X1 ∼ △X2 ∼ △X3. A reasonable grid

to grid distance for the proposed linear model is of the order of 100. Hence, it is

understandable that X̆j ∼ 10−1 or at most X̆j ∼ 10 and thus, 10−2 < {{p, q, r, s} ∼
1/△ X̆2

j } < 102.

6.7.2.2 Velocity Scale

From Reynolds decomposition, there are two parts to any of the velocity compo-

nents, mean, V j and turbulent, v′j. If eq.6.29 is looked at, it can be seen that the

equation is governed by both of these components. Hence, the order of magnitude
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of both of these components need to be investigated separately. Theoretically, three

scenarios might arise;

1. v′j ∼ V j: If for some value of σvj , the order of magnitude of v′j is same as

that of V j i.e. v′j ∼ V j, fixing a velocity scale is not an issue and a scale

Vs = min{V j, v
′
j} or Vs = max{V j, v

′
j} might be adequate.

2. v′j ≫ V j: This scenario might not arise practically and hence is not required

to be taken care of in the simulations.

3. v′j ≪ V j: This is the most realistic scenario which can actually occur in ABL

and is therefore dealt with in detail in this section.

The order of magnitude values of V 1 is first looked at. The worst cyclonic

storms have the maximum wind speed ranging from 200−300km/h i.e. 50−80m/s.

From the perspective of numerical analysis, this means practically even in the worst

case scenarios V j ∼ 10 and never reaches a value of 102.

If small values of σvj say, 0.1 are to be considered, the gaussian data generated

will have most values centred near 0. It is worth noting that most random numbers

generated using a computer are in fact pseudo-random numbers and not true random

numbers. In our case, numpy library of python is used to generate these random

numbers which uses the Ziggurat algorithm. It is observed that for a large set of

random numbers generated, values as low as 10−5 were obtained. One can imagine

if true random numbers were used or if still larger random data were generated,

chances are the order of these values might be even less. For the time being, the

implications of the presence of such small values considering the lowest possible

value of v′j to be of the order of 10−5 is discussed.

Implications of setting Vs ∼ V 1: If Vs is set to a value consistent with the

order of V 1 i.e. Vs ∼ 10, this would mean Re = VsXs/ν ∼ 10.100/10−5 ∼ 106. Also,

as shown belolw, v̆j for extremely small values of v′j will diminish further.

v̆j =
v′j
Vs

∼ 10−5

10
∼ 10−6

Since computers can handle only fixed amount of floating point data, this would

result in truncation of number of digits after decimal. For instance, consider a num-

ber 0.12345678912345678. Dividing by scale factor of 10 should theoretically return
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6.7. Analysis of the discretized equations

0.012345678912345678 but instead a computer with 64bit floating point number re-

turns 0.012345678912345679 which is slightly different from the original value. If

eq.6.42 is looked at from the perspective of iterative algorithms, it is not difficult

to notice that simulating such low values of v̆j might cause the iterations to reach

the residual limit even before the actual numerical solution is achieved. Further, if

the coefficients of surrounding nodes are examined, almost all of them have terms

like p/(Re.a) ∼ p.10−6. Depending on grid size, even if p reaches value of 102, the

value of these coefficients are still small thereby implying that the velocity of all the

surrounding nodes except l− 1 node (i.e. the node immediately downstream of the

central node in X1 direction) are loosely coupled to the velocity component of the

centre node and hence have little or no effect on its value.

Since Ps = ρV 2
s ∼ 102, this means p̆ = p′/Ps will behave just like v̆j i.e. the

values will reduce further resulting in truncation of floating points.

Implications of setting Vs ∼ v′j: The lowest possible value of v′j can be 0.

Of course, it cannot be set as the scale factor. Instead, any other non-zero value of

v′j can be chosen as the scale factor. If Vs is set to a value as low as 10−5, this would

mean Re in this case will be very low i.e. Re = VsXs/ν ∼ 10−5.Xs/10
−5 ∼ Xs. Re

therefore becomes approximately of the order of the length scale. The finer the grid

the lower will be the value of Re. This might give an initial impression that choosing

such a value of Vs will start bringing in the effect of diffusion in the simulations.

But, then when the behaviour of the remaining parameters is investigated, it does

not turn out to be so.

The order of magnitude of non-dimensionalized mean velocity, V̆1 becomes

V̆1 =
V 1

Vs

∼ 10

10−5
∼ 106

It can be seen this value becomes extremely large. This in turn would mean the

parameter, a will be of order 106. Situation will complicate further if △X̆1 < 1 in

which case a = (1+κ)V̆1/△X̆1 ∼ 106/10−1 ∼ 107 thereby making it even larger. As

a result, parameters like dj which have a in denominator will become exceedingly

small thereby decoupling or loosely coupling the pressure of the surrounding nodes

from velocity which will go against the basic physics of the problem. Just like in

the previous case, presence of Re.a ∼ Xs.10
6 in the denominator of the coefficients

of velocities of surrounding nodes highlights the dependence of v̆j primarily on the
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v̆jl−1.

Even p̆ is also adversely effected. Ps ∼ V 2
s ∼ 10−10. Thus, p̆ = p′/Ps ∼ 1010

which is an extremely large value. If the discretized momentum equation is looked

at, such large values of pressure is not that much critical since it eventually gets

multiplied with dj which is again extremely small. Therefore, computationally it is

not an issue. Problem arises when the pressure equation is getting solved. Since,

pressure values are of order 1010, there will be excessive loss of floating point data

when BiCGStab is used to solve the equation which is not desirable.

