Geochronology and glass geochemistry of major Pleistocene eruptions in the Main Ethiopian Rift: towards a regional tephrostratigraphy

Céline M. Vidal¹,², Karen Fontijn³, Christine S. Lane⁴, Asfawossen Asrat⁴,⁵, Dan Barfod⁶, Emma L. Tomlinson⁷, Alma Piermattei¹, William Hutchison⁸, Amdemichael Zafu Tadesse³, Gezahegn Yirgu⁵, Alan Deino⁹, Yves Moussalam¹⁰, Paul Mohr¹¹, Frances Williams¹², Tamsin A. Mather¹³, David M. Pyle¹³, Clive Oppenheimer¹

¹Department of Geography - University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
²Fitzwilliam College, Storey’s way CB3 0DG, UK
³Department of Geosciences, Environment and Society, Université libre de Bruxelles, Av F Roosevelt 50 CP160/02, 1050 Brussels, Belgium
⁴Department of Mining and Geological Engineering, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
⁵School of Earth Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
⁶NEIF Argon Isotopes, University of Glasgow, SUERC, Scottish Enterprise Technology Park, Rankine Ave, Glasgow G75 0QF, UK
⁷Department of Geology, Trinity College Dublin, the University of Dublin College Green, Dublin 2, D02 PN40, Ireland
⁸School of Earth & Environmental Sciences, Irvine Building, St Andrews, KY16 9AJ, UK
⁹Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA
¹⁰Lamont-Doherty Earth - Columbia University, Earth Observatory, 403 Comer, 61 Route 9W, Palisades, New York 10964, USA
¹¹11 Tonagharraun, Corrandulla, Co. Galway, Ireland
¹²Department of Earth Sciences, University of Adelaide, Adelaide, 5005 Australia
¹³Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK

Corresponding author: Céline Vidal cv325@cam.ac.uk
Abstract

The Main Ethiopian Rift (MER) is renowned as a focus of investigations into human origins. It is also the site of many large volcanic calderas, whose eruptions have spanned the timeframe of speciation, cultural innovation, and dispersal of our species. Yet, despite their significance for dating human fossils and cultural materials, the timing and geochemical signatures of some of the largest eruptions have remained poorly constrained at best. Here, through a programme of field surveys, geochemical analysis and 40Ar/39Ar dating, we report the ages of MER ignimbrites and link them to widespread tephra layers found in sequences of archaeological and paleoenvironmental significance. We date major eruptions of Fentale (76 ± 18 ka), Shala (ca. 145–155 ka), Kone (184 ± 42 ka and ca. 200 ± 12 ka) and Gedemsa (251 ± 47 ka) volcanoes, and provenance and correlate a suite of regionally important tephra horizons. Geochemical analysis highlights the predominantly peralkaline rhyolitic melt compositions (7.5–12 wt% $\text{Na}_2\text{O} + \text{K}_2\text{O}$, 70–76 wt% SiO_2) across the central MER and remarkable similarity in incompatible trace element ratios, limiting the correlation of deposits via glass composition alone. However, by integrating stratigraphic and geochronological evidence from proximal deposits, lake sediment cores and distal outcrops at archaeological sites, we have traced ash layers associated with the ca. 177 ka Corbetti, ca. 145–155 ka Shala and ca. 108 ka Bora-Baricha-Tullu-Moye eruptions across southern Ethiopia. In addition to strengthening the tephrochronological framework that supports paleoenvironmental and archaeological work in the region, our findings have wider implications for evaluating the hypothesis of a middle Pleistocene ‘ignimbrite flare-up’ in the MER, and for evaluating the impacts of these great eruptions on landscapes, hydrology, and human ecology.

Keywords: tephrostratigraphy, tephrochronology, explosive volcanism, East African Rift, Late Quaternary, Pleistocene, Ignimbrite, caldera-forming eruption.
1. Introduction

More than two decades ago, Pyle (1999) highlighted the potential to develop a tephrostratigraphic and tephrochronological framework for eastern Africa. Initially, much of the geochronological control for tephra deposits was obtained through conventional K-Ar dating, though in the last few decades single-crystal or small-population 40Ar/39Ar dating has been used to date both distal tephra horizons in archaeological contexts (e.g. in the MER, Brown and Fuller, 2008; Clark et al., 2003; Ian McDougall et al., 2005; Morgan and Renne, 2008), and proximal deposits (e.g. Hutchison et al., 2016a; Siegburg et al., 2018; Tadesse et al., 2022). Despite significant progress (Mana et al., 2018), we remain far from establishing a comprehensive tephra-based chronostratigraphic framework (Lane et al., 2017) for eastern Africa, as has been envisioned for Europe (e.g. Lowe et al., 2015). Such a framework will (i) greatly support and inform understanding of the interrelationships of large-scale climate variation with environmental and ecological change (including human evolution, migration and cultural innovation, e.g. Basell, 2008; Oppenheimer, 2011), and (ii) contribute to understanding of timescales and processes of magmatism and volcanism in the East African Rift System (EARS) and Afar. Improved dating, mapping and reconstruction of volcanic eruptions can also support investigations of their potential impacts on past human.

The Main Ethiopian Rift (MER, Figure 1a) is a ~600 km long section of the EARS connecting the Afar Rift in northeastern Ethiopia to the Omo-Turkana Basin in the south (Corti, 2009). Along its central axis, it hosts regularly-spaced large silicic and smaller mafic volcanoes (Fontijn et al., 2018; Hunt et al., 2020; Mohr and Wood, 1976; Rooney et al., 2005, 2012). The largest Quaternary calderas in the MER are, from NE to SW, Fentale, the Kone-Birenti volcanic complex (KVC), the Boset-Baricha volcanic complex (BBVC), Boku, Gedemsa, Bora-Baricha-Tullu-Moye (BBTM), Aluto, Shala and Corbetti (Figure 1b). Although probably Quaternary in age (Hutchison et al., 2016b, 2016c; Pyle, 1999; Woldegabriel et al., 1990), the timing and/or characteristics of the eruptions that formed them have been little studied (Fontijn et al., 2018; Hutchison et al., 2016b; Rampey et al., 2010; Siegburg et al., 2018; Tadesse et al., 2019; Tadesse et al., 2022). Significant post-caldera activity at these complexes includes eruptions of peralkaline rhyolitic magmas as obsidian flows, domes and pumice cones (Fontijn et al., 2018; Hunt et al., 2019; Tadesse et al., 2022). Only four Quaternary calderas (Figure 1b) of the central MER complexes at Fentale (Williams et al., 2004), BBTM (Meki caldera, Tadesse et al., 2022), Aluto and Corbetti (Hutchison et al., 2016a) have been directly dated. This has suggested a middle Pleistocene clustering of major explosive eruptions in the MER, a so-called ‘ignimbrite flare-up’ (Hutchison et al., 2016a; Mohr et al., 1980) notably coinciding with the timeframe of occupation of the MER by both archaic humans and Homo sapiens.

