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Summary

Dualities play an important role in our understanding of many areas of modern theoret-
ical physics. Supersymmetric gauge theories provides a rich ground for the study of the
dynamics of dualities, where typically this manifests itself by equating the dynamics of
quantum field theories at distinct values of the coupling.

In this thesis, we investigate the manifestation of strong/weak duality in the low-
energy effective description of four-dimensional N = 2 supersymmetric Yang-Mills
theory, or what is called Seiberg-Witten (SW) theory. In particular, we focus on the
structure of the Coulomb branch – where the gauge group is broken to factors of U(1) –
of these theories and its connection to modularity. To study this branch we make use
of the insight of Seiberg and Witten that many of its important structures are captured
by the introduction of an auxiliary family of elliptic curves. The study of the Coulomb
branch thus reduces to a study of these curves.

For the pure SW theory with gauge group SU(2) it is known that the duality group
is given by a congruence subgroup of SL(2,Z), and this is further captured by the fact
that the order parameter on the moduli space can be expressed as a modular function
of the running coupling for this subgroup. Similar results have been known for the
theories with massless fundamental hypermultiplets. In this thesis we show that this
is not the general story. When, for example, including Nf ≤ 4 massive fundamental
hypermultiplets the modular properties become much more subtle. In general, the
order parameter will have branch points as a function of the coupling. In light of these
complications, we develop new techniques to study the Coulomb branch and in particular
discuss how to construct fundamental domains for the order parameter incorporating
the branch points. The branch points, and related cuts, provide further a natural
mechanism for interpolating through phase transitions such as the superconformal fixed
points of Argyres-Douglas type, where mutually non-local dyons become massless.

For the pure theory with gauge group SU(3) we instead have a genus two SW curve,
and the moduli space is now parameterised by two complex functions. On special slices
of the moduli space, where one of the order parameters vanish, the genus two SW
curve degenerates into two elliptic curves. We show that the non-zero order parameter
on these slices can be expressed in terms of elliptic modular forms. Since these slices
further capture all important points of the moduli space, these results can be used
to interpolate between the various duality frames near these points. In particular, it
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provides a way to straightforwardly interpolate between strong and weak coupling in
order to analyse the spectrum of the theory.

The modular properties of the SW theories play an important role when calculating
topological correlators. Topologically twisted versions of N = 2 theories have been
essential in the interplay between modern physics and mathematics. One of the most
famous instances being that of Donaldson-Witten theory, where four-dimensional N = 2
supersymmetric Yang-Mills theory is used to calculate Donaldson’s famous four-manifold
invariants. In the physical theory, this corresponds to calculating certain correlators
in the topologically twisted theories. In particular, we can make use of the flow to
the IR, or to the SW theory, after twisting to make the explicit evaluations. In recent
years, these correlators have seen a revived interest due to the observation that they
can be related to the theory of mock modular forms. The integrand can be written as a
total derivative of a mock modular form, and through Stokes’ theorem the integration
then reduces to one over the boundaries of the fundamental domain. In light of this,
we consider the theories with massive matter included and formally construct the
Coulomb branch integral for these theories. To make the theories with fundamental
matter well-defined on generic four-manifolds we need to introduce a coupling to extra
background fluxes when performing the twist. These fluxes then give rise to new families
of partition functions.

The recent results, as well as our discussion when including massive matter, on the
relation between the Coulomb branch integral and mock modular forms have restricted
the analysis to simply connected manifolds. In this thesis, we generalise these results to
any four-manifold, and in particular to non-simply connected manifolds. We further
check our results against known results on a specific class of non-simply connected
manifolds, namely product ruled surfaces.
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Preface

Our fundamental understanding of modern particle physics, and thus of the microscopic
behaviour of Nature, is to a large extent based on a set of theories called gauge theories.
This thesis will discuss the important concept of dualities in quantum gauge theories as
well as that of fundamental domains for an important parameter of the gauge theories
called the coupling constant. In these first few pages we will give a brief overview of
these topics aimed at the non-technical reader.

Duality in modern gauge theory

Dualities are ubiquitous in modern physics and have provided us with many new deep
insights in both physics and pure mathematics on a fundamental level.

To better understand dualities we first need to say a few words about what we mean
when we talk about a physical theory as well as different regimes of a theory. In this
thesis we will be concerned with quantum field theories, which can be thought of as
a collection of particles, or fields, together with a prescription for how these interact
with each other. These interactions are typically controlled by a parameter called the
coupling constant (even though it is generally not a constant, as it depends on the energy
at which we study the theory). This parameter determines how strongly the various
particles interact. There could of course also be other parameters in the theory, such as
masses of particles, sizes of dimensions that the theory lives in and so on. Sometimes
when people talk about a theory, they mean one with a fixed value of all these various
parameters, while in this thesis we will mainly refer to a theory as the full set, and
varying some parameters then might take us to a different regime of the theory. One
of the important consequences of having access to dualities is then that they typically
allow us to make exact calculations in energy regimes where this would otherwise be
impossible.

Duality can, of course, mean many different things, and there exists a large number
of different types of dualities in modern physics and mathematics, all important in their
own way. Schematically, a duality is the manifestation of the fact that a specific theory
might have several alternative descriptions, and that which of these are suitable might
vary depending on which regime of the theory we are in. A famous example of duality
is the particle/wave duality of quantum physics. This duality says that in a quantum
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theory it no longer makes sense to say that a particle is just a particle or a wave. It is
in fact both. Sometimes it is better to describe it as a particle while at other times the
wave picture is more fruitful. The two descriptions are dual to each other. This notion
of duality is, however, very different in nature compared to the ones we will focus on in
this thesis, but serves as a good starting point to think about how dualities can work.

Some important examples of dualities in more modern research are: electric/magnetic
duality, which states that, in a quantum theory, the electric and magnetic fields behave
as dual quantities; the gauge/gravity correspondence, which relates a gravitational
theory with a quantum field theory living on the boundary of spacetime; and mirror
symmetry, which relates two different types of strings moving in two distinct spaces. A
generalisation of electric/magnetic duality will be the main concern of this thesis and
will now be described in more detail.

The type of duality that will be most important in this thesis is that of strong/weak
duality, or S-duality, and how this is manifested in gauge theories. This is a generalisation
of the electric/magnetic duality mentioned above. Strong/weak duality relates a weakly
coupled description, where quantum effects are small, to a strongly coupled one, where
quantum effects are large. This is a very remarkable thing. In general, the strongly
coupled region is not accessible for calculations due to the strong quantum effects,
but when we have access to S-duality we can make use of the weakly coupled dual
description to perform our calculations.

Dualities typically result in non-intuitive behaviour of various objects in our theory.
An important example in String theory comes from something called T-duality, which
is closely related to mirror symmetry. This duality says that a string moving in a space
shaped like a very small circle behaves exactly the same as a different kind of string
moving in a space shaped as a very large circle. All the observable features in one
description gets mapped to observable features in the dual description. For example,
momentum in one description gets mapped to the number of times the string winds
around the circle in the other description. Another extraordinary aspect of dualities
is that the fundamental objects in one regime may get interchanged with composite
objects in the dual. This happens for example in electric/magnetic duality, where
the electric field is considered fundamental in one frame and the magnetic field as
coming from a composite objects, while in the dual frame we find that the opposite
picture is more natural. We are thus left to wonder if there ever was such a thing as a
fundamental entity, or if we rather should think of everything as being emergent objects
depending solely on which description we decide to use. In other words, dualities throw
reductionism – the idea that everything can be reduced to a fundamental entity – out
the window.

As we have mentioned above, this thesis will mainly be concerned with studying
duality in a certain kind of theories that physicists refer to as gauge theories. The
simplest such theory is that of electromagnetism, describing how the electric and
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magnetic fields interact with their environment. The generalisation of electromagnetism
into something called Yang-Mills theories is the foundation of modern particle physics.
Yang-Mills theories serve as the building blocks of the so called Standard model,
describing three of the four fundamental interactions of our Universe; the electromagnetic
force and the weak and strong nuclear forces, with gravity being the one left out. The
S-duality manifests itself in gauge theories by saying that the (analogues of the) electric
and magnetic fields are dual quantities. This means that in one regime electrically
charged particles look fundamental while in another the magnetically charged particles
(usually referred to as monopoles) appears fundamental.

Particles come in two different types, bosons, the mediators of interactions, and
fermions, the particles that build up matter. Photons, the quanta of light, are examples of
bosons and they are responsible for the interaction of electromagnetism, while electrons,
protons and neutrons are examples of fermions. Supersymmetry is a symmetry which
relates these two types of particles, i.e., in a supersymmetric theory, each boson is
accompanied by a fermion and vice versa, and they further get interchanged by the
symmetry. Even though supersymmetry is a theory of tremendous beauty and it would
be a sad thing if Nature happened to miss out on it, experimentalists have not been able
to observe any supersymmetry as of yet. This, however, does not prevent theorists from
incorporating it in theories. S-duality is not expected to hold exactly for generic gauge
theories. But adding supersymmetry to the theories places S-duality on a firmer footing
and more precise statements can be made, and sometimes even explicitly checked. It
is therefore widely believed that certain supersymmetric gauge theories have an exact
S-duality built into them. In this thesis, we will study a type of supersymmetric version
of Yang-Mills theories, and in particular its low-energy regime. This goes under the
name of Seiberg-Witten theories. We will study how duality manifests itself in these
types of theories and its resulting consequences.

Fundamental domains for physical parameters

As discussed above, a physical theory typically comes equipped with a number of
parameters. These could for example be such quantities as the masses of the particles,
or the strength of the interaction between different particles, e.g., the magnitude of
their electric charges. One manifestation of dualities is then to relate distinct points in
our parameter space by saying that they correspond to the same kind of behaviour for
the theory.

A natural question to ask is if we can construct a reduced parameter space that
excludes all the values giving equivalent behaviour and only includes a smallest set of
values that provides all the distinctly different dynamics. We will refer to such a set as
a fundamental domain and it will play an important role in this thesis.
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For the gauge theories we consider, the relevant parameter is the so called coupling
constant. It determines the strength of the interaction between the gauge fields,
which are the generalisation of the electric and magnetic fields. In the theory of
electromagnetism, for example, this coupling is proportional to the electric charge of
the electron.

Among other things, these fundamental domains are very useful when calculating
something called correlation functions. The later are objects that determine the
expectation value of a certain event in the theory. To get a better understanding of this
we first need to remember that quantum behaviour is strange. Instead of a deterministic
theory we are given a probabilistic one, and when we want to calculate the probability
of a certain event, say a particle moving from one point to another, we need to sum over
all different ways this event can take place. In the example of the motion of a particle
this would mean to sum over all possible paths the particle can take, weighted by the
probability for each one. This sum is an example of a correlation function typically
called the path integral for this event and it is a fundamental tool used for calculations
in quantum field theory.

Generally, correlation functions are very hard to compute. In principle they are not
even well-defined, since one needs to sum over an infinite amount of possible paths, or
values of the coupling constant when dealing with interactions, and this typically leads
to unwanted infinite answers. However, it turns out that the correlation functions in
certain versions of the gauge theories discussed in this thesis reduce to a smaller sum over
the possible values of the coupling constant that belong to the fundamental domains.
In addition, we will show that these sums can be simplified even further by using the
mathematical theory of modular forms. Then the sums become straightforward to carry
out.

Outline and summary of the thesis

The thesis is outlined as follows: In Chapter 1 we give a technical introduction to the
topics relevant for the thesis. This covers an introduction to the Seiberg-Witten solution
of the low-energy effective SU(2) N = 2 supersymmetric Yang-Mills theory. We focus
on the presence of modular forms and discuss how the moduli space of vacua can be
contained in a modular fundamental domain for the gauge coupling. We further give a
brief introduction to topological twisting and how the fundamental domains play an
important role when calculating topological correlators in these theories.

The main results of the thesis are contained in Chapters 2-4. In Chapter 2 (based on
[2, 3]) we consider the generalisation of the pure SU(2) theory by adding fundamental
hypermultiplets. We show that this in general means that the modularity becomes
much more subtle due to the introduction of branch points for the order parameter of
the moduli space. Despite this drawback, we develop various techniques to study the
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moduli space and in particular how we can still construct fundamental domains for the
couplings.

In Chapter 3 (based on [1]) we return to the pure theory, but now with gauge group
SU(3). The moduli space is then parameterised by two complex functions, which are
believed to be related to higher genus modular forms. We discuss how, on certain loci
of the moduli space, the order parameters can be related to elliptic modular forms.
These loci further capture all the interesting points of the moduli space.

After this, in Chapter 4 (based on [4, 5]), we discuss the construction of topologically
twisted versions of the SU(2) theory with fundamental hypermultiplets coupled to
background fluxes. The twisting is then labelled by the choice of background flux and
the procedure thus gives rise to an infinite family of topological partition functions.
We conclude the chapter by an explicit example of how mock modular forms and
integration over fundamental domains provides an important tool in the evaluation
of correlation functions for these topological theories, but now for the pure theory
placed on a non-simply connected manifold, generalising previous recent results on
these integrals.

The thesis is concluded with a brief discussion and outlook, Chapter 5, while the
appendices A-C give some further technical details on various important topics.





Chapter 1

Duality, domains and
Seiberg-Witten theory

In this Chapter we give a brief survey of the background material needed for the analyses
of the thesis. We start with the concept of duality in modern gauge theories, and in
particular we will focus on how this is manifested in N = 2 supersymmetric Yang-Mills
theories. To this end, we will concentrate our discussion on the low-energy effective
theories, which are typically referred to as Seiberg-Witten (SW) theories [7, 8]. After
this we discuss how to construct fundamental domains for the running coupling of
the same gauge theories and give a short introduction to how these domains play an
important role when calculating topological correlators.

Four-dimensional N = 2 theories play an important role in theoretical physics, as
they are simple enough for us to be able to still make exact statements while complicated
enough to host a plethora of interesting phenomena. The study of N = 2 gauge theories
has played an important role in our increased understanding of quantum field theory
and String theory through, for example, the introduction of new types of superconformal
theories [9], geometrical engineering [10], the class S web of dualities [11] and much
more. The aim of this thesis is to delve deeper into this rich well by studying various
generalisations of the Seiberg-Witten theories and their duality properties.

1.1 Duality in Seiberg-Witten theory

It is hard to overstate the importance of dualities in modern physics. In many cases
dualities allow us to probe non-perturbative aspects of theories which would otherwise
be beyond our calculational tools. One important example is the Montonen-Olive
duality of gauge theories [12]. Seiberg and Witten studied the low-energy effective
theory of N = 2 supersymmetric Yang-Mills and were able to show how Montonen-Olive
duality generalises to the N = 2 case [7, 8]. They further used this notion of duality to
completely solve the effective theory. In this Section we will review the most relevant
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aspects of the SW solution, focusing on the pure SU(2) theory (without hypermultiplets).
Some excellent reviews on this topic are [13–17].