Another problem arises when the pressure correction equation is solved. Be-

cause of its very nature, the pressure correction values arrived at the end of an

iteration of SIMPLER is also exceedingly large. Usually, αpc controls the value of

pressure correction. But, if pressure corrections have such large values, setting an

appropriate value for αpc becomes difficult. In such a case, even if a very small value

for αpc is considered, it might still not be enough to ensure the numerical stability

of SIMPLER.

In Table 6.2 and Table 6.3, a detailed analysis of the order of magnitudes of

the PDE variables and other parameters of the model depending on the choice of

the scale factors are presented. It is evident that in any case i.e. whether V 1 or v′j

is chosen as our preferred scale, the effect of the diffusion term does not play any

major role unless an extremely fine mesh is used which is not desirable for most

practical purposes. Further, from the discussions earlier, it can be observed that

choosing Vs ∼ v′j has more cons than pros. As such, for any arbitrary mean velocity

profile, the possible options for the numerical analysis is by adopting

Vs = max{V 1(X3)} or Vs = min{V 1(X3)}

It has already been mentioned earlier that scaling the small turbulent values with

respect to this scale causes some loss in floating point data. It is to be noted that

Vs ∈ R. Upon scaling by a real number, some further floating point error might

affect the scaled values. This might not have been a major issue if data dealt with

were not small in magnitude i.e. ⌊|v′j|⌋ > 0 or ⌊|p′j|⌋ > 0 because in that case

accuracy of upto three or four digits after decimal might have been acceptable for

most practical purposes. However, for small values of σv or σp like in the present

case makes the turbulent components exceedingly small in some cases and ⌊v′j⌋ = 0
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Table 6.2: Order of magnitudes of different variables

Vs Ps Xs Re Xj X̆j v′j v̆j V 1 V̆1 V 1,X3
V̆1,X̆3

p′ p̆

1 2

−5 1 −5

0 −5 −6 1 0 −2

−8

−5 −7

−4 2 −4 −7
−3 3 −3 −6
−2 4 −2 −5
−1 5 −1 −4
0 6 0 −3
1 7 1 −2
2 8 2 −1

−5 −10

−5 −5 −5

0 −5 0 1 6 −2

−2

−5 5

−4 −4 −4 −1
−3 −3 −3 0
−2 −2 −2 1
−1 −1 −1 2
0 0 0 3
1 1 1 4
2 2 2 5

or ⌊p′j⌋ = 0. In order to have a control over the scaled floating point data, scale

factor is chosen in terms of powers of 10. Hence, the scale factors are modified to

Vs = 10⌊log10 max{V 1(X3)}⌋ or Vs = 10⌊log10 min{V 1(X3)}⌋

where, ⌊.⌋ denotes floor function. The reason for choosing the floor value is to ensure

that additional floating point errors do not enter into the scaled values and disrupt

the gaussian nature of the bounday data.

6.8 Simulation of RDT model

In this section, results of the numerical analysis for the proposed model has been

presented. A 2D domain, Ω of size [0 m, 50 m]× [1 m, 51 m] is considered. The grid

spacing of △X1 = 1 m and △X3 = 2 m is chosen. For the purpose of boundary

conditions, σ2
v′1

= 0.01, σ2
v′3

= 0.01, σv′1v
′
3
= −0.005 is considered. A negative value

for σv′1v
′
3
is assumed because these two parameters are known to exhibit negative

correlation. The variance-covariance matrix can therefore be written as

Σ =

(
0.01 −0.005
−0.005 0.01

)
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Table 6.3: Order of magnitudes of different parameters

Vs Ps Xs p, q, r, s a p
Re.a bj dj D ã b̃, b′′

1 2

−5

0 0

−1 −14

0 0 0 −6

−4 −2 −13
−3 −3 −12
−2 −4 −11
−1 −5 −10
0 −6 −9
1 −7 −8
2 −8 −7

−5 −10

−5

0 6

−1 −2

−6 0 −6 0

−4 −2 −1
−3 −3 0
−2 −4 1
−1 −5 2
0 −6 3
1 −7 4
2 −8 5

A set of pseudo-random numbers is generated and applied as velocity boundary

conditions. From eq.6.28, it can be observed that κ ∼
[

v′j
V m

]2
. As V m ≫ v′m ⇒

0 < κ < 1. Thus, a value of κ = 0.1 is assumed for the time being. It is to be

noted that the purpose of the current simulations is to check the behaviour of these

linearized equations rather than checking the validity of the assumed variances of

the turbulent quantities or the value of κ for that matter. Boundary conditions for

pressure fluctuations are assumed as gaussian as well i.e. p′ ∼ N (0, 0.01).

To get a proper insight into the behaviour of the model and to ensure ergod-

icity, the correct approach would be to run a large number of simulations keeping

the V 1 but random v′j for each simulation. To achieve this, the simulation is run 500

times such that for every simulation, the boundary conditions assigned are random

and as such do not bear resemblance with one another. A typical set of boundary

conditions for v′1, v
′
3, p

′ for one such realization is shown in Figure 6.6 to Figure 6.8.

6.8.1 Convergence criteria

An under-relaxation factor of 0.05 is found to be suitable for the current simulations.

Since, the magnitude of the turbulent components itself is small, choosing an appro-

priate convergence criteria is vital. It is evident from the way SIMPLER works that
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Figure 6.6: Boundary conditions for v′1

Figure 6.7: Boundary conditions for v′3
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Figure 6.8: Boundary conditions for p′

for every iteration of SIMPLER, there are four set of iterations running BiCGStab

for computing v′1, v
′
3, p

′ and p′′. As such, the convergence criteria is required to be

set at two levels, one for BiCGStab and another for iterations of SIMPLER itself.