Paleoanthropological/archaeological studies routinely exploit the distal tephra record in building chronostratigraphies of sedimentary sequences containing fossils and artifacts. Although middle
Pleistocene tephra in such settings are described in the literature, only a couple of robust correlations have been made with any of the large magnitude explosive eruptions of the MER (Vidal et al., 2022). Efforts to correlate deposits based on geochemistry have been hindered by a lack of standardisation of analytical protocols (e.g., in electron microprobe analytical conditions such as accelerating voltage, beam current and beam diameter) precluding straightforward intercomparison of reported geochemical fingerprints of individual deposits. However, developments in analytical techniques and the discovery of further promising stratigraphic sequences may redress these issues (e.g. Kuehn et al., 2011; Lowe et al., 2017; Pearce and Abbott, 2014; Tomlinson et al., 2010).

As a contribution to building a tephrochronology for eastern Africa, here we combine existing glass geochemistry and geochronological datasets with new tephrochemistry and radiometric ages of proximal deposits as well as geochemical analyses of distal tephra layers in archaeological contexts of late middle Pleistocene strata and lacustrine core records. While the stratigraphy of each volcanic complex is described in the literature (Fontijn et al., 2018; Hunt et al., 2019; Hutchison et al., 2016a; Mohr et al., 1980; Rampey et al., 2010; Tadesse et al., 2022; Tadesse et al., 2019), we focus here on (co-)ignimbrite deposits from large magnitude eruptions of Fentale, KVC, Gedemsa, and Shala, as well as distal tephra in middle-to-late Pleistocene sedimentary archives, including the Omo-Kibish (Brown et al., 2012; Brown and Fuller, 2008; McDougall et al., 2005) and Gademotta-Kulkuletti formations (Laury and Albritton, 1975; Morgan and Renne, 2008; Sahle et al., 2014), and the Chew Bahr sediment core (Foerster et al., 2018, 2012; Trauth et al., 2019, 2018; Viehberg et al., 2018). We review existing datasets, report new age and geochemical data, and discuss the tephrochronological significance of these findings.
Figure 1. a Map of the Main Ethiopian Rift (MER) and b enlargement of the MER showing central silicic volcanoes and field sites. Field site numbers as per Table 1, prefix ‘ETH’ omitted for brevity. Sources are Shuttle Radar Topography Mission Digital Elevation Model data at one arcsecond resolution from the NASA Land Processes Distributed Active Archive Center Products (https://earthexplorer.usgs.gov/); settlements, lakes, and topography were obtained from (https://www.naturalearthdata.com/).

2. Overview of the late middle Pleistocene calderas and ignimbrites in the MER

With the exception of Shala, the eruptive history of the Quaternary peralkaline volcanic complexes of the MER has been recently (re)investigated. These recent studies do not systematically include 40Ar/39Ar ages or glass trace element data. In the following, we review briefly the geologic background for each caldera and information available for their associated ignimbrites. We note here that ignimbrites are not necessarily associated with caldera formation as observed at peralkaline systems elsewhere (e.g. Romano et al., 2022). The occurrence of several ignimbrites at one system (e.g. at KVC, BBTM, Aluto, Shala) therefore makes difficult the attribution of an ignimbrite to a caldera unless the proximal stratigraphy is clear.

The northernmost MER caldera is 3 km by 4.4 km, belonging to Fentale volcano (Figure 1b; Hunt et al., 2019). The caldera-associated ignimbrite extends across the plain surrounding the edifice up to ~12 km from the summit (Gibson, 1970; Hunt et al., 2019; Williams et al., 2004). Previous fission track dating of the characteristic green, welded ignimbrite yielded an age of 168±38 ka (Williams et al., 2004).

The Kone-Birenti Volcanic Complex (KVC) hosts at least three nested calderas previously described by Cole (1969) and Rampey et al. (2014, 2010). The oldest is the ~11-km-diameter Birenti caldera, whose eastern and southern rims are readily discerned, is associated with ignimbrites Qub and Qpb (Rampey et al., 2010). The younger 5 km by 6 km Kone caldera (Figure 1b) is associated with the Qpk ignimbrite (Rampey et al., 2010). The 1.5 km by 2 km Korke embayment is located to the east of the Kone caldera (Cole, 1969; Rampey et al., 2010). Major element compositions of the Qpk Kone ignimbrite were recently analysed by Fontijn et al. (2018).

The Boset-Bericha Volcanic Complex (BBVC) is one of the largest stratovolcanoes of the northern MER, comprising two edifices, Gudda and Bericha (Siegburg et al., 2018). The eruptive history was first documented by Brotzu et al. (1974) and Di Paola (1972) and recently reviewed by Siegburg et al. (2018). A remnant caldera rim of the Gudda edifice suggests that the original caldera diameter is ca. 4 km. Pumice lapilli deposits sampled near the rim are dated ca. 120 ± 6 ka, and would predate or have formed during the caldera-forming eruption (Siegburg et al., 2018).
The Boku volcanic complex (BVC) is located SE of Adama (Figure 1b), and hosts a caldera associated with a welded ignimbrite, Qpw, first described by Boccaletti et al. (1999). A recent reinvestigation of the eruptive history and magmatic evolution of BVC suggested that the caldera would have formed between ca. 510 ka and ca. 830 ka, according to correlations of proximal deposits with the primary regional units (Tadesse et al., 2019). The microcrystalline structure of groundmass glass in the ignimbrite has precluded major and trace element analysis of the glass.

The Gedemsa volcanic system comprises a 7.3 km by 9.6 km caldera (Hunt et al., 2019, Figure 1b) and sequences of unwelded ignimbrites likely emplaced during caldera formation (Fontijn et al., 2018; Peccerillo et al., 2003; Thrall, 1973). Using a digital elevation model (DEM) and deposit thickness, Hutchison et al. (2016a) calculated the total volume of silicic magma produced during the caldera collapse of Gedemsa to range from 14 to 31 km3 DRE (Dense Rock Equivalent). Peccerillo et al. (2003) dated post-caldera lavas at 265±20 ka and pre-caldera obsidian at 319±20 ka, suggesting that the current well-expressed caldera formed between ca. 339 and ca. 245 ka. Pumice samples from the same eruption cluster associated with the caldera formation were described and analysed for glass major element composition by Fontijn et al. (2018).

The Bora-Baricha-Tullu Moye (BBTM) volcanic system comprises three main silicic edifices, Bora, Baricha and Tullu Moye, and numerous smaller vents (including Oda and Werdi). Following early descriptions of the deposits (Bizouard and Paola, 1978; Di Paola, 1972), Fontijn et al. (2018) provided a preliminary stratigraphic sequence for BBTM, further investigated by Tadesse et al. (2022). In the latter study, Tadesse et al. (2022) identified and analysed the composition of two major deposits associated with large-magnitude, and possibly caldera-forming eruptions: the 108 ± 9 ka Meki deposit, which overlies the older Suke ignimbrite. The latter could not be dated due to the lack of datable material (Tadesse et al., 2022).