In the case of the pure SU(2) theory, one manifestation of duality is the fact that the
order parameter for the moduli space of vacua is a modular function with well-behaved
transformation properties under the duality group. Furthermore, the duality group is a
special subgroup of SL(2,Z). An important question, and one that serves as the main
topic of this thesis, is how this generalises to more complicated theories. As we will
show in Chapter 2, it turns out that the question of modularity is much more subtle
in the theories with matter, following from the appearance of branch points in the
fundamental domains.

When we go to higher rank gauge groups, as for example SU(N) for N > 2, it is
expected that the monodromy group will be some subgroup of Sp(2N − 2,Z), and the
classical modular forms should be exchanged for higher genus Siegel modular forms
[7, 18, 19]. However, the discussion on theories with matter would indicate that also
here we should expect branch points appearing and the modular properties to be more
subtle. In Chapter 3 we will discuss how certain loci of the moduli space of the pure
SU(3) theory can still have fully modular properties, although some new features, such
as Fricke involutions, do appear.

1.1.1 Semi-classical analysis of the moduli space

In the seminal papers [7, 8], Seiberg and Witten gave the exact low-energy solution of
N = 2 SYM with gauge group SU(2) and either Nf ≤ 4 fundamental hypermultiplets or
one adjoint hypermultiplet. One of the many important results was that they worked out
how the action of Montonen-Olive duality generalises in these theories. The structure
of the moduli space is naturally captured by introducing an auxiliary family of elliptic
curves parameterised by the order parameter of the quantum moduli space. In some
cases, most notably the pure SU(2) theory, the moduli space can be described by a
modular surface, given by the upper half-plane, H, modulo the action of a certain
subgroup, Γ, of SL(2,Z), or in other words Γ\SL(2,Z) [7, 20, 21]. In this introductory
Section, we will mostly study the pure SU(2) theory in order to provide the needed
background for the later Chapters of the thesis, devoted to generalising this simplest of
cases in various directions.

The pure theory contains only a vector multiplet transforming in the adjoint repre-
sentation of the gauge group. This consists of a gauge field, Aµ, two Weyl fermions,
ΨI

α, Ψ̄I
α̇ and a complex scalar ϕ. The R-symmetry interchanges the two fermions while

leaving the bosons invariant. Let us denote the representation under the rotation group,
Spin(4) = SU(2)+ × SU(2)−, and the SU(2)R R-symmetry by (k, l,m), with k, l and
m being the dimensions of the representations. We thus have the representations

(2,2,1) ⊕ (1,1,1) ⊕ (1,1,1), (1.1)
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for the bosons of the vector multiplet, while the representations for the fermions are

(1,2,2) ⊕ (2,1,2). (1.2)

In this thesis we will also be interested in the case of adding hypermultiplets
transforming in the fundamental representation of the gauge group to the theory. The
N = 2 hypermultiplet contains two pairs of Weyl fermions, λα, λ̄α̇, χα and χ̄α̇ along
with two complex scalars q and q̃. The SU(2)R symmetry now interchanges the two
scalars and we have the representations

(1,1,2) ⊕ (1,1,2), (1.3)

for the bosonic fields, and

(2,1,1) ⊕ (1,2,1) ⊕ (2,1,1) ⊕ (1,2,1), (1.4)

for the fermionic fields.
In superspace, we write the Lagrangian for the vector multiplet with gauge group G

as [16]
L = 1

4π Im
(
τ
∫
d2θW aαW a

α

)
+
∫
d2θd2θ̄Φ†,a(e2V )abΦb, (1.5)

where a = 1, . . . , dimG, V = V aT a for T a in the adjoint representation of G, the chiral
superfield

Φ = ϕ+
√

2θαΨα + θ2F, (1.6)

the field strengths

Wα = −1
4D̄

2DαV, Dα = ∂

∂θα
+ ı̊ σµ

αα̇θ̄
α̇∂µ, (1.7)

and we made use of the standard superspace Berezin integral for each anti-commuting
coordinate θ, defined by the relations∫

dθ = 0,
∫
dθθ = 1. (1.8)

The Lagrangian of the hypermultiplets instead reads

L =
∫
d2θd2θ̄

(
Q†Q+ Q̃†Q̃

)
− ı̊ m

∫
d2θQQ̃+ ı̊ m

∫
d2θ̄Q†Q̃†, (1.9)

where m is the mass parameter and Q, Q̃ are N = 1 chiral multiplets,

Q = q̃ +
√

2θαλα + θ2F1,

Q̃ = ı̊
(
q† +

√
2θαχα + θ2F †

2

)
,

(1.10)
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with Fi auxiliary fields [16].
The potential for the scalar fields, ϕ, is given by

V (ϕ) = 1
g2 Tr[ϕ, ϕ†]2, (1.11)

with flat directions given by [ϕ, ϕ†] = 0. One general solution is to parametrise the
vacuum by a complex parameter a

ϕ =
 a 0

0 −a

 , (1.12)

up to gauge transformations. We can note that the Weyl group of SU(2) acts on the
scalars by sending a → −a. Classically, a good local parameter for the moduli space is
then given by u ∼ a2, which in the quantum theory will become the vacuum expectation
value

u = 1
16π

〈
Tr(ϕ2)

〉
R4
. (1.13)

When a ̸= 0 the gauge group is broken to U(1) and this branch of the moduli space
is therefore referred to as the Coulomb branch. Sometimes we will also refer to it as
the u-plane, since it is parameterised by u. Classically, there is a singularity at u = 0
where the gauge group gets restored and additional fields become massless.

The one-loop beta function of N = 2 supersymmetric Yang-Mills theory with Nf ≤ 4
hypermultiplets in the fundamental representation is βNf

(gYM) = − g3
YM

16π2 (4 −Nf ). As is
standard, we combine the Yang-Mills coupling with the theta angle to construct the
complexified coupling τ = θ

π
+ 8π ı̊

g2
YM

. This complexified gauge coupling can be considered
as the expectation value of a background chiral superfield. In the renormalisation
scheme where the superpotential remains a holomorphic function of all chiral superfields,
the one-loop running coupling at the energy scale E can be expressed as [22]

τ(E) = τUV − 4 −Nf

2π ı̊ log E

ΛUV
. (1.14)

It is one-loop exact in the holomorphic scheme, and thus for the asymptotically free
theories, with Nf < 4, the combination

Λ4−Nf

Nf
:= Λ4−Nf

UV e2π ı̊ τUV (1.15)

of the scale ΛUV and the coupling τUV is invariant to all orders in perturbation theory.
This complexified dynamical scale ΛNf

sets the overall scale of the theory. For Nf = 4
on the other hand, there is a distinguished dimensionless parameter τUV, on which the
theory depends nontrivially. We further note that, the theta parameter is not running.
This is due to its topological nature, meaning that we can express the theta term,
locally, as a total derivative [23].



1.1 Duality in Seiberg-Witten theory 5

An important fact about N = 2 gauge theories is that, up to two-derivative terms
the low-energy dynamics is completely determined by a single holomorphic function,
the prepotential, F [24]. In terms of this, we can write the effective Lagrangian of the
pure theory, (1.5), as

L = 1
4π Im

(∫
d4θ

∂F (Φ)
∂Φ Φ̄ +

∫
d2θ

1
2
∂2F

∂Φ2W
αWα

)
. (1.16)

Semi-classically, the prepotential of the pure theory is given by [7, 25–28]

F (a) = 2 ı̊
π
a2 log(a/Λ0) + . . . , (1.17)

where further non-perturbative corrections are suppressed. The running coupling τ can
locally be expressed in terms of the prepotential as ∂2F

∂a2 .
When we go to the quantum theory, the moduli space will be complex Kähler and

the metric can locally, for large a, be written as [7]

ds2 = Im(τ)dadā. (1.18)

We can further introduce an extra parameter aD = ∂F
∂a

such that the metric can be
written

ds2 = ImdaDdā = ı̊

2(dadāD − daDdā). (1.19)

We see that this is completely symmetric upon interchanging a and aD. It turns out
that, physically, aD plays an important role as the good local coordinate in the dual
coupling regime, i.e., it is the magnetic dual of a. Due to the symmetry of (1.19) we
therefore expect this expression for the metric to be valid in both coupling regimes,
where either a or aD act as the good local coordinate. It follows that, in the aD regime
we can again write it in the form (1.18), with aD interchanging a and the dual coupling
τD taking the role of τ . We can note that the metric (1.19) is generically invariant
under transformations aD

a

 7→ M

aD

a

+ c, (1.20)

for a constant vector c and M ∈ SL(2,R). Some important aspects of the group SL(2,R)
and its discrete analogue, SL(2,Z), are discussed in Appendix A. Later, we will see that
c must be equal to the zero vector in the pure theory while it plays an important role in
the theories with hypermultiplets. The physical interpretation of the action of SL(2,R)
on the metric, is exactly that of duality. As mentioned in Appendix A, SL(2,R) is
generated by the generators Tt and S,

Tt =
1 t

0 1

 , S =
0 −1

1 0

 , t ∈ R. (1.21)
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The action of Tt is simply to shift the theta angle in τ by a number

Tt : θ 7→ θ + πt or τ 7→ τ + t. (1.22)

When we consider the introduction of non-trivial U(1) bundles, e.g., magnetic monopoles,
the allowed shifts in θ are only integer multiples of π. The group is thus reduced to
SL(2,Z). The action of the S-transformation is to interchange the roles of a and aD,

S :
aD

a

 7→

 a

−aD

 . (1.23)

This has the action of the electric-magnetic duality transformation. Since τ = ∂2F
∂a2 = ∂aD

∂a

it sends
S : τ 7→ −1

τ
=: τD. (1.24)

This dual coupling will thus be the one appearing in the dual expression of the metric
(1.18) in the aD frame. It is important to stress here that, although we expect the
shift of the theta term by an integer multiple of π to be a true symmetry of the theory,
i.e., the physics should be completely invariant under this action, the same is not true
for the S-transformation. The transformation is rather a map between two different
descriptions of the same theory. For certain theories, like N = 4 SYM and N = 2 with
four fundamental flavours it is believed that the theory is completely invariant under
this change of reference frame [12, 29]. But in the more generic N = 2 theories this is
not the case and we simply have the above duality transformation as an important tool
for performing calculations in different duality frames.

When we have extended supersymmetry, such as N = 2, an important object is the
central charge, Z. This is the centre of the supersymmetry algebra and is defined by
the relation

{QI
α,QJ

β} = 2ϵαβZ
IJ ZIJ = −ZJI , I, J = 1, . . . ,N , (1.25)

where the Qs are the supercharges and for N = 2 we set Z12 = Z. Unitary representa-
tions of the N = 2 supersymmetry algebra demands that the mass is bounded by the
central charge as

M ≥ |Z|. (1.26)

The states that saturate this bound are called BPS states and play a central role in the
theory [30, 31].

Having identified aD with the magnetic dual of a we can express the central charge
of a dyonic state with charge (p, q) as

Z = qa+ paD. (1.27)
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As mentioned above, a BPS particle has |Z| = M . This must also be left invariant
under the transformations (1.20). Now, (p, q) are of course integers, so we again see
that we must restrict the transformations to lie in SL(2,Z). Furthermore Z is not
invariant under the constant shift c so we must also demand that c = 0, at least in the
pure theory. In the theory with hypermultiplets the expression for the central charge
changes slightly to account for flavour charges and the story gets modified, as we will
discuss in Chapters 2 and 4. In the following we will see that the theory is not left
invariant by the whole group SL(2,Z) but only a certain subgroup.

From (1.17), we find the semi-classical behaviours

a =
√
u

2 + . . . ,

aD =4 ı̊
π
a log a

Λ0
+ 2 ı̊

π
a+ . . .

(1.28)

Encircling infinity, by sending u → e2π ı̊u, we thus find a monodromy action on the
periods

M∞ = PT−4 =
−1 4

0 −1

 ,
aD

a

 7→ M∞

aD

a

 , (1.29)

where P = S2. We see that the periodicity of the quantum theory at weak coupling
is given by τ → τ + 4. This widening of the periodicity, compared to the classical
τ 7→ τ + 1 periodicity of the theta angle, can be understood from the Witten effect by
considering the electric charge of the magnetic monopole at weak coupling [32, 7].

Having a monodromy around infinity implies that there should be one also for the
other singularities. We saw that classically there is only one other singularity, at u = 0,
but quantum mechanically we expect this to split into at least two. To see this, we
note that if there was only one, we would need the monodromy around the strong
coupling singularity to be equal to the one at infinity and the fundamental group of the
moduli space would be Abelian. This, however, implies that a would be a good global
coordinate which would give a generically non-positive metric, (1.18). The minimal
resolution, which turns out to be the good one, is that the classical singularity splits
into two when going to the quantum theory. There is also a Z2 symmetry acting on the
moduli space as u → −u and the singularities should therefore be related by a sign,
and we should thus have two singularities located at u = ±u0 ̸= 0. Working under
this assumption we know that we must have M∞ = Mu0M−u0 , since the topology of
the path around infinity is the same as that encircling the two strong coupling points
consequently.

The most natural physical interpretation of singularities in the moduli space of
the low-energy effective theory is as points where extra fields become massless and
the low-energy description breaks down. It further turns out that in N = 2 theories
this should be a BPS hypermultiplet [7]. In the semi-classical approximation the only
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existing ones are the monopole and the dyon. From the central charge formula we then
know that the monopole becomes massless at aD = 0 while more generally a (p, q)-dyon
becomes massless when paD + qa = 0.

Let us denote the point where a monopole becomes massless as u0. To analyse the
behaviour around this point, we perform a duality transformation. This means that we
express the Lagrangian in terms of dual variables. From the one-loop beta function and
the fact that aD is the good local parameter near this point we find that

aD ∼ c0(u− u0) + . . . ,

a ∼ a0 + ı̊

2πc0(u− u0) log
(
u− u0

Λ2
0

)
+ . . . ,

(1.30)

for some constants c0 and a0. Encircling this singularity, we now find the monodromy

Mu0 = STS−1 =
 1 0

−1 1

 ,
aD

a

 7→ Mu0

aD

a

 . (1.31)

Note that, in contrast to the duality transformation S, this monodromy transformation
is a symmetry of the quantum theory. By a standard abuse of notation we will
sometimes refer to the group generated by the monodromy matrices, or more generally
the symmetry group of u, as the duality group of the theory.

With two of the monodromies determined we can solve for the third one, the result
is

M−u0 = T 2STS−1T−2 =
−1 4

−1 3

 , (1.32)

and this is consistent with having a dyon of charge (1, 2) becoming massless. We thus
have a set of three monodromy matrices, T 4, STS−1 and T 2STS−1T−2. Together, these
only generate a subgroup of SL(2,Z), namely the congruence subgroup Γ0(4) ⊂ SL(2,Z).
See Appendix A for further details on subgroups of SL(2,Z). This group is then what
we will refer to as the duality group of the pure SU(2) SW theory.

An important aspect of when we add hypermultiplets to the SU(2) theory is that
additional singularities will appear in the effective theory. These correspond to the
points where elementary quarks become massless. The mass of the elementary quark is
given by |

√
2a−mi|, where the mi are the mass parameter of the hypermultiplet, and

the extra singularity thus appears at a = mi√
2 [8].