Accordingly, the following criteria has been set for these iterations;

1. for BiCGStab, iteration terminates when the norm of the residual vector,

||r||2 < 0.01

2. for SIMPLER, iteration terminates when∣∣∣∣∣ ||Φ̆ΦΦ||l2 − ||Φ̆ΦΦ||l−1
2

||Φ̆ΦΦ||l−1
2

∣∣∣∣∣× 100 < 5

where, Φ̆ΦΦ = {v̆1, v̆3, p̆}, v̆1, v̆3, p̆ are column vectors consisting of v̆1, v̆3, p̆

respectively at all internal nodes and l = iteration no. of SIMPLER

6.8.2 Results

Since, the simulations are carried out for an ensemble of experiments with random

boundary conditions, the behaviour of the proposed model is best visualized by

plotting histograms. For this purpose, data from two sets of nodes are chosen to be

analyzed viz.
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Figure 6.9: Distribution along X1 = 1 m

1. along the nodes next to the boundaries: X1 = {1 m, 49 m} and X3 =

{3 m, 49 m}. The reason for choosing these set of nodes is that the form

of the discretized equations for these nodes are different from any other inte-

rior nodes as seen in Section 6.6.3.

2. along any internal set of nodes: for this purpose a set of centrally located

nodes is chosen i.e. X1 = {25 m} and X3 = {25 m}

The histograms are shown in Figure 6.9 to Figure 6.14. The histograms are nor-

malized such that the total area under the histograms equals to unity. It can be

observed that the mean of the distribution is always near to 0 for all the three

physical parameters i.e. v′1, v
′
3, p

′. This justifies that the way the equations have

been discretized and SIMPLER algorithm has been implemented does not change

the intended behaviour of the model and the dependent physical parameters.

The ensemble mean, averaged over the number of experiments along a typical

internal line of nodes is shown in Figure 6.15 and Figure 6.16. As stated earlier, the

mean of the turbulent quantities should be 0. The simulations can be said to work

properly if this value of the mean is achieved. It can be observed from the results

that the ensemble mean is near to 0 and not too far off which is in line with the

behaviour expected of the model.

141



Chapter 6. A linearized model of turbulence using Rapid Distortion Theory

Figure 6.10: Distribution along X1 = 25 m

Figure 6.11: Distribution along X1 = 49 m
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Figure 6.12: Distribution along X3 = 3 m

Figure 6.13: Distribution along X3 = 25 m
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Figure 6.14: Distribution along X3 = 49 m

Figure 6.15: Mean along X1 = 25 m
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Figure 6.16: Mean along X3 = 25 m

Figure 6.17: covariance along X1 = 25 m

Apart from the mean the nature of the covariance of v′1 and v′3 also needs

to be verified. The results of the numerical simulation should exhibit a negative

correlation between these two parameters. Figure 6.17 and Figure 6.18 clearly show

that the covariance between these two parameters is negative. Additionally, in

Figure 6.19 results of 4 simulations chosen randomly from the 500 experiments are

presented. v′1 and v′3 clearly exhibit a negative correlation for each of this individual

simulation.

Continuity check is carried out at the end of every iteration of SIMPLER. It

is found that continuity equation when multiplied with the appropriate scale factor

i.e. Vs/Xs (refer eq.6.33) is satisfied for all the internal nodes. This justifies that the
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Figure 6.18: Covariance along X3 = 25 m

Figure 6.19: Nature of covariance for 4 simulations chosen randomly out of the total
500 simulations
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choice of the convergence criteria set above is accurate enough for these simulations.

6.9 Discussions

In this chapter, a linearized model for turbulence has been presented. The model

generates turbulent flow with characterization (mean, variance) and can be used to

simulate turbulent time series at a desired loaction in the wind farm using the wind

spectrum. It is to be noted that the model is rendered invalid if V 1 = 0. The effect

of this is that both the components of the linearized term i.e. V̆1
∂v̆j

∂X̆1
and v̆3

dV̆j

dX̆3
δj1

in eq.6.36 will become 0 which in turn would imply the directional derivative of the

turbulent component of velocity will have no effect on the flow whatsoever. This

sort of behaviour is physically inconsistent and unexpected. As such, the proposed

model cannot be used for such cases where the mean of the total velocity is 0.

Simulations have been carried out for this new proposed RDT model and

the results are seen to behave in the expected way both in terms of the gaussian

nature of the assumed model as well as the mean and correlation between the

velocity components. However, the model needs further refinement in quite a few

aspects. This includes computing a proper value for κ which for the time being

has been assumed arbitrarily based on the relative order of magnitude of the mean

and turbulent components of velocity. However, the appropriate value for the same

needs to be computed statistically instead of assuming it heuristically.

An important validation of this model can be carried out by simulating the

actual non-linear form of the equation as well i.e. using SIMPLER with eq.6.21

and comparing the behaviour of the results obtained and presented above for the

linearized equation. A grid refinement analysis just like the one performed for DIIM

in Chapter 5 would be useful to get a better insight into the numerical stability and

the choice of scales required.

For any numerical simulation, an important test in terms of the stability

and convergence of the discretized equation and the algorithm implemented is by

simulating the equations for low magnitudes of boundary values. If the solution

diverges, the algorithms adopted or the discretized equations used can be said to

be numerically inconsistent. In the simulations presented above, the magnitudes of

the values at the boundaries are low and the solutions converge nicely as per the
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convergence criteria set for each of the 500 simulations. As such, the discretized

equations can be said to have passed this test.