The Aluto volcanic complex is one of the restless silicic peralkaline volcano of the MER (Biggs et al., 2011; Hutchison et al., 2016a), located south of lake Ziway (Figure 1b). A ∼ 1 km long segment of caldera wall visible on the north-east of the complex first suggested one or more caldera-forming events at Aluto (Dakin and Gibson, 1971). Hutchison et al. (2016b) later identified a 8 by 5 km wide collapsed caldera structure associated with welded ignimbrite units Qgei and Qgyi at overlapping 40Ar/39Ar ages of 316 ± 13 ka and 306 ± 12 ka. Hutchison et al. (2016a) calculated a caldera volume of 8–21 km3 DRE. Field evidence was insufficient to assess whether the ignimbrites represent one or multiple eruptive events, however these deposits represent the best candidates for widely dispersed, explosive ignimbrite sheets associated with a classic peralkaline caldera collapse. The welded nature of the deposits has precluded geochemical fingerprinting of the matrix glass.

The Shala volcanic complex, previously referred to as O’a caldera (Mohr et al., 1980) is characterised by a 15-km-wide caldera occupied by a 250-m-deep lake (Figure 1b) (Baumann et al., 1975; Le Turdu
et al., 1999). This is the largest Pleistocene caldera recognised in the MER, with a total caldera-forming eruption volume of 86-170 km3 DRE (Hutchison et al., 2016a), but notable for the absence of major resurgent activity within the caldera, based on a bathymetric profile of Lake Shala (Le Turdu et al., 1999). The most recent activity is evident NW of the lake at a stratocone, Tullu Fike; SW of the lake at Chitu maar; and several basaltic scoria cones, found N and S of the caldera (Mohr et al., 1980). reported the size (volume) of the caldera as 86–170 km3 DRE. The Quaternary Shala eruptive sequence exposed around the lake. Mohr et al. (1980) first described the youngest caldera-forming eruption deposits, represented by ignimbrites Qi4a, Qi4b and Qi5 (Figures 2b, 2d, 2e), which are best preserved E of the lake (Mohr et al., 1980). We dated and analysed ignimbrites Qi4a (sample E76/50), and Qi5 (sample E76/61) of Mohr et al. (1980). Pumice fallout Qr2a overlying ignimbrite Qi5 (Figure 2c) was interpreted as a product of post-caldera activity, possibly associated with the Tullu Fike cone (Mohr et al., 1980). An older ignimbrite, Qi2 (Mohr et al., 1980) cropping SW of the lake was recently dated at 233±22 ka (Vidal et al., 2022). Qi2 and Qi4a ignimbrite are separated by pumice fallout deposits Qi3, which are possibly the products of an eruption of Corbetti, since they only crop out SW of Lake Shala (Mohr et al., 1980).

The Corbetti volcanic complex comprises a 10.9 by 15.6 km wide collapsed caldera structure (Hunt et al 2019) which hosts the two post caldera centres Chabbi and Urji (Hutchison et al., 2016b; Mohr, 1966; Rapprich et al., 2016). A welded ignimbrite (COI2E) attributed to the caldera formation of Corbetti is dated 177±8 ka (Hutchison et al., 2016b). The size of the caldera represents a total volume of 25–63 km3 DRE (Hutchison et al., 2016a), and stands as the second largest Quaternary caldera of the central MER. Analyses of major and trace elements of glasses from the ca. 177 ka COI2E ignimbrite revealed a correlation with tuff TA-56 of the Konso formation, in the southern MER (Figure 1, Vidal et al., 2022).

3. Methods

3.1 Fieldwork

In 2017 and 2018, we sampled the Fentale ignimbrite, proximal units of the upper stratigraphy of Shala (Mohr et al., 1980), and revisited the Gademotta-Kulkuletti and Kibish Formations (Figure 1a) to sample all known middle-to-late Pleistocene tephra horizons. At each site we described the stratigraphy, measured sections (with particular attention to tephra horizons) and sampled well exposed and least altered tephra. Ignimbrites samples from KVC, and Gedemsa were samples during campaigns in 2015 and 2017 described in Fontijn et al. (2018). Samples studied here were collected across several field seasons, resulting in different identification systems. Details of new samples and field observations are reported in section 4.
3.2 $^{40}\text{Ar}^{39}\text{Ar}$ dating

We prepared welded ignimbrite, pumice and ash samples at the Department of Geography, University of Cambridge and at the Department of Earth Sciences, University of Oxford. Rocks were pulverised in a jaw crusher and sieved to 250–500 µm size fraction, cleaned in water, and passed through a Frantz magnetic barrier laboratory separator to isolate sanidine phenocrysts from groundmass. Because separates still contained other non- or very weakly magnetic phases (primarily glass and quartz), 100 to 200 inclusion-free sanidine grains were handpicked, then leached in 5% HF to remove any adhering glass.

Samples and neutron flux monitors were packaged in aluminium discs and stacked in quartz tubes for later reconstruction of neutron flux gradients. The sample package was irradiated in the Oregon State University reactor, Cd-shielded facility. Alder Creek sanidine (1.1891±0.0008 (1σ) Ma, Niespolo et al., 2017) was used to monitor ^{39}Ar production and establish neutron flux values (J) for the samples. Gas was extracted from samples via heating with a mid-infrared (10.6 µm) CO$_2$ laser employing a non-gaussian, uniform energy profile and a 2.0 mm beam diameter centred over a sample well. The samples were housed in a doubly-pumped ZnS-window laser cell and loaded into a stainless steel planchette containing 208 2.0 mm diameter wells. Liberated argon was purified of active gases, e.g., CO$_2$, H$_2$O, H$_2$, N$_2$, CH$_4$, using two Zr-Al getters; one at 16°C and two at 400°C. Data were collected on a Mass Analyser Products MAP-215-50 single-collector mass spectrometer using an electron multiplier collector in dynamic collection (peak hopping) mode. Time-intensity data were regressed to inlet time with linear or second-order polynomial fits to the data. The average total system blank for laser extractions, measured between sample runs, was 1.1±0.6×10$^{-15}$ mol ^{40}Ar, 1.6±0.7×10$^{-17}$ mol ^{39}Ar, and 7.4±3.2×10$^{-18}$ mol ^{36}Ar. Mass discrimination was monitored daily, between and within sample runs by analysis of an air standard aliquot delivered by an automated pipette system. All blank, interference and mass discrimination calculations were performed with the MassSpec software package (MassSpec, version 8.16, authored by Al Deino, Berkeley Geochronology Center).

Grain analyses with <10% radiogenic gas, negative ages or ages in excess of 1 Ma were omitted. Peak age distributions were then defined by determining the youngest population or most contiguous group of individual grain analyses that conforms to a gaussian distribution with the expected scatter as indicated by the value of Mean Square Weighted Deviate (MSWD). Samples FEN1 and FEN2 show anomalously low MSWD relative to the number of individual analyses (n), suggesting an overestimate of analytical uncertainties. However, various approaches to filtering the data generally resulted in MSWD below 0.7, which approximates the expected minimum for the large number of grains analysed. For these analyses, the bulk of the age uncertainty derives from the measurement of ^{36}Ar.
Raw data are reported in Table S1 and plots in supplementary figures S1–S7.