1.1.2 Introducing the Seiberg-Witten curve

Now, the important insight of Seiberg and Witten was that all of the above structures
of the moduli space can be captured by introducing an auxiliary family of elliptic curves
(or higher genus curves for higher rank gauge groups [33, 34]), parametrised by u [7, 8].
The scalar field, a, and its dual, aD = ∂F

∂a
, are then given as integrated periods of these
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elliptic curves
a =

∫
A
λSW, aD

∫
B
λSW, (1.33)

where A and B comprise a canonical basis for the homology cycles on the elliptic curve
and λSW is a certain meromorphic differential called the Seiberg-Witten differential.
This can be determined uniquely by matching with the asymptotic behaviours. The
complex structure of the elliptic curve is further equated with the physical coupling
τ , and we have τ = ∂aD/∂u

∂a/∂u
which agrees with our previous formulas. The singular

points of the family of curves, where the elliptic curve degenerates, correspond to the
singularities in the moduli space.

The Seiberg-Witten curve of the pure theory is

y2 = x3 − ux2 + 1
4Λ4

0x, (1.34)

and the SW differential can be chosen as

λSW = 1
2
√

2π
ydx

x2 − 1 . (1.35)

It is easy to check that this gives the right leading behaviour for a and aD (1.28). For
this curve the two strong coupling singularities appear at u = ±Λ2

0.
The parameters a and aD form a system of solutions to a Picard-Fuchs type equation

and can, in the pure theory, be expressed in terms of hypergeometric functions [35]

aD(u) = ı̊

2(u− 1)2F1
(

1
2 ,

1
2 , 2; 1−u

2

)
,

a(u) =
√
u+ 1

2 2F1
(
−1

2 ,
1
2 , 1; 2

1+u

)
.

(1.36)

An important quality of elliptic curves is that they can all be written in theWeierstraß
form

W : y2 = 4x3 − g2x− g3, (1.37)

for some functions g2 and g3. This is further discussed in Chapter 2 and Appendix A.
The transformation that takes the SW curve (1.34) to this form is to shift x → x+ u

3
and y → y/2. After this we can calculate g2 and g3 as functions of u and the scale Λ0.
From this we can then further calculate the SW J -invariant

J0(u,Λ0) = 64
Λ8

0

(3Λ4
0 − 4u2)3

Λ4
0 − u2 . (1.38)

The modular j-invariant can be related to Jacobi theta functions, defined in Appendix
B, through the identity (B.12),

j = 256(ϑ8
3 − ϑ4

3ϑ
4
4 + ϑ8

4)3

ϑ8
2ϑ

8
3ϑ

8
4

. (1.39)
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Since the Seiberg-Witten solution is to equate the complex structure of the elliptic
curve with the physical coupling we should further equate J (u,Λ0) with j(τ). This
allows to solve for u(τ),

u(τ) = −1
2
ϑ2(τ)4 + ϑ3(τ)4

ϑ2(τ)2ϑ3(τ)2 = −Λ2
0

8
(
q−1/4 + 20q1/4 − 62q3/4 + O(q5/4)

)
, (1.40)

where q = e2π ı̊ τ . Using the formulas of Appendix B it is easy to check that this is
invariant under the two transformations T 4 and STS−1, generating the congruence
subgroup Γ0(4). We thus see that the modular structure of u(τ) captures the duality
group exactly. When we move on to more complicated theories in Chapter 2 we will
see that this is not the generic case. In general, u(τ) will turn out to not be invariant
under any subgroup of SL(2,Z). We will discuss many of these subtleties in the coming
Chapters. The function (1.40) is sometimes called the McKay-Thompson series of class
4C for the Monster group in the literature [36].

We can perform the duality transformation τ 7→ τD = − 1
τ

to get the expression for
u close to the monopole point (qD = e2π ı̊ τD)

u(τD) = −Λ2
0

2
ϑ3(τD)4 + ϑ4(τD)4

ϑ3(τD)2ϑ4(τD)2 = −Λ2
0 − 32Λ2

0q
2
D + O(q2

D). (1.41)

We thus see that when τD → ı̊∞, or τ → 0, we approach the singularity u = −Λ2
0.

Similarly, in terms of the dual coupling near the dyon point τD,2 := 1
2−τ

we have
(qD,2 = e2π ı̊ τD,2)

u(τD,2) = Λ2
0

2
ϑ3(τD,2)4 + ϑ4(τD,2)4

ϑ3(τD,2)2ϑ4(τD,2)2 = Λ2
0 + 32Λ2

0q
2
D,2 + O(q2

D,2). (1.42)

After this brief introduction to Seiberg-Witten theory we will discuss how to construct
fundamental domains for modular functions and how these domains can be used when
calculating topological correlators.

1.2 Construction and application of fundamental
domains

Having introduced the basic ingredients of SW geometry we can now discuss how
to constrain the moduli space of the running coupling, τ , to a fundamental domain
parametrising the inequivalent dynamics. In this Section we will only discuss the
simple case of having a modular surface, whereby we mean that the duality group is
a congruence subgroup of the modular group SL(2,Z). The main topic of Chapter
2 will be to generalise this in more complicated theories. After this, we will discuss
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an application of the fundamental domains as integration domains when calculating
correlation functions in a topologically twisted version of the theory.

1.2.1 Constructing fundamental domains for modular surfaces

As we have been discussing, duality and symmetry plays an important role in SW
theories. These are encoded in the monodromy transformations of the periods of the
SW curve as in (1.29). For the pure theory we saw that these transformations generated
the group Γ0(4). The question that we now want to ask is: given these symmetries, can
we construct a minimal domain for τ such that it contains all distinct dynamics only
once? This is equivalent to saying that we want to consider the domain of the coupling
modulo the action of the duality group, i.e., we are interested in the domain

F0 = Γ0(4)\H. (1.43)

To see how this works, let us start with a simpler example. That of the full group
SL(2,Z). As discussed in Appendix A, the j-invariant is the classical invariant function
of SL(2,Z), or what is typically called a Hauptmodul for SL(2,Z). We further know
that SL(2,Z) is generated by the transformations S and T , which sends τ 7→ − 1

τ
and

τ 7→ τ + 1, respectively. See Appendix A for more details. The second symmetry means
that we can restrict to a smallest set for the real part of τ as −1

2 ≤ Re τ < 1
2 and identify

the points along the boundary Re τ = 1
2 . We further note that the S transformation

reflects around the unit circle, i.e. points with |τ | < 1 gets mapped to points with
|τ | > 1. Combining these two statements we thus find that a fundamental domain of
SL(2,Z), F = SL(2,Z)\H, can be chosen as that of Figure 1.1. We will sometimes refer
to this as the key-hole fundamental domain. This is then furthermore the fundamental
domain of the j-invariant, or in other words, the function j : F → C is a bijective map.

We can use the exact same argument to construct a fundamental domain for Γ0(4).
We saw that the cusp at infinity should have width four while the two strong coupling
cusps should both have width one, and be separated by the action of T 2. This gives
the domain in Fig. 1.2. The cusp at τ = 0 corresponds to the monopole point while
τ = 2 is the dyon point.

A natural question to ask, and one that is at the core of the rest of this thesis, is
now what happens when we generalise the theory in various directions, for example by
adding matter. This will be the topic of Chapter 2. The short answer is that, generically,
the above will no longer be true. I.e., the correspondence between the duality group and
a congruence subgroup of SL(2,Z) can no longer be made. At least not as an action
through fractional linear transformations on the coupling. The reason for this is that
the order parameters, as well as other important functions, now have branch points as a
function of τ . This will introduce new subtleties when thinking about the monodromies.
It further means that the fundamental domains of the running couplings will generally
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−1 0 1

F

Fig. 1.1 The key-hole fundamental domain F of SL(2,Z). The boundaries of the same colour
are identified. The two halves of the green semi-arc are identified in opposite directions.

not correspond to those of any subgroup of SL(2,Z). Despite this complication, we will
discuss how fundamental domains can still be constructed in a way similar to the above
discussion. The same statement is expected to hold also for more complicated gauge
groups, where the monodromies typically generate some subgroup of Sp(2r,Z), where r
is the rank of the gauge group. See Chapter 3 for a discussion on this.

1.2.2 Topological twisting

An interesting application of the fundamental domains for the running coupling comes
when calculating topological correlators of topologically twisted versions of the N =
2 gauge theories. This will be analysed in much more detail in Chapter 4. The
topologically twisted gauge theories were first introduced by Witten [37]. There exists
many different versions of topological twisting [29, 37–39], but in four-dimensional
N = 2 supersymmetric gauge theory we only have one possibility, this is referred to as
the Donaldson-Witten twist.

Let us sketch how the twisting procedure works. We first consider the global
symmetry group of the N = 2 supersymmetric theory. This is the combination of
the four-dimensional rotational group, Spin(4)∼=SU(2)+×SU(2)−, with the internal
R-symmetry group, SU(2)R×U(1)R. The generators of the rotational group, Mµν , can
be written in spinorial form as

Mµν → Mαα̇,ββ̇ = ϵαβM̄α̇β̇ + ϵα̇β̇Mαβ, (1.44)

where Mαβ generates SU(2)− and Mα̇β̇ generates SU(2)+ and ϵαβ is the SL(2,C) invariant
tensor [16]. The idea of the Donaldson-Witten twist is to introduce a new rotational
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−1 0 1 2 3 4

F TF T 2F T 3F

SF T 2SF

Fig. 1.2 Fundamental domain of Γ0(4). This is the duality group of the pure SU(2) theory.
The two cusps on the real line correspond to the strong coupling singularities of the gauge
theory, while the cusp at τ = ı̊∞ corresponds to weak coupling. The boundaries are identified
according to colour.

group SU(2)′
+×SU(2)−, where we identify SU(2)′

+ with the diagonal subgroup of
SU(2)+×SU(2)R. The new group is then generated by

M ′
α̇β̇ = Mα̇β̇ −Rα̇β̇, (1.45)

where Rα̇β̇ are the generators of the SU(2)R symmetry. With respect to this new group,
we now have a scalar supercharge

Q := ϵα̇β̇Q̄α̇β̇, (1.46)

and by studying the supersymmetry algebra we find that Q2 = 0, i.e., Q is a nilpotent
operator. For this reason, operators that are Q-exact will decouple from the theory,
and the remaining observables will be the Q-invariant operators [16]. This gives rise
to the name cohomological quantum field theory sometimes used to refer to this kind
of topological quantum field theory. The reason for these theories being referred to as
topological is that the stress tensor becomes Q-exact after the twist and correlators of
Q-invariant operators will therefore be metric independent [37]. See Sec. 4.3.

In Section 4.2.2 we will discuss some subtleties that arise when twisting a theory
with fundamental hypermultiplets, as well as how this can be resolved by coupling
the theory to extra background fluxes. The topologically twisted theories will then
be labelled by a choice of flux and this gives rise to an infinite family of topological
partition functions.
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1.2.3 Integrating over fundamental domains

Once we have performed the topological twist we can study the Seiberg-Witten theory
on a generic four-manifold and moreover calculate topological correlators. The Coulomb
branch path integral of the topologically twisted theory vanishes for four-manifolds
with b+

2 > 1 [40]. This is schematically because there are then too many fermion zero
modes present. See [40] for a detailed analysis. Since we will only be interested in the
contribution from this branch, we restrict the analysis of this thesis to compact, oriented
four-manifolds with b+

2 = 1. The path integral will also contribute for manifolds with
b+

2 = 0, but much less is known about this case, and we leave that as an interesting
future research direction. Chapter 4 will be devoted to explicitly constructing the
topological correlators as integrals over the u-plane. In this Section we will therefore
only give a schematic introduction to how these integrals look and how we can use the
knowledge gained in previous Sections to integrate over the cusps of the fundamental
domain.

It is worth mentioning, although we will not focus on it in this thesis, that for
the pure SU(2) theory the topological correlators for surface observables are related
to the famous Donaldson invariants of four-manifolds. Namely, the contribution from
the Coulomb branch integral together with the Seiberg-Witten contribution gives the
Donaldson invariants [41].

The integral over the Coulomb branch, B, or u-plane, is the path integral of the
low-energy U(1) theory with insertions from observables. Schematically, it takes the
form

Φ =
∫

B
da ∧ dāρ(a)Ψ(a, ā), (1.47)

where ρ(a) is a function containing the couplings to the background and Ψ(a, ā) is the
photon partition function, a sum over the fluxes of the unbroken U(1) [42, 40]. For the
topologically twisted pure theory there are no further restrictions regarding which four-
manifold the twisted theory can be formulated on, while the presence of hypermultiplets
introduces some subtleties, discussed in Chapter 4. In the above expression we have
not included any observables, for simplicity.

By changing integration variables from the local coordinates a and ā to the couplings
τ and τ̄ the integration domain becomes that of the fundamental domain of the coupling
[40]. Armed with this knowledge, recent progress has been made on the explicit
evaluation of these integrals by using the theory of mock modular forms [43–47]. The
realisation in [43] was that the integrand can be rewritten as a total derivative of
a mock modular form. Stokes theorem then tells us that we can rewrite this as an
integral over just the boundaries of this domain. Due to the various identifications along
these boundaries, as in Fig. 1.2, only the contributions from the cusps will contribute
to the u-plane integral. In Chapter 4 we will generalise these recent results by first
constructing the integral for the theories with Nf ≤ 3 fundamental hypermultiplets,
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also discussing additional couplings to background fluxes. Furthermore, in Section 4.6
we generalise the previous analysis of [43, 46] for the pure theory to include non-simply
connected four-manifolds. As an explicit example of how to evaluate the u-plane integral
using mock modular forms we then consider the pure theory on a specific class of such
four-manifolds.





Chapter 2

Cutting and gluing with running
couplings

We are now ready to leave the safe harbour that is the pure SU(2) SW theory and start
analysing the more general theories. To this end, we will start by considering what
happens to the modular properties when adding massive hypermultiplets to the SU(2)
theory. The modular behaviour of these theories turn out to be much more subtle than
for the pure theory, and new interesting phenomena such as superconformal fixed points
and branch points arise. In Section 2.1 we consider adding 1 ≤ Nf ≤ 3 fundamental
hypermultiplets to the theory. Sometimes we will refer to the theories with fundamental
hypermultiplets as N = 2 supersymmetric quantum chromodynamics, or SQCD for
short. We develop tools for analysing the moduli space and construct fundamental
domains for the theories with generic masses, even though the duality group in general
is not that of a subgroup of SL(2,Z). The modular properties of the massless theories,
as well as for some special fixed values of the masses, have been analysed previously
[20, 21, 48]. As an illuminating example Section 2.2 considers the theory with two
massive hypermultiplets in detail. Sections 2.1 and 2.2 are based on the paper [2],
where also the cases of Nf = 1 and Nf = 3 are analysed in detail. We, however, omit
these two cases here for brevity. The case of adding four fundamental hypermultiplets
is somewhat special. For example, the massless limit gives a superconformal theory,
and there are some new phenomena arising due to this fact. Sec. 2.3, based on the
paper [3], is devoted to the analysis of this theory.