The domain currently analysed is relatively smaller in size and has less num-

ber of nodes in it. Numerical complications might arise if a relatively larger domain

like the one considered in Chapter 5 is taken up for study. A larger domain would

mean greater number of iterations and hence, greater chance of floating point trun-

cation error at each step of iteration both at the level of BiCGStab as well as at the

level of SIMPLER. For low values of the velocity and pressure fluctuations at the

boundary, it would be interesting to see if there is an excessive loss of floating point

data and whether it causes the path of the conjugate gradient to deviate away from

the solution and if such scenario arises how to mitigate the same numerically by

appropriately modifying the discretized structure of the equation without causing

it to deviate away from the actual PDE model.

This model is currently implemented for the aerodynamics of ABL only. The

behaviour of this model for other flow types which have turbulence has not been

investigated. Even for ABL, to be able to implement it in the context of wind farms,

the boundary conditions or the way the actuator disc is to be modelled is needed

to be looked into greater detail, a study which has not yet been undertaken. An

option for modelling the same would be to frame the proposed linear model in line

with the IIM strategy which has been used in Chapter 5 and which has been used

by researchers in the context of Navier-Stokes equation as well.
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Chapter 7

Conclusions and future work

7.1 General summary

The focus of the present thesis is fluid-structure interaction in wind farms. A de-

tailed review of different wind farm models has been presented. For the purpose of

studying the aerodynamics, research on different fluid dynamics aspects including

fluid-structure interaction, turbulence and numerical algorithms have been under-

taken. Further, to be able to handle large scale computational data, a review

of parallel numerical algorithms, message passing interface and GPGPU has been

considered including their application in CFD analysis of wind farms. A detailed

discussion on FDM and FVM has been presented. The way these methods can be

implemented in a parallel setting for elliptic or any other form of PDE has been dis-

cussed in detail using strategies like multi-colouring algorithms and these concepts

have been used for simulating 2D wind fields.

7.2 Main findings

Based on the research undertaken, it can be concluded that

1. Though potential flow model is still a widely accepted model in many wind

farm studies, the model proposed in this thesis works with mean velocity

components as the dependent variables in elliptic equations which is much

more realistic as it can consider the effects of vorticity. Not only this, the
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proposed model provides much more flexibility in defining the 2D geometric

model of wind farms and in a domain with complex geometry.

2. The classical actuator disc theory does provide the approximate power pro-

duced from a single wind turbine. However, since it does not consider the

effects of the blades of the wind turbine the velocity profile in the wake of the

actuator is a gross approximation.

3. In a similar way, the analytical wind farm models also do not take into account

the presence of blades again. This introduces error in velocity profile in the

wake of the first actuator. This error assimilates resulting in still further

deviation from the actual values. Though these models have an important

role to play during the analysis in preliminary engineering stage, it cannot be

denied that such crude approximations might result in quite erroneous results.

4. The approach proposed in this thesis i.e. the methodologies like DIIM offers a

convenient way to implement FSI in the context of 2D simulations and helps

in getting way more realistic results as it considers the effects of the presence

of blades in the wind field. Additionally, this approach requires relatively less

computational resources to carry out CFD analysis compared to the analysis

with blade flexibility yet providing reasonable accuracy in terms of the wake

generated in the wind field.

5. From the perspective of numerical analysis, DIIM for elliptic PDEs have been

solved earlier by researchers by using Gauss-Seidel iterations. But, when it

comes to simulate a large linear algebraic system, iterative algorithms like

PBiCGStab are much more efficient. The approach of DIIM in modifying the

residue at the end of each iteration is an important step which is not in line

with the way iterative algorithms work. Thus, in this research a modification

has been proposed to the algorithm such that the change in residue at the

end of each iteration can be conveniently accommodated. This modification

has also been shown to perform quite nicely in this present work, thereby

broadening the spectrum of the kind of iterative algorithms which can be

used for implementing DIIM.

6. The work carried out on turbulence modelling implements Gaussian closure

to linearize Navier Stokes equations using Rapid Distortion Theory. The na-

ture of the proposed PDE is non-conventional from the perspective of fluid

dynamics. It is therefore essential to study the numerical behaviour of the

FDE approximation of the proposed PDE. For this reason, in this thesis the
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system in steady state is studied first for numerical stability. Graphical plots

of the simulated results reflect the gaussian nature with the mean and vari-

ance of the simulated results for pressure and velocity components consistent

with the original equation. However, a more robust approach would be to use

statistical tests like Kolmogorov-Smirnov test or Shapiro-Wilk test that can

be used to further ascertain the nature of the distribution of the numerical

results.

Though the PDE have turbulent components of the velocity as the dependent

variable, turbulence is a time-dependent phenomenon and as such the numer-

ical analysis of the steady state form of the proposed equation does not fully

represent the true nature of the turbulence. Now that the behaviour of the

FDE approximation of the PDE has been ensured, the unsteady state model

can be simulated. In case of one-dimensional flow, the probability density

function defining the turbulent component usually has a simple form. How-

ever, the statistics of the flow becomes more complex when the flow becomes

unsteady with two or three dimensions because the joint probability distribu-

tion of the turbulent components come into picture which do not have a simple

form. This is where Fourier transform, and characteristic functions come into

play. A spectral analysis can be carried out to determine the frequency con-

tent of the velocity field which can then be used to test the statistics of the

flow.

7. The laminar flow model with vorticity and wake interaction and the spatial

turbulence model can form the basis of input to an individual wind turbine in

a wind farm for subsequent analysis.

7.3 Future work

There are still certain areas which can be explored further in future in order to

improve the models and develop a better understanding into their physical behaviour

Some of these aspects are:

1. The vorticity considered in this study is assumed to be constant for analysing

the scenarios. Future work with other vortex functions can also be conducted

and the behaviour of the model can be studied in order to better understand

and demonstrate its behaviour.
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2. Fluid-structure interaction method like DIIM has been used to model the

actuators which are assumed as rectangular zones wherein the behaviours of

the fluid is assumed to be different from the overall global domain. But,

this assumption of the interface as a rectangle is purely heuristic and requires

further refinement. The correct definition of the interface incorporating the

blade behaviour and its effect on the wind would be yet another aspect which

can be investigated in a greater depth. Further, a study of DIIM with respect

to other analytical wind farm models is another research which can be taken

up in future.