3.3 Ignimbrite and distal tephra sample preparation for geochemical analysis

Pumice clasts and welded ignimbrite samples of the Fentale, Kone, and Shala (Table 1, Figure 1b) were crushed, sieved at 500, 250, and 125 μm, and washed in purified water and hydrochloric acid (1%) in an ultrasonic bath. Distal tephra samples (Table 1) from the Gademotta, and Kibish Formations were washed through an 80 or 25 μm sieve in purified water. Glass grains from 125–250 μm and 250–500 μm fractions were handpicked and mounted in epoxy resin stubs and polished. Samples of smaller grain size fractions were mounted directly in stubs.

3.4 Extraction and mounting of cryptotephra from the Chew Bahir core

During core opening and description, ash-bearing zones within core sections were noted and sedimentary features described. Smear slides were used to define the core depth range exhibiting high concentrations of glass shards. Continuous and contiguous 10 cm samples were taken along the same interval to quantify the abundance of shards using standard cryptotephra methods (Blockley et al., 2005; see Supplementary Information section 2, Tephrochronology). Tephra layers were given site-specific codes, indicative of either their first appearance or sample mid-point depth in the composite core record, i.e. “CHB_T(depth m)”.

Samples containing tephra were washed through a sieve at 25 μm to remove fine material, before being mounted in epoxy resin on a microprobe sample stub. Epoxy stub mounts were ground by hand to expose glass shards in horizontal cross section and then polished in multiple steps using diamond paste to a 0.25 μm grade.

3.5 Major element analysis

Individual glass shards were analysed with an SX100 CAMECA electron microprobe (EMPA) at the Department of Earth Sciences, University of Cambridge, UK. Major elements were measured with an accelerating voltage of 15 keV, 10 nA and a 10-μm diameter defocused beam. Elements were counted on-peak for 10 s (Na, Si), 20 s (Al, Fe and K), 60 s (Ti, Mg, Ca, and Cl), 90 s (P) and 120 s (Mn).

Sodium was measured first to minimise alkali loss. The analytical accuracy was checked against international standards ATHO-G, STHS6, VG-568 and an internal standard of peralkaline obsidian from Lipari (74 wt% SiO₂, 3.8 wt% Na₂O, 5.3 wt% K₂O). Compositions of the standards and standard deviations are reported in Table S2. Where possible, we analysed 30–50 points per sample. Normalised compositions are reported in Table S3. Analytical procedures for samples from Gedemsa and KVC are explained in Fontijn et al 2018.

3.6 Data treatment
Outcrop samples exposed in tropical arid and semi-arid environments typically experience pedogenesis or other forms of weathering or alteration, reducing alkali (Na$_2$O and K$_2$O) contents. Compositions were normalised to 100 wt% volatile-free (Lowe, 2011), and compared using bi-plots and principal component analysis. Owing to the alkali-rich nature of the MER samples, most of the analyses had totals under 94 wt%. Sodium loss was checked by plotting un-normalised Na$_2$O concentrations against totals. Analyses with analytical totals <92 wt% yielded erroneously high SiO$_2$ and Al$_2$O$_3$ concentrations, and were discarded.

3.7 Trace element analysis

Trace element compositions of individual tephra shards were analysed by LA-ICP-MS at the iCRAG laboratory at Trinity College Dublin. The instrument used was a Thermo iCAPQ coupled to a Photon Machines G2 193 nm excimer laser and a HelEx two volume cell. We used a spot size of 24 or 30 µm, depending on shard morphology and size, a repetition rate of 6 Hz, and a count time of 33 s (200 pulses) on the sample and 30 s on the gas blank (background). Concentrations were calibrated using NIST612 with 29Si as the internal standard. Data reduction was undertaken using the Iolite software and a secondary Ca correction factor was applied following Tomlinson et al. (2010). Precision of ATHO-G and StHs6/80-G MPI-DING glass secondary standard analyses is typically better than 6% for most elements (Table S4). Where possible, we analysed 15–25 glass shards per sample. Compositions are reported in Table S5.

4 Samples and new stratigraphies

Here we describe the samples analysed for each volcano, field sites and our new stratigraphic observations. A list of samples with location information is provided in Table 1.

4.1 Proximal samples

4.1.1 Fentale

We collected two samples (FEN1 and FEN2, Table 1) of the green welded ignimbrite of the caldera-forming eruption of Fentale, 5–8 km south of the caldera (Figure 2a), at sites ETH17-23 and ETH17-24, NW of Metehara (Figure 1b) for redating and chemical analysis.

4.1.2 Kone

We dated ignimbrite samples MER132A (Fontijn et al., 2018) from the Qpk eruption of Kone described by Rampey et al. (2010) and MER140B (Table 1), which have similar glass major element compositions and are attributed to the same eruption (Fontijn et al., 2018; Iddon et al., 2019). We also dated sample MER141A, which is from a pumice fall deposit with a chemical composition distinct from that of the
Qpk deposits (Fontijn et al., 2018). The stratigraphic relationship between MER141A and Qpk (MER132A/MER140B) is undetermined.

4.1.3 Gedemsa

We dated samples MER080B, MER084A and MER077B (Table 1) associated with the caldera formation (Fontijn et al., 2018) and analysed their trace element composition.

4.1.4. Shala

In 2017, we sampled proximal units of the Quaternary Shala eruptive sequence exposed around the lake. We dated and analysed ignimbrites Qi4a (sample E76/50), and Qi5 (sample E76/61) of Mohr et al. (1980), as well as pumices from Qr2a (ETH17-1QR2A), sampled above an apparent erosional contact with the Qi5 ignimbrite at site ETH17-1 (Figures 1b, 2c).

At site ETH17-15, ~10 km E of Lake Shala (Figure 1b), we sampled a light beige, coarse ash-sized tephra (ETH17-15F, Table 1), 2 m above a sequence of accretionary lapilli deposits attributed to pyroclastic density currents (PDCs, Figure 2f). At site ETH17-17, SW of lake Langano (Figure 1b), we sampled pumice from an ignimbrite (samples ETH17-17C and ETH17-17D, Table 1), possibly related to Shala’s youngest caldera formation (Figure 2g).
Figure 2. New proximal samples. a Fentale ignimbrite at site ETH17-24 (Figure 1b). b Synthetic stratigraphic log of the upper Shala stratigraphy associated with the caldera-forming phase (Mohr et al., 1980). c and d Shala deposits at site ETH17-1 (Figure 1b). e Welded ignimbrite Qi4a from Shala at site ETH17-2. f Fallout deposit at site ETH17-15 (Figure 1b) and g Deposits at site ETH17-17 (Figure 1b), probably associated with Shala.