2.1 Massive fundamental hypers

To list the SW curves of the theories with 1 ≤ Nf ≤ 3 hypermultiplets, let ΛNf
be the

scale of the theory with Nf hypermultiplets, and mj, j = 1, . . . , Nf be the masses of
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the hypermultiplets. The SW curves of the theories are given by [8]

Nf = 1 : y2 = x2(x− u) + 1
4mΛ3

1x− 1
64Λ6

1,

Nf = 2 : y2 = (x2 − 1
64Λ4

2)(x− u) + 1
4m1m2Λ2

2x− 1
64(m2

1 +m2
2)Λ4

2,

Nf = 3 : y2 = x2(x− u) − 1
64Λ2

3(x− u)2 − 1
64(m2

1 +m2
2 +m2

3)Λ2
3(x− u)

+ 1
4m1m2m3Λ3x− 1

64(m2
1m

2
2 +m2

2m
2
3 +m2

1m
2
3)Λ2

3.

(2.1)

The family of SW curves are Jacobian rational elliptic surfaces with singular fibres
[49–52]. Rational in this context means that g2 and g3 are polynomials in u of degree
at most 4 and 6, respectively [53].

Decoupling a hypermultiplet corresponds to the following double scaling limit [54]

mj → ∞, ΛNf
→ 0, mjΛ

4−Nf

Nf
= Λ4−(Nf −1)

Nf −1 (2.2)

One can directly decouple more than one hypermultiplet, where the scales of the low
energy theories are defined as

Λ2
0 = mΛ2, Λ4

0 = m3Λ3, Λ3
1 = m2Λ3, (2.3)

and m is the equal mass of the hypermultiplets being decoupled.
The SW curves are constructed in such a way that their mathematical discriminants,

see Appendix A, will, up to an overall normalisation, correspond to the physical
discriminant. This we define as the monic polynomial,

∆Nf
:=

Nf +2∏
i=1

(u− ui), (2.4)

with ui being the singular points of the effective theory, where hypermultiplets become
massless. It is a polynomial of degree deg ∆Nf

= Nf + 2 in u. To see this, we bring
the SW curves into Weierstraß form by shifting x → x + u

3 + Λ2
3

192δ3,Nf
, and rescaling

y → y/2,
W : y2 = 4x3 − g2 x− g3, (2.5)

where g2 = g2(u,m,ΛNf
) and g3 = g3(u,m,ΛNf

) are polynomials in u, m = (m1, . . . ,mNf
)

and the scale ΛNf
. The discriminant ∆Nf

is unchanged for this change of variables, and
equals

∆Nf
= (−1)Nf Λ2Nf −8

Nf
(g3

2 − 27 g2
3), (2.6)

where the last factor is the “mathematical” discriminant, of the modular Weierstraß
curve, (A.10). The invariant J (u,m,ΛNf

) can be constructed from g2 and g3 same as
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before,
J = 123 g3

2
g3

2 − 27g2
3
. (2.7)

Since g2(u,m,Λ) and g3(u,m,Λ) are polynomial functions of u, m and Λ for the SW
curves, J is naturally a rational function J (u,m,Λ) of these variables. On the other
hand, the modular Weierstraß form expresses J in terms of the complex structure τ ,
namely as the modular j-invariant j(τ) (2.7). Since two elliptic curves are isomorphic if
and only if their corresponding J -invariants are equal, this means that we can demand

J (u,m,Λ) = j(τ). (2.8)

This then allows to obtain u as function of τ , which is physically the effective coupling
constant. Cusps are points where j(τ) = ∞, which correspond to τ ∈ {̊ı∞} ∪ Q.

2.1.1 Partitioning the upper half-plane

We are interested in determining the fundamental domains FNf
for the effective coupling

τ for a theory with 1 ≤ Nf < 4. Let us consider u as a function,

u : H −→ BNf
, (2.9)

and study the analytic properties of this map. We will discuss later the dependence
of FNf

on the masses m, which we will make manifest in the notation as FNf
(m) or

more compactly F(m). We find that for Nf ≥ 1 and generic masses the duality group
does not act on τ by fractional linear transformations. This prevents us from defining a
fundamental domain as is customary for a congruence subgroup Γ of SL(2,Z): For any
point τ ∈ H there exists a g ∈ Γ such that g · τ ∈ Γ\H, and no two distinct points τ , τ ′

in Γ\H are equivalent to each other under Γ. Rather, we can compare if points τ , τ ′

are equivalent under (2.9): If we define the equivalence relation

τ ∼ τ ′ ⇐⇒ u(τ) = u(τ ′), (2.10)

then the quotient set H/∼ is a fundamental domain FNf
for the function u. Upon

plotting FNf
as a domain in H, we will have to introduce identifications along co-

dimension 1 segments as for F of SL(2,Z) in Figure 1.1.
To determine FNf

, we take the equation (2.7) for the j-invariant and bring it into a
more convenient form. We multiply (2.7) by ∆Nf

and bring all terms to one side. This
gives the polynomial,

PNf
(X) :=

(
g2(X,m,Λ)3 − 27g3(X,m,Λ)2

)
j − 123g2(X)3

= a6 X
6 + a5 X

5 + . . .+ a1 X + a0,
(2.11)
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where the coefficients ai = ai(m,Λ, j) are polynomial functions of m, Λ, and the
j function, ai(m,Λ, j) ∈ C[m,Λ, j]. The polynomials (2.11) can thus be viewed as
polynomials over the field C[m,Λ, j].

We see that (2.7) is equivalent to PNf
(u) = 0 for ∆Nf

≠ 0, or in other words, away
from the singular locus of the theory. The roots of PNf

can therefore be identified with
the order parameter of the corresponding SW curve. Recall that we can assign U(1)R

charges [u : mi : x : y] = [4 : 2 : 4 : 6] to the quantities of the Seiberg-Witten curves
[8]. Since g2 and g3 are polynomials in u by construction, by bringing the SW curves
to the Weierstraß form and using that [u] = 4 we have that the degrees of g2 and g3

as polynomials in u must be deg(g2) = 2 and deg(g3) = 3. Therefore, PNf
is a sextic

polynomial in X.
For generic masses m, the sextic equation PNf

= 0 gives rise to n = 6 different
solutions as functions of j, while for special choices of m, such as those giving rise to
superconformal (AD) theories, we have 2 ≤ n ≤ 4 different j-dependent solutions and
6 − n j-independent solutions. Since j : F → C is an isomorphism, the n ≤ 6 solutions
provide a multi-valued (n-valued) function over F .

To obtain u as a single-valued function of the effective coupling, we choose a different
copy of F for each of the n ≤ 6 branches, and appropriately identify the boundaries of
these domains. These are related to F by an element of SL(2,Z), and their union is

FNf
=

n⋃
j=1

αjF , (2.12)

with αj ∈ SL(2,Z). A priori, there is no canonical choice for the αj , they are determined
up to the action of the duality group of the theory. However, some choices are more
natural than others. If we demand that FNf

is connected and take α1 = 1 ∈ SL(2,Z),
there is only a finite number of choices for FNf

. In some cases, FNf
is a modular curve

Γ\H for a congruence subgroup Γ ⊆ SL(2,Z). In such cases, n equals the index of Γ in
SL(2,Z) [55]. For later use, we define the set of αj as CNf

= {αj, j = 1, . . . , n}.
For generic masses, n = 6 and FNf

has 3+Nf cusps, corresponding to weak coupling
τ → ı̊∞ and the 2 +Nf singularities of the theory. We find the widths of the cusps by
expanding j(τ) = J (u,m,ΛNf

) for τ near the cusp. For general Nf ∈ {0, 1, 2, 3}, the
cusp at infinity has width h∞ = 4−Nf . This is because q−1 ∼ j(τ) = J ∼ u4−Nf , which
implies u(τ) ∼ q

− 1
4−Nf (where q = e2π ı̊ τ ). Thus for large τ , u(τ) is invariant under

T 4−Nf , where T : τ 7→ τ + 1. Near any singularity us, it is clear that q−1 ∼ 1
(u−us)hs ,

where ns is the multiplicity of the singularity. Similarly, near us one finds u(τ)−us ∼ q
1

hs .
Locally, the function u(τ) has period hs, giving the width hs of the cusp. The widths
of all cusps then add up to 6,

h∞ +
∑

s

hs = 6. (2.13)
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As mentioned above, the equation PNf
= 0 gives six different solutions for u. A

natural question that then arises is which of these six to use as our u. In some sense this
is of course arbitrary, all of them correspond to the order parameter u simply expressed
in different duality frames. On the other hand, the most natural solution is the one
corresponding to the weak coupling duality frame where |u| is large for τ → ı̊∞. Since
the width of the cusp at infinity is 4−Nf we see that there is still some ambiguity in this
choice as long as Nf < 3, but for Nf = 3 there is exactly one choice. It turns out that
this has u → −∞ for τ → ı̊∞, and it further turns out that this choice can be taken
for all Nf ≤ 3 theories, and is preserved under the decoupling of hypermultiplets. We
therefore make this choice throughout. Note that this sign differs from the conventional
choice in the literature [8, 56, 57].

Different mass configurations can give different decompositions of 6. When singu-
larities merge, their cusps are identified under the duality group and their widths add
up. Moreover a cusp moves from the real axis to infinity upon decoupling of a matter
multiplet.

For special choices of the masses, not all singularities correspond to cusps ı̊∞ or
the real line; also singularities in the interior of the upper half-plane can occur. The
theories at these points are of superconformal or Argyres-Douglas type, and the widths
of all cusps add up to n.

Yet another aspect of the parametrisation by τ is that for special values of τ in the
interior of F , otherwise distinct solutions can coincide. These are branch points of the
solutions, where the function u(τ) ceases to be meromorphic in τ . The branch points
in FNf

emanate a branch cut. We will discuss these aspects in more detail in Section
2.1.2.

For generic masses the equation PNf
(X) = 0 furthermore defines a Riemann surface,

which is a 6-fold ramified covering over the classical modular curve SL(2,Z)\H [58]. On
this Riemann surface, any root u forms a meromorphic map to the Coulomb branch.
See also [59].

There is a procedure to find closed expressions for the order parameters in special
cases. The sextic equation (2.11) for fixed masses m and scale Λ can be viewed as a
polynomial over the algebraic field C(Γ) of modular functions on Γ = SL(2,Z). Such
nontrivial polynomials define field extensions over C(Γ). By the fundamental theorem
of Galois theory, there is a one-to-one correspondence between the Galois group of
the field extension and its intermediate fields. Intermediate fields can be obtained by
adjoining roots of the polynomial to the base field. Since PNf

(X) is a sextic polynomial,
for generic masses m it is not possible to find exact expressions for the roots. However,
if one of the intermediate fields is known, the polynomial factors over the intermediate
field into products of polynomials of lower degree. If the resulting degree is less than or
equal to 4, there are closed formulas for the roots.
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We find that in many cases, such as massive Nf = 2 and 3 with one mass parameter
(see Sec. 2.2 for the case of Nf = 2), C(Γ(2)) for the principal congruence subgroup Γ(2)
(see Appendix A) is an intermediate field. Since the function λ = ϑ4

2
ϑ4

3
is a Hauptmodul

for the genus 0 congruence subgroup Γ(2), it is the root of a polynomial of degree
[Γ : Γ(2)] = 6 over C(Γ). More precisely, there exists a rational function R with the
property that R(λ(τ)) = j(τ). It is given by

R(p) = 28 (1 + (p− 1)p)3

(p− 1)2p2 . (2.14)

Instead of solving J (u,m,Λ) = j(τ) we can then rather solve J (u,m,Λ) = R(λ(τ)).
If C(Γ(2)) is an intermediate field, the sextic equation corresponding to this equation
factors over C(Γ(2)). In massive Nf = 2, 3 we find that it factors into three quadratic
polynomials with coefficients depending on λ, which can be easily solved analytically.
Such rational relations between the j-invariant and Hauptmoduln exist for any genus
0 congruence subgroup, which are classified [60]. They allow to invert the equation
J (u,m,Λ) = j(τ) for a large class of mass parameters, as we demonstrate in Sec. 2.2.
See also [2, 61–65].

2.1.2 Ramification locus

The covering FNf
(m) → BNf

is not 1-to-1 on a discrete subset, namely at points of
FNf

(m) where the discriminant D(PNf
) vanishes.1 In all cases, Nf = 0, 1, 2, 3, we find

that the discriminant of PNf
factorises as

D(PNf
) = j4 (j − 1728)3 (DAD

Nf
)3 Dbp

Nf
. (2.15)

We discuss each of the three factors:

The m-independent factor
The factor j4 (j − 1728)3 is independent of the masses m and can be understood
from (2.11). It is immediate that when j = 123, every root of PNf

has multiplicity
at least 2, and if j = 0 every root has multiplicity at least 3. On H this occurs
whenever τ ∈ SL(2,Z) · ı̊ or τ ∈ SL(2,Z) · ω3, with ωj = e2π ı̊ /j. On the modular curve
SL(2,Z)\H, these orbits collapse to a point and in fact the covering π is ramified only
over {̊ı∞, ı̊, ω3}, or j ∈ {0, 1728,∞}, respectively. This resembles the Belyi functions,
which are holomorphic maps from a compact Riemann surface to P1(C) ramified over
precisely these three points [51, 66]. They can be described combinatorially by so-called
dessins d’enfants. Such dessins have also appeared in the context of SW theory [67–69].

1The discriminant of a polynomial p(X) = Xn + an−1X
n−1 + . . .+ a1X + a0 =

∏n
j=1(X − rj) is

defined as D(p) =
∏

i<j(ri − rj)2, in particular it vanishes if and only if two roots coincide. Since we
are interested in finding the zeros of D(p), we are not careful about overall normalisation factors.
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For generic masses, the SW family of curves do not satisfy this definition, as there are
additional ramification points.

The polynomial DAD
Nf

The factor DAD
Nf

corresponds to Argyres-Douglas (AD) loci, where two or more singular-
ities coincide [9, 70]. More precisely, the zero locus of DAD

Nf
corresponds to the masses

for which the Coulomb branch contains AD points. To see this, recall that the AD
points correspond to

g2(u,m,Λ) = g3(u,m,Λ) = 0. (2.16)

Since g2 and g3 are polynomials in u of degrees 2 and 3, respectively, we can eliminate u
from the above equations and characterise LAD

Nf
as the zero locus of a polynomial DAD

Nf

in m,
LAD

Nf
= {m ∈ CNf |DAD

Nf
(m) = 0}. (2.17)

These are precisely the polynomials appearing in (2.15). From the SW curves we can
easily find that they are given by

DAD
0 = 1,

DAD
1 = 27Λ3

1 − 64m3,

DAD
2 = Λ6

2 − 12m1m2Λ4
2 + 3(3m4

1 + 3m4
2 − 2m2

1m
2
2)Λ2

2 − 64m3
1m

3
2,

DAD
3 = Λ9

3 − 12M̃2Λ7
3 + 168M̃3Λ6

3 − 174M̃ ′
4Λ5

3 + 48M̃4Λ5
3

+ 168M̃2M̃3Λ4
3 − 372M̃2

3 Λ3
3 + 24M̃ ′

6Λ3
3 − 64M̃6Λ3

3

− 24M̃3M̃
′
4Λ2

3 + 96M̃3M̃4Λ2
3 + 6M̃2M̃

2
3 Λ3 − 27M̃ ′

8Λ3 + 8M̃3
3 ,

(2.18)

where for Nf = 3 we have defined the symmetric combinations

M̃2k = 26k
3∑

j=1
m2k

j , M̃3 = 29
3∏

j=1
mj,

M̃ ′
4 = 212∑

i<j

m2
im

2
j , M̃ ′

6 = 218∑
i ̸=j

m2
im

4
j , M̃ ′

8 = 224∑
i<j

m4
im

4
j .