3. FVM used for SIMPLER algorithms usually use a grid staggered with respect

to velocity grids where the value of the pressure is computed. A similar ap-

proach can be tried later for the RDT model proposed with FDM. At present,

all the fluctuations in velocity and pressure boundary conditions are assumed.

As such, this does no correlate the velocity and pressure in any way. An inves-

tigation into obtaining a more realistic data by correlating these two physical

parameters would improve the model further, a work that can be later looked

into in greater detail.

4. It is worth noting that from the perspective of numerical simulation, the pro-

posed RDT can be parallelized further by using the greedy multi-coloring al-

gorithm. However, the number of colours is more than two and whether or not

it will really help in achieving a significant benefit in computation time would

be something worth working with. A preconditioned version of BiCGStab can

also be looked into just like the way it has been done for elliptic PDEs.
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Appendix A

FDE for elliptic PDEs

A.1 Finite Difference Equations

In this appendix, the finite difference equations for the nodes inside a 2D domain

governed by elliptic PDEs are presented. The coefficients of the linear system of

equations of unknown variables using the standard 5-point stencil (Figure 3.3) in

2D is known. This standard case is referred to as Case-1 (eq.3.22) in this appendix.

However, if the nodes are just next to the boundary nodes, the coefficients of the

linear system changes depending on the nature of the boundary conditions (Dirichlet

or Neumann). In this appendix, the equations for all possible cases of nodes adjacent

to the domain boundary, depending on the status of their surrounding boundary

nodes are presented. It is to be noted that the cases discussed below are w.r.t.

X1 −X3 plane only and hence, the notations X1 (refers to horizontal axis) and X3

(refers to vertical axis) have been used as appropriate. In case any other plane is

chosen, everything will remain the same and only horizontal (X1) and vertical (X3)

axes notation need to be replaced with the horizontal and vertical axis of the chosen

plane.

In Figure A.1, a 2D domain of dimensions [0, 5] × [0, 4] is considered with

NBC at X1 = 0 and X3 = 1. At the remaining two boundaries viz. X1 = 5 and

X3 = 4, it is assumed that DBC are known. The nodes indicated by  are the

nodes which form part of the domain including the boundary and those indicated

with × indicate the ghost nodes, the meaning and significance of which is discussed

later.
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Figure A.1: A typical arrangement of nodes in a 2D domain showing ghost nodes

This section provides the values of coefficients in the coefficient matrix A

and the right hand side term for the nodes adjacent to the boundary nodes. Here,

cent, bo, le, ri, to refers to central, bottom, left, right, top nodes respectively w.r.t.

a standard 5-point stencil. Suffix ‘D’ and ‘N’ refer to the Dirichlet and Neumann

boundary conditions respectively at the bo, le, ri, to nodes. The cases presented

below are for penultimate nodes where the equation to be solved gets modified as

discussed in Section 3.3.2. Two approaches have been presented here.

A.1.1 One sided differencing

A penultimate node next to the bottom boundary defined by NBC is governed by

the following equation

Nbo = ϕX3 |bo =
−3ϕbo + 4ϕcent − ϕto

2△X3

⇒ −3ϕbo + 4ϕcent − ϕto − 2Nbo△X3 = 0

Additionally, the flow is also governed by the equation (i.e. central difference equa-

tion for elliptic PDE)

b− sϕcent − p(ϕri + ϕle)− r(ϕto + ϕbo) = 0

Since, ϕb is not known, it can be eliminated from these two equations to obtain the

following equation for ϕi,j

(4r + 3s)ϕcent + 2qϕto + 3p(ϕle + ϕri) + (−3b− 2r△X3Nb) = 0
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A.1. Finite Difference Equations

Table A.1: FDEs (one or more surrounding boundary nodes have NBC)

Case Desc. Coefficients of Known value
ϕcent ϕbo ϕle ϕri ϕto

51/71 boN 4r + 3s − 3p 3p 2r −3b− 2Nbor△X3

52/72 leN 4p+ 3s 3r − 2p 3r −3b− 2Nlep△X1

53/73 riN 4p+ 3s 3r 2p − 3r −3b+ 2Nrip△X1

54/74 toN 4r + 3s 2r 3p 3p − −3b+ 2Ntor△X3

55 boN , leN 4p+ 4r + 3s − − 2p 2r −3b− 2Nlep△X1 − 2Nbor△X3

56 boN , riN 4p+ 4r + 3s − 2p − 2r −3b+ 2Nrip△X1 − 2Nbor△X3

57 toN , leN 4p+ 4r + 3s 2r − 2p − −3b− 2Nlep△X1 + 2Ntor△X3

58 toN , riN 4p+ 4r + 3s 2r 2p − − −3b+ 2Nrip△X1 + 2Ntor△X3

59 leN , riN 4p+ 2s 2r − − 2r −2b−Nlep△X1 +Nrip△X1

60 boN , toN 4r + 2s − 2p 2p − −2b−Nbor△X3 +Ntor△X3

61 boN , leN , riN 12p+ 8r + 6s − − − 4r −6b− 3Nlep△X1 + 3Nrip△X1 − 4Nbor△X3

62 boN , riN , toN 8p+ 12r + 6s − 4p − − −6b+ 4Nrip△X1 − 3Nbor△X3 + 3Ntor△X3

63 leN , riN , toN 12p+ 8r + 6s 4r − − − −6b− 3Nlep△X1 + 3Nrip△X1 + 4Ntor△X3

64 boN , leN , toN 8p+ 12r + 6s − − 4p − −6b− 4Nlep△X1 − 3Nbor△X3 + 3Ntor△X3

This corresponds to Case-51 in Table A.1. It is to be noted that cases 71-74 are

the penultimate nodes located just next to the internal corner nodes i.e. where the

internal angle at the corner node is 3π/2c. As is evident, this approach includes

strictly only the internal nodes in the system of equations to be solved and the

boundary nodes with NBC are excluded when the equations are getting solved.