4.2 Distal samples from tephra archives
Figure 3 depicts a schematic framework of distal sedimentary formations from which far-travelled (presumed-) MER tephra has been described (Brown and Fuller, 2008; Clark et al., 2003; Ian McDougall et al., 2005; Morgan and Renne, 2008) and from which tephra samples were collected for this study. Here, we report previously published 40Ar/39Ar ages of known tephra horizons recalculated with the new 40K decay constants of Renne et al. (2011a). All ages presented are reported as weighted mean ± 2 s.e.m (2σ).

4.2.1. Gademotta-Kulkuletti Formation

The Gademotta and Kulkuletti sites are located west of Lake Ziway in the MER (Figure 1b), east of the Gademotta ridge. The formation includes three tephra layers (Laury and Albritton, 1975; Morgan and Renne, 2008), from lowest to uppermost: Unit 10 (283±3 ka), unit D (191±4 ka) and unit 15 (Figure 3d). Previous attempts to date unit 15 were unsuccessful due to crystal contamination (Morgan and Renne, 2008) but, based on geochemical evidence, Brown et al. (2012) correlated it with the Aliyo Tuff in Omo-Kibish (see next section, Figure 3), which has an age of 105±5 ka (McDougall et al. 2005). We sampled and reanalysed the tephrochemistry of these three units (Figure 3d, Table 1).

4.2.2. Omo-Kibish Formation members II and III

The Omo-Kibish Formation is located north of lake Turkana, close to the Kenya/Ethiopia border (Figure 1a), where fossils of ‘Anatomically Modern Human’ Omo I were found (see Fleagle et al., 2008 for a review). The formation bears many tephra layers in its members I to IV, the dating of which has been crucial for constraining ages of the hominin fossils (Vidal et al., 2022; Brown et al., 2012; Brown and Fuller, 2008; McDougall et al., 2005; Millard, 2008). Member II of the formation includes the KHS tuff (Brown and Fuller, 2008), recently correlated with an eruption of Shala at ca. 233±22 ka (Vidal et al., 2022), and now defining a minimum age of the Omo I H. sapiens, found in underlying Member I (Figure 3a). Vidal et al. (2022) also identified a tuff above KHS at Chibele South (CS), which they correlated with the ca. 177 ka Corbetti eruption (Figure 3). We traced this deposit in the field from the CS section to the Chibele (CB) type section of Brown and Fuller (2008), revisiting the site (Figure 4) where Brown and Fuller (2008) described four tuffs, from bottom to top: KHS, CRF-23, and CRF-25 in member II, and the Aliyo tuff in member III (Figure 4b).

Above the ca. 177 ka Corbetti tuff (ETH18-08), which might stratigraphically correspond with the CRF-23 deposit of Brown and Fuller (2008), we identified four tephra deposits (Figure 4b). At base of section, there is a ~20 cm thick, grey, crystal-rich fine-sand grade tephra layer (ETH18-09D, Figure 4c). About 1 m above ETH18-09D lies a 10–50-cm-thick, white, fine silt grade, strongly laminated tuff (ETH18-9C, Figure 4c). At the top of the sequence, two tuffs are superposed, ETH18-09B and ETH18-09A, which correspond to CRF-25 and the Aliyo Tuff, respectively (Figure 4). The >100-cm-thick ETH18-9B deposit represents the top of Member II at this site, and is disconformable with the overlying >110-cm-thick Aliyo Tuff (sample ETH18-09A) which represents the base of Member III (Figure 4).
Laminations in the latter deposit are suggestive of reworking. The Aliyo Tuff was dated at 105±5 ka (McDougall et al. 2005) and geochemically linked to Gademotta Unit 15 (Figure 3d, Brown et al., 2012) based on published major element compositions of the latter (Morgan and Renne 2008). We also sampled the Aliyo Tuff (sample ETH18-02) at the CS type locality (Figure 1a).

Figure 4. a Chibele site at Kibish. b Revised synthetic stratigraphy of the Chibele section showing correlation with units (grey italics) of Brown and Fuller (2008). c Photographs of the tuffs at Chibele.

4.2.3. Chew Bahir sediment core
The Chew Bahir palaeolake is located within the Weyto-Chew Bahir tectonic basin in the southern Ethiopian Rift (Figure 1a). Its sediments were recovered by the Chew Bahir Drilling Project (CBDP) whose main aim was to investigate linkages between climate change and hominin evolution in Africa (Foerster et al., 2018, 2012; Trauth et al., 2019, 2018; Viehberg et al., 2018). The 293-m-long (composite length) Chew Bahir core recovered in 2014 provides insights into the past 620 ka of the region’s environmental history (Shaebitz et al., 2021, Foerster et al., under review, Roberts et al., 2021), a timespan that includes the transition to the Middle Stone Age, and the origin and dispersal of Homo sapiens. Roberts et al. (2021) identified and analysed a visible tephra horizon in the Chew Bahir core (CHB_T74.755) at a basal composite depth of 74.755 mcd (mean composite depth) which they correlated with the 155±14 ka Silver Tuff (SVT) in the Konso formation (Figure 3; Clark et al., 2003; Katoh et al., 2000; Nagaoka et al., 2005). We sampled potential (crypto)tephra-bearing zones from core segments dating to between ~190 and 130 ka for cryptotephra counting and analysis.

Figure 3. a-d Schematic logs (not to scale) of distal tephra archives (see locations on Figure 1) of the Main Ethiopian Rift with e dated MER ignimbrites (data at 2σ) and f samples analysed in this work from middle and late Pleistocene eruptions of g MER calderas whose associated ignimbrites have been dated, both previously and in the present study, together with their ages. The ages obtained in the present study are shown in bold. Tephra unit colours in a-d correspond with those displayed in Figure 5. Grey
units are not discussed in this work. Tephra unit thicknesses are to scale. Ages and 2σ uncertainties (error bars) are reported next to tephra units. Numbers on dashed lines indicate previously established correlations, after: 1. Brown et al. (2012), 2. Roberts et al. (2021) and 3. Vidal et al. (2022). Previous dating indicated as: 4. Morgan and Renne (2008), 5. Tadesse et al. (2022) and 6. Hutchison et al., 2016a. New tephrostratigraphic correlations are discussed in Section 6.

5 40Ar/39Ar ages and glass geochemistry

We obtained ages of six eruptions from four eruptive centres (Table 1). In this section, we report salient information for each eruptive unit, from oldest to youngest. We associate the voluminous MER ignimbrites to caldera-forming events, though acknowledge the need for much more detailed ‘physical volcanology’ fieldwork in the region. We calculated volumes of silicic magma associated with caldera formation not previously reported in the literature based on caldera dimensions and morphology following the method of Hutchison et al. (2016a). Averaged analyses (Table 2) and scatter plots of proximal samples (Figure 5) provide geochemical fingerprints of the Middle and Late Pleistocene MER ignimbrites, and provide the basis for identifying the source of unknown medial and distal tephra horizons through classification (section 6.1). The analysed samples display similar incompatible trace element abundances (Table 2) and trends, precluding straightforward differentiation on biplots. This compositional similarity likely points to commonalities of the mantle source and storage and fractionation paths of the magmas feeding each volcano. We resort accordingly to trace element ratios (Figure 5) to accentuate minor compositional differences and remove the potential effect of intensity variations. Figure 5 reveals some overlap in trace element ratios representing neighbouring volcanoes, e.g. BBTM and Gedemsa.

