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Abstract

Highly intelligent, automated and ubiquitous digital world will be hallmark of the com-
ing decade. To achieve this, we need high-speed, highly-reliable connectivity between
physical, digital and biological world. In terms of cloud systems, Multi-access Edge
Computing (MEC) has been playing a key role in enabling mobile devices to have swift
connectivity to resource-rich cloud servers. However, the current state-of-art may be
unable to meet the full connectivity and processing demands of the future compute- and
bandwidth-hungry applications transpiring the envisioned digital society. To make up for
the capacity, 5G and upcoming 6G extend the channel bandwidth. This exacerbates the
already daunting spectrum resource scarcity and adds to the cost of the network. To
minimize the cost of the network and delay, a solution recently proposed in the literature
is the concept of parallel offloading to multiple servers over multiple radios access tech-
nologies (RATs) that a mobile device comes equipped with such as Wi-Fi Direct, Wi-Fi
and macro-cellular technology such as 5G.

Using multi-radio multi-server powered MEC, we work on minimizing network delay as
well as jointly minimizing network and computation delay. To minimize the network delay,
we measure the performance on different radios. Using the obtained performance, we
optimally utilize the joint capacities of the radios and schedule the traffic in such a way
that packet order at the source and destination is maintained thereby completely avoiding
packet reordering delay to keep the throughput intact. We develop a Continuous Non-
Linear Program (CNLP) that vary the load on the radio access technologies according to
their performances. The proposed CNLP is solved through Lagrange’s Multiplier theorem
for several constraints. Furthermore, to ensure smooth relay of the MEC traffic, capacity
distribution at the relay node is optimized according to the arrival of the MEC traffic.
Numerical results show significant improvement in terms of throughput, delay and QoS
compared with other techniques using multiple radios for computation offloading

To jointly minimize network and computation delay, we develop a technique that chooses
the most optimal servers. Further, to minimize server migration and to achieve a conver-
gence point in the algorithm, we formulated a max-min based non-linear lexicographic
minimization problem. To solve the formulated problem in polynomial time, we trans-
form the non-linear objective function to a linear one and solve it through the simplex
algorithm. Based on the obtained network performance and computation delay, we
formulate a multi-server multi-radio load distribution problem to optimally utilize the
available capacities of the radios. This problem is solved using techniques from algorith-
mic game theory. Illustrative numerical results show that proposed technique significantly
minimizes computational and network delay.
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1 Introduction

1.1 Background

Mobile devices with their small sizes come handy but with the limited processing power
and small storage, cannot run computationally intensive applications such as high-
processing gaming, demanding scientific algorithms and computations that require large
data storage. Because of this fundamental limitation, mobile devices are coupled with
servers located at the edge of the networks to assist the execution of demanding tasks
such as online gaming, e-Health, virtual assistance, Internet of things, augmented/virtual
reality [2]. The coexistence of mobile devices with the edge servers has lead to a new
category of cloud computing known a Multi-access Edge Computing (MEC) [3]. In
traditional cloud computing model, a cloud server is placed on the core network. Conse-
quently, a data packet traversing different nodes and travelling all the way to the server
and back to the user will cause packets of real-time applications to miss their deadlines,
thus eventually get discarded by the application [4]. This results in drastic degradation
of the service delivery which we define as the time taken by the application to produce
output of given request [5]. Therefore, MEC came into existence to make up for the
computationally-intensive tasks that are characterized by their ultra-low latency and high
throughput requirement. In MEC, a compute and resource-intensive task performed by
the application that is too demanding for device hosting it, may be delegated to the edge
server. The edge server in return processes the task and feedback the output to the ap-
plication. This scheme makes the mobile device a mere input-output terminal while the
actual processing is performed by the server whereas the end-user is oblivious to the
actual processing flow. This way, network traffic is reduced, congestion and latency are
minimized while overall application performance is improved significantly.

Multi-Access Edge Computing (MEC) has been paramount to research for about a
decade. It’s a fabulous way to make mobile devices appear to execute high-processing
gaming, demanding scientific algorithms and computations despite their limited pro-
cessing power, storage, and battery size. There have been a significant number of
groundbreaking works in this area. However, as we are forging forward to a fully con-
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nected digital world, the current state-of-art may fall short to accommodate the explosive
growth in the number of wireless devices and real-time bandwidth hungry applications
such a virtual/augment reality, holographic telepresence, Internet-of-Everything, smart
grid 2.0, Industry 5.0, robotics for their stringent requirements [6]. For example, require-
ment of these applications in terms of ultra-high data rates, real-time access to powerful
computing resources, ultra-low latency, and extremely high reliability and availability al-
ready surpass the network capabilities promised by current infrastructure [7]. To support
the aforementioned services and applications thereby materializing the envisioned digital
world of the next decade, both in 5G and the upcoming 6G, communication capacity is
improved by extending the channel bandwidth. This exacerbates the already daunting
spectrum resource scarcity and adds to the cost of the network. Finally, with the advent
of Massive IoT, 6G, and MEC itself, there will be massive densification of devices. We
shall notice several disruptive changes in the networks and applications. For these rea-
son, the existing techniques are insufficient to cope up with the requirements of future
networks.

On the processing side, in existing techniques, a single server is chosen ignoring
its available capacity, existing load on it and its intermittent unavailability. The idea
behind MEC is to bring large number of servers close to users, so that each server
serves a small number of users to expedite the processing. However, if large number
of users congregate around a single MEC server and overload it, the available capacity
can no longer be disregarded. In worst cases, the server may even become unavailable.
Therefore, we need to manage the numbers of users and load on the servers, as to
minimize service delay, we need to minimize both network delay as well as computation
related delays at the server.

Motivated by these concerns, we propose multi-server multi-radio (MSMR) powered
MEC where offloading occurs over multiple radios and depending upon the conditions,
the radios may be connected to different servers. Seemingly straightforward, adopting
MSMR however, has many inherent problems such as difficulty in multi-radio packet
scheduling and optimizing packet distribution due to difference in the capacity and delay
of radio access technologies, optimizing the allocation of resources, maintaining packet
order after arriving at the destination, server selection.

Another motivation behind this work is the number of shortcomings that subsists in
the existing techniques. For example, ignoring or assuming constant values for several
important parameters such as SNR, bitrate, coding rate, available server capacity etc.
Moreover, in an MEC system, performance is measured in terms of transmission capacity
of the RAT and then offloading decisions are taken. However, transmission capacity
between the relay node and the MEC server is ignored or taken constant. This issue
will further exacerbate when there are multiple RATs involved because with difference
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in performance measures, there will be packet reordering issues. Therefore, we need to
consider and manage the transmission capacity at the relay node to ensure smooth relay
of the MEC packets at the relay node.

1.2 Research Gap

• The communication and processing capacity of the current infrastructure is insuf-
ficient to accommodate the future bandwidth and compute-hungry applications.
Both in 5G and 6G, communication capacity is improved by extending the channel
bandwidths. This exacerbates the already daunting spectrum resource scarcity and
adds to the cost of the network. On processing side, available capacity and the
intermittent unavailability of the server hampers the processing speed.

• Packet scheduling over multiple RATs has a lot of inefficiencies. The existing tech-
niques do not utilize available capacities of the RATs optimally. A parameter, ratio
of residual capacity to total capacity, that shows how optimal packet distribution
over multiple RATs is, is sub-optimal for the existing techniques. The scheduling
and load distribution over multiple radio access technologies gives rise to packet
arriving out-of-order which is another factor that plummets the throughput and
drastically increases the end-to-end delay.

• Resource sharing in current technique are sub-optimal ignoring different important
parameters such as post-relay node capacity of the links, server unavailability and
channel related parameters such as SNR, bitrate, coding rate.

1.3 Structure

The transfer report is structured as follows.

• In Chapter 2 we give a general overview of Multi-Radio Multi-Server MEC. We
discuss relevant problems of Multi-RAT based task offloading and present a state-
of-the-art.

• In Chapter 3 we show our network delay optimizing models in a Multi-Radio based
MEC. We show parallel offloading over multiple radios to a single edge server.

• Chapter 4 is on joint optimization of network delay as well as processing delay. We
show parallel offloading over multiple Radios to multiple server.

• We conclude the thesis in Chapter 5.
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1.4 Key Contributions

A brief list of major contributions is as follows.

• We present a multi-server multi-radio based architecture for MEC based computa-
tion offloading. We exploit the concept of the parallel offloading over multi-radio
end-nodes. We develop a Continuous Non-Linear Program (CNLP) to minimize
network delay. The developed CNLP, solved through Lagrange’s Multiplier The-
orem for several constraints, avoid packet re-ordering delay by ensuring packets
arrive at the destination simultaneously by equalling delays of the radios. To min-
imize network delay, we also optimize load distribution and packet scheduling to
optimally utilize available capacities of the radios.

• We jointly minimize network and computation delay for the multi-server architec-
ture. We develop a technique that chooses the optimal server for computation and
avoid server migration in real time using max-min based non-linear lexicographic
minimization problem. With the computation and transmission capacity of the
servers and radios computed, we formulate a multi-server multi-radio load distri-
bution problem to optimally utilize the available capacities. The load distribution
technique schedules the packets in such a way that packet order at the destination
is maintained.
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2 Multi-Radio MEC

In this chapter, we describe Multi-Radio based MEC. We highlight challenges with such
a system and provide a provide a brief overview of the state-of-the-art.

2.1 Introduction

In MEC, quality of service is measured in terms of how quickly the user gets the results
of their generated request, commonly known as service delay whereas service delay is the
sum of network delay and processing delay at the edge server. The principal requirement
of MEC is to have indiscernible service delay which, despite of prioritized processing, is
impeded by factors such as traffic congestion in the network and link’s limited capacity
[8]. Operators are finding increasingly difficult to provide adequate QoS to emergence of
real-time, bandwidth hungry applications. When combined with the increasing popularity
of wireless technologies beyond smartphones, additional home appliances requiring wire-
less connectivity and plunging cost of electronic equipment, our next generation wireless
networks are expected to have enormous capacity to accommodate the ever increasing
demands from bandwidth-intensive applications [9]. Figure (2.1) and Table (2.1) shows
some recent statistics about the amount of data generated in different times to give us
the idea about the capacity our data networks need to have. The compound annual
growth rate of internet traffic from 2017 to 2022 is 47% [1] which implies 1000 times
more capacity relative to the current level of capacity in next few decades.

Different techniques such as massive multiple-input multiple-output (MIMO) and
beam-forming [10], spatial multiplexing [11], multi-band transmission [12] [13], channel
bonding and bandwidth aggregation [14], prioritized processing [15] have been devised
to keep up with the rapidly growing real-time bandwidth hungry applications. However,
due to new applications’ stringent performance requirement, MEC communication still
struggles to provide adequate connectivity [16].

Motivated by these concerns, we propose multi-server multi-radio (MSMR) powered
MEC where offloading occurs simultaneously on all the radios that a mobile phone comes
equipped with. A smartphone today comes equipped with different radios supporting
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Figure 2.1: Annual mobile traffic growth [1].

Table 2.1: Historical internet context [1]

Year Global Internet Traffic
1992 100 GB per day
1997 100 GB per hour
2002 100 GB per second
2007 2,000 GB per second
2016 26,600 GB per second
2022 105,800 GB per second

different technologies such as WiFi-Direct, WiFi and macro-cellular technology such
as 5G, and depending upon the conditions, the radios may be connected to different
servers. Starting with 4G/5G, our smartphones are connected to macro-base station to
provide broad coverage and medium speed connectivity. On the other hand Wi-Fi, based
on IEEE 802.11 standard, provides ultra fast connectivity, but confined to a local area
networks. Similarly, Wi-Fi Direct is a peer-to-peer WiFi standard for device-to-device
communication without involving intermediary central access point or router [17]. Wi-Fi
Direct has been shown to be a successful avenue for task offloading [18]. A simple
illustration of a smartphone with multiple radio access technologies is shown in Figure
2.2.