It is interesting to note that using this approach does have a drawback. The

values of the boundary nodes with NBC can be computed quite conveniently from

the values of ϕ of the internal nodes by using the one-sided differencing equation for

NBC. However, in a case like Figure A.1 where the corner node is at the intersection

of two bounding surfaces defined by NBC, the value of ϕ0 can be computed in two

ways, either by using Nbo, ϕ11, ϕ22 or by using Nle, ϕ1, ϕ2. Since, the values of ϕ at

boundary nodes is not solved as part of the equation system, there is no guarantee

that the values of ϕ0 obtained by using either the left boundary or the bottom

boundary would match.

A.1.2 Central differencing

An alternate approach to formulate the linear system of equations is by using the

equations of central differencing for first order derivatives i.e. NBC. But, as in-

formation on the nodes just outside the domain are not available, this approach

cannot be applied straightaway. This hurdle is overcome by assuming a set of nodes

just outside these boundaries which are usually referred to as ‘ghost nodes’. The
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Table A.2: FDEs (Boundary nodes with NBC incl. in eqn. system)

Tag Desc. Coefficients of Known value
Node on ϕcent ϕbo ϕle ϕri ϕto

1 bottom bdr. s − p p 2r −b− 2Nbor△X3

2 left bdr. s r − 2p r −b− 2Nlep△X1

3 right bdr. s r 2p − r −b+ 2Nrip△X1

4 top bdr. s 2r p p − −b+ 2Ntor△X3

Table A.3: FDEs (Corner nodes with NBC incl. in eqn. system)

Tag Desc. Coefficients of Known value
Corner on ϕcent ϕbo ϕle ϕri ϕto

1 bottom left s − − 2p 2r −b− 2Nbop△X1 − 2Nler△X3

2 bottom right s − 2p − 2r −b+ 2Nbop△X1 − 2Nrer△X3

3 top left s 2r − 2p − −b− 2Ntop△X1 + 2Nler△X3

4 top right s 2r 2p − − −b+ 2Ntop△X1 + 2Nrir△X3

nodes 44−58 in Figure A.1 are the ghost nodes. With respect to a node on bottom

boundary, the governing equations are

b− sϕcent − p(ϕri + ϕle)− r(ϕto + ϕbo,gh) = 0

where the gh in the suffix indicates ghost node. Using second order central differ-

encing to resolve for first order derivative, the following equation for NBC can be

written.

Nbo =
ϕto − ϕbo

2△X1

⇒ 2Nbo△X1 − ϕto + ϕbo,gh = 0

Eliminating ϕbo,gh from these equations gives

−b− 2Nbo,ghr△X3 + sϕcent − p(ϕri + ϕle)− 2rϕto = 0

Table A.2 summarizes these coefficients for boundary nodes with NBC. It is to

be noted that for corner nodes with both connecting boundaries having NBC (e.g.

node 0 in the present case) will be influenced by the NBC from both these bound-

aries. Using a similar approach the equations for such corners nodes can be derived.

Table A.3 summarizes the equations for these corner nodes. Unlike the one sided

differencing approach, the inconsistency in the value of the corner node is eliminated

by solving it as a part of the equation system.
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A.2. Validation of numerical analysis

A.2 Validation of numerical analysis

This appendix provides details of validation of the python3 code which uses the

concepts of parallel numerical algorithms for the elliptic PDE by comparing the

analytical results with the numerical results. For the purpose of validation, it is

necessary to have a function which is known to satisfy the elliptic PDE, eq.(4.13).

The family of functions which satisfy homogeneous elliptic PDEs (Grewal, 2012) or

Laplace equation could have any of the forms as given in eq.(A.1)

ϕ = (c1e
px + c2e

−px)(c3 cos py + c4 sin py) (A.1a)

ϕ = (c5 cos px+ c6 sin px)(c7e
py + c8e

−py) (A.1b)

ϕ = (c9x+ c10)(c11y + c12) (A.1c)

For any problem governed by elliptic PDE, the constants in the above equations are

determined by the boundary conditions. Based on the first equation i.e. eq.(A.1a),

a test function with some arbitrary constants and axes notation as followed through-

out this work is chosen and the same is given in eq.(A.2)

ϕ = (0.5e0.009X1 + 1.5e−0.009X1)(2 cos(0.009X3) + 7 sin(0.009X3)) (A.2)

The directional derivatives of the above function are given by

ϕX1 = −(0.0135e−0.009X1 − 0.0045e0.009X1)(2 cos(0.009X3) + 7 sin(0.009X3))

(A.3a)

ϕX3 = (0.063 cos(0.009X3)− 0.018 sin(0.009X3))(1.5e
−0.009X1 + 0.5e0.009X1)

(A.3b)

A large domain of 2500m× 1000m, similar to the node spacing for the simulations

undertaken in this work with two openings of arbitrary size 150m× 20m placed at

an arbitrary location is considered. The origin is fixed at the centre of the bottom

boundary of the domain. The node to node distance considered is 1m in either

direction. The domain with plot of its boundary conditions is shown in Figure A.2.

It is to be noted that the coefficient of the power of the exponential function is chosen

to be very small i.e. 0.009, so that the values of ϕ do not become exceedingly large.