5.1 Gedemsa ca. 251 ka

40Ar/39Ar dating of samples MER080B and MER077B of the same ignimbrite yield a mean composite age of 251±47 ka (Table 1 and Figure S1), consistent with the age range ca. 265–319 ka suggested by Peccerillo et al. (2003). Glasses from MER084A (equivalent to MER080B, Fontijn et al., 2018) have a homogeneous pantelleritic rhyolite composition (Fontijn et al., 2018), similar to other deposits from central MER volcanoes including BBTM, Shala and Corbetti (Figure 5). Trace element ratios in MER084A overlap those of the ca. 108 ka BBTM (Meki) ignimbrite but are distinguished by higher Th content (Figure 5).

5.2 Kone ca. 184 and ca. 200 ka

We estimate a total erupted volume of 6–14 km3 DRE associated with the caldera formation of Kone (Supplementary Table S5). Samples MER132A and MER140B (Fontijn et al., 2018) date to 199±17 ka and 200±16 ka, respectively (Table 1 and Figure S2). MER139A (equivalent to MER140B, Table 1)
shows evidence of alkali exchange, but otherwise these two samples have a similar comenditic to pantelleritic composition (Table 2, Figure 5). The very close age of the samples further suggests they represent the same eruption Qpk, yielding a composite age of 200±12 ka (Table 1, Figure S2). Sample MER141A is dated 184±42 ka (Table 1 and Figure S3) and has a pantelleritic rhyolite composition (Fontijn et al., 2018) (Table 2, Figure 5) distinct from that of the Qpk products, suggesting it represents a different eruption of the KVC. Trace element analyses were only conducted on MER132A, which stands out from other MER ignimbrites owing to lower La/Th and higher Zr/Y values (Figure 5).

5.3 Shala ca. 155–145 ka

The green welded ignimbrite Qi4a dates to 145±11 ka (Table 1 and Figure S4), and the overlying coarse, matrix-poor and lithic-rich Qi5 ignimbrite yielded an age of 155±14 ka (Table 1 and Figure S4). The Qi4a pantellerite is geochemically less evolved than the Qi5 ignimbrite (Table 2, Figure 6a). Qr2a yielded an age of 155±20 ka (Tables 2 and S1, Figure S4), which statistically overlaps the ages of the underlying ignimbrites Qi4a and Qi5. Qr2a shares a similar composition with Qi5 (Table 2, Figure 6a), which, together with the overlapping ages, suggests that Qi4a, Qi5 and Qr2a represent different phases of the same caldera-forming eruption at ca. 145–155 ka. Major element abundances of pumice ETH17-17C/D overlap the compositional range of Qr2a (Figure 6a), while those of the ETH17-15F overlap the intermediate and more evolved signature of the ca. 145–155 ka deposits (Figure 6a). Trace element signatures (Figure 6a) confirm that samples ETH17-17C/D and ETH17-15F originate from the ca. 145–155 ka Shala eruption.

5.4 Fentale ca. 76 ka

The size of Fentale caldera suggests an eruptive volume of 6–7 km3 DRE (Supplementary Table S5). 40Ar/39Ar dating of samples FEN1 and FEN2 of the ignimbrite yield a mean composite age of 76±18 ka (Table 1 and Figure S6). Glassy enclaves in the devitrified matrix of ignimbrite sample FEN1 have a pantelleritic rhyolite composition (69–73 wt% SiO$_2$; 8.5±0.6 wt% Al$_2$O$_3$; 8.3±0.3 wt% FeO*; 10.2–11.2 wt% Na$_2$O+K$_2$O, Table 2) and display the highest FeO* abundances amongst the MER products analysed (Figure 5). Trace element compositions of FEN1 glass (Figure 5) also show distinctively low Zr/Y values compared with other MER centres, while Zr/Rb and La/Th ratios overlap those of Shala (Figure 5).

5.5 Distal tephra

5.5.1 Gademotta Unit 15

New 40Ar/39Ar dating of 67 sanidine grains of Unit 15 at Gademotta provided an age of 135±20 ka (Table 1 and Figure S7). This is comparable (but not overlapping at 2σ) with the reported age of 105±5 ka for the Aliyo Tuff in Member I of the Kibish Formation (McDougall et al. 2005), and geochemically correlated to Unit 15 by Brown et al. (2012).
5.5.2 Chew Bahir cryptotephra units CHB_T86.70

Core sections CHB-2B-49-1 and CHB-2B-48-1 comprise disturbed alluvial silt, silty sand and laminated muds, most likely fragmented during drilling. There is visible evidence of upward injection of drilling fluids and entrained fines alongside the edge of the core liner. Cryptotephra analyses from sections CHB-2B-49-1 and CHB-2B-48-1 reveal the presence of volcanic glass shards throughout these two core sections, spanning 86.70–85.96 m mean composite depth. Glass shards are transparent with curvilinear forms. The highest glass shard concentrations (>>10,000 shards per g of dry sediment) and the largest glass shard sizes (<120 µm along the longest axis) occur between 86.55–86.45 m, locating the most likely position of the primary deposit. The age model of the Chew Bahir core (Roberts et al., 2021) indicates an age of 178±11 ka for this cryptotephra-rich horizon. Glass shard concentration and size decreases gradually above this interval. Shards in CHB_T86.70 have pantelleritic peralkaline rhyolite compositions with normalised values of 75.1±0.6 wt% SiO₂, 9.3±0.6 wt% Al₂O₃, 5.3±0.8 wt% FeO*, 4.9±0.3 wt% Na₂O and 4.5±0.3 wt% K₂O (Table 2).

5.5.3 Kibish units ETH8-9D and ETH18-9C

Samples ETH18-9D and ETH18-9C have identical pantelleritic compositions, with 76.4–77 wt% SiO₂, 9.6±0.5 wt% Al₂O₃, 5.5±0.6 wt% FeO*, and 4.5±0.3 wt% K₂O (Table 2). Na₂O contents are slightly lower in ETH18-9C (2.5±0.5 wt%) than in ETH18-9D (2.9±0.5 wt%).
Figure 5. Major and trace element compositions of glasses from proximal MER ignimbrite samples. Compositions are normalised to 100%, free of volatiles (see average compositions in Table 2). Where stratigraphic unit names are not available, our sample references are reported. Major and trace data for
the BBTM Meki deposit are from Tadesse et al., 2022. Major element data for Kone and Gedemsa samples are from Fontijn et al. (2018). Analyses for the three units of the 155–145 ka Shala eruption are combined for clarity (see Figure 3 for split compositions). Black crosses are indicative 2σ analytical errors.
Figure 6. Geochemical correlations of selected MER ignimbrites with distal correlatives (see average compositions in Table 2) for a the ca. 145–155 ka Shala eruption, b the ca. 177 ka Corbetti eruption,
and the ca. 108 ka BBTM eruption (data from Tadesse et al., 2022). Major element composition of Konso TA-55 tuff from Vidal et al. (2022) and Konso SVT and CHB_T74.755 from (Roberts et al., 2021). Black crosses are indicative 2σ analytical errors.