Seemingly straightforward, adopting MSMR however, has many inherent problems.
For example, the radios working on different technologies and standards have different
capacities and different response to physical conditions such as distance, interference,
barriers and the environment in which they operate, hence, different capacity and net-
work delays. This inherent nature of a multi-radio system makes traffic scheduling a
daunting task. Unequal delay of radios have detrimental effect on system throughput.
For example, MEC server cannot process data transmitted by a faster radio, as it will
have to wait to receive the data from the slower radio to combine the two chunks to
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Figure 2.2: A Simple Illustration of a smartphone with Multi-RAT capabilities.

make one whole. Consequently, processing is hampered by the slower radio. This under-
utilization of capacity is caused at many level due to inefficient traffic scheduling as a
radio with larger capacity having transmitted its load would sit idle until all other radios
are done with their transmission before next transmission session begins. This idle time
of the radio could have been used for more data transmission. Moreover, because of
the disproportionate or equally shared load, data packets are likely to arrive out-of-order.
Factors such as edge server waiting to receive packets from the slower radio and putting
received packet back in order increase end-to-end system delay, thus causing some of the
packets of real-time applications to miss their respective deadlines and get discarded.
This packet reordering issue is further disseminated to Transmission Control Protocol
(TCP) layer as packets arrived out-of-order will either be kept in the buffer or discarded
depending on the magnitude of the out-of-order packets as Transmission Control Pro-
tocol (TCP) can allow packet reordering by a maximum of two positions, which are
corrected through inherent re-sequencing mechanism [22]. However, packet reordering
beyond two positions is taken as a loss, thus leading to TCP reducing its transmission
window size. Consequently, the aggregated capacity will be underutilized, and the appli-
cation throughput may drop drastically. An efficient MSMR solution is, therefore, one
that includes mechanisms to minimize packet reordering to alleviate its effects.

7



2.2 Challenges of Using Multi-Radio Multi-Server

System

In the following, we shall summarize the problems associated with multi-radio multi-
server based MEC system.

2.2.1 Traffic Scheduling

An efficient traffic scheduling algorithm is a paramount of importance for giving high
Quality of Service (QoS). It is one of the oldest topic of research in computer networks
[19]. Traffic scheduling becomes even more challenging when there are multiple radios
and multiple MEC servers involved.

2.2.2 Unequal Delay of Radios

The different radios have different capacities, hence, different delays. This inherent na-
ture of a multi-radio system makes traffic scheduling a daunting task. Unequal delay of
radio have detrimental effect on system throughput. For example, for real-time applica-
tions, MEC server cannot process data transmitted by a faster radio, as it will have to
wait to receive the data from the slower radio. Processing in this case the MEC server
is hampered by the slow radios. Therefore, it is very important to exploit the physical
characteristics of the radios to make the end-to-end delay of all the RATs equal.

2.2.3 Under-Utilization of Resources

A disproportionate or equally shared load will lead to under-utilization of capacity on
many level. To begin with, a radio with larger capacity having transmitted its load would
sit idle until all other radios are done with their transmission before next transmission
session. This is the first case of capacity under-utilization where the idle time could have
been used for more data transmission. Moreover, the MEC server cannot act upon the
transmitted data as it will be waiting to receive the remaining data from the sender.

2.2.4 Maintaining Packet Order at Receiver

Because of the difference in capacity and delay, and inefficient traffic scheduling, data
packets are likely to arrive out-of-order. Packets arrived out-of-order will either be kept in
the buffer or discarded depending on the magnitude of the out-of-order packets as TCP
can allow packet re-ordering by a maximum of two positions only [22]. Overwhelming
the slower radio and putting the total data in correct order increases the overall end-to-
end delay. Bringing data packets back in order, consumes a significant amount of time,
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which causes packets of real-time application to miss their respective deadlines and get
discarded. Therefore, it is necessary for the packets to be received in order and to avoid
packet re-ordering delay.

2.2.5 Server Selection

The idea behind Multi-access edge computing is to bring large number of processing
servers to the proximity of the networks, so that each MEC server serves a small number
of users to expedite the processing. However, MEC servers being considerably less
powerful, processing is drastically impacted when large number of users request the
same server for their services. This situation is exacerbated when offloading algorithms
ignore the factors like load on the server, computational requirement of the application,
user mobility and unavailability of servers. Therefore, it is very important to discreetly
choose a server for ultimate user experience [20].

2.3 Literature Survey

Computation offloading is one of the oldest topics of computing and probably the main
motivation behind computer networks, as can be seen in the memo shared by J. Licklider
in 1963 [21]. More recently, the increasing popularity of bandwidth hungry applications in
conjunction with mobile devices brought this issue into limelight. Computation offloading
to remote central cloud servers is often unsuitable for real-time applications, as the
transmission distance and number of hops required to reach a central computing node
typically incur latency of several tens of millisecond, with comparably high jitter. Multi-
access edge computing (MEC), on the contrary, outdoes traditional cloud computing
by significantly enhancing the capabilities of capacity-limited mobile devices thereby
remarkably reducing the service delay[4]. It is for this reason that MEC manifests itself
as promising technology for extending the computation and storage capabilities of mobile
devices.

We acknowledge that over the last few years there have been a large number of
studies focusing on the technical aspects of the MEC [5], [8]. Most of the solutions
are single radio based and are inadequate to incorporate several key characteristics and
are often too simple to reflect real world scenarios. In the following discussion, we shall
divide our literature review into two parts where we shall discuss the motivation behind
this work by reviewing the shortcomings in the existing offloading techniques in general
and then in the second part, we shall review the work done in the context of multi-radio
systems.
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2.3.1 Computation Offloading in General

A comprehensive survey on Multi-access edge computing is given in [5], [8] where the au-
thors provide a detailed insight into the problem of computation offloading and resource
allocation. Most of the techniques highlighted are inadequate to incorporate several key
characteristics and are often too simple to reflect real world scenarios. In the following
sections, we attempt to classify the literature according to the assumptions and scenarios
assumed.

Binary Offloading Models

In binary offloading models, a task is either offloaded wholly or not at all. MEC systems
are essentially multi-tiered in nature. A task can be executed locally by the mobile device
as well as servers at the edge or cloud servers at the core network. Most of the existing
work ignore the processing power of the mobile device and wholly offload the task [22],
[23]. These algorithms are simple and easy to implement, however, they are inefficient
and cannot make full use of resources [24].

Constant Values for Important Parameters

Most of the existing works have assumed constant values for several important parame-
ters such as SNR, Bitrate, received signal power and path loss etc. [25], [26]. Similarly,
[27] has considered constant values for transmission and processing delay. Assuming
constant values for these important parameters is not realistic and leave little room for
improving the performance.

Capacity of MEC Server

Most existing techniques also ignore capacity of or load on an MEC server. Capacity
of MEC server is either assumed to be constant [28], [29] or assumed to be capable of
always processing the task [30]. Processing delay of a task depends upon the capacity
of the MEC server. Assuming fix capacity makes the processing delay fix which is clearly
not practical and leaves little room for improving performance and server efficiency
particularly in a scenario where end-user is mobile and often switch between servers.

Static Offloading

Several techniques assume static offloading where network haphazardry (i-e the fact that
networks are dynamic in nature) and spatio-temporal variation in the network is ignored
[31], [32], [33]. With user mobility and nature of applications combined with variation
in wireless channels, MEC based wireless networks are highly dynamic. Therefore, using
deterministic optimization models fall short in real-life scenarios.
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Massive IoT and Introduction of 6G

Once Internet of Things (IoT) is wholly deployed, there will be massive increase in the
number of active devices in the internet [34]. Similarly, with the advent of 6G, there
will be several changes in the network architecture such as introduction of Terahertz
frequency, NOMA, beamforming, massive number of base stations and servers are antic-
ipated few at this stage [35] [36]. With large number of clients and requests, servers and
their variables, and the new technology, the existing solutions for MEC will no longer
work [35].

In some recent works, to make efficient use of resources, [37] considers local computa-
tion by partially offloading the tasks to MEC servers. The authors considers both single as
well multi-users scenarios of MEC resource allocation for computation offloading, which
are solved by branch-and-bound and iterative based heuristics, respectively. Schemes
like partial offloading require perfect user-MEC server-remote cloud coordination that
leads to high signalling overhead. Moreover, these schemes assume that a task can be
arbitrarily divided into subtasks which is an unreal assumption. To further ameliorate
the resource allocation, authors in [38] investigated the efficiency of deep reinforcement
learning and developed solutions for joint resource allocation and energy minimization
based on Deep Q-Networks (DQN). The authors developed techniques based on DQN,
convex optimization and traditional Q-learning. However, offloading learning policy is
for fixed topology and given the efficiency of DQN, they are not suitable for edge video
processing. The goal of minimizing energy consumption and processing delay is carried
forward in [39], where authors have developed an evolutionary algorithm that jointly
optimizes energy consumption and processing delay and attempts to find pareto-optimal
point between energy consumption and processing delay. Computation offloading is also
investigated in vehicular edge networks (VEC) in [40], where authors have worked on
selecting least congested edge server with an aim to minimize cellular hand-offs to avoid
obstruction in computation.

To summarize, given the dynamic nature of MEC applications and wireless networks,
the assumption taken in most of the existing solutions are not at par with real world.
The networking and processing models have several flaws such as taking fixed delays,
load and capacities. Moreover, the fact that base-station (BS) serves as a relay node and
that the transmission capacity and communication related delays post- and pre-BS can
be different, is ignored. Furthermore, the existing solutions are not scalable enough to
cope up with massive IoT and service requirement of future applications. Therefore, we
need a solution that is scalable, flexible and completely represents the actual networking
and processing operation of the real world.
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2.3.2 Parallel Offloading over Multi-Radio

The co-existence of Wi-Fi and macro-cell networks such as LTE has been a widely
studied research area [41]. However, in WiFi-LTE integrated networks only, a portion
of the capacity of the WiFi AP is used and data is offloaded to Wi-Fi with the aim to
improve the cost and throughput of a cell. Similarly, most of the studies investigate
downlink performance [42]. We, on the contrary, investigate the synergy of WiFi, WiFi
Direct and cell network, and offload the data to a remote server and use any portion
of capacity of any radio depending upon the channel condition. Leveraging multi-radio
access technologies (RAT) in the context of MEC offloading has been carried out in [43],
[44] and [45]. Computation offloading techniques and protocols differ in purpose and
how they model the computation offloading process. A detailed review of computation
offloading modeling is given in [2]. Within this frame of reference, authors in [43] offload
data on the basis of the tasks. For instance, one task is sent over one radio while another
task is sent over another RAT. Distributing data on the basis of the computational
tasks can lead to packet reordering delay as they can be of different size. Moreover,
performance is measured on the basis of the transmission delay and (Load/Bandwidth)

metric. Different important parameters such as queuing delay, processing delay at the
node and congestion are ignored. [44] requires the end-node to send all the information
to the relay node such as required latency, data rate, average packet length, average
packet arrival rate, required computing power and so on. We believe, sending so much
information for real-time applications will be cumbersome and will defy the real purpose
of task offloading in real-world. Moreover, the radio-access technologies are not used
simultaneously, rather the choice is made for best radio-edge pair. Finally, a detailed
analytical framework of the presented work is also missing. Similarly, [45] distributes
data flows on the basis of tasks which is subject to packet reordering delay.

We argue that load, when offloading, must be distributed among radios according to
the data size rather than tasks be sent over different radios. This distribution must be
done according to the channel health and performance of the link which must be duly
computed. In addition, the system should maintain the order of data packets.

2.4 Summary

MEC is a plausible mechanism to prop the less powerful mobile devices. For MEC to
become a reality, there are several challenges that must be addressed before. A lot
of work has been done in this area to resolve the many challenges of MEC. However,
the current solutions do not model the networking and processing elements of MEC
correctly. Moreover, MEC applications and wireless networks in general are dynamic in
nature. There has been high degree of spatio-temporal variations. However, on the
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other hand, the current solutions take several important parameters as constant and
the overal network is assumed to be static. Finally, the introduction of 6G and massive
deployment of IoT, the existing solutions will fail to meet the expectation. Therefore,
we need a solution that that truly optimizes the performance of the system in terms
of communication and processing delay and a solution that completely models the true
networking and processing elements of the system.
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3 Multi-RATs Single Server

To minimize the cost of network delay, in this chapter, we describe our multi-radio single
server architecture. We describe our network delay formulation, problem formulation
and our proposed solution. Multiple radios have been combined to improve throughput
and capacity has been carried out in past [46], [47]. In this Chapter, we provide an
analytical model to optimize communication related delays by optimization scheduling,
and capacity utilization and distribution.

3.1 Computational Offloading over Multi-Radios

In this section, we first introduce the multi-radio computation offloading MEC model
considered in our work, followed by a description of our proposed computation offloading.
After that, we will formulate the problem for multi-radio simultaneous computation
offloading.

3.1.1 Assumed System Model

Our assumed system model is summarized in Figure 3.1. In order to differentiate between
the radios, we assume the three radios be WiFi, Wifi-Direct for short range connectivity
and 5G for macro-cellular network. Furthermore, for WiFi we assume IEEE 802.11ax
standard and the model defined in the standard [48] and in [49], [50] are borrowed for
performance estimation. Similarly, for 5G performance estimation is carried out using
model described in standard [51]. A detailed description on performance estimation is
given in Section 4.5.1.