Also, the values would have ranged from extremely high orders of magnitude at the

left and right boundaries to extremely low values at the centre. However, in the
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Table A.4: Comparison of analytical and numerical results

Analytical results Numerical results Relative error (%)
X1 X3 ϕ ϕX1 ϕX3 ϕ ϕX1 ϕX3 ϕ ϕX1 ϕX3

−1200 100 494608.2389 −4451.4741 1842.8054 494620.5638 −4451.3031 1842.8314 0.0025 0.0038 0.0014
−1198 100 485784.9386 −4372.0644 1809.9317 485797.717 −4371.8986 1809.9597 0.0026 0.0038 0.0015
−1196 100 477119.0368 −4294.0713 1777.6444 477132.2758 −4293.9067 1777.6728 0.0028 0.0038 0.0016
−1194 100 468607.7257 −4217.4695 1745.933 468621.4171 −4217.2952 1745.9615 0.0029 0.0041 0.0016
−1192 100 460248.2477 −4142.2342 1714.7874 460262.3818 −4142.0655 1714.8167 0.0031 0.0041 0.0017
−1127 132 275995.9093 −2483.9632 260.5148 276023.0047 −2483.8987 260.4483 0.0098 0.0026 0.0255
−1125 132 271072.4272 −2439.6518 255.8675 271099.7109 −2439.6031 255.7912 0.0101 0.002 0.0298
−1123 132 266236.775 −2396.131 251.3031 266264.2029 −2396.1104 251.2145 0.0103 0.0009 0.0353
−1121 132 261487.3857 −2353.3865 246.8201 261514.8757 −2353.3994 246.7172 0.0105 0.0005 0.0417

Figure A.2: Domain considered for validation of Python3 code

kind of simulations undertaken, the difference in the values ϕ within the domain

are not so extreme and hence evaluating the performance of the solver in such a

scenario is not relevant to the present context. The code is run parallelly on all 6

cores of an Intel core i9 processor.

Table A.4 shows a comparison of the numerical results with the analytical

results. In this case considered for validation, where the boundary values are clearly

known by a properly defined function, the results of the numerical results almost

nearly match the analytical results. Thus, the code for numerical simulation using

the concepts of parallel numerical algorithms can be seen to perform nicely.

The results have also been tested with MATLAB’s internal PDE tool for a

158



A.2. Validation of numerical analysis

Figure A.3: Domain considered for comparison with MATLAB

small domain with boundary conditions as given in Figure A.3. It can be clearly

seen from Figure A.4 that the results match nicely, thereby confirming the validity

of the solver.

(a) using Python (b) Using MATLAB

Figure A.4: Comparison with MATLAB’s PDE solver

159





Appendix B

Validation for the turbulence

model

B.1 Validation of BiCGStab

In this appendix, few special cases pertaining to the application of BiCGStab in

the context of the proposed turbulence model has been presented and the numerical

results obtained by executing the python code have been validated with respect to

the theoretical values. It is to be noted that though all the values are shown upto

four places of decimal, calculations have been done using double precision or 64bits

floating point numbers.

B.1.1 Pressure equation

From the equations of pressure presented earlier, it can be observed that any interior

node depends on 9 neighbouring nodes in case of a 3D domain and 6 neighbouring

nodes in case of 2D domain. Consider for example a linear system with coefficient

matrix, A as shown in Table B.1 and RHS of the system, b as shown in Table B.2.
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Table B.1: Coefficient matrix, A for pressure



0 0.9795 0 0 0 0 0 0 0 0.2449 0 0 0 0 0 0 0 0

-0.9795 -0.9795 0.9795 0 0 0 0 0 0 0 0.2449 0 0 0 0 0 0 0

0.9795 -0.9795 -0.9795 0.9795 0 0 0 0 0 0 0 0.2449 0 0 0 0 0 0

0 0.9795 -0.9795 -0.9795 0.9795 0 0 0 0 0 0 0 0.2449 0 0 0 0 0

0 0 0.9795 -0.9795 -0.9795 0.9795 0 0 0 0 0 0 0 0.2449 0 0 0 0

0 0 0 0.9795 -0.9795 -0.9795 0.9795 0 0 0 0 0 0 0 0.2449 0 0 0

0 0 0 0 0.9795 -0.9795 -0.9795 0.9795 0 0 0 0 0 0 0 0.2449 0 0

0 0 0 0 0 0.9795 -0.9795 -0.9795 0.9795 0 0 0 0 0 0 0 0.2449 0

0 0 0 0 0 0 0.9795 -0.9795 -0.9795 0 0 0 0 0 0 0 0 0.2449

-0.2343 0 0 0 0 0 0 0 0 -0.2449 0.9372 0 0 0 0 0 0 0

0 -0.2343 0 0 0 0 0 0 0 -0.9372 -1.1821 0.9372 0 0 0 0 0 0

0 0 -0.2343 0 0 0 0 0 0 0.9372 -0.9372 -1.1821 0.9372 0 0 0 0 0

0 0 0 -0.2343 0 0 0 0 0 0 0.9372 -0.9372 -1.1821 0.9372 0 0 0 0

0 0 0 0 -0.2343 0 0 0 0 0 0 0.9372 -0.9372 -1.1821 0.9372 0 0 0

0 0 0 0 0 -0.2343 0 0 0 0 0 0 0.9372 -0.9372 -1.1821 0.9372 0 0

0 0 0 0 0 0 -0.2343 0 0 0 0 0 0 0.9372 -0.9372 -1.1821 0.9372 0

0 0 0 0 0 0 0 -0.2343 0 0 0 0 0 0 0.9372 -0.9372 -1.1821 0.9372

0 0 0 0 0 0 0 0 -0.2343 0 0 0 0 0 0 0.9372 -0.9372 -1.1821
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It can be observed the element a11 in the leading diagonal is 0. This case

corresponds to that of the pressure equation presented earlier in Chapter 6. If the

values of x obtained by using BiCGStab are compared with that obtained manually

using matrix inversion function in a spreadsheet, the values are approximately the

same. This proves the fact that the presence of zero in the leading diagonal does

not have any major effect on the performance of BiCGStab.