6 Geochemical correlations of proximal and distal tephra

All the MER eruptions we have characterised will have generated major ash plumes likely to provide valuable chronostratigraphic control for diverse sedimentary archives. Here we discuss correlations of three major eruptions with tephra from the Gademotta-Kulkuletti, Konso and Omo-Kibish formations and from the Chew Bahir sediment core. We note that several distal tephra horizons are yet to be associated with proximal deposits, possibly from smaller magnitude events or other large eruptions yet to be identified. Similarly, distal deposits of Fentale, KVC and Gedemsa ignimbrites are yet to be recognised.

6.1 Distal correlatives of the ca. 155–145 ka Shala eruption

The range of major element compositions of the Shala caldera units (Qi4a, Qi5, and Qr2a) systematically overlap those of the 155±14 ka SVT (sample ETH18-14F) from the Konso Formation (Clark et al., 2003; Katoh et al., 2000) and CHB_T74.55 (Roberts et al., 2021) (Figure 6a). The SVT age of 155±14 ka is consistent with our new ages of the Shala caldera units, i.e., ca. 155 ka (Qr2a), ca. 155 ka (Qi5), and ca. 145 (Qi4) (Table 1). These correlations are supported by the overlap of trace element ratios in the Shala samples, the SVT and the CHB_T74.755 tephra (Figure 6a).

Figure 6a further shows that Kibish tuffs ETH18-9C and ETH18-9D from the CB section (Figure 6) are compositionally similar to the SVT and proximal Shala products. Given that the two tuffs ETH18-9C and ETH18-9D are separated by ca. 1 m of weathered lacustrine sediment, likely to represent an interval of order 2 ka based on average sedimentation rates at Chew Bahir of ca. 47 cm/ka (Roberts et al., 2021), this indicates two separate eruptions of very similar magmas. Intermittent eruptive pulses within a few thousand years at Shala might be differentiated in the proximal stratigraphy, but not cannot be resolved from the available geochronology (Table 1). We hypothesise that the uppermost of the two tuffs, ETH18-9C, corresponds to the 155 ka SVT at Konso. The lower tuff ETH18-9D might be the equivalent of the Konso tuff TA-55, however the sample that we collected from the latter was unsuitable for analysis due to severe weathering and devitrification (Vidal et al., 2022). Tuff TA-55 occurs between SVT and TA-56 (Figure 3), which is correlated with the ca. 177 ka Corbetti eruption (Vidal et al., 2022).

An age of ca. 155 ka for ETH18-9C is consistent with its stratigraphic position below the ca. 105 ka Alyio Tuff at the Kibish CB section.

The wide compositional range of the proximal units of the ca. 145–155 ka Shala eruption is entirely reflected in all distal samples (Figure 6a). The revised stratigraphy at Kibish (Figure 3) indicates that
Shala is the source of two widespread tuffs deposited between 177 ka and 155 ka (Figure 4). The ca. 155 Shala tephra is found in Konso (SVT), ~260 km SSW of the caldera (Figure 1), where it is ~90 cm-thick. The top ~75 cm of the SVT outcrop sampled by Vidal et al. (2022) is pedogenically altered, grading into a paleosol, hindering estimation of the unit’s original thickness, but beneath this is preserved ~15 cm of pristine ash. About 370 km SSW and SSW of Shala, the deposit is ~20 cm thick at Kibish, and the visible ash in the Chew Bahir core spans 14.5 cm (Roberts et al., 2021). This eruption therefore constitutes a key chronostratigraphic marker (Figure 3) for palaeoclimatic and palaeoanthropological records in southern Ethiopia, and likely extends into Northern Kenya, including the Turkana basin.

6.2 Distal correlatives of the ca. 177 ka Corbetti eruption

Figure 6b shows that major and trace element abundances of the 178±11 ka CHB_T86.70 glasses from the Chew Bahir core partially overlap those of the ca. 177 ka Corbetti ignimbrite (sample COI2E), and match well with the distal correlatives at Konso (TA-56) and Kibish (ETH18-8) (Vidal et al., 2022). CHB_T86.70 occurs ~12 m deeper in the Chew Bahir core stratigraphy than CHB_T74.755, which has been shown to be a correlate of the Konso SVT (155±14 ka, Figure 3; Roberts et al., 2021), providing the second stratigraphic tie-line between the Chew Bahir core and the Konso sequence (Figure 3).

6.3 Distal correlatives of the ca. 108 ka BBTM eruption

New major element analyses of Gademotta Unit 15 and Kibish Alyio Tuff using the same analytical conditions (Figure 6c) confirm the correlation first suggested by Brown et al. (2012). These two tephra are a close match with glasses from the ca. 108±9 ka BBTM eruption (sample MER149A, Tadesse et al., 2022) from a caldera-forming event of the BBTM complex (Tadesse et al., 2022). These correlations are confirmed by overlap in trace element ratios (Figure 6c). The age of 135±20 ka we obtained for Unit 15 (Table 1) and those for the Kibish Alyio Tuff (105±5 ka, McDougall et al., 2005) and BBTM eruption (108±9 ka, Tadesse et al., 2022) are close enough that, given the use of different argon isotopic measurement protocols between studies (including the number of grains considered), we hypothesise that the ca. 108 ka BBTM eruption is the source of the ~50 cm-thick Gademotta Unit 15 and >110 cm-thick Kibish Alyio tuff, respectively located ~50 km SW and ~460 km SW from BBTM (Figures 1 and 3).

7 Revisiting the MER ignimbrite flare-up hypothesis

We have provided new age constraints for the caldera-forming eruptions at Fentale (ca. 76 ka), Shala (ca. 155-145 ka), Kone (ca. 184 ka and ca. 200 ka), and Gedemsa (ca. 251 ka) volcanoes. Adding the ca. 108 ka BBTM eruption (Tadesse et al., 2022), the ca. 177 ka Corbetti caldera (Hutchison et al., 2016b), the ca. 233 ka Shala eruption (possibly caldera-forming, Vidal et al., 2022), and the ca. 306–
316 ka Aluto eruptions (Hutchison et al., 2016b), there is strong evidence for multiple large magnitude explosive eruptions in the MER during the middle-to-late Pleistocene, with the formation of up to nine calderas within ~230,000 years.