Starting from the end-node, we have a smartphone as user equipment (UE) that acts
as a source node. The UE is equipped with multiple radio access technologies (RATs)
such as 5G Transceiver, Wi-Fi and Wi-Fi Direct. We assume that it is in range of a 5G
base-station, Wi-Fi access point and occasionally, a peer device comes in its transmission
range. Therefore, it can transmit through 5G, Wi-Fi and Wi-Fi Direct simultaneously. In
the figure, a peer is any device that serves as a relay node and has same features as the
end-node itself that is, any device capable of transmitting over 5G, Wi-Fi, Wi-Fi Direct.
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Figure 3.1: A Simple Illustration of Multi-Radio Access Technologies Computation Of-
floading.

In the figure, the end-node is mobile in nature whereas the Wi-Fi access point and 5G
base-station are fixed. We also assume that Wi-Fi access point and 5G base-station
can serve multiple users simultaneously. Both the Wi-Fi AP and 5G base-station are
connected to a single MEC server by optical fiber connection.

Suppose a task has been generated by the application, the end-node has two options,
either execute the task locally or offload the computation to MEC server. Thus, service
delay can be mathematically expressed as follows;

D =

{
1. Dl

2. D
′′
v +∆+ δ

(1)

Here Dl is the s delay (including computation and queuing time) if a task is performed
locally, D ′′

v is the service delay of the slowest radio (in this case also including the radio
transmission time) when the task is offloaded over v RATs where upper bound of v

depends upon the number of radio available.

We assume not all radios are available all the time. ∆ is packet reordering delay
when data packets arrives at the receiver node which happens to be the MEC server in
this case. Finally, δ is the packet retransmission delay when because of the gap between
the received packets, receiver is unable to order the packets as per the sequence number
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and asks the sender to retransmit the packets. Further details about packet reordering
and retransmission are given in 3.1.3.

If a task is executed locally, the service delay will be the sum of processing time
and the time it waits in the queue to get the processor. Assuming Poisson processes
with rate λ, if ζ is the processing capacity of the device, processing time will be 1/µζ,
where µ is the size of the process. Similarly, the queuing time will be λ/ ((µζ)(µζ − λ)).
Therefore, the service delay if the task is executed locally will be:

Dl =
1

µζ
+

λ

µζ (µζ − λ)
(2)

We will formulate the service delay for the offloaded task in the next section. Next,
suppose the task is computationally intensive and cannot be executed locally or local
execution time is very large from what would have been if the task was executed locally,
that is:

Dl >> D
′′

v +∆+ δ (3)

Therefore, the end-node must offload the task to the MEC server to speed up the
processing. Now the questions arise how much traffic load should each radio get, and
how to schedule the traffic among the radios to avoid packet re-ordering delay at the
receiver’s end. Therefore, once the system decides to offload the task, the goal is to
minimize the delay while keeping in view these considerations. We would also like to
mention that following the general notations trend, µ will be used as the packet length
and λ will be used as data load.

3.1.2 Delay When Computation Offloaded

In this section, we provide the mathematical model for computation offloading and
formulate the objective function for our proposed continuous non-linear program (CNLP).

When computation offloading is decided, other than the processing delay and queu-
ing delay mentioned above, we will have transmission delay and slot-synchronization
delay for wireless network data transmission. The data in wireless networks is governed
mainly by four different types of delays namely queuing delay, slot synchronization delay,
transmission delay and propagation delay [52]. When a data packet arrives at certain
node, it is kept in the queue before it gets its turn for processing or transmission. This
is the time the packet spends in routing queues and is called as queuing delay. Queuing
delay depends upon the capacity of the transmitter and packet arrival rate. Denote µ
as the packet length, ζu as the capacity of the link (u) and λu as the load on link (u):
the average queuing delay for a single link (u) can be obtained as λu/(µζu)(µζu − λu)
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[53]. Similarly, assuming a time division multiple access (TDMA) based transmission
where synchronization among the nodes is important, slot-synchronization delay will in-
cur when the node has to synchronize its operation with the neighboring wireless nodes.
The packet will wait for getting its designated time-slot before it is transmitted. Average
slot-synchronization delay can be obtained as 1/2µζu [52]

After getting its designated slot, the packet is transmitted into the link. The associ-
ated delay is given by 1/µζu. Finally, time taken by the signals to propagate from source
to destination is referred to as propagation delay, which depends upon the propagation
distance of the signal [54]. We can see that these delays will keep adding as the packet
traverse relay nodes. Combining the four quantities, we get packet delay of the link (u)

as follows:

du =
1

2µζu
+

1

µζu − λu
+Θ (4)

Here Θ is the propagation delay. Let the total number of hops from source to
destination be m; for any arbitrarily chosen radio access technology r , our goal is to
minimize the following:

Dr =
m∑

u=1

(
1

2µζu
+

1

µζu − λu

)
+

m∑
u=1

Θu (5)

Where ζu and λu respectively are the capacity and load of link u. For the same
packet size, Equation (5) shows that delay is a function of the capacity of the link and
the load. Therefore, in order to minimize the delay, we must optimize the load on the
radio access technologies in order to optimally utilize the obtained capacities. Since the
propagation delay is independent of capacity and load, and only dependent on distance,
its value is added at the end of the computation.

3.1.3 Continuous Non-Linear Program Formulation

We assume the source node is mobile, and its transmission capacity is driven by its SNR
which is primarily a function of its distance from the relay node. Assuming both WiFi and
cellular networks are equipped with scheduled access [50], Non-orthogonal multiple access
(NOMA) and beamforming capabilities [9],[55], both the technologies have interference
suppression. Therefore, we ignore the interference and take the SNR obtained as a result
of distance and operating environment only, for computing the transmission capacity of
both the RATs. Moreover, we develop a technique to handle any change in channel
condition due to SNR or other factors in Section 3.3. Furthermore, for computation
purpose, instead of relying on transmission capacity, we take a more practical approach
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by considering the number of bits per second received successfully which is essentially
synonymous to system throughput. If BERu is the Bit error rate and Ru is the data rate
of link u, we can write the capacity as follows.

ζu = (1− BERu)
l × Ru (6)

Where l is the packet length. The bit error rate (BERu) of the channel taken here is
after applying a low-density parity check (LDPC ) correction code. To optimally utilize
the available capacity, the load can be contrived in such a way that makes maximum use
of the available capacity as disproportionate or equally shared load will lead to under-
utilization of capacity on many levels. To begin with, the radio with larger capacity,
having transmitted its load, would sit idle until all other radios are done with their
transmission before next transmission session begins. This is the first case of capacity
under-utilization where the idle time of the faster radio could have been used for more
data transmission. Here it may be noted that with equally distributed load, the channel
and the time-slot of the faster radio, once done with transmission of its load share, can
be employed by other nodes in the network but the radio of the UE remains idle despite
the fact that there exist data load which the UE has allocated to other radios.

Moreover, the MEC server cannot take action on the transmitted data as it is waiting
to receive the remaining data. Therefore, the processing at the MEC server is hampered
by the slow RATs. Additionally, if the order of the packets at the receiver is different from
the order of the same packets at the sender, the processing will be further hindered by
packet reordering. In case of out-of-order reception, packets are cached in the receiver’s
buffer and reordered according to the sender’s sequence number. Consequently, the
transmission window is reduced, as these losses are attributed to unfavourable channel
conditions. As a consequence, the sender drops the transmission rate e.g. using a lower
order modulation, in order to make up for the change in channel condition [56].

As a result, we see a sharp decline in the system throughput. The decrease in
transmission rate as a result of reduction in transmission is clearly under-utilization of
the available capacity. This situation can be made up for if the delays of all the radio
access technologies are equal. Therefore, the first objective of our system is to make the
delays of all the RATs equal, that is;

Dr = Dt = Dv (7)

In (7) Dr , Dt and Dv are the delays of the radio r , t and v . For (7) to hold, it is
necessary for the participating radios to always assume some load during the transmission.
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hr > 0 ; ∀ λ > 0 (8)

Here hr is load share ratio of an arbitrarily chosen radio r and λ is the total load. It
follows that sum of load share ratios of all three RATs cannot exceed 1, that is;

v∑
r=0

hr = 1 (9)

(9) ensures that sum of loads on individual loads cannot exceed total incoming load,
that is;

v∑
r=1

λr = λ (10)

In (10), λr is the load on radio r while λ is total load generated by the device.
Moroever, load on the RATs cannot be negative. Therefore, we have to make sure that
load share ratios of all the RATs are always positive.

hr ≥ 0 (11)

Finally, the load on a radio cannot exceed its capacity.

v∑
r=1

λr ≤ ζr (12)

Equation (7)−(12) ensure optimal capacity utilization and in-order delivery of packets
and destination. Based on the discussion above, we formulate a continuous non-linear
program (CNLP) where our objective functions is as follows.

minimize Dr

s.t. (3), (6)−(12)

Where Dr is the delay of arbitrarily chosen radio r . Minimizing delay of one radio
will ensure delay of all the RATs are minimized as given in (7).

3.1.4 Proof of Convexity

Considering that the objective function for delay minimization problem is non-linear, we
need to verify that any solution we find is a correct global minimum solution. Therefore,
in this section we attempt to proof convexity of the delay minimization problem to
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confirm that the local optima is also the global optima.

Theorem 1. The delay minimization function given in Equation (5) is a convex
function.

Corollary 1. If f (x), where x ∈ R is a convex function, f (x) + w is also a convex
function, where w is a positive real number.
Corollary 2. If du =

(
1

2µζu
+ 1

µζu−λu +Θ
)

is true for one link u, it is true for all u = 1

to n links.

Proof. Following Corollary 1, we ignore propagation delay and draw Hessian matrix
for all links, all RATs.

H (f ) =


∂2f

∂D2
1

∂2f

∂D1∂D2
· · · ∂2f

∂D1∂Dn

...
... . . . ...

∂2f

∂Dn∂D1

∂2f

∂Dn∂D2
· · · ∂2f

∂D2
n

 (13)

To make the computation simple, let us draw Hessian matrix for single link only,
without the loss of generality, as allowed by Corollary 2. The resultant matrix is given
in (14). We began with calculating Eigenvalues of the matrix and then putting the
smallest and largest possible values for all the variable in the Eigenvalues. The results
were positive for both the minimum and maximum values, indicating the function being
convex. However, we duly prove its convexity through principle minor technique. The
resultant matrix given in (14) is a 3 × 3 matrix which implies that there will be three
orders of principal minors where first order leading principal minor P1 is obtained by
deleting the last two rows and columns of the matrix, that is;

H(du) =


1
µ3ζ

+ 2ζ2

(µζ−λ)3
1

2µ2ζ2
+ 2µζ

(µζ−λ)3 −
1

(µζ−λ)2 − 2ζ

(µζ−λ)3
1

2µ2ζ2
+ 2µζ

(µζ−λ)3 −
1

(µζ−λ)2
2µ2

(µζ−λ)3 +
1
µζ3

− 2µ

(µζ−λ)3

− 2ζ

(µζ−λ)3 − 2µ

(µζ−λ)3
2

(µζ−λ)3

 (14)

P1 =
1

µ3ζ
+

2ζ2

(µζ − λ)3
(15)

Examining (15), we see that none of the terms is negative here. Therefore, the P1

is greater than 0. Please note that (µζ − λ) is a very large positive number. Similarly,
we find second order leading principal minor P2. P2 will be the determinant of matrix
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obtained by deleting last row and column from H(du).

P2 = − 1
4µ4ζ4

+ 1
µ4ζ4

− 4µζ2

(µζ−λ)6 +
4µ2ζ2

(µζ−λ)6+

4µζ

(µζ−λ)5 −
1

(µζ−λ)4 −
2µζ

µ2ζ2(µζ−λ)3 +
2

µζ(µζ−λ)3+

2ζ2

µζ3(µζ−λ)3 +
1

µ2ζ2(µζ−λ)2

(16)

Examining 16, there are 10 terms. The result of the first two terms will be positive
as second terms is greater than first one. The result of the 3rd and 4th terms is also
positive as 4th terms is greater than 3rd . The result of 5th and 6th term will be again
positive as 5th term is greater than 6th. Finally, 7th terms is smaller than 8th+9th+10th.
Therefore, the net result of these four terms will be positive which implies that overall
P2 is positive. Next, we move to third order principal minor P3 which is the determinant
of the Hessian Matrix itself and is given by;

P3 =

3(λ−µζ)4
µ4ζ4

+ 4(λ−µζ)2
µ2ζ2

− 4

2 (µζ − λ)7
(17)

Again, in (17), the only negative term here is 4. However, the first two terms
in numerator are larger than 4 due to which net result of numerator will be positive.
Therefore, it is safe to say P3 is also positive. From the net results of P1, P2 and P3,
we can say that first, second and third order leading principal minors are all positive.
Therefore, we can say that the resultant Hessian matrix of the function is positive definite.
From this, we conclude that the delay minimization function is convex.