Another scenario has been presented in Table B.2 where under-relaxation

factor has been introduced in BiCGStab. Compared to the previous case, it can be

observed that the values of x show considerable deviation from the expected values.

As explained earlier, the reason for this is that introducing the under-relaxation

factor modifies the coefficient matrix itself.

Table B.2: b and x computed using BiCGStab and spreadsheet for pressure

b x x x
(BiCGStab (using matrix (BiCGStab
in python) inversion in with under-relaxation

spreadsheets) in python)

0.00041 −0.11986 −0.11463 −0.07192
0.02745 −0.01398 −0.01113 −0.00839
0.01232 −0.10025 −0.09271 −0.06015
0.00058 0.00214 0.00866 0.00128
0.00086 −0.07672 −0.06846 −0.04603
−0.00277 0.01091 0.01849 0.00655
0.00960 −0.06333 −0.05795 −0.03800
−0.00904 0.01839 0.02293 0.01103
−0.00278 −0.05981 −0.0603 −0.03589
−0.00330 0.04860 0.04618 0.02916
0.03828 −0.01840 −0.02011 −0.01104
−0.00025 0.06310 0.05888 0.03786
−0.00038 −0.01070 −0.01548 −0.00642
0.00023 0.06730 0.06123 0.04038
−0.0002 −0.00764 −0.01400 −0.00458
−0.00008 0.06833 0.06345 0.04100
0.00013 −0.00563 −0.00977 −0.00338
−0.00117 0.07458 0.07100 0.04475

B.1.2 Velocity equations

In this section, a sample of the coefficient matrix of velocity equations and the

results obtained using BiCGStab has been shown to validate BiCGStab. Table B.3

shows a typical coefficient matrix for the velocity equations.
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Table B.3: Coefficient matrix, A for velocity



1 -3E-6 0 0 0 0 0 0 0 -8E-7 0 0 0 0 0 0 0 0

-1 1 -3E-6 0 0 0 0 0 0 0 -8E-7 0 0 0 0 0 0 0

0 -1 1 -3E-6 0 0 0 0 0 0 0 -8E-7 0 0 0 0 0 0

0 0 -1 1 -3E-6 0 0 0 0 0 0 0 -8E-7 0 0 0 0 0

0 0 0 -1 1 -3E-6 0 0 0 0 0 0 0 -8E-7 0 0 0 0

0 0 0 0 -1 1 -3E-6 0 0 0 0 0 0 0 -8E-7 0 0 0

0 0 0 0 0 -1 1 -3E-6 0 0 0 0 0 0 0 -8E-7 0 0

0 0 0 0 0 0 -1 1 -3E-6 0 0 0 0 0 0 0 -8E-7 0

0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 -8E-7

-8E-7 0 0 0 0 0 0 0 0 1 -3E-6 0 0 0 0 0 0 0

0 -8E-7 0 0 0 0 0 0 0 -1 1 -3E-6 0 0 0 0 0 0

0 0 -8E-7 0 0 0 0 0 0 0 -1 1 -3E-6 0 0 0 0 0

0 0 0 -8E-7 0 0 0 0 0 0 0 -1 1 -3E-6 0 0 0 0

0 0 0 0 -8E-7 0 0 0 0 0 0 0 -1 1 -3E-6 0 0 0

0 0 0 0 0 -8E-7 0 0 0 0 0 0 0 -1 1 -3E-6 0 0

0 0 0 0 0 0 -8E-7 0 0 0 0 0 0 0 -1 1 -3E-6 0

0 0 0 0 0 0 0 -8E-7 0 0 0 0 0 0 0 -1 1 -3E-6

0 0 0 0 0 0 0 0 -8E-7 0 0 0 0 0 0 0 -1 1
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B.1. Validation of BiCGStab

The extremely low values in the this matrix are the terms corresponding to

the diffusion or viscous term in the equations.

As can be seen from Table B.4, the values of x computed using the iterative

algorithm is nearly the same when compared to the results obtained using matrix

inversion in spreadsheets. This case proves that BiCGStab performs properly for

the velocity equations in SIMPLER. Though the effect of under-relaxation factor

has not been presented, it is worth mentioning that the under-relaxation factor has

the same effect in this case just like that with the case of the pressure equations.

Table B.4: b and x computed using BiCGStab and spreadsheet for velocity

b x x
(BiCGStab (using matrix
in python) inversion in

spreadsheets)

−0.01326 −0.01325 −0.01326
−0.00561 −0.01892 −0.01887
−0.00433 −0.02331 −0.02320
−0.00656 −0.02911 −0.02976
−0.00194 −0.02893 −0.03170
−0.00333 −0.03042 −0.03503
−0.00132 −0.03162 −0.03635
−0.00017 −0.03178 −0.03652
0.00627 −0.02346 −0.03025
−0.01357 −0.01356 −0.01357
−0.00366 −0.01728 −0.01723
−0.00149 −0.01883 −0.01872
−0.00051 −0.01855 −0.01924
0.00000 −0.01647 −0.01924
0.00055 −0.01447 −0.01869
0.00043 −0.01481 −0.01826
−0.00081 −0.01655 −0.01907
−0.00089 −0.01586 −0.01996
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