(2.19)

The type of singularity that appears for specific masses on these loci are found by
studying the order of vanishing of g2, g3 and ∆ according to the Kodaira classification,

II : ord(g2, g3,∆) = (1, 1, 2) or (2, 1, 2),
III : ord(g2, g3,∆) = (1, 2, 3),
IV : ord(g2, g3,∆) = (2, 2, 4).

(2.20)

See Appendix A.3 for more details. The zero loci of the AD polynomials can be
understood as codimension 1 loci in the space CNf ∋ m [70]. For Nf = 3 such a locus
is shown in Fig. 2.1. Argyres-Douglas loci are studied for a more general class of SW
theories in [71].
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Fig. 2.1 The AD locus LAD
3 for Nf = 3 with masses m = (m,m, µ) in the real (m,µ)-plane,

with units Λ3 = 1. It is a union of three smooth lines, two of them generically describing type
II AD points and the third one type III. The two II lines touch at a III point, while both
II lines touch the III line in a type IV AD point.

In Section 2.1.1, we argued that the widths of the different cusps of the SU(2)
theories always add up to n ≤ 6. We will now argue that n < 6 if and only if m is a
zero mAD of DAD

Nf
. It is possible that some zero of ∆ is also a zero of g2. Then the

index is given by the degree of the numerator of j, which can be smaller than 6. In
Section 2.2 we study one example of an AD theory appearing in the Nf = 2 theory, and
demonstrate that the curve degenerates to Kodaira type III.2 Each singularity type is
not exclusive to a specific number of flavours, but appears on the discriminant divisor
of the higher Nf theories as well [70]. The three types of AD theories corresponds to
2, 3 or 4 mutually non-local states becoming massless at the AD point. Two states
being mutually non-local generally means that they do not commute at spacelike
separation such that we can not write down a manifestly local Lagrangian describing
their interaction [72]. The charge vectors of mutually non-local states further have
non-vanishing Dirac-Schwinger-Zwanziger product [73]. The cusps corresponding to the
non-local states are disconnected from the rest of the domain, and the branch points
collide at an elliptic point of the duality group. As a result, the index is reduced by
ord ∆, which equals the number of mutually non-local states becoming massless, i.e., 2,
3, and 4 for the theories II, III and IV , respectively. Note that the order of vanishing
of the discriminant may be larger than zero for ordinary singularities as well, so it is not
enough to simply subtract ord ∆ from six to get the index right but rather we should

2For AD theories of different type appearing in the theories with other number of flavours we refer
to [2].
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subtract the number of mutually non-local states becoming massless at each cusp,

n = 6 − # (mutually non-local massless dyons). (2.21)

This is because for the index to reduce it is necessary for g2 and ∆ to have a common
root, such that due to (2.6) it is also a root of g3 and because of (2.16) therefore an
AD point. In the limit m → mAD, the 6 − n copies of FNf

(m) corresponding to the
regular singularities are removed from the fundamental domain. There are also mass
configurations whose corresponding Coulomb branch contains two (type II) AD points.
The correspondence (2.21) nevertheless holds, for a similar argument as presented above.

The polynomial Dbp
Nf

The last factor Dbp
Nf

corresponds to branch points. These are values of j for which two
solutions of PNf

(X) = 0 coincide, such that the map u : FNf
(m) → BNf

is not 1-to-1
on these points. The identifications are different from the multiple images of F in BNf

,
which identify the images of the boundary of F , αj(∂F), in FNf

(m).
The Dbp

Nf
are explicitly given by

Dbp
0 = 1,

Dbp
1 = 27jΛ6

1 − 27 · 214m3Λ3
1 + 220m6,

Dbp
2 = (m2

1 −m2
2)2j2Λ8

2 − 128Λ4
2

(
216(m8

1 +m8
2) − 288m2

1m
2
2(m4

1 +m4
2)

+ 16m4
1m

4
2 + 240m3

1m
3
2Λ2

2 − 72m1m2(m4
1 +m4

2)Λ2
2 + 9(m4

1 +m4
2)Λ4

2

− 42m2
1m

2
2Λ4

2 − 2m1m2Λ6
2

)
j + 212(16m1m2 − Λ2

2)3PAD
2 ,

(2.22)

and we define Lbp
Nf

as the zero locus of Dbp
Nf

. The expression for Dbp
3 for generic masses

is very long so we do not write it out here, but we can note that it has degree three in j.
To show that the zero locus of the polynomials (2.22) really correspond to branch

points we will need some specific details of the corresponding theory and we therefore
hold off on this discussion until Sec. 2.2. We can, however, note that by solving Dbp

Nf
= 0

for j and plugging it into (2.11) we get the corresponding solutions for u. For example,
in Nf = 1 we find u = 4

3m
2 and as is easy to show, away from m = mAD = 3

4Λ1, this
is not part of the discriminant of the curve and therefore does not correspond to a
physical singularity of the theory. We denote a branch point of u in FNf

by τbp, and its
image in BNf

as ubp. As explained in Section 2.1.5, for generic masses there are two
branch points τbp and τ ′

bp with image ubp = u(τbp) = u(τ ′
bp). Since their image in BNf

is the same, the points τbp and τ ′
bp are identified in FNf

, even though they appear as
distinct points in plots of FNf

in H. A branch cut emanates from each branch point;
there can be a single cut connecting both branch points, or two separate cuts which go
to either ı̊∞ or to the real axis.
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2.1.3 Partitioning the u-plane

An approach to better understand the u-plane geometry is to study the partitions that
the map u : FNf

→ BNf
produces on the u-plane BNf

. Let us study the union (2.12).
Now since u(FNf

) = BNf
, it is natural to ask what

Tm = u

 n⋃
j=1

αj∂F

 ⊆ BNf
(2.23)

describes. The insight is that while j : F → C is an isomorphism, it surjects the
boundary onto a half-line,

j(∂F) = (−∞, 123] ⊆ R ⊆ C. (2.24)

The only other regions in F where j is real are the SL(2,Z) images of the half-line
ı̊[1,∞) on the imaginary axis. We can directly apply this to the SW curves, whose
j-invariant J (u,m,Λ) is identified with j(τ). The partitioning is then

Tm = {u ∈ BNf
| J (u,m,ΛNf

) ∈ (−∞, 123]}. (2.25)

It is included in the level set Im J = 0. Let us therefore study the curves

Im J (u,m,ΛNf
) = 0, (2.26)

which contrary to (2.25) are algebraic curves. It turns out that some of the components of
this equation do not belong to the partitioning (2.25), and it is clear that they correspond
to components of curves with j > 123. Due to the imaginary part, it is instructive
to choose coordinates u/Λ2

Nf
= x + ı̊ y. The equations (2.26) are straightforward to

compute in terms of zero-loci of polynomials in x and y. For fixed m, they define
algebraic varieties

Tm(x, y) = 0. (2.27)

More specifically, they are an Nf -parameter family of affine algebraic plane curves. For
the pure Nf = 0 theory, one finds

T0 = xy(81 − 288x2 + 336x4 − 128x6 + 288y2 − 352x2y2 − 128x4y2 + 336y4 + 128x2y4 + 128y6). (2.28)

The identification of this partitioning of the u-plane for the pure theory is shown in
Figure 2.2. The defining equations can be computed in full generality for any Nf , but
they are rather lengthy: The polynomials Tm for generic masses have total degree
8 +Nf . For generic real masses, the polynomials Tm have 30, 131, and 1081 terms in
Nf = 1, 2 and 3, respectively. If we allow the masses to be complex, we can decompose
mi = Remi + ı̊ Immi and the Tm are then polynomials in x, y, Remi and Immi.
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Fig. 2.2 Identification of the components of the partitioning T in the pure theory. The left
figure is the fundamental domain of the τ -plane while the right figure gives the mapping of
the boundaries to the u-plane under the map Eq. (1.40). The u-plane B0 is partitioned into 6
regions u(αF), with the α ∈ SL(2,Z) given in both pictures. These six regions correspond,
physically, to different duality frames of the theory. The four regions connected to infinity
are however mutually local with respect to each other, and we can thus use the same local
parameter in these frames.

For generic (complex) masses in Nf = 1, 2 and 3, Tm has 93, 1310 and 48754 terms,
respectively.

The polynomials Tm are in general reducible. For instance, for m = (m,m) and
m = (m, 0, 0), Tm factors into multiple nontrivial polynomials. It is straightforward to
check that Tm for given Nf flows into Tm for Nf − 1 by decoupling one hypermultiplet.
This allows to study the decoupling procedure of the fundamental domains in detail.

The partitioning Tm is a finite union of smooth curves that intersect. The tessellation
of H in SL(2,Z) images of F ,

TH =
⋃

α∈SL(2,Z)
α(∂F) =

{
τ ∈ H | j(τ) ≤ 123

}
, (2.29)

has intersection points τ ∈ SL(2,Z) · eπ ı̊
3 , where j(τ) = 0. From (2.8) we see that these

intersection points correspond to J (u,m,Λ) = 0, whose only solutions are given by
g2(u,m,Λ) = 0 (see (2.7)). Since g2 is a polynomial in u of degree 2 for all curves
(2.1), there are at most two intersection points in Tm corresponding to J = 0. As g2

is strictly quadratic, there is also always at least one such point. We find below that
when the branch points (as introduced in Section 2.1.2) belongs to Tm, they give further
intersection points of Tm.

One can study how the partitioning is deformed upon varying the masses. For
the cases where the branch points belong to Tm, the complex u-plane is generically
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partitioned into 6 regions. When going to the AD locus two or more of these regions
shrink to a point together with at least one branch point. At precisely m = mAD, the
u-plane is then partitioned into ≤ 4 regions, giving an explanation for the discontinuous
decrease in the index in the limit m → mAD. This can also be understood directly
from the polynomials Tm(x, y). For instance, at the point m = mAD = 3

4Λ1 in Nf = 1,
the polynomial TmAD(x, y) contains a factor 9 − 24x + 16x2 + 16y2. Its zero locus in
R2 is just a point x + ı̊ y = 3

4 = uAD/Λ2
1, while the massive deformation away from

mAD describes a curve that encloses a region. For ubp /∈ Tm one needs to cut and glue
interior points of different regions and the u-plane is therefore partitioned into less than
6 regions. See for example Fig. 2.8.

2.1.4 Matone’s relation for massive theories

In the pure N = 2 supersymmetric gauge theory, there is a striking expression for
the derivative du/dτ in terms of the discriminant ∆0 and da/du. The relation reads
[74, 75],

du

dτ
= −4π ı̊∆0

(
da

du

)2

. (2.30)

Since u is proportional to ∂F/∂Λ0, this equation is equivalent to a recursion relation for
the prepotential F [76–78]. Moreover, as ∆0 and da/du are both topological couplings,
this is a useful relation for evaluation of the u-plane integral [40, 43, 45]. Similar
relations have also been obtained in the massless Nf = 1, 2, 3 theories [57]. We will
refer to a relation of the type (2.30) as Matone’s relation. In this Section, we derive a
generalisation of (2.30) for massive Nf = 1, 2, 3.

Periods and Weierstraß form

We proceed by first deriving an expression for da/du. To this end, recall that a is given
as a period integral (1.33), and that the derivative of the SW differential λ to u is
holomorphic [8]. Therefore, we can express da/du in terms of the variables x and y of
(2.5)

da

du
=

√
2

4π

∫
γ

dx

y
, (2.31)

where γ is one of the cycles of the elliptic curve. To determine this quantity for
the theories with Nf ≤ 3, we map the curve W to the modular Weierstraß form W̃,
A : W → W̃ . See for example [79, Section 7.1]. The curve W̃ reads

W̃ : ỹ2 = 4x̃3 − g̃2x̃− g̃3, (2.32)
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with the variables related by the map A as

A :


x̃ = α2 x = ℘(z),
ỹ = α3 y = ℘′(z),
g̃2 = α4 g2,

g̃3 = α6 g3,

(2.33)

where ℘ is the Weierstraß function and z ∈ C a coordinate on the curve. Since W̃ is
the modular Weierstraß curve, the variables g̃2 and g̃3 equal

g̃2 = 4π4

3 E4, g̃3 = 8π6

27 E6, (2.34)

with Ek the Eisenstein series defined in (B.7). We note that the variables for W
(2.5) have weight 0 under modular transformations, while in (2.32) the weights are
wt (α, ỹ, x̃, g̃2, g̃3) = (1, 3, 2, 4, 6). Using the two equations for g̃2 and g̃3, we can solve
for u and α. The relation

α =
√

2π
3

√
g2

g3

E6

E4
, (2.35)

will be particularly useful for us. This relation can also be derived using Picard-Fuchs
equations [80].

Now it is straightforward to determine da/du (2.31) using the Weierstraß represen-
tation of (x̃, ỹ),

da

du
=

√
2α

4π

∫
γ̃

dx̃

ỹ
=

√
2α

4π , (2.36)

where γ̃ is the image of the γ under the map A, with the variable z of x̃(z) changing
from 0 to 1.

We continue by studying the discriminants of W and W̃ . Using E3
4 − E2

6 = 123 η24

with η as in (B.5), we find for the discriminant of W̃ , ∆̃ = (2π)12 η24. The discriminant
of W, ∆Nf

(2.6), on the other hand is a polynomial in u, m and Λ and therefore has
weight 0. The two discriminants are related by

∆̃ = α12(−1)Nf Λ8−2Nf

Nf
∆Nf

, (2.37)

or substituting α in terms of da/du (2.36),

η24 = 26(−1)Nf Λ2(4−Nf )
Nf

(
da

du

)12

∆Nf
, (2.38)

which holds for 0 ≤ Nf ≤ 3. Similar expression exist for Nf = 4 and N = 2∗ [39].
Let us consider the case that W or W̃ is singular. The curve W̃ is only singular

at the cusps τ ∈ {̊ı∞} ∪ Q, since ∆̃ ∼ η24 vanishes at the cusps and is non-vanishing
for τ in the interior of H. From (2.37) we see that, at the cusps of W̃ either da/du or
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∆Nf
must vanish. On the other hand, for τ in the interior of H, ∆̃ is non-vanishing.

This means that, if W is singular (∆Nf
= 0) for such values of τ , da/du should diverge.