3.2 Capacity Optimization

In this section, we solve our formulated CNLP to optimize capacity utilization at source
node. After that, we optimize the capacity at the relay node where it is shared among
multiple receivers connected to it.

3.2.1 Optimizing Capacity Utilization at Source Node

In this section, we develop a solution for the proposed CNLP. We use Lagrange’s Mul-
tiplier theorem for several constraints. The goal here is to find the optimal loads share
λi for all the radio access technologies for which the delay is minimum. Using Lagrange
Multiplier Theorem, we re-write our problem as follows.

G =
(

1
2µζu

+ 1
µζu−λu

)
− K1 (λ−

∑n
r=1 λr )− K2 (C1)− K3 (C2)− · · · (18)
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In (18), K1, K2, · · · are Lagrange multipliers, λ is the total load, λr is the load radio
r will get and C1, C2, · · · are the constraints defined in (3), (6)−(12). Taking partial
derivative of (18) with respect to every variable and equalling to 0, we get;

2
µζr−λr = − 1

µζr

(
− 2
ζr
+ 1
ζt
+ 1
ζv

2µ
+ 1

µζt−λt +
1

µζv−λ+λr+λt

)
(19)

From (7), we have;

1

2µζr
+

1

µζr − λr
=

1

2µζt
+

1

µζt − λt
(20)

Solving (20) for λt , we get;

λt =
µζt (λr (3ζr − ζt)− 3µζr (ζr − ζt))

λr (ζr − ζt)− µζr (ζr − 3ζt)
(21)

Finally, λv for radio v can be obtained by subtracting λr and λt from total load that
is, λv = λ − λr − λt . Here it may be worth mentioning that channel condition is time
varying. Change in physical conditions lead to change in channel quality. In such a case,
these obtained loads do not hold any longer. Therefore, we have to incorporate the
change in channel condition to the obtained load. The procedure to incorporate such a
change is given in Section 3.3. Moreoever, the procedure to assign the load shares to
radios is given in the following sub-section.

Next, we prove λr , λt and λt to be optimal loads that utilize available capacity
optimally.

Theorem 2. λr , λt and λt are the optimal load shares.

Proof. Using proof by contradiction, let us assume λr , λt and λv are not optimum
and instead x , y and z are the optimal load shares. Therefore, we attempt to optimize
these quantities by extending Nash Bargaining theorem [57] to three players as follows;

maximize J = (λr − x) (λt − y) (λv − z) (22)

Taking ∂J
∂λi

with respect to λi = λr , λt and λv and equalling to 0, we get;

0 = λtλv − zλt − yλv + yz (23)

0 = λrλv − zλr − xλv + xz (24)

0 = λrλt − yλr − xλt + xy (25)
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Solving (23), (24) and (25) for λr , λt and λv , the quantities remain unchanged,
substantiating the fact that the quantities are optimum. This contradicts our assumption
and hence prove the theorem.

3.2.2 Optimizing Capacity Distribution at Relay Nodes

According to our system model, the peer node, the Wi-Fi access point and the 5G base
station are serving as relay nodes. Capacity Utilization at relay node is different from
that at source node. Unlike source node, capacity at relay node is shared among multiple
receivers connected to it. If ζt is the total capacity of the relay node and k users are
connected to it, mathematically we can write;

ζt =
k∑

u=1

ζu (26)

Relay nodes will be a major bottleneck if packets are not relayed smoothly as a result
of dwindling capacity. We overcome this situation by optimizing the distribution of the
total capacity ζt , such that ζu for link u is optimal according to the load λu on it.

Suppose a packet travels from source s to destination d . let the traffic from source
to destination be Tsd and the traffic in other direction be Tds . Also, let there be N

sources and M destinations in the network. Therefore, total traffic (T ) in the network
will be;

T =
N∑
s

M∑
d

(Tsd + Tds) (27)

Next, consider two nodes i and j . Let the link between i and j be u and the load on
the link u be λu. Also, let Tn be traffic load of another node n passing through link u.
If there are N nodes in the network whose traffic load passes through link u, total load
on link u is given by;

λu =
N∑

n=1

Tn (28)

We know that each link carry a fraction of total traffic load of the network. Assuming
number of links from source to destination is essentially the number of hops and if n̄ is
the average number of hops that data take from source to destination, mathematically
we can express the fraction of traffic load per hop as follows;
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n̄ =

∑N
n=1 Tn∑N

s

∑M
d (Tsd + Tds)

(29)

Let τij be delay of the link u. We can exploit Little’s Law to get system delay (Γ) as
follows.

Γ =

∑N
n=1 Tn∑N

s

∑M
d (Tsd + Tds)

·
N∑
τij (30)

Assuming M/M/1 queuing system with capacity ζij and Poisson arrival with an av-
erage of λij packets and average service time of 1/µζij , τij can be obtained as follows
[53];

τij =
1

µζij − λij
(31)

Here µ is the average packet length. Using value of τij in Equation 30, we get;

Γ =

∑N
n=1 Tn∑N

s

∑M
d (Tsd + Tds)

·
N∑ 1

µζij − λij
(32)

Using Equation (27) and (28), and replacing ij with u, we can re-write (32) as
follows;

Γ =
1

T
·

n∑ λu
µζu − λu

(33)

Equation (33) shows the significance of capacity for system delay. In order to mini-
mize the system delay, we must optimize the capacity. We again use Lagrange multiplier
theorem [58] and re-write our capacity optimization problem as follows.

W =
1

T

k∑
u=1

λu
µζu − λu

− K

(
k∑

u=1

ζu − ζt

)
(34)

Here K is the Lagrange multiplier and (
∑k

u=1 ζu − ζt) is the capacity conservation
constraint as shown in (26) . Taking ∂W

∂ζu
and equalling to 0, we get;

ζu =
λu
µ

+

(
ζt −

∑k
u=1

λu
µ

)
·
√
λu∑n

k=1

√
λu

(35)
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Equation (35) shows the capacity that a link u will get according to its load λu.
Having obtained optimal load shares and capacity at relay nodes optimized, we briefly
highlight our proposed MEC offloading technique in Algorithm 1.

While it is true that service delay of local processing is larger than offloading the tasks
to MEC server, the proposed technique will compute end-to-end delay of all the RATs
as desccribed in Section 3.1.2. Based on performances of RATs, optimal load shares
are computed as shown in Section 3.2.1. Next, we allocate the obtained load to RATs.
Load allocation mechanism and the choice of relay nodes is described in Section 3.2.3.
Having transmitted the traffic at source node, we make sure that MEC traffic is relayed
smoothly at relay node. Therefore, capacity is optimized at relay node as explained in
Section 3.2.2.

Algorithm 1 Multi-Radio Traffic Offloading
Input: λ and ζr , ζt , ζu of the three RATs r , t, v
Output: Communication Delay
while true do
• Radio Performance Computation
1. Compute end-to-end performance of every radio using (5).
• Optimal Capacity Utilization at Source Link
1. Compute the three load shares using (19) and (20).
2. Assign the obtained load shares to the RATs in such a way that minimizes the
delay.
• Capacity Optimization at Relay Nodes
1. Determine incoming MEC traffic and its outgoing link.
2. Assign the capacity on its outgoing link according to (35).
end while

Traditionally, macro-cellular technologies employees proportional fair scheduling that
is, capacity is allocated according to weight of the traffic load while Wi-Fi employees a
throughput-based fairness model that is, capacity is shared in way to give all the nodes
equal throughput [59]. Therefore, throughput of macro-cell and Wi-Fi are respectively
given by;

tm =
wiζi∑
n wi

(36)

twf =
u∑
n

uwi

ζi

(37)

Here wi is the weight of the user i . We, on the contrary argue that capacity must
be shared according to (35).

Theorem 3. Capacity distributed at relay node is optimal.
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Proof. Here prove that the obtained capacity in (35) on the basis of Lagrange
Theorem defined in (34), is optimal. We argue that ζu for link u is optimal for certain
ζt =

∑n
u=1 ζu.

We used Lagrange Multiplier Theorem [58], on that account let the original function
be f (x , y) and let for the sake of simplicity g(x , y) =

∑n
u=1 ζu − ζt and g(x , y) = 0,

but g ̸= 0, without loss of generality ∂g
∂y

̸= 0. Writing (34) in its standard form, we get;

W = f (x , y , k) = f (x , y)− k(g(x , y)) (38)

Where W = f (x , y , k) is the new function obtained as a result of incorporating
multiplier k .

Lagrange Multiplier theorem is based on implicit function theorem (IFT ). Therefore,
by IFT we can assume that there is a function y = y(x) such that g(x , y(x)) = 0 which
follows that f (x , y(x)). Furthermore, using the same theorem, we have;

y ′(x) = −gx
gy

(39)

Since f (x , y(x)) is assumed to be optimal, its derivative has to be 0. Using chain
rule we have;

fx + fy · y ′ (x) = 0 (40)

Equation (40) shows an optimal value. Next, we have to show that this optimal
value is equal to the value of original Equation (38).

Using (39), we get;

fx − fy ·
gx
gy

= 0 (41)

Let −k denote fy/gy ;

fy + kgy = 0 (42)

Using (41), we get;

fx + kgx = 0 (43)
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Equation (43) shows that gradient of (f + kg) at points defined by constraint is 0.
Also, following (40), Equation (43) shows that original value defined by function in (38)
is optimal, hence our capacity is optimal.

3.2.3 Assigning Load Shares to RATs

We formulate an integer linear program to assign load shares to the RATs. Let delay
for the three load shares λr , λt , λu over RAT r be dr ,r , dt,r and du,r , delay for the same
load shares over RAT t be dr ,t , dt,t and du,t . Similarly, delay for these load share over
RAT u be dr ,u, dt,u and du,u, as shown in Table 3.1.

Before formulating the integer linear program, let us define a binary variables xi ,j

such that;

xi ,j =

1, if load i is assigned to RAT j

0, otherwise

Similarly for load share λr over RAT u, the assignment variable will be xr ,u and
its value will be 0 or 1 depending upon whether or not λr is assigned to u. Next, we
formulate our integer linear program as follows;

minimize

dr ,r · xr ,r + dv ,r · xr ,t + dt,r · xr ,v+
dr ,t · xt,r + dt,t · xt,t + dv ,t · xt,v+
dr ,v · xv ,r + dt,v · xv ,t + dv ,v · xv ,v


Subject to

xr ,r + xr ,t + xr ,v = 1 (44)

xt,r + xt,t + xt,v = 1 (45)

xv ,r + xv ,t + xv ,v = 1 (46)

xr ,r + xt,r + xv ,r = 1 (47)

xr ,t + xt,t + xv ,t = 1 (48)
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Table 3.1: Delay of the obtained load shares on different RATs.

RATr RATt RATu

λr dr ,r dv ,r dt,r
λt dr ,t dt,t dv ,t
λv dr ,v dt,v dv ,v

xr ,v + xt,v + xv ,v = 1 (49)

xi ,j ≥ 0 (50)

The objective functions says to minimize total delay of the three RATs when loads
are assigned to them. The decision variable 0s indicate that if a load is not assigned,
its value will be zero that is, the corresponding load will not go to the radio where the
value is 0. The constraints (44) - (49) show that load are assigned to one single radio
only and one radio will get one share of load only. No two loads can go to a single
radio conversely, no radio can be assigned more than one load share. Finally, (50) is the
positivity constraint. We solved the integer linear program with simplex method.

3.3 Managing Channel Variation

In Section 3.1.2, we computed radio performance in terms of delay from source node
to destination and in Section 3.2, we showed optimal load distribution according to the
obtained performance. However, as a result of change in channel condition, performance
estimates obtained may become soon outdated and as a result, the load distribution and
capacity optimization effectuated may not hold and the constraints may be violated.
Confronted with such a situation, we have to allocate the load in such a way that the
impact of the change in the performance is averted. Furthermore, we have to identify how
frequent the radio performance must be updated in order to reap the correct performance.

3.3.1 Frequency of Radio Performance Update

Given the temporal variation in a wireless channel, it is important to identify a suitable
interval and frequency of radio performance update that is, how frequent should the radio
performance be updated to get the optimal performance? With larger interval between
two consecutive performance updates, there is a possibility of decreasing performance due
to stale information. Likewise, smaller intervals will result in sacrificing the bandwidth for
network updates and making the task cumbersome. Performance of a radio is subject to
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user mobility and network load in addition to the small scale channel fading. Optimizing
radio update interval with respect to both instantaneous position and network load
simultaneously is NP-hard and beyond the scope of this thesis. However, we strive to
find a suitable interval that satisfies the performance of the network.