The new geochronological and tephrochronological aspects of this study refine and extend the existing record of middle to Late Pleistocene explosive volcanism in the MER as shown in Figure 3. There are additional calderas in the Afar Rift northeast of the MER that formed during the Middle Pleistocene including the ca. 295 ka Mallahle caldera and ca. 130 ka Nabro caldera (Oppenheimer et al., 2019). Notably, all these large-magnitude eruptions occurred within a timespan critical for understanding human speciation, dispersal and cultural innovation (Clark et al., 2003; Fleagle et al., 2008).

Both Mohr et al. (1980) and Hutchison et al. (2016a) considered that temporal clustering of colossal eruptions in the MER ca. 170–320 ka represents a silicic ‘flare-up’, invoking an increased mantle melt supply to axial volcano-tectonic segments of the MER and establishment of large magma reservoirs within structural traps (Hutchison et al., 2016b). Although the exposed stratigraphic record suggests hiatuses in activity at individual systems (e.g. Corbetti, Aluto; Hutchison et al., 2016b), overall, the new evidence presented here indicates continued ignimbrite eruptions until ca. 76 ka (that of Fentale; Figure 3). Given that the regional eruption history (eruption ages and volumes) is still only partially revealed, designation of ‘flare-ups’ remains speculative. The Pleistocene and Pliocene stratigraphy in Ethiopia, studied extensively where human fossils and archaeological records have been sought, is replete with tephra horizons such as at Gona (Quade et al., 2008), Konso (Katoh et al., 2000) and Melka Wakena (Hovers et al., 2021; Resom et al., 2018). Few of these have been traced to their sources, some of which are likely geomorphologically and tectonically degraded, eroded and/or buried by younger volcanic products. Also, many known calderas have yet to be accurately dated, including Birenti (KVC), Boku (BVC), Gudda (BBVC) and Suke (BBTM) in the central MER, Wagebesa, Diguna and Hobicha in the southern sector of the MER, and Adoua, Ma’Alalta and Barra’Ale in Afar. Further systematic studies to trace and correlate proximal and distal deposits, and detailed geochronological, stratigraphic and sedimentological investigation of proximal records, are certainly called for.

8 Concluding remarks

We have reported ages and geochemical signatures of deposits from large-magnitude eruptions in the MER, some of them certainly caldera-forming, i.e., at Fentale (ca. 76 ka), Shala (ca. 145-155 ka), Kone (ca. 184 and 199 ka), and Gedemsia (ca. 251 ka) volcanoes. Geochronological comparisons and geochemical correlations of proximal and distal tephra deposits permitted to identify distal deposits of the ca. 108 ka BBTM, ca. 145-155 ka Shala, and ca. 177 ka Corbetti eruptions to sink in southern Ethiopia, notably in the Kibish and Konso Formations and the Lake Chew Bahir sedimentary record. As yet, distal deposits of Fentale, Kone and Gedamsa have not been recognised. The notable thickness
of distal tephra in sedimentary depocenters several hundred kilometres from source suggests the units
are likely represented in other sedimentary archives across eastern Africa and possibly offshore.

Using major, minor and trace element concentrations, measured using consistent analytical protocols,
we have revised and extended previous correlations, improving the chronostratigraphic record of the
central and southern MER. Our findings highlight the scope for future tephorochronological work in
adjacent regions of northern Kenya and Afar, which can support dating of fossils and cultural layers in
archaeological contexts. At least seven caldera-forming eruptions occurred between ca. 316 ka and ca.
76 ka, an interval critical for understanding the evolution and dispersal of *Homo sapiens* in and beyond
eastern Africa. The revised chronology suggests a more prolonged middle and late Pleistocene episode
of ignimbrite-forming eruptions in the MER than previously recognised, and emphasises the need for
more work to evaluate the ‘flare-up’ hypothesis. More broadly, much deeper geochronological,
stratigraphic and sedimentological studies are required to shed light on the magnitudes, styles and
impacts of these prodigious eruptions.

Acknowledgements

This study was supported by the Leverhulme Trust grant 2016–21 (Nature and impacts of Middle
Pleistocene volcanism in the Ethiopian Rift). KF was supported by the UK’s Natural Environment
Research Council (NERC) grant NE/L013932/1 (RiftVolc: The Past, Present and Future of Rift
Volcanism in the Main Ethiopian Rift), a Boise Fund grant from the Department of Zoology, University
of Oxford, and acknowledges Fonds de Recherche Scientifique – FNRS MIS grant F.4515.20. Tephra
work on the Chew Bahir cores in the Cambridge Tephra Lab by AA, AP and CL was made possible by
NERC grant NE/K014560/1 and we acknowledge Prof Henry Lamb, Prof Frank Schaebitz, Prof Andy
Cohen, Prof Martin Trauth and Dr Verena Foerster who, with AA, retrieved and facilitated access to
the Chew Bahir core. The sample material from Chew Bahir core used in this project was provided by
the National Lacustrine Core Facility (LacCore) where the cores are archived. We further thank Dr
Victoria Cullen and Dr Victoria Smith for assistance with tephras analyses and Prof Henry Lamb, Prof
Frank Schaebitz and Dr Verena Foerster for assistance with fieldwork at Konso. Ar-Ar dating was
supported by grants NIGFSC IP-1683-1116 and IP-1680-1116. The iCRAG lab is supported by SFI
13/RC/2092. We acknowledge the local and regional authorities in Ethiopia for facilitating fieldwork,
and the School of Earth Sciences of Addis Ababa University for facilitating sample export. We are very
grateful for the professional logistical support provided by Ethioder and their drivers, and for field
assistance by Alex in Omo-Kibish, Demelash in Konso, and Keri McNamara, Ermias Filfilu Gebru and
Firawalin Dessalegn across the MER. We also thank Dr Iris Buisman and Dr Jason Day from the
Department of Earth Sciences of the University of Cambridge for their help and support with sample
preparation and microprobe analyses.
Competing interests

The authors have no competing interests to declare.

CRediT author statement

Conceptualisation: CV, KF, CL, AA, WH, YM, CO

Formal analysis: CV, KF, CL, DB, ET, AP,

Investigation: CV, KF, CL, AA, DB, ET, AP, WH, AT, GY, AD, YM, FW Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection

Resources: PM, FW

Writing: CV, KF, CL, AA, DB, CO

Writing - Review & Editing: all authors

Visualisation: CV

Supervision: CV, KF, CL, AA, CO

Project administration: CV, KF, CL, AA, CO

Funding acquisition: KF, WH, CO, DP, TM
References

chronological and behavioural contexts of Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 747–752. https://doi.org/10.1038/nature01670

Le Turdu, C., Tiercelin, J.-J., Gibert, E., Travi, Y., Lezzar, K.-E., Richert, J.-P., Massault, M., Gasse, F., Bonnefille, R., Decobert, M., Gensous, B., Jeudy, V., Tamrat, E., Mohammed, M.U., Martens,

Table 1. Volcanic source, type, location and single crystal $^{40}\text{Ar}/^{39}\text{Ar}$ ages of ignimbrite and tephra samples

Table 2. Average major, minor and trace element composition of samples studied