This is exactly what happens at the AD points,

du

da
(τAD) = 0, ∆Nf

(u(τAD)) = 0, τAD ∈ H. (2.39)

We can further note that du
da

(τ) = 0 is true also for singularities that are cusps and not
elliptic points, i.e., ∆Nf

= 0 for τ ∈ Q. This is because if u is not an elliptic point then
g2 ̸= 0 and g3 ̸= 0, since otherwise, from ∆ = g3

2 − 27g2
3, both would be zero, giving an

elliptic point. Then, from (2.36) we have that
(

du
da

)2
is proportional to E4

E6
. This is a

meromorphic modular form of weight −2 for SL(2,Z), and one can show using modular
transformations that it vanishes on Q. Therefore, we have that ∆Nf

= 0 implies du
da

= 0.

Matone’s relation

We will now give a generalisation of (2.30) that holds also for the massive Nf = 1, 2, 3
theories. Let us denote by ′ the derivative with respect to u keeping m and ΛNf

fixed.
The derivative with respect to τ is always given explicitly. From the explicit expression
for j as function of τ (B.12), it is easy to check that d

dτ
j = −2π ı̊ E6

E4
j. Using the chain

rule and (2.8), we can express this as d
dτ

J = J ′ du
dτ

. This gives the first important
identity,

du

dτ
= −2π̊ı E6

E4

J
J ′ , (2.40)

which holds for any SW curve. From (2.7) we can compute J ′ in terms of g′
2 and g′

3.
Using relations (2.35) and (2.36), we can substitute E6/E4 in terms of g2, g3 and da/du.
This gives the exact relation

du

dτ
= −72π ı̊ g3

g2

J
J ′

(
da

du

)2

= −8π ı̊
3

g3
2 − 27g2

3
2g2g′

3 − 3g′
2g3

(
da

du

)2

. (2.41)

An analogous formula for five-dimensional gauge theories was derived from the Picard-
Fuchs perspective in [81, Eq. (4.23)]. Both factors on the rhs are only relative invariants,
but their product is an absolute invariant of the curve W . The numerator on the rhs is
proportional to the physical discriminant. The equation has modular weight 2, since
both du

dτ
and

(
da
du

)2
are of weight 2.

For 0 ≤ Nf ≤ 3,3 we can compute the corresponding gi, and one can rewrite (2.41)
as

du

dτ
= − 16π ı̊

4 −Nf

∆Nf

PM
Nf

(
da

du

)2

, (2.42)

3We can in fact perform the same computations in the case of Nf = 4, leading to a similar formula,
but this is omitted here.



2.1 Massive fundamental hypers 31

where we substituted (2.6) for ∆Nf
, and defined the polynomial PM

Nf
,

PM
Nf

= 6
4 −Nf

(−1)Nf Λ2Nf −8
Nf

(2g2g
′
3 − 3g′

2g3). (2.43)

The normalisation is chosen such that PM
Nf

is a monic polynomial. Explicit computation
gives,

PM
0 = 1,
PM

1 =u− 4
3m

2
1,

PM
2 =u2 − 3

2(m2
1 +m2

2)u+ 2m2
1m

2
2 + 1

8m1m2Λ2
2 − 1

64Λ4
2,

PM
3 =u3 − 2M2u

2 +
(
3M ′

4 + 3
4M3Λ3 − 1

64M2Λ2
3

)
u+ 1

256M3Λ3
3

− 1
4M2M3Λ3 + 1

32(M4 −M ′
4)Λ2

3 − 4M2
3 ,

(2.44)

where we defined
M2 = m2

1 +m2
2 +m2

3, M3 = m1m2m3,

M4 = m4
1 +m4

2 +m4
3, M ′

4 =
∑
i<j

m2
im

2
j .

(2.45)

We note that these polynomials appear in the Picard-Fuchs equations for the periods of
these theories and their zeros give regular singular points of the differential equations
[25, 26].

The identity (2.42) does in fact not depend on the specific form of the SW curves.
Given a Jacobian rational elliptic surface, let ω =

∫
γ

dx
y

be the period of the Néron
differential on the elliptic curve. Then du

dτ
= 1

3π ı̊
ω2∆/(2g2g

′
3 −3g′

2g3), with u a coordinate
on P1(C).

2.1.5 Branch points

An important difference between Nf = 0 and Nf > 0 are the poles where PM
Nf

vanishes.
To understand these poles as well as zeros of du/dτ , note that at such points the change
of variables between u and τ is ill-defined. We have seen earlier that the change of
variables is ill-defined at the points where the discriminant D(PNf

) (2.15) vanishes.
Indeed if we substitute J (u,m,ΛNf

) for j(τ) in Dbp
Nf

, PM
Nf

factors out.
The reason for this is the following. The discriminant of a polynomial p vanishes if

and only if p has a double root. It can be computed as the resultant of the polynomial and
its formal derivative, D(p) ∼ ResX(p, p′) (see also [82]).4 The zero locus D(PNf

) = 0 of
PNf

(X) is then given by the solutions to the two equations PNf
(X) = 0 and PNf

′(X) = 0.
Since ∆Nf

̸= 0, all solutions can be found by solving the former for j and inserting into
4The resultant of two polynomials over a commutative ring is a polynomial of their coefficients which

vanishes if and only if the polynomials have a common root. It can be computed as the determinant of
their Sylvester matrix.
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the latter. It is straightforward to show that this gives

g2
2g3

∆Nf

PM
Nf

= 0, (2.46)

which provides the decomposition (2.15): If g2 = 0 but g3 ̸= 0, then j = 0. If g3 = 0
but g2 ̸= 0, then j = 123. If both g2 = g3 = 0, we are in LAD

Nf
⊆ L∆

Nf
. Now since

the sextic equation is only well-defined away from the physical discriminant locus L∆
Nf

where ∆Nf
= 0, the true branch point locus Lbp is the difference of the Matone locus

LM
Nf

= {u ∈ BNf
|PM

Nf
= 0} and the discriminant locus,

Lbp
Nf

= LM
Nf

\ L∆
Nf
. (2.47)

On the Coulomb branch with Nf hypermultiplets there are generically 2+Nf distinct
singular points. For special mass configurations m, some singularities can collide. Then
∆Nf

has a double root. From above it is clear that this is equivalent to D(∆Nf
) = 0,

which in turn is equivalent to ∆Nf
= 0 and ∆′

Nf
= 0. We can again solve the former

for g2 and g3 and insert into the latter to obtain PM
Nf

∼ g′
2

g3
∆Nf

= 0. This implies that
whenever ∆Nf

has a double root, it is also a root of PM
Nf

. It is also observed in all
examples below. To be more precise, if ∆Nf

contains a root of order d > 1, then ∆′
Nf

has the same root but with multiplicity d− 1. The excess factors can be extracted by
the operation gcd(∆Nf

,∆′
Nf

), where gcd is the polynomial greatest common divisor.
The multiple roots are removed from the discriminant by the square-free factorisation 5

∆̂Nf
=

∆Nf

gcd(∆Nf
,∆′

Nf
) . (2.48)

This reduced discriminant ∆̂Nf
has single roots only, concretely we map ∏s(u− us)ns to∏

s(u− us). This quantity is also of importance for determining gravitational couplings
to Seiberg-Witten theory [83]. One can show that gcd(∆Nf

,∆′
Nf

) always divides PM
Nf

,
such that

P̂M
Nf

:=
∆̂Nf

∆Nf

PM
Nf

(2.49)

is in fact a polynomial. The branch point equation (2.46) is then equivalent to
P̂M

Nf
/∆̂Nf

= 0, which reduces to
P̂M

Nf
= 0. (2.50)

The Matone relation thus always takes the form

du

dτ
= − 16π ı̊

4 −Nf

∆̂Nf

P̂M
Nf

(
da

du

)2

, (2.51)

5The polynomial gcd is unique only up to multiplication with invertible constants, we choose it
such that ∆̂Nf

is again monic.
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where both ∆̂Nf
and P̂M

Nf
are polynomials. In the subsequent section we show explicitly

that the roots of the denominator (2.50) are precisely the branch points. We note that
for generic masses the form (2.51) does not differ from (2.42), because ̂ is trivial when
all roots are distinct.

As argued above, AD points correspond to points τAD in the upper half-plane. Since
they lie on the discriminant locus, we exclude them to define the sextic polynomial
PNf

. We will discuss in more detail below that, if the masses approach the AD locus, a
branch point in the u-plane collides with two mutually non-local singularities forming
the AD point. The branch point under consideration lifts, while the Nf − 1 other
branch points remain for a generic point on the AD mass locus LAD

Nf
. Thus for a generic

point on the AD mass locus, AD points are not branch points of u(τ). A non-generic
example is the most symmetric AD theory, the IV fibre in Nf = 3, discussed in more
detail in [2, Sec. 6.4]. For this theory, τAD corresponds to a singular point of the theory
as well as a branch point. As a result, the domain for τ does not correspond to that of
a congruence subgroup of SL(2,Z).

Since any branch point τbp induces a non-trivial monodromy, u does not have a
regular Taylor series at such a point. For instance, if the u-plane contains one branch
point ubp = u(τbp), then we have u(τ) − ubp = O(√τ − τbp) as τ → τbp. If the leading
coefficient is nonzero, then du

dτ
diverges at τbp. Away from the discriminant locus, this

can be understood from (2.51): From (2.36) we see that da
du

is regular and nonzero at a
branch point, since none of g2, g3, E4 and E6 diverge or vanish. Thus the zeros of the
denominator P̂M

Nf
correspond to the singular points of du

dτ
, as observed.

This can also be seen directly from the J -invariant of the SW curve. It is easy to
show that

J ′ = 363 g
2
2g3

∆2
Nf

PM
Nf
, (2.52)

which due to (2.46) vanishes at any branch point ubp. Since for fixed mass and scale
J (u) is rational in u, it is a meromorphic function on BNf

. Away from the discriminant
locus it thus has a Taylor series around ubp, where the linear coefficient is missing. We
therefore find

J (u) − J (ubp) = O ((u− ubp)nbp) , (2.53)

with nbp ≥ 2. Now we identify J (u) = j(τ), which relates the power series of u
and τ . For a generic τ ∈ H, j has a regular Taylor series at τ with non-zero linear
coefficient. However if τ is in the SL(2,Z)-orbit of ı̊ or eπ ı̊

3 , j has a zero of order 2
or 3. Let nτbp ∈ {1, 2, 3} be this number for a given branch point τbp ∈ H. Then
J (u) − J (ubp) = O ((τ − τbp)nτbp ), such that from (2.53) we conclude

u(τ) − ubp = O
(
(τ − τbp)nτbp /nbp

)
, (2.54)
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where the leading coefficient is strictly non-zero. From this we see that the branch point
τbp does not necessarily correspond to an nbp-th root, but since the ratio can cancel τbp

rather corresponds to a branch point of order

nbp

gcd(nbp, nτbp) . (2.55)

It is difficult to compute this integer for a generic branch point, however in all examples
discussed here and in [2] it is equal to 2, which corresponds to a square root.

If the number nτbp
nbp

∈ Q \ Z is larger than 1, then it is clear that du
dτ

(τbp) = 0.
Conversely, if nτbp

nbp
< 1 then du

dτ
(τbp) = ∞. We thus see that any branch point has

the property that du
dτ

diverges or vanishes, such that the change of variables from the
u-plane to the τ -plane is not well-defined.

2.2 The case of two hypermultiplets

As a concrete example of the above analysis let us look at the theory with two fun-
damental hypermultiplets.6 This theory has four strong coupling singularities where
massless hypermultiplets appear. For general masses they are distinct points while
for special mass configurations one or more singularities can collide. We will begin
by restricting to the case of equal masses, m1 = m2 = m, where we can find explicit
expressions for u as a function of τ . Then we briefly discuss the case of two distinct
masses before moving on to discuss what happens in the simpler cases of massless
hypermultiplets and when fixing the mass to an AD value.

2.2.1 Equal masses

Let us consider first the equal mass case, m = (m,m), where m ̸= 0 and m ̸= mAD =
1
2Λ2. The spectrum and singularity structures are discussed in detail in [84]. In this
case, the discriminant becomes

∆ = (u− u∗)2(u− u+)(u− u−), (2.56)

where u∗ = m2 + Λ2
2

8 and u± = −Λ2
2

8 ± mΛ2. It is easy to check that {u∗, u+, u−}
never collide other than in the two cases mentioned above. Using the modular lambda
function, λ = ϑ4

2
ϑ4

3
, as a generator of the intermediate field Γ(2), the sextic equation

factors into three quadratic polynomials over Γ(2). These equations can now be solved
exactly. In Nf = 2, two solutions have the property that |u(τ)| → ∞ when τ → ı̊∞.

6For the analogous analyses of the theories with one or three hypermultiplets we refer to [2].
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As discussed previously, our convention is to pick the one that has u → −∞, such that

u

Λ2
2

= −
ϑ8

4 + ϑ4
2ϑ

4
3 + (ϑ4

2 + ϑ4
3)
√

16m2

Λ2
2
ϑ4

2ϑ
4
3 + ϑ8

4

8ϑ4
2ϑ

4
3

= − 1
64q

−1/2 − m2

Λ2
2

+
(

64m
4

Λ4
2

− 32m
2

Λ2
2

− 5
16

)
q1/2 + O(q).

(2.57)

Due to the appearance of the square root in (2.57) u is not holomorphic and there will
be branch points in the fundamental domain. From Section 2.1.2 we expect them to be
given by

jbp(m) = 16(16m2 − Λ2
2)3

m2 . (2.58)

By plugging in the solution for J (u,m,Λ2) we find that this corresponds to u = ubp =
2m2 − Λ2

2
8 . We recognise this as the root of the polynomial PM

2 of the generalised Matone
relation. By using standard relations between the j-invariant and Jacobi theta function
we can also check that this coincides with the zeros of the square root.

Defining f2(τ) := 16m2

Λ2
2
ϑ2(τ)4ϑ3(τ)4 + ϑ4(τ)8, we see that the branch point of the

square root is f2(τ0) = 0. Near τ0, the expansion of f2 reads f2(τ) = (τ − τ0)h(τ), where
h(τ) is holomorphic near τ0 and h(τ0) ̸= 0. Then one branch of the square root reads√
f2(τ) =

√
τ − τ0

√
h(τ). Now since h(τ0) ̸= 0, we have that τ 7→

√
h(τ) is nonzero

and in fact holomorphic in a neighbourhood of τ0. However, τ 7→
√
τ − τ0 is strictly

non-holomorphic at τ0. This proves that u is not holomorphic at τ0.
From (2.57) we can also calculate the other interesting quantities,

da

du
= − ı̊

Λ2

ϑ2
2ϑ

2
3√

ϑ4
2 + ϑ4

3 +
√
f2
,

du

dτ
= π ı̊Λ2

2ϑ
8
4

2(4m2

Λ2
2

+ 1)ϑ4
2ϑ

4
3 + ϑ8

4 + (ϑ4
2 + ϑ4

3)
√
f2

8ϑ4
2ϑ

4
3
√
f2

.

(2.59)

We can explicitly check that they satisfy Matone’s relation, (2.42),

du

dτ
= −16π ı̊

2
∆̂

u− ubp

(
da

du

)2

. (2.60)

On the rhs, the double singularity u∗ has cancelled, while, as discussed in Section 2.1.4,
the branch point ubp = 2m2 − 1

8Λ2
2 remains in the denominator.