In this research, we propose a dynamic performance update interval. The interval
between two consecutive performance updates varies according to the variation in the
performance and will keep increasing as long as the variation (increase as well as decrease)
in the performance is within the acceptable limit taken as a threshold. Moreover, for
data transmission at a particular instance, performance of a radio is estimated by taking
the weighted moving average (WMA) of performance of last n seconds from the time the
performance was last updated. Whenever the variation in the performance of a radio is
greater than a certain threshold, the current data is transmitted using technique shown
in Section 3.3.2 and performance is updated immediately.

3.3.2 Managing Change in Radio Performance

Suppose there is a change in the performance of the radio access technologies. Such a
situation will lead to a violation of the constraints defined above unless the performance
of RATs are updated. For example, with the change in channel condition, the delay of
RATs will be different, thus violating the constraint defined in (7). Here we attempt
to temporarily reinstate the constraint before the performance of the RATs are updated
in the next interval. This is carried out by adding certain amount of load to the faster
RATs. Adding load will increase the delay of the faster RATs, thereby bringing them at
par with slower RATs. This process is performed in three steps. In the first step, we
determine how fast the faster RATS are with respect to the slowest RAT. Denote Dv

as the delay of the fastest RAT, followed by Dt and Dr being the slowest among all the
three. With this information given, the following holds true.

Dr = Dt − A = Dv − B (51)

Assuming Dr is the slowest RAT, Dt is faster than Dr by A µs (hence, A µs subtracted
from it) while Dv is faster than Dr by B µs. With simple manipulation of Equation (7),
A and B can be obtained as follows.

A =
1

2µ

(
ζt − ζr
ζrζt

)
+

(
µζt − λt − µζr + λr
(µζt − λt) (µζr − λr )

)
(52)

B =
1

2µ

(
ζv − ζr
ζrζv

)
+

(
µζv − λv − µζr + λr
(µζv − λv ) (µζr − λr )

)
(53)
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In the second step, using (52) we derive Equation (54) to get the equivalent load of
A µs that is λA;

λA =
3µζA − 2Aµ2ζ2A
1− 2AµζA

(54)

Here ζA is the capacity of the radio access technology used with A which happens to
be t as per Equation (51). Similarly, we can derive expression for λB using Equation
(53) or simply by replacing A with B and capacity of radio t with capacity of radio v in
Equation (54).

Assuming traffic load is continuously being generated by the user, in the third step,
we add λA and λB amount of load to their respective RATs, t and v respectively in this
case, to make the delays equal. Adding loads λA and λB to radio t and v respectively,
Equation (51) will become;

Dr = Dt +
{∑m

u=1

(
1

2µζu
+ 1

µζu−λA

)
+
∑m

u=1 Θu

}
= Dv +

{∑m
u=1

(
1

2µζu
+ 1

µζu−λB

)
+
∑m

u=1 Θu

} (55)

The new delays of the three RATs are now equal. The change in radio performance
is incorporated.

3.4 Performance Evaluation

In this section, we provide mathematical comparative analysis results to show the per-
formance of our proposed scheme. We call our proposed scheme "Multi-Radio Parallel
Offloading (MPO)" and compare our performance with 5G, Wi-Fi, Wi-Fi Direct and
schemes that distribute the load on the basis of the tasks such as [43], [45]. For elab-
oration purpose, we refer to these schemes as atomic load distribution schemes (ALD).
We show how different RATs take different loads for their corresponding performance
and compare their delay. We then compare the performance of our proposed scheme
with Wi-Fi, 5G and ALD. We also consider impact on the services of a newly arrived
traffic when the node is busy serving the existing traffic in its queue. Finally, we show
data outage probability comparison to verify service-level agreement (SLA) of MPO with
Wi-Fi and 5G.

3.4.1 Environment Setting and Parameters

We consider the scenario shown in Fig. 3.2 where an end-user is assumed to be based
inside a multi-storey building. A Wi-Fi access point and a peer device is assumed to be
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Figure 3.2: Assumed topology where an end-user inside a building is served by a peer
device, Wi-Fi access point and 5G macro-cell technology.
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inside the building while 5G macro-cell base-station is assumed to be at a distance of 200
m in an urban environment. The end-user is assumed to be simultaneously connected
to a peer, Wi-Fi AP and 5G base-station. For Wi-Fi, we have used a frequency band
of 5 GHz whereas for 5G, we have used 3.4 GHz band from Frequency Range 1 [60].
Similarly, EIRP for Wi-Fi is 30 dBm and 43 dBm for 5G. Next we describe how to
compute different parameters in order to get performance measures of different RATs.

For WiFi, SNR is computed on the basis of indoor path loss model as described in
[61]. For ease of reference, we write the path loss formula here.

PLwi = PLwi (do) + 10αlog

(
dwi
dwi ,o

)
+ βd (56)

Where PLwi is the indoor path loss for Wi − Fi in dB , α is path-loss exponent, β is
specific attenuation, PL (dwi ,o) is path loss at a reference distance which is taken to be
1 m. The values of both α and β is taken to be 2.

Similarly, for 5G, SNR is computed on the basis of the path loss model given in [62]
where macro-cell path loss is divided into two parts, that is outdoor propagation loss
and the building penetration loss. The outdoor propagation loss is given by

PLmo = 54 + 40logdmo − 30loghb + 21logf (57)

Where PLmo is the outdoor path loss for macro-cell in dB , dmo is the distance of
user from macro-cell base station in meters, hb is the height of base-station and f is the
frequency. The corresponding building penetration loss is given by [62];

PLmi = 0.6dmi − 0.6h + 10 (58)

Where PLmi is the loss in dB when the signal from the macro-cell base-station
penetrates the building, dmi is the indoor distance of the user from the wall, h is the
height of the floor. The BER obtained on the basis of computed SNR is considered after
LDPC code correction.

Data rate for Wi-Fi R(w) is calculated as follows.

R (w) = M · S · Rc ·
1

Ts
(59)

Where M is the modulation scheme used, S is the number of subcarriers, Rc is the
coding rate and Ts is the symbol duration for Wi-Fi. Similarly, 5G data rate computation

33



Table 3.2: Parameters Setting.

Technology Wi-Fi (802.11ax) 5G
Distance 20 m 200 m
Bandwidth 80 MHz 100 MHz
Capacity SNR Driven
EIRP 30 dBm 43 dBm
Modulation SNR Driven
Code Rate SNR Driven
Frequency 5 GHz 3.4 GHz (FR-1)
α 2 -
β 2 -
Height of 5G Base Station - 45 m
Height of Floor - 10 m
Aggregated Carrier 1 1
Number of Streams 1 1
5G Numerology - 1

is based on 3GPP TS 38.306 standard [51] and is given by (60);

R (m) = 10−6 ·
∑J

j=1

(
v
(j)
L · Q(j)

m · f (j) · Rmax ·
N

BW (j),ψ
PRB ·12

Tψs
· (1− OH)(j)

)
(60)

Here, J is the aggregated carrier component. In our case, we have not used carrier
aggregation, therefore, its value is 1. v (j)

L is number of streams. Again our computation is
based on single-input single-output signal, therefore its value is 1. Q(j)

m is the modulation
scheme used, f (j) is the scaling factor whose value we have taken to be 1. Rmax is
coding rate, ψ is the numerology which defines the guard interval. Its value is 0 to 4
that corresponds to 15kHz, 30kHz and so on up to 120kHz, respectively. We are using
a bandwidth of 100 MHz for which the recommended guard interval is 30kHz therefore,
its value will be 1 as 0 is not supported for 100 MHz according to the standard. Tψ

s is
the average symbol duration and is given by 10−3

14·2ψ . The data rates obtained here are fed
to Equation (6) to get the capacities of the RATs. Based on the obtained capacities,
loads distribution is carried out as described in Section 3.2.1.

The parameters used in computations are summarized in Table 3.2.

3.4.2 Results

All the results shown here are mathematically computed using Mathematica software.We
begin with load distribution and system delay analysis of the proposed scheme where
system delay is essentially network-wide packet delay. Fig. 3.3 shows the load each radio
will get for different load generated by the end-user. 5G, for having higher bandwidth,
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Figure 3.3: Load shares assumed by different RATs as a result of increase in the incoming
load.

has highest capacity among all the RATs and as a result has least delay as per (5),
therefore the load share taken by 5G is the highest. On the other hand, the increase
in load share with the increase in generated traffic for Wi-Fi Direct is highest. This is
because the more the load is taken by a RAT, the sooner it will reach its saturation
point. Therefore, to avoid saturation, more traffic is transferred to the radio that has
the lowest traffic load, which in this case happens to be Wi-Fi Direct.

We then analyze the delay for the corresponding load assumed by these RATs in Fig.
4.1. There are three curves in the figure which appear to be one single curve. The
load shares assumed by different RATs are different as shown in Fig. 3.3, their delay,
however, is equal. This is very important outcome of our proposal. We argued that
packet re-ordering delay in multi-path multi-radio packet routing impedes the throughput
significantly and is a major reason of real-time transmission missing the delay deadlines.
However, with all the data packet reaching simultaneously, there will be no packet
reordering delay. Another important outcome of the proposed scheme is the significantly
high data that it can handle. The delay for up to 600 Mb is less than 0.1 ms, after
which point it jumps to saturation point.

We also compare delay performance when data is offloaded through Wi-Fi Direct
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Figure 3.4: Delay for different RATs as a result of increase in the incoming load.

alone, Wi-Fi alone and 5G alone, with MPO. As can be seen in Fig. 3.5, MPO outper-
forms Wi-Fi and 5G offloading in terms the amount of data that they can carry. Both
Wi-Fi Direct and Wi-Fi reach saturation before 200 Mbps, 5G reaches saturation at
slightly beyond 200 Mbps whereas MMPO on the contrary, performs well all the way till
600 Mbps and the delay remains less than 0.1 ms for up to 600 Mbps. This is a gain of
about 70% as compared to Wi-Fi Direct and Wi-Fi, and about 63% as compared to 5G.

Next, assuming MEC traffic is subject to prioritized processing [15] [63], the conven-
tional traffic will be affected. Similarly, if a node’s capacity is already heavily used, the
services of the new incoming traffic will be impacted. Therefore, here we measure the
impact on the quality of services of the newly arrived data when the nodes are processing
the existing data in their queues. We thus measure the impact (I ) on the new arrived
data relative to the prior load on the node.

Let ζr ,cr be the current capacity of a certain radio r . Suppose the newly arrived
normalized load at time t requires the capacity ζr ,req for time ∆t seconds. The impact
in terms of degradation in the quality of services of the new arrived data will be;

I =
v∑

r=1

(∫ ∆t

t
ζr ,req −

∫ ∆t

t
ζr ,cr∫ ∆t

t
ζr ,req

)
(61)
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Figure 3.5: Delay comparison of the proposed MPO schemes with when data is offloaded
through Wi-Fi alone, Wi-Fi Direct alone and 5G alone.
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Figure 3.6: Impact on the Services of different RATs.

In Fig. 3.6, we have shown the relative impact on the services of the newly arrived
data packet with respect to the data that is already present at the node. The results
are for average 150 Mbps of incoming load, for 10 ms whereas x-axis shows the current
or existing load at the node. Here 1 means no impact on the service at all and on the
other extreme 0 means that new packets will not be serviced at all. Therefore, higher
value implies lesser impact on the services. We can see that for the first 50 Mbps, no
radio is affected. However, Wi-Fi begins to have impact on the newly arrived data after
50 Mbps of existing load and 5G is showing decline in service after 65 Mbps of existing
data. MPO performs steadily till 130 Mbps of load after which there is a decline in the
quality of service. It is a gain of 61% compared to Wi-Fi and 50 % compared to 5G.
At a load of 150 Mbps, impact on service for Wi-Fi is around 55% which means the
new traffic load will be 45% impacted, the impact on the services of 5G is 70% which
commensurate to 30% decline the quality of service while MMPO is performing at a rate
of more than 90%. There is only a minute impact on the quality of services of the newly
arrived data for MPO.

We also compare the packet outage probability of the three schemes. The knowledge
of packet outage probability is useful for verifying service-level agreement (SLA) compli-
ance. Packet outage probability is linked to the probability of load getting greater than
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Figure 3.7: Outage probability comparison of different scheme to show SLA conformity

a given threshold, as for load, λ > ζ, there will be outages in packets. When outages
are greater than certain threshold, the SLA terms will be violated. For Poisson packet
arrival, the probability of load getting greater than capacity is given by;

P (λ > ζ) = 1−

(
e−ρ

k∑
i=0

ρi

i !

)
(62)

Where
(
e−ρ

∑k
i=0

ρi

i!

)
is the cumulative distribution function (CDF) of the Poisson

distribution. In Fig. 3.7, we compare the probability of load getting greater than capacity
for Wi-Fi, 5G and MPO to analyze the packet outage probability. The three schemes
have full SLA compliance, with no packet loss, until about 350 Mbps. The probability of
Wi-Fi tends to fall at this point and reaches 0 at about 450 Mbps. For 5G this probability
is impacted after 450 Mbps approximately and reaches 0 at 580 Mbps. Whereas, the
MPO has a consistent probability of 1 until 1100 Mbps approximately. That is a gain of
67% as compared to Wi-Fi and 58% gain as compared to 5G.

So far we showed the gain in performance by using multiple radio resources. Next,
we compare performance of our proposed MLO scheme with ALD that distributes the
load on the basis of the task rather than the load itself. Considering a task size of

39



Figure 3.8: System delay of different RATs for ALD

800 KB, the delay of different RATs for ALD is shown in Fig. 3.8. As can be seen,
different RATs have different delays. Now this is a major bottleneck as applications
depends on the reception of all three tasks in order to provide seamless services to the
end users. Therefore, all data packets must arrive at the transport protocol layer in
sequence whereas data arrived out-of-order is either kept in buffer or totally discarded
depending upon the magnitude of latency of slower RATs.

In Fig. 3.9, we thus compare the system delay of the proposed MPO with ALD.
Here, we can see that the performance of ALD is limited by a slower radio whereas the
proposed MPO scheme apportion loads according to the performance of the RATs by
virtue of which a slower radio receives a lower load and thus its effect on performance
are minimised. As can be seen, for the given scenario, the proposed MPO scheme
carry approximately 80 Mbps more load in comparison with ALD. ALD is saturated at
the offered load of about 550 Mbps whereas MPO can carry a load up to 630 Mbps.
Similarly, MPO has consistently lesser system delay in comparison to ALD. The higher
system delay of ALD is contributed by higher load share allocated to slower radio which
happens to be Wi-Fi Direct in this case.

We also analyze the performance of our proposed capacity optimization technique
at relay node. Until now, we have compared ALD and MPO with both schemes having
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Figure 3.9: System delay comparison of MPO with ALD when capacity distribution at
relay is optimized for both the schemes.
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Figure 3.10: System delay comparison of MPO with ALD when capacity distribution at
relay is optimized for MPO only.

capacity optimized according to the load, because the goal was to show system perfor-
mance in terms of load distribution under the same parameters. Here we compare the
performance of the proposed optimal capacity distribution scheme against conventional
technique where data at relay node is forwarded with even capacity or non-optimal ca-
pacity distribution among the links.

In Fig. 3.10 we plot the system delay for 4 users with 40% MEC traffic. Thus, the
load on the x-axis indicates 60% conventional and 40% MEC traffic for 4 users operating
simultaneously. It is clear from the Fig. 3.10 that proposed MPO with optimized capacity
distribution can support nearly 4 times the maximum load that ALD can while giving
lower system delay. With the same total capacity, ALD reaches its saturation point at
about 150 Mbps while MPO, intelligently distributing the capacity according to the load,
maintains a stable delay until 600 Mbps.

The delay and the load shared by RATs against the incoming load is not linear.
If there is existing load at the node, the incoming traffic will incur more delay and
accordingly the load shares will be different as discussed in Section 3.1. Therefore, we
next we show the impact of current or existing delay at node on delay and load share.
In Fig. 3.11 and 3.12, we have compared load share and delay for different RATs for
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Figure 3.12: Impact of current load on Services on Incoming Data.
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MPO. We have also compared the delay of the proposed MPO with ALD in Fig.3.13,
that linearly distributes the load on the basis of the tasks. The figure shows that the
proposed MPO has consistently lower delay than ALD.

3.5 Summary

We proposed simultaneous offloading over multiple radio access technologies available for
a phone. We began with optimally utilizing available capacity at the source node and then
optimized the capacities at outgoing links of relay node according to the incoming traffic,
so that MEC traffic is relayed smoothly. We developed a non-linear continuous program
that takes performance of all the RATs into account and accordingly optimally distribute
the traffic load among the RATs in such a way that delay for all the RATS is equal,
thereby avoiding the packet re-ordering delay at the destination node. We shrewdly used
Lagrange Multiplier Theorem to solve our program and optimize the capacity at the relay
nodes. As a proof-of-concept, we showed that to minimize service delay and maximize
throughput, QoS and SLA compliance, we must optimize capacity utilization at the
source node and capacity distribution on the outgoing links at relay nodes. Furthermore,
our illustrative results showed that contemporary techniques for dealing with service delay
are not favorable and to get optimal performance, traffic load must be distributed in a way
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to avoid re-ordering delay. We believe that simultaneous offloading over multiple RATs
will not only improve MEC performance for future applications but is also a plausible
mechanism to make up for the debilitated telecom infrastructure in low- and middle-
income countries.
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4 Multi-RAT Multi-Server

Multiple RATs have been combined to improve throughput and capacity has been carried
out in past [46], [47]. In this paper, we provide an analytical model to optimize com-
munication delay by optimization scheduling, and capacity utilization and distribution.

The idea behind MEC is to bring large number of servers close to UEs, so that
each server serves a small number of UEs to expedite the processing. However, if large
number of users gather around a single MEC Server and overloading it, computation
is hampered [1]. Therefore, we need to manage these users and load on the servers.
Similarly, on communication side future applications such as extended reality, industry
5.0, smart grid 2.0, holographic telepresence, space and deep-sea tourism keep coming
expeditiously. On the requirements side, these applications are characterized with ultra-
high data rates, real-time access to powerful computing resources, ultra-low latency, and
extremely high reliability and availability surpassing the network capabilities promised by
existing infrastructure [2]. Therefore, to minimize service delay, we need to minimize
both computation as well as communication related delays. To achieve this objective, we
propose multi-server multi-RAT (MSMR) MEC systems. Using MSMR MEC systems, we
minimize computation and communication delay by exploiting relevant parameters such
as managing server selection, managing load distribution on servers and RATs, optimally
utilizing RATs capacity and get rid of unnecessary delays such as packet reordering delay,
server migration loops etc.

4.1 System Model

Assumed system model is shown in Figure 1 where we have a user (UE) connected to the
network by two RATs simultaneously. The RATs are a Wireless LAN (WLAN) such as
IEEE 802.11ax and a macro-cellular network such as 5G or 6G. The two RATs in return
are connected to two different MEC Servers via a high-speed optical fiber. Both the
technologies and servers are operational simultaneously. The two servers have same basic
capacity. Moreover, since 80% of the communication takes place in indoor environment
[4], we assume the user is indoor served by WiFi AP and an macro-cell BS from outside.
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Figure 4.1: A Simple Illustration of Multi-RAT Multi-Server MEC System.

Next we show our computation and communication performance estimation model.

4.2 Computational Delay

Here we assume Multiple servers (c) are available to connect to for every RAT. Tasks
arrival are random with rate λ. Assuming exponential distribution, let processing time
for server i will be 1/µi . Server Occupation rate at server i is given by [4].

ρi =
λ

ciµi
(1)

Where λ is the task arrival rate at server ci and c is how many processors are there.
Therefore, the probability that the task has to wait in the queue is given by:

ωi =
(c · ρi)c

c!

(
(1− ρi)

c−1∑
n=0

c · ρi
n!

+
c · ρi
c!

)−1

(2)

Now we can calculate queueing delay as follows.
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Dq = ωi · (1− ρi)
−1 (c · µi)

−1 (3)

Similarly, processing delay is given by;

Dc = ωi · (1− ρi)
−1 (ς · µi)

−1 +
1

µi
(4)

4.3 Communication Delay

We assume the scenario as explained in the previous chapter. Therefore, path losses,
data rate and throughput will remain the same as in previous chapter. However, here
we separate the uplink and downlink traffic for both WiFi and 5G.

4.3.1 Delay for WiFi Part

Uplink Delay for WiFi Part

The single biggest addition to IEEE 802.11ax is that of Orthogonal Frequency Divi-
sion Multiple Access (OFDM) where transmission is organized on a per-frame basis.
This means that a frame can carry information to and from multiple STAs [8]. In
such a frame, physical resource, i.e.,spectrum, is divided into multiple orthogonal sub-
channels—referred to as a resource unit (RU) in the 802.11ax terminology. The number
of RUs assigned to a particular user are driven by equation (4). Moreover, the RUs are
distributed on the basis of two criteria that is, Scheduled Access (SA) and Random Ac-
cess (RA). For associated users, the communication begins by AP transmitting Trigger
Frame (TF). Upon receiving a TF, the associated users enter a scheduled access (SA)
mode whereby only those clients can transmit or receive frames that are allocated RUs by
the AP. This behaviour is in contrast to legacy 802.11 standards that use a contention-
based mechanism for channel access. When the AP transmits the TF, users other than
those that are assigned RUs will defer their transmissions for an interval specified by the
TF’s Network Allocation Vector (NAV). The non-associated users send Buffer Status
Report (BSR) in the RUs allocated for RA.

Assuming RUN are the total RUs , RUN=RUSA+RURA, where RUSA is RUs allocated
for scheduled access and RURA are RUs allocated for random access. Sending BSR in
RURA follows the legacy IEEE 802.11 technique that is, all the users will contend for
access to channel and a user will transmit when its back-off counter reaches 0. Therefore,
for BSR transmission in RURA borrow the model of Bianchi [9] where the author has
modelled back-off process by a two-dimensional Markov chain. Based on the model, the
probability that a user will transmit its BSR in RURA given by;
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ε =
2 (1− p)

(1− 2p)
(

W
RURA

)
+ p W

RURA
(1− (2p)m)

(5)

Where p denotes probability that a transmitted packet collides. The probability that
a transmitted packet results in a collision can be computed as,

p = 1−
(
1− ε

RURA

)n−1

(6)

Where n is the number of non-associated users contending for the channel. From
the above two equations, now we can compute the probability that at least one user
transmits in a considered RURA during the TF as follows;

Ptr = 1−
(
1− ε

RURA

)n

(7)

In case of multiple simultaneous transmissions, there will be collision. Therefore, the
probability Ps that a transmission in an RURA successful is given by the probability of
exactly one transmission given that there has been a transmission on the considered RU.

Ps =
n ε
RURA

(
1− ε

RURA

)n−1

1−
(
1− ε

RURA

)n (8)

Similarly, the probability RARUs idle that all RA RUs are idle because none of the
STAs were able to complete their backoff procedure is given as,

Pidle = (1− Ptr )
NRA (9)

Now, based on RU allocation, we have following cases.

1. RUs are divided between RURA and RUSA — in such a case, there will be scheduled
access as well as random access. Therefore, delay will be;

D
′

w =

(
(RUSA + RURAPtrPs) · L

T1 · l · τ

)
(10)

Where l is the packet size and L is the total load of a user. T1 is the total time
taken by relevant frames. In this case, we have TF, BSR and packet transmission
and the corresponding acknowledgements. Therefore, T1 will be;
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T1 = TH + (TTF + SIFS + Tδ) + (TBSR + SIFS + Tδ) +

(
TBSR_ACK + SIFS + Tδ

)
+ (TP + SIFS + Tδ) + (TACK + SIFS + Tδ) (11)

Here Th is the frame headers bit and Tδ is the propagation delay.

2. All RUs are allocated for SA — implies that there are no non-associated users,
and all the RUs are assigned to RUSA associated users. In such a case, delay will
be;

D
′

w =

(
NSA · L
T5 · l · τ

)
(12)

Since all the RUs are allocated for Scheduled Access, there we will be TF, packet
transmission and Its ACK only.

T2 = TH +(TTF + SIFS + Tδ)+(TP + SIFS + Tδ)+(TACK + SIFS + Tδ) (13)

3. All RUs are allocated for RA – implies that there are no associated users and all
the RUs are assigned to RUSA. Therefore, delay will be;

D
′

w =

(
RURAPtrPs · L

(P1T1 + PidleT4 + (1− P1 − Pidle)T3) · l · τ

)
(14)

P1T1 indicates the time taken when there is at least one BSR delivered to the AP.
PidleT4 + (1− P1 − Pidle)T3 indicates that no BSRs reach the AP due to none of
the STAs finishing their respective backoffs where T4 and T3 are given by;

T3 = TH + (TTF + SIFS + Tδ) + (TBSR + SIFS + Tδ) (15)

T4 = TH + (TTF + SIFS + Tδ) (16)

Downlink Delay for WiFi Part

The downlink delay is based on pure schedule-based transmissions [10]. In the DL, the
AP has a global view of its associated users. The AP can assign parameters related
to QoS requirements, fairness etc. while scheduling resources for the downlink. The
important point to note is that as long as the AP’s transmission queue is full, the downlink
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throughput is deterministic. Also, in the downlink direction the entire channel is devoted
to transmissions of the AP. Therefore, for downlink RUN = RUSA and corresponding
delay will be equal to;

D
′

w =

(
N”

SA · L
T5 · l · τ

)
(17)

Where N”
SA is the RUs allocated for SA downlink transmission. Since all the RUs are

allocated for Scheduled Access and there is no TF involved, therefore there will be time
taken by packet transmission and its ACKs only.