Fundamental domain

A fundamental domain can be found in the following way. The six roots of the sextic
equation gives the six cusp expansions. In order to simplify the expressions, let us
momentarily set Λ2 = 1 and (a, b, c) := (ϑ4

2, ϑ
4
3, ϑ

4
4). All six expressions can be brought

to a canonical form, see Table 2.1.
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αj αj (̊ı∞) αju

id ı̊∞ −c2 + ab+ (a+ b)
√
c2 + 16m2ab

8ab
T ı̊∞ −b2 − ac+ (−a+ c)

√
b2 − 16m2ac

−8ac
S 0 −a2 + bc+ (b+ c)

√
a2 + 16m2bc

8bc
TS 1 −b2 − ac+ (a− c)

√
b2 − 16m2ac

−8ac
TST−1 1 −c2 + ab+ (−a− b)

√
c2 + 16m2ab

8ab
T 2ST 2 −a2 + bc+ (−b− c)

√
a2 + 16m2bc

8bc
Table 2.1 Cusp expansions and associated coset representatives αj of the solution for Nf = 2
with mass m = (m,m).

The overall sign can be fixed from the purely quadratic term in the numerator.
Using the Jacobi identity a+ c = b, such a representation is unique and the expressions
cannot be further simplified. Then instead of studying which transformations give
the right values at the cusps, we can take the cusp expansions and try to find maps
αj ∈ SL(2,Z) that maps u(τ) to the functions under study. Due to the square root,
this is very subtle. For instance, for T 2ST the Jacobi theta functions transform as
(a, b, c) 7→ (e2π ı̊a, b, c) 7→ (e2π ı̊c, b, a) 7→ (e2π ı̊b, c, eπ ı̊a). We ignore the weight factors
since numerator and denominator are homogeneous in the modular weight. This implies
that √

c2 + 16m2ab 7→
√
e2π ı̊a2 + 16m2e2π ı̊bc = −

√
a2 + 16m2bc, (2.61)

and gives precisely the last row in Table 2.1. The other transformations can also be
proven directly. Such identifications are valid as long as m is generic, and in particular
such that the square root does not resolve. This obviously excludes the cases m = 0
and m = ±mAD, and it is conceivable that these are the only cases. We continue by
assuming that it is true.

As argued above, there will also be branch points in the fundamental domain due to
the square roots appearing in the solution for u. For generic complex mass these points
will lie inside the fundamental domain. If we restrict to positive masses we see from (2.58)
that limm↘0 j

bp(m) = −∞, while jbp(Λ2
4 ) = 0, jbp(mAD) = 123Λ4

2 with mAD = 1
2Λ2 and

limm→∞ jbp(m) = +∞. Furthermore, one finds that jbp : (0,∞) → R is monotonically
increasing, and R is partitioned into jbp((0, Λ2

4 ]) = (−∞, 0), jbp([Λ2
4 ,

Λ2
2 ]) = [0, 123Λ4

2]
and jbp([Λ2

2 ,∞)) = [123Λ4
2,∞). We aim to find a curve in τ -space with these properties.

The branch point is located at u = ubp = 2m2−Λ2
2

8 . In the casem = 0, ubp = u+ = u−

collide. For m = Λ2
4 , the branch point ubp = 0 is at the origin. At the AD mass m = Λ2

2 ,
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the branch point collides with u∗ and u+ at τAD = 1 + ı̊ (see Fig. 2.5). We can use this
knowledge to conjecture the branch point paths in τ -space.

The cosets that we found above allow to construct a fundamental domain

F2(m,m) = F ∪ TF ∪ SF ∪ TSF ∪ TST−1F ∪ T 2STF . (2.62)

where we take the union of the elements in Table 2.1. This is drawn in Fig. 2.3 together
with the conjectured paths of the branch points. Since the αj generate the whole
SL(2,Z), it is clear that this domain is not a fundamental domain of any congruence
subgroup of SL(2,Z). By computing the q-series of all the cusp expansions, one can
match the singularities with the cusps,

u(0) = u−, u(1) = u∗, u(2) = u+. (2.63)

The generic mass case m = (m1,m2) splits the singularity u∗ further and removes either
TSF or TST−1F away from τ = 1.

−1 0 1 2
u− u∗ u+

m = 0

m = 1
4

m = ∞ m = 0

m = 1
4

m → ∞

mAD

Fig. 2.3 Fundamental domain F2(m,m) of massive m = (m,m) Nf = 2 theory. The dashed
lines correspond to the conjectured paths of the branch points from zero to infinite mass. For
given positive mass m, the two branch points are identified under TST−1, such that there is
only one branch point ubp = 2m2 − Λ2

2
8 on the u-plane. At m = mAD the two branch points

meet, the square root in u(τ) resolves, and u(τ) becomes holomorphic and modular.

Let us give some further evidence for the paths of the branch points. The points for
m = 0, m = mAD and m = ∞ are fixed from the fact that in all three limits the duality
group of the theory becomes a congruence subgroup (as is shown below). The branch
points approach either τ = 1 or ı̊∞ in the decoupling limit, since these are identified
under Γ0(4). This agrees with the fact that ubp → ∞ for m → ∞. We can also check it
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against the solution (2.57). The branch point satisfies f2 = 0, for which u simplifies,

u(τbp)
Λ2

2
= −

f2B( τbp
2 ) + 16
128 , f2B(τ) =

(
η(τ)
η(2τ)

)24

= 256ϑ3(τ)4ϑ4(τ)4

ϑ2(τ)8 , (2.64)

where f2B is a Hauptmodul of the congruence subgroup Γ0(2) ⊆ SL(2,Z). One can plot
this u over the curves given in Fig. 2.3, and not only find that it is real everywhere,
but it behaves as ubp = 2m2 − Λ2

2
8 as a function of m. In particular, it is monotonically

increasing and has the correct intermediate and limiting points m ∈ {0, Λ2
4 ,

Λ2
2 ,∞}.

Therefore, the curves in Fig. 2.3 are parametrisations of (2.58) compatible with our
solution for u.

For any mass, the pair of branch points is identified under u. In order to see this,
note that the value of u at a branch point is given by (2.64). Since it is a modular
function for Γ0(2), it is invariant under TST−1. This relates the two loci in Fig. 2.3 at
both smooth components of each curve,

TST−1 :

1 + eφ ı̊ 7−→ 1 + e(π−φ) ı̊,

1 + ı̊ δ 7−→ 1 + 1
δ
ı̊ .

(2.65)

The pair of two such points are the branch points of the square root, and the branch
cut can be any path connecting the two branch points [85]. For m > mAD for instance,
one can take it to be the complex interval Iδ = 1 + [1

δ
, δ] ı̊. This can also be seen from

the fact that when τ traverses a small circle around one branch point, the expression
u(τ) receives a minus sign in front of the square root. According to Table 2.1 this
interchanges the cusp expansions in the regions TF and TSF , and the transition map
is precisely (TS)T−1 as in (2.65). For m < mAD the branch points sit on the boundaries
of SF and T 2STF , and the transition map S(T 2ST )−1 = TST−1 is identical. In order
to achieve single-valuedness, any path encircling one branch point must also encircle
the other. On a dogbone contour around the interval Iδ the function u(τ) returns
to the original value, as it picks up twice the phase factor −1. The function u(τ) is
then a continuous single-valued function on the slit plane F(m,m)\Iδ, which one may
interpret as a Riemann surface.

Limits to zero, AD and infinite mass

The limits to other theories are given as follows. For m → 0, the singularities u+ and
u− merge at −Λ2

2
28 , which we located at τ = 0. This agrees with the fact that for m = 0

the order parameter becomes

u(τ)
Λ2

2
= − 1

8
ϑ3(τ)4 + ϑ4(τ)4

ϑ2(τ)4 = −1
8 − 1

64

(
η( τ

2 )
η(2τ)

)8

= − 1
64(q−1/2 + 20q1/2 − 62q3/2 + 216q5/2 + O(q7/2)),

(2.66)
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TSFSF

ST−1F TSTF

-1.0 -0.5 0.0 0.5 1.0
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Fig. 2.4 Left: Fundamental domain of Γ(2). This is the duality group of massless Nf = 2.
All three cusps {̊ı∞, 0, 1} have width 2. Right: Plot of the massless Nf = 2 u-plane as the
union of the images of u under the ind Γ(2) = 6 SL(2,Z) images of F . Here, we use the
decomposition Γ(2)\H =

⋃1
k,ℓ=0 T

ℓSkF ∪ ST−1F ∪ TSTF . There is a Z2 symmetry which
acts by u 7→ −u. The singularities τ = 0, 1 are both touched by two triangles each.

and this is a modular function for Γ(2). In particular it is invariant under T 2. More
precisely, we can use Γ(2) to move the copies TST−1F and T 2STF in order to obtain
a more canonical form of Γ(2)\SL(2,Z). For this, note that we can identify ST−1F and
T 2STF , since

ST−1(T 2ST )−1 =
1 −2

2 −3

 ∈ Γ(2) : 2 7−→ 0. (2.67)

Similarly, we can identify TST−1F with TSTF , as the transition function is also in
Γ(2). This gives precisely Fig. 2.4.

The decoupling limit m → ∞ to Nf = 0 is also interesting. The triangle TST−1F
can be identified with T 2F since

(T 2)−1TST−1 =
−1 0

1 −1

 ∈ Γ0(4) : 1 7−→ ı̊∞. (2.68)

Similarly, we can identify TSF with T 3F as the transition map is in Γ0(4) and also
maps 1 7→ ı̊∞. Lastly, the triangle T 2STF around τ = 0 can be identified with T 2SF .
This demonstrates that we get the domain Γ0(4) as in Fig. 1.2. The flow to the low
energy effective theory with no hypermultiplets can be understood from the modular
curve perspective as identifying the cusp τ = 1 of width 2 with the cusp ı̊∞, such that
the number of rational cusps decreases by 2, while the width of the cusp ı̊∞ increases
by 2.

In the AD limit m → mAD = Λ2
2 , the mutually non-local singularities u∗ and u+

collide and become a type III elliptic point of the curve. This eliminates all the
triangles near these cusps: In this case the regions TSF , TST−1F and T 2STF are
removed and the domain of the theory with this mass, see Fig. 2.5, remains. This is the
domain of the congruence subgroup Γ0(2). The AD point τAD lies in the interior of H,
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and is an elliptic point of the duality group Γ0(2). The order parameter now becomes

u(τ)
Λ2

2
= −

f2B
(

τ
2

)
+ 40

64 = − 1
64
(
q−1/2 + 16 + 276q1/2 − 2048q + O(q3/2)

)
, (2.69)

where f2B was defined in (2.64), and it is the McKay-Thompson series of class 2B
[86, 87, 36]. It is a Hauptmodul for Γ0(2). Therefore, u is a modular function for Γ0(2).

−1 0 1 2

τAD

F TF

SF

Fig. 2.5 Fundamental domain of Γ0(2). This is the duality group of Nf = 2 with masses
m = 1

2(Λ2,Λ2). The AD point corresponds to the elliptic fixed point τAD = 1 + ı̊.

The mass parameter thus allows us to interpolate between the massless Nf = 2
theory through the AD point into the decoupling to the pure theory. A picture of this
is shown in Fig. 2.6.

u-plane of AD theory

When tuning the mass to the AD value the disconnected cusps corresponding to the
non-local singularities form the fundamental domain for the order parameter of the AD
curve, i.e., the curve found from taking the scaling limit to the AD theory [70]. See Fig.
2.6. The disconnected cusps form a fundamental domain for Γ0(2), which is incidentally
congruent to the duality group of the asymptotically free theory at the AD point, as
discussed above. To demonstrate this, recall that the AD curve reads [70],

y2 = x3 − Λ2
2

4 ũx− Λ3
2

12mũ+ Λ3
2

27m
3. (2.70)

This gives for the order parameter

ũ(τ) = 4
3m

2 − m2 f2B(τ)
64 + f2B(τ) , (2.71)

with f2B(τ) as in (2.64). As mentioned before, f2B is a Hauptmodul for Γ0(2), such
that the disconnected domain is indeed a fundamental domain for ũ.
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Fig. 2.6 Choice of branch cuts for varying mass parameter in the equal mass Nf = 2 theory.
Same colour boundaries are, as usual, identified. Starting with a small mass in Figure (a) we
introduce two cuts (zig-zag lines) along the paths shown in Fig. 2.3. At the AD mass we can
use the identifications of the different boundaries to reorganise the domain in Figure (b) to
the one of Figure (c). When we increase the mass further the cuts of Figure (c) move upwards
as in Figure (d) eventually reaching infinity and disappearing, leaving us with the domain of
the pure theory, Fig. 1.2.

2.2.2 Partitioning of the u-plane

Finally, we can study the partitioning that the domain (2.62) induces on the u-plane
under the map (2.57). As studied in Section 2.1.3, the partitioning is contained in a
real algebraic plane curve, which is given by the equation Im J (u,m,Λ2) = 0. For
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generic µ = m
Λ2

, we can compute it as the zero locus of the polynomial

T(m,m) =y
(
−128µ2x+ 48µ2 + 64x2 − 16x+ 64y2 − 3

)
×
(

− 720896µ4x2y2 + 262144µ2x2y4 − 262144µ2x4y2 − 262144µ2x3y2

− 303104µ2x2y2 − 589824µ6x2 + 688128µ4x4 + 737280µ4x3 + 27648µ4x2

− 262144µ2x6 − 786432µ2x5 − 86016µ2x4 − 36864µ2x3 − 1728µ2x2

− 49152µ4xy2 + 524288µ2xy4 + 24576µ2xy2 − 221184µ6x+ 20736µ4x

+ 589824µ6y2 + 688128µ4y4 + 9216µ4y2 + 262144µ2y6 + 12288µ2y4

− 2880µ2y2 + 165888µ8 − 1944µ4 + 81µ2 + 786432x3y4 + 65536x2y4

+ 786432x5y2 + 131072x4y2 + 40960x3y2 + 10240x2y2 + 262144x7

+ 65536x6 + 12288x5 + 6144x4 − 576x3 + 144x2 + 262144xy6 + 28672xy4

− 1344xy2 − 27x
)
.

(2.72)

The second factor on the rhs gives a circle on the x+ ı̊ y = u
Λ2

2
-plane with radius |µ2 − 1

4 |
and centre (x, y) = (µ2 + 1

8 , 0). By tuning the mass µ from 0 to ∞, one passes through
the AD point µ = 1

2 where the radius of the circle shrinks to 0. For this mass, three
regions defined through T(m,m) = 0 collapse to a point x+ ı̊ y = uAD

Λ2
2

= 3
8 , which is the

only root over R2 of the quadratic polynomial. This gives further evidence that the
domain (2.62) is in fact correct for all µ ∈ (0,∞)\{1

2}.
We can find the truncations of the zero locus of (2.72) that gives the partitioning

(2.25) in the following way. The locus y = 0 cannot be contained fully in Tm, since
otherwise the partition of B2 would be into more than 6 parts. By direct computation
one can show that for 0 < m

Λ2
< 1

4 we have J (u,m) ≤ 123 for u− < u < u+ (recall that
J (u,m) diverges for all u approaching a singularity). This proves that the line from
u− to u+ is contained in Tm. It allows to identify the boundary pieces αj∂F on H with
the boundary pieces ∂(u(αjF)) on B2, which is depicted in Fig. 2.7.