T5 = TH + (TP + SIFS + Tδ) + (TACK + SIFS + Tδ) (18)

Backhaul communication, that is communication from the BS to MEC server is car-
ried out through optical fibre connections. In an optical fibre medium, we can assume
that bandwidth is abundant enough that the transmission rate is high and propagation
delay dominates [11]. Having known the propagation distance, we can calculate propa-
gation delay assuming propagation speed to be 2/3rd of speed of light.

Therefore, total delay on Wi-Fi will be;

Dw = D
′

w + D”
w + 2δ (19)

Where δ is the backhaul communication the detailed computation of which are given
in the paper.

4.3.2 Communication Delay of 5G

Downlink Communication Delay of 5G

For macro-cellular technology, 6G is still at the research phase, therefore, we mostly
borrow the techniques defined in 3GPP 5G-NR release-15 standard [12] which defines
one-way downlink delay as follows.

D”
m = d”

bsp + d”
q + d”

fa + d”
tti + d”

uep (20)

Where D”
m is the downlink delay from macro-cell BS to UE d”

bsp is the BS processing
delay, d”

q is the queuing delay, d”
fa is the frame alignment delay, d”

tti is the transmission
delay (Transmission Time Interval) and d”

uep is the UE processing delay.
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Uplink Communication Delay of 5G

For uplink, 5G NR defines two types of scheduling that is Dynamic Grant (DG) and
Grant-Free (GF) Scheduling. In GF, 5G eliminates the need for UEs to request resources
and wait until the network grants them. Grant-free scheduling reserves radio resources
for dedicated UEs or for groups of UEs. While in case of DG, user first align to the first
available transmission opportunity of the uplink control channel, in order to send the
scheduling request (SR), and accordingly wait for the scheduling grant (SG) from the
serving BS over the downlink control channel. Thus, uplink delay D

′
m is given by;

d
′

m = d
′

dg + d
′

q + d
′

fa + d
′

tti + dbsp
′ (21)

Where the right-hand side in the equation represent delay incurred by DG, queuing,
frame alignment, transmission, and BS processing respectively. If the communication
mode is GF, there will be no d

′

dg . For DG, d ′

dg is given by;

d
′

dg = d
′

uep + d
′

fa′
+ d

′

sr ′
+ d

′

bsp + d
′

fa + d
′

sg ′ (22)

Where the right-hand side shows UE processing, SR frame alignment, SR TTI, SR
BS Processing and delay incurred by SG transmission.

Having uplink and downlink delay for macro-cellular network, the total delay of will
be;

Dm = D”
m + D”

m + 2δ (23)

And total communication delay will be maximum of Wifi and Macro-cellular delay,
that is

Dt = Max (Dw ,Dm) (24)

Combining Equation 4 and 24, we have service delay as follows;

Ds = Dt + Dc (25)

Equation (4) shows that service delay is dependent upon communication delay and
computation delay. Therefore, in this research, we strive to minimize computation and
communication delay. We shall investigate relationship of service delay with different
parameters to find the optimal parameter setting that minimizes service delay.
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Figure 4.2: An Illustration of pool of servers available to choose from.

From Equation (4), it is clear that computation delay is inversely proportion to capac-
ity of the chosen MEC server and directly proportion to the load on it. The computation
delay will increase with the increase in the load on the server and decrease with the
increase in the available capacity. Therefore, computation delay can be minimized by
discreetly choosing the server and by managing the capacity and load on it.

Similarly, when two servers and two RATs are involved, load distribution and traf-
fic scheduling take utmost significance. Disproportionate load distribution and traffic
scheduling will result in significantly lower throughput [13]. Therefore, to minimize the
service delay of MEC applications, we need to optimally manage the load distribution
and optimally utilized the capacity obtained for the given SNR.

In the following sections, we show mathematical models to minimize computation
delay and communication delay thereby managing server selection and load, and traffic
scheduling and distribution.

4.4 Server Selection Model

We assume multiple servers are available to choose from as shown in Fig. 4.2. Following
equation (2) and (3), let’s assume a server with highest (ςr/ςt) ratio is chosen, where cr
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the residual capacity of the server and ct is the total processing capacity of the server.
We define residual capacity as (totalcapacity−currentloadontheserver) that is, whatever
capacity is left after the load occupy certain amount of capacity of the server and is the
actual available capacity for processing. Having said that, higher (ςr/ςt) ratio means
lesser load and more available processing capacity to process our tasks.

It is worth mentioning here that we are working on two RATs simultaneously that
is, a macro-cellular technology (Rm) and WiFi Rw . Therefore, one MEC servers will be
chosen when all three of the following conditions are met and two servers in all other
cases.

1. Computation demand of loads of both the RATs, D ′
+D” < Residual capacity of

MEC server ς ′r with highest (ςr/ςt) ratio among all.

2. Computation demand of the load over slower RAT D” > Residual capacity of MEC
server (ς”r ) with second highest (ςr/ςt) ratio among all.

3. Computation + Communication delay of slower RAT for ς”r > Computation +
Communication delay of both RATS for ς ′r .

Let’s assume that two servers Si and Sj are chosen with total basic capacity ςi and
ςj respectively. We also assume that ςi and ςj are equal. Therefore, the performance Si

and Sj only differ with the difference in load and under zero load, ςi and ςj . Therefore,
a server with highest (ςr/ςt) ratio is guaranteed to give minimum computation delay.

Also, under normal conditions, the capacity is equally distributed among the number
of users. Let number of users connected to ς1 be xn and ς2 be ym. Therefore, capacity
allocated to Rm and Rw is given by;

ςRm =
ςi
xn

and ςRw =
ςj
yn

(26)

This was initial selection of MEC server and is guaranteed to give minimum com-
putation delay. However, problem arises when we have MEC servers with better (ςr/ςt)
ratio than the current one. In such a case, the migration to server with higher (cr/ct)
ratio is indispensable.

Let us define (ςr/ςt)
t − (ςr/ςt)

t−1 as change in utility ∆U , where (ςr/ςt)
t is the ratio

at time t while (ςr/ςt)
t−1 is the ratio at time t−1. Therefore, whenever ∆U is positive,

RATs will change the servers. This entire process is summarized in algorithm 1 below.
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——————————————————————————————————

Algorithm 1: Server Selection and Migration

——————————————————————————————————

Input: list of MEC servers with their current load, total capacity ςt , RATm and
RATw

Output: Selected Server and Migration to the new Server

1. With load and total capacity given, calculate (ςr/ςt) for all servers, where ςr =

ςt − load .

2. Choose the MEC servers with highest (ςr/ςt) ratio.

3. If all the three conditions are not met, choose the second MEC server with second
highest (ςr/ςt) ratio.

4. Calculate ∆U at time t for every server where ∆U = (ςr/ςt)
t − (ςr/ςt)

t−1

5. If for any server, ∆U > 0,

Change the server

Else

Continue current server

————————————————————————————————–

4.4.1 Server Migration Model

Here we shall model and predict MEC server migration. For the sake of simplicity, let’s
assume there are two servers only. We shall give a general case of n servers later.

Let’s call the sum of the two allocated capacities as the total utility experienced by
users u that is, using (26), we obtain;

Uu =
ςi
xn

+
ςj
yn

(27)

However, sharing capacity on the basis of the number of users lead to inefficient
allocation of capacity, as some user’s application may not be very compute intensive.
We propose capacity sharing on the basis of the computation load which is defined by
the number of tasks that a server has to process rather than the number of the users.

Let’s assume that capacity is distributed on the basis of the computational load that
is, number of tasks. And

∑
x be the number of tasks run by server S1 and

∑
y are
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Table 4.1: All Possible Cases of Server Migration.

Case Current Server Candidate Server
1 1 0
2 M 0
3 1 M
4 M M

the number of tasks run by server S2 .
∑

x and
∑

y are total tasks of all the users
accommodated by the servers. Since basic total capacity is same for both the servers,
therefore, ς1 = ς2 = ς. Let i and jϵ users u, be the number of tasks transmitted via the
two RATs that what we are using. Having said this, computational capacity that two
RATs will get is given by;

ςRm =
i · ς∑

x
and ςRw =

j · ς∑
y

(28)

Now, the total utility experienced by users u will be;

Uu =
i · ς∑

x
+ ςRw =

j · ς∑
y

(29)

Next suppose, an arbitrary user changed his server from S1 to S2. In such a case, its
corresponding load will go to S2. Let its load be m. As a result, when load m moves
to S2, some room will be created in S1 that will allow other users to occupy more space
on server S1. Let r amount of capacity is added to ςRm due to this change. Similarly, all
users at S2 will have to sacrifice certain amount of capacity to make room for load m of
this new user. Again, let our RAT ςRw sacrifice r amount of capacity. Therefore, (29)
will become;

(i + r) · ς∑
x −m

+
(j − r) · ς∑

y +m
(30)

Therefore, change in utility will be;

∆Uu =

(
(i + r) · ς∑

x −m
+

(j − r) · ς∑
y +m

)
−
(
i · ς∑

x
+

j · ς∑
y

)
(31)

A user will switch to another server if its ∆Uu is positive for that server. When
switching between the servers, there can be following possible cases.

Next, we shall discuss these cases to know if the value of u will be positive and
negative.
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• Case 1: Let’s assume that S1 is serving one user and S2 is empty by which we
mean no user is attached to it and its not processing anything. Therefore, before
switching,

∑
y = 0, j = 0 and also m = 0 because there is only one user, and all

the load belongs to it which is represented by i . Equation (31) will become;

∆Uu =

(
0 +

i · ς∑
y

)
−
(
i · ς∑

x
+ 0

)
= 0 (32)

Because
∑

x =
∑

y , since the same user has switched the server. As a result,
change in utility ∆U is 0. Therefore, there will be no migration to the new server.

• Case 2: There are multiple users on current server S1 and no users attached to
the candidate server S2. Suppose one of the RAT moves to S2. The ∆Uu will be
calculated as follows. Also before migration,

∑
x = 0, j = 0.

∆Uu =

(
(i + r) · ς∑

x −m
+

(r) · ς
m

)
−
(
i · ς∑

x
+

0 · ς
0

)
(33)

Also, r = m because all the load on S2 belongs to the RAT of user u. Therefore,

= ς +

(
(i + r) · ς∑

x −m

)
−
(
i · ς∑

x
+ 0

)
> 0 (34)

∆Uu is greater than 0. Therefore, migration to another server is justifiable. On
the contrary, even if we assume that r ̸= m, still r ·ς

m
> i ·ς∑

x
. The ∆Uu is still

positive and migration is again justifiable.

However, there is a different case when instead of the RAT of user u, another user
switch the server that is, both of our RATs are still on S1. Therefore,

∑
y = 0,

j = 0, r = 0.

∆Uu =

(
i · ς∑
x −m

+
0 · ς
0 +m

)
−
(
i · ς∑

x
+ 0

)
(35)

=

(
i · ς∑
x −m

)
−
(
i · ς∑

x
+ 0

)
(36)

Since (
∑

x − m) <
∑

x , therefore, first term is greater than 0. This means,
∆U > 0. Therefore, there will be again an increase in the total utility.

• Case 3: There are multiple users on S2 and only one user on S1. Therefore, if
this user switches to S2, all it’s processing data will migrate to S2 and there will
be nothing left on S1. Also, before migration, i =

∑
x because there is only user.
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∆Uu =

(
(0) · ς
0

+
(j + r) · ς∑

y +m

)
−
(
ς +

j · ς∑
y

)
(37)

= −
(
ς (i · j) +

∑
y 2∑

y (i +
∑

y)

)
< 0 (38)

The ∆Uu is negative which shows there will be no migration.

For rest of the cases, we simplify equation (31).

∆Uu =

(
0 +

i · ς∑
y

)
−
(
i · ς∑

x
+ 0

)
= 0 (39)

Therefore, whenever the numerator is positive, ∆Uu will be positive and migration
is justified.

∆Uu =
ς (jm2

∑
x − jm

∑
x2 + im2

∑
y + im

∑
y 2 + 2mr

∑
x
∑

y + r
∑

x
∑

y 2 − r
∑

x2
∑

y)∑
x
∑

y (
∑

x −m) (
∑

y +m)
(40)

∆Uu = ς
(
jm2

∑
x − jm

∑
x2 + im2

∑
y + im

∑
y 2 +

2mr
∑

x
∑

y + r
∑

x
∑

y 2 − r
∑

x2
∑

y(41)

4.4.2 Convergence

The algorithm above is guaranteed to give the optimal computation delay. However, it
has a serious drawback of convergence, particularly when there are three or more servers.
The users will keep switching the servers upon finding a server that gives better utility.
Therefore, to bring the algorithm to convergence, we manage the load on the server by
minimizing and keeping the load in non-increasing order.

Let there be n servers in total and their load be x1, x2, x3 · · · xn Let this total load
be L. Assuming load xj are in random order, we define another collection of variables
y1, y2, y3 · · · yn to order the xj ’s. Now y1is the largest in xj and yn is smallest. Further-
more, yi is the ith largest of xj .

Now there are two goals. In order to minimize the computation time, we need to
minimize loads on the servers. Additionally, to achieve convergence of the server selection
algorithm above, we need to keep the load in non-decreasing order. Mathematically, we
can say;
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Minimize (y1, y2, y3, · · · yn, ) (42)

Subject to

n∑
i=1

yi = L (43)

However, there are a few problems with this formulation. We can handle one server
at a time. e.g., Minimize the worst loaded server that is, y1. We cannot process
the second or more than one server simultaneously. Similarly, we need to know where
to shift the extra load once we minimized the load on the server. Finally, the above
formulation is non-linear as loads are randomly distributed. Therefore, we assign weights
to y1, y2, y3, · · · yn and formulate our problem as follow.

Minimize w1y1 + w2y2 + w3y3 + · · ·wnyn + L (44)

Subject to

yj − xi ≤ KZj (45)

n∑
j=1

Zj = n − j (46)

n∑
i=1

wi = 1 (47)

yi+1 ≤ yi (48)

Zjϵ {0, 1} (49)

Now the problem formulation is in linear form. We can easily solve this using sim-
ple algorithm such as simplex. Moreover, this ILP above has two major advantages.
Apart from bringing the algorithm to equilibrium point, the ILP has a characteristic of
minimizing the load on the servers thus, minimizing the server occupation rate as per
Equation (2) which in return again will minimize the computation load as given in (3).
Therefore, with the help of algorithm above and the formulated ILP, we have the most
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possible computation minimum delay.

Having obtained minimum computation delay, we next formulate our multi-RAT
multi-server load distribution problem to minimize communication related delays.

Our goal is to minimize the service delay defined in (25). Mathematically;

Minimize Ds (50)

While subject to following constraints

Dw = Dw (51)

Lς = ςi (52)

Lsi = Ri (53)

v
Ri −Mod (xi ,Ri)

ςi
=

Rj −Mod (xj ,Rj)

ςj
(54)

∑
Lsi = L (55)

Where constraint 51 states that service delay of the load transmitted over both
the RATs should be same. This is to avoid reordering delay. Constraint 52 and 53
are capacity conservation constraints and ensure that load on a server cannot exceed
its processing capacity and load assigned to a RAT for transmission cannot exceed its
transmission capacity whereas constraint 54 ensures that capacity RATs are optimally
utilized. It ensures fair shares of load by ensuring ratio f residual capacity to total
capacity are equal. Finally, constraint 55 ensure traffic load conservation and ensures
that sum of load shares distributed over both the RATs should be equal to total data
load generated by the user.

We solve the ILP through a heuristic outlined in Algorithm 2. We define a few
variables before explaining the heuristic. Let T be threshold delay which is the service
delay of the faster RAT (or fastest if more than two RATs are involved) for entire data
load L generated by the user. Let LT be the load served in time T and LF be the load
left after transmitting LT in T seconds which is obviously zero for the faster RAT. We
define another auxiliary variable x to balance the load which is explained later.
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Our heuristic works as follows. Having found T, we shuffle the RATs according to
the number of RATs and give them different orders. For example, starting with Cw and
putting it first in the order, we calculate LT for Cw and move LF to Cm. Similarly, in
next step, we assume Cm to be the first RAT and calculate its LT and move LF to Cw .
Subsequenty, we take sum of LF and LT for both the RATs and divide it by N! + x .
Here N! is the number of shuffles which is 2 in this case and x is the auxiliary variable
that is used to balance the load. Its value is −

(
B−A
B

)
for slower RAT and

(
A(B−A)

B2

)
for a faster RAT where A and B are transmission capacities of slower and faster RATS
respectively. The service delay for Ls,i obtained for the RAT i is equal and optimal for
both the RATs.

——————————————————————————————————

Algorithm 2: Load Distribution

——————————————————————————————————

Input: Total traffic load (L) generated by the user, Capacity Rw and Rm for WiFi
and Macro-cellular radio.

Output: Load shares Lsi of a RAT i .

1. Find T where T = Min (Dt
w ,D

t
m)

2. For RAT Rw do

• Calculate throughput LT in time T .

• Move LF to Rm.

3. For RAT Rm do

• Calculate throughput LT in time T .

• Move LF to Cw .

4. Ls,i =
∑

(LF ,i+LT ,i )
N!+x

————————————————————————————————–

In this particular case where there are only two RATs, mathematically, we can write
the two obtained loads as follows.

Min (Dt
w ,D

t
m) (56)

A · T
2 + x1

+
2L− LF
2 + x2

= L (57)
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Where the first expression is the load obtained by a slower RAT of the two and second
expression is the load obtained by the faster RAT and LF = L − B · T . The 2 in the
denominator shows the number of permutations. The sum of the two loads is equal to
total load generated by the user which signifies conservation of the total load.

4.5 Performance Evaluation

In this section, we provide numerical results to show the performance of our proposed
scheme. We compare the performance with WiFi, 5G and multi-RAT enabled cyber-
twin [64]. We show how different RATs take different loads for their corresponding
performance and compare their service delay. We then compare the performance of our
proposed scheme with Wi-Fi, 5G and cybertwin.

4.5.1 Environment Setting and Parameters

We consider the same environment setting and parameters as shown as in previous
chapter except that the user has to choose a server among a pool of available servers
to minimize processing delay. We consider the scenario shown in Fig. 4.3 where an
end-user is assumed to be based inside a multi-storey building. A Wi-Fi access point
is assumed to be inside the building while 5G macro-cell base-station is assumed to
be at a distance of 200 m in an urban environment. The end-user is assumed to be
simultaneously connected to Wi-Fi AP and 5G base-station. For Wi-Fi, we have used a
frequency band of 5 GHz whereas for 5G, we have used 3.4 GHz band from Frequency
Range 1 [60]. Similarly, EIRP for Wi-Fi is 30 dBm and 43 dBm for 5G. Next we describe
how to compute different parameters in order to get performance measures of different
RATs.

The parameters used in computations are summarized in Table 4.2.

4.5.2 Results

We begin with load distribution and service delay analysis of the proposed scheme where
system delay is essentially the time between a user sending the request and the corre-
sponding results, that is the output of its request. Under the same condition for all the
servers, Fig. 4.4 shows the load each radio will get for different load generated by the
end-user. 5G, having higher bandwidth, has higher capacity and lower network delay
among the two radios, Therefore, the load share taken by 5G is the higher.

We then analyze the delay for the corresponding load assumed by the two radios in
Fig. 4.5. There are two curves in the figure which appear to be one single curve. The
load shares assumed by the two radios is different as shown in Fig. 4.4, their delay,
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Figure 4.3: Assumed topology where an end-user inside a building is served by Wi-Fi
access point and 5G.

Table 4.2: Parameters Setting.

Technology Wi-Fi (802.11ax) 5G
Distance 20 m 200 m
Bandwidth 80 MHz 100 MHz
Capacity SNR Driven
EIRP 30 dBm 43 dBm
Modulation SNR Driven
Code Rate SNR Driven
Frequency 5 GHz 3.4 GHz (FR-1)
α 2 -
β 2 -
Number of Servers 8
Height of 5G Base Station - 45 m
Height of Floor - 10 m
Aggregated Carrier 1 1
Number of Streams 1 1
5G Numerology - 1
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Figure 4.4: Load shares assumed by WiFi and 5G as a result of increase in the incoming
load.

however, is equal. The proposed scheme is quite stable up to a load of 450 Mbps. The
service delay has been consistently lower than 200 ms for the said load. Finally, with the
data packet arriving simultaneously, there will be no packet reordering delay.

We also compare delay performance when radios are used data is offloaded through
Wi-Fi alone and 5G alone with with our proposed scheme. As can be seen in Fig. 4.6,
the proposed scheme outperforms Wi-Fi and 5G offloading in terms the amount of data
that they can carry. Wi-Fi reach saturation at around 200 Mbps whereas 5G reach
saturation at around 250 Mbps. The proposed scheme however, performs well untill 450
Mbps and the service delay remains less than 200 ms. This is a gain of more than 65%
as compared to Wi-Fi and 5G. In addition to processing more load, the sevice delay for
the proposed scheme has been consistenly lower than WiFi and 5G.

We also compare service delay for our proposed scheme with cybertwin technology.
Cybertwin is a recent technology that has more coordinated information sharing process
among the servers, however at the cost of more network traffic, storage occupation
and an extra layer of cybertwin virtual servers. Cybertwin employs multiple server for
task processing, albeit, one server is used at particular time choosing the most optimal
server for processing. Figure 4.7 compare the service delay of the proposed scheme
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Figure 4.5: Delay for different RATs as a result of increase in the incoming load.

with cybertwin-based system. Both the proposed technology and the cybertwin, having
option of choosing among multiple servers, have almost same saturation point, however,
proposed scheme has slightly lower service delay at lower load of up to 400 Mbps which
tends to get double at higher load of 500 Mbps and above. The higher delay of cybertwin
is due to the fact that it uses single server for processing which reach saturation point
earlier at higher load.

4.6 Summary

we jointly minimize networking and processing delay. To minimize computation delay, we
developed a technique that chooses the most optimal servers. Further, to minimize server
migration and to achieve a convergence point in the algorithm, we formulated a max-min
based non-linear lexicographic minimization problem. To solve the formulated problem
in polynomial time, I transformed the non-linear objective function to a linear one and
solved it through the simplex algorithm. Based on the obtained network performance and
computation delay, we formulated a multi-server multi-RAT load distribution problem to
optimally utilize the available capacities of the radios.
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Figure 4.6: Service delay of individual radios when they are used as solo radios for
offloading.
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Figure 4.7: Service delay of individual radios when they are used as solo radios for
offloading.
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5 Conclusion

5.1 Conclusion

MEC-based networks are a complex systems with multiple parameters to be taken into
consideration. Such systems have a wide array of resources organized across multiple
tiers of the network and, if orchestrated properly, MEC can be a plausible platform for a
wide variety applications. In this thesis, we worked on two important aspects of multi-
radio multi-server MEC-based systems that is, minimizing network delay and service
delay.

We developed a technique that optimally utilizes the capacity at source node and
optimally distributes the available capacity among the links at relay node. We considered
the performance of all the radios and distributed the traffic among the radios in such
a way that delay for all the RATS is equalized, thereby avoiding the packet re-ordering
delay at the destination node. As a proof-of-concept, we showed that to minimize system
delay and maximize throughput, QoS and SLA compliance, we must optimize capacity
utilization at the source node and capacity distribution on the outgoing links at relay
nodes. Our numerical results demonstrated that our proposed technique fares better
than contemporary techniques that distribute the data on the basis of the number of
tasks.

We also worked on multi-server multi-RAT (MSMR) powered MEC where offloading
occurs on both the radio access technologies (RAT) that a mobile phone comes equipped
with that is, WiFi and macro-cellular technology such as 5G, and depending upon the
conditions, both may be connected to different servers. We developed a technique
that optimally utilize the available capacity, overcome packet re-ordering delay. The
proposed technique minimizes the processing and networking delay. Numerical results
showed equal delay for the two RATs for the different loads assumed by them. The
ratio of residual capacity to total capacity was equal for the two RATs indicating optimal
utilization of the available capacity.
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5.2 Future Work

Availing the system of multiple radios and multiple servers simultaneously adds to its
energy consumption. In future, work can done on incorporating energy efficiency in the
system particular when system load is low. Similarly, we computed SLA compliance in
terms of throughput. In addition, we plan to carry out a more in depth analysis of SLA
compliance, including additional parameters such as service delay and QoS. Moreover, we
used WMA for instantaneous capacity estimation between two consecutive performance
updates. Work can be done on improving accuracy of instantaneous capacity estimation.
Finally, optimizing update interval with respect to instantaneous position and network
load simultaneously in polynomial time is a good direction for future.

In order to check the viability of the proposed scheme, we have been working on
practical implementation of the developed algorithms. We have been planning to develop
a SDN-driven controller that takes the relevant decisions related load sharing and traffic
scheduling on run-time.
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