2.2.3 Two distinct masses

In the generic case, the two masses are distinct. We can expand and invert the
J -invariant for large u to find the series (here µi = mi

Λ2
)

u(τ)
Λ2

2
= − 1

64q
− 1

2 − 1
2(µ2

1 + µ2
2) +

(
24(µ4

1 + µ4
2) + 16µ2

1µ
2
2 − 32µ1µ2 − 5

16

)
q

1
2

−128
(
µ2

1 + µ2
2

) (
16(µ4

1 + µ4
2) − 14µ1µ2 + 1

)
q + O(q 3

2 ).
(2.73)

The double singularity u∗ in the equal mass case now splits into two distinct singularities,
u±

∗ . Due to the locus of masses giving rise to u-planes with AD points, it is difficult to
give a fundamental domain F2(m) for any choice of m = (m1,m2). From (2.22) it is
clear that there are two distinct branch points in B2. When both m1 and m2 are real
and small, i.e. have not made a phase transition compared to m = 0, one branch point
ubp,1 belongs to Tm, while the other ubp,2 does not. However, J (ubp,2) = j(τbp,2) ∈ R is
also real but larger than 123. A natural choice of branch cuts is along the tessellation
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Fig. 2.7 Identification of the components of the partitioning T(m,m) in Nf = 2 for the particular
choice m = Λ2

6 . The left figure is the fundamental domain in the τ -plane while the right figure
gives the corresponding partitioning of the u-plane. The mapping between the two is given
by Eq. (2.57). The u-plane B2 is partitioned into 6 regions u(αF), with the α ∈ SL(2,Z)
given in both pictures. These correspond, physically, to different duality frames of the theory.
However, we note that, obviously, some frames are mutually local with respect to each other,
meaning that we can use the same local parameters for these frames. The branch point
(purple) identifies four points on ∂F(m,m). A natural choice of branch cut is on the circle
around τ = 1 with radius 1, as suggestive in Fig. 2.3 (we omit it in this Figure for readability).
The singularities u± correspond to a single massless particle each and thus lie in the interior
of a u(αF). The singularity u∗ is double and thus lies on the boundary of two such regions.
The boundary pieces of F(m,m) are pairwise identified, which can be found by comparing
F(m,m) with the curve T(m,m) = 0. Glueing the corresponding boundary pieces results in a
Riemann surface of genus 0 with punctures.
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Fig. 2.8 Identification of the components of the partitioning T(m1,m2) in Nf = 2 for the
particular choice µ1 = 1

10 and µ2 = 1
4 . The u-plane B2 is naively partitioned into six regions

u(αF), with the α ∈ SL(2,Z) given in both pictures. Two regions u(TSF) and u(TST−1F)
are however glued along the pairs of branch cuts (dotted), running from the two singular
points u±

∗ (orange, square) to the branch point τbp,2 (purple, square). They do not belong to
the partitioning Tm. A natural choice for the branch cut is along the lines where j(τ) is real.

{τ ∈ H | j(τ) ∈ R}, which aside from (2.29) contains the SL(2,Z) images of the positive
imaginary axis. The plot of the partitioning Tm shows a new feature compared to
the previous case: The u-plane is partitioned into only 5 regions, which is due to two
regions u(αjF) being glued along pairs of branch cuts (see Fig. 2.8). The splitting of
u∗ into two distinct singularities in this case does not require the two regions TSF and
TST−1F to taper to distinct cusps, as we have that both TS, TST−1 : ı̊∞ 7→ 1. The
two singularities are rather split due to the branch cut, and the limit of u(τ) as τ → 1
depends on the path from which τ = 1 is approached. This is different from u+ ̸= u−,
where the boundary pieces near the cusps are not identified.

This concludes our analysis of the SU(2) theory with two fundamental hypermulti-
plets. A similar analysis can be made for the cases of Nf = 1 and Nf = 3, see [2]. For
Nf = 3 with mass vector m = (m, 0, 0) a closed expression for the order parameter
can be found, similar to the equal mass Nf = 2 discussed above. The theory with one
flavour is more elusive, closed expressions seems to only be available when m = 0 or
m = mAD. In the massless case there are again branch points due to square roots. This
is in contrast to the massless limits of Nf = 2 and 3, where the order parameter is
fully modular, being a Hauptmodul for Γ(2) and Γ0(4), respectively. When discussing
the SU(3) theory in the next Chapter we will find the same function, as the order
parameter of the massless Nf = 1, appearing as the order parameter on a certain slice
of the moduli space. Before that, we will discuss the theory with four flavours.
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2.3 The special case of four flavours

Let us now analyse the special case of having four fundamental hypermultiplets in
the SU(2) SW theory. As mentioned in Sec. 1.1.1, see Eq. (1.14), we will now have
a nontrivial dependence on an extra dimensionless parameter τUV. To shorten the
notation, we will set τ0 := τUV and q0 := e2π ı̊ τ0 in the following. Furthermore, the
massless theory is now superconformal.

The low-energy physics is again encoded in an elliptic curve which depends holo-
morphically on the Coulomb branch parameter u ∈ B4. To write down the curve, we
first define the symmetric mass combinations

q
mk

1
y

=
4∑

i=1
mk

i ,
q
m2

1m
2
2
y

=
∑
i<j

m2
im

2
j

q
m4

1m
2
2
y

=
∑
i ̸=j

m4
im

2
j ,

q
m2

1m
2
2m

2
3
y

=
∑

i<j<k

m2
im

2
jm

2
k,

Pf(m) = m1m2m3m4.

(2.74)

The Nf = 4 curve for generic masses is then [8]

y2 = W1W2W3 +A (W1T1 (e2 − e3) +W2T2 (e3 − e1) +W3T3 (e1 − e2)) −A2N, (2.75)

where

Wi = x− eiu− e2
iR,

A = (e1 − e2) (e2 − e3) (e3 − e1) ,

R = 1
2

q
m2

1
y
,

T1 = 1
12

q
m2

1m
2
2
y

− 1
24

q
m4

1
y
,

T2,3 = ∓1
2Pf(m) − 1

24
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2
2
y

+ 1
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,
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q
m6

1
y
, (2.76)

and the half periods

e1 = 1
3(ϑ4

3 + ϑ4
4), e2 = −1

3(ϑ4
2 + ϑ4

3) e3 = 1
3(ϑ4

2 − ϑ4
4) (2.77)

are functions of τ0 := τUV, with e1 + e2 + e3 = 0. We obtain the low energy theory with
Nf = 3 flavours by taking the limit τ0 → ı̊∞ (or, equivalently, q0 → 0) and m4 → ∞
while holding Λ3 = 64q

1
2
0 m4 fixed. The order parameters are then related as [8]

uNf =4 + 1
4e1

q
m2

1
y

→ uNf =3. (2.78)
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Let us study the singularity structure of the Coulomb branch. For generic masses
m = (m1,m2,m3,m4), there are six distinct strong coupling singularities. By tuning
the mass, some of those singularities can collide. If we weight each singularity by
the number of massless hypermultiplets at that point, the total weighted number of
singularities on the u-plane is always 6. Denote by kl the weight of the l-th singularity,
and by k(m) = (k1, k2, . . . ) the vector of those weights. In Table 2.2, we list a selection
of specifically symmetric mass configurations. One notices that certain a priori unrelated
cases have the same weight vector k and global symmetries, such as the cases {B, C, D}
and {E, F, G}. This will be explained below. It is also clear that k(m) gives a partition
of 6, the total number of singularities on B4.

Name m k(m) global symmetry
A (m,m, 0, 0) (2, 2, 2) SU(2) × SU(2) × SU(2) × U(1)
B (m,m,m,m) (4, 1, 1) SU(4) × U(1)
C (2m, 0, 0, 0) (4, 1, 1) SU(4) × U(1)
D (m,m,m,−m) (4, 1, 1) SU(4) × U(1)
E (m,m, µ, µ) (2, 2, 1, 1) SU(2) × SU(2) × U(1) × U(1)
F (m+ µ,m− µ, 0, 0) (2, 2, 1, 1) SU(2) × SU(2) × U(1) × U(1)
G (m,m, µ,−µ) (2, 2, 1, 1) SU(2) × SU(2) × U(1) × U(1)

Table 2.2 List of some mass cases with enhanced flavour symmetry in Nf = 4, with µ ̸= m.
The vector k(m) lists the multiplicities of all singularities on the Coulomb branch B4 with
mass m.

2.3.1 Triality

Let us study the symmetries of the Nf = 4 curve (2.75) with mass m = (m1,m2,m3,m4).
Scale invariance, the U(1)R R-symmetry and the SL(2,Z) symmetry acting on τ0 are
explicitly broken by the masses. There is a remnant scale invariance on the Coulomb
branch, which manifests itself in the J -invariant B4 × C4 × H → C of the curve being
a quasi-homogeneous rational function of degree 0 and type (2, 1, 0),

J (s2u, sm, τ0) = J (u,m, τ0), s ∈ C∗. (2.79)

The Nf = 4 theory has an SO(8) flavour symmetry, which becomes the universal double
cover Spin(8) in the quantum theory. In particular, there exists a short exact sequence

1 → Z2 → Spin(8) → SO(8) → 1 (2.80)

of Lie groups. The cover Spin(8) has an order 6 group Out(Spin(8)) of outer automor-
phisms, which is isomorphic to S3 [88, 89].7

7For any Lie group G, there are three associated groups. Aut(G) is the Lie group consisting
of all automorphisms of G (i.e. group isomorphisms G → G), Inn(G) is a normal subgroup of
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This group of outer automorphisms acts on the Nf = 4 theory as follows. The
states with (nm, ne) = (0, 1) are the elementary hypermultiplets, which transform in the
fundamental vector representation of Spin(8). The magnetic monopole (1, 0) transforms
as one spinor representation, and the dyon (1, 1) transforms as the conjugate spinor
representation [8]. By an accidental isomorphism, these three representations are all
8-dimensional and irreducible, and they are permuted by the outer automorphism group
Out(Spin(8)) ∼= S3. It is generated by

T =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , S = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , (2.81)

which act on the column vector m ∈ M := C4 from the left [8, 90, 91]. The map T
exchanges the two spinors keeping the vector fixed, while S exchanges the vector with
the spinor, keeping the conjugate spinor fixed. This is depicted in Fig. 2.9.

S

T
v ad

s̄

s

Fig. 2.9 Dynkin diagram of d4 = Lie(Spin(8)). The group T ∼= S3 of outer isomorphisms
acts by permutations on the three conjugacy classes of irreducible representations v, s and
s̄ attached to the nodes of the diagram. The 28-dimensional adjoint representation is left
invariant by T .

The generators (2.81) satisfy the algebra

T 2 = S2 = (ST )3 = ST 2S = 1, (2.82)

which is a presentation of the symmetric group S3. Since T TT = STS = 1 but
det T = det S = −1, the matrices T and S generate a subgroup

T = ⟨T ,S⟩ (2.83)

Aut(G) consisting of inner automorphisms given by αg(h) := ghg−1 for any g ∈ G, and Out(G) =
Aut(G)/Inn(G) is the quotient group. The automorphism group of Spin(8) is Aut(SO(8)) = PSO(8)⋊S3
[88].
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of the orthogonal group O(4,C), isomorphic to S3.8 As a consequence, they leave the
inner product Jm2

1K (2.74) invariant.
The flavour symmetry mixes with the SL(2,Z)-symmetry acting on the UV-coupling

τ0 in an interesting way. To see this, notice that the reduction Z → Z2 modulo 2 induces
a homomorphism SL(2,Z) → SL(2,Z/2Z). Since SL(2,Z/2Z) ∼= S3 are isomorphic, by
transitivity we have a group homomorphism

φ : SL(2,Z) −→ Out(Spin(8)). (2.84)

The full symmetry group of the Nf = 4 theory is the semidirect product [8]9

T := Spin(8) ⋊φ SL(2,Z). (2.85)

The group (T, •) consists of elements (A, γ) ∈ Spin(8) × SL(2,Z), with group operation

(A, γ) • (Ã, γ̃) := (Aφ(γ)(Ã), γ ◦ γ̃). (2.86)

The action of (2.81) is thus accompanied with an action of SL(2,Z) on τ and τ0. From
(2.82) we find that T 2 and ST 2S leave any mass configuration invariant. This implies
that the theory should also be invariant under the simultaneous action of T 2 and ST 2S

on the two couplings. These two matrices in SL(2,Z) generate the principal congruence
subgroup Γ(2), Fig. 2.4. From this it is also clear that

SL(2,Z)/Γ(2) = {I, T, S, TS, ST, TST} ∼= S3, (2.87)

which is another way to see that the group of outer isomorphisms is S3 [91]. This action
is depicted in Fig. 2.10. The subgroup Γ(2) is the kernel of the group homomorphism
SL(2,Z) → SL(2,Z/2Z), such that it is in fact a normal subgroup Γ(2) � SL(2,Z).

I S

T TS

ST TST

S

TT

SS

T

Fig. 2.10 Action of SL(2,Z) on SL(2,Z)/Γ(2) ∼= S3

8They actually form a subgroup of O(4,Q), but act on m ∈ C4.
9Recall that for two groups G and H, a group homomorphism φ : G → Aut(H) defines a semi-

direct product H ⋊φ G ⊂ H ×G with the multiplication (h1, g1)(h2, g2) := (h1φ(g1)(h2), g1g2). For
(h, g) ∈ H ⋊φ G, the inverse is found as (φ(g−1)(h−1), g−1).
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The moduli spaces of the cases A–G of Table 2.2 are related by T in the following
way. We have that mA,mC,mF are invariant under T . Case A is invariant under both
T and S. The S-transformation relates cases B and C, as well as E and F, while leaving
cases D and G invariant. We depict the relation among cases B, C and D in Fig. 2.11.
For the cases E, F and G, there is an analogous diagram. An instance of these relations

mB mD

mC

T

S

S

T

Fig. 2.11 Relation among mB = (m,m,m,m), mC = (2m, 0, 0, 0) and mD = (m,m,m,−m).

is that the weights of the singular structure on the Coulomb branch are invariant under
those spaces that are related by triality,

k(T m) = k(m). (2.88)

Using the action of the SO(8) flavour group, a large range of masses with equivalent
duality diagrams can be reached. For example, the mass m = (2m, 0, 0, 0) is related to
m = (0, 0, 0, 2m) by an SO(8) rotation. The first one is invariant under T while the
second one is not. The orbit under T and S for the case m = mB = (2m, 0, 0, 0) is, as
we have just discussed, given by Fig. 2.11, while that of m = (0, 0, 0, 2m) is given in
Fig. 2.12. We see that it is of order six, and includes different relative signs compared
to mA and mD. On closer inspection, we note that the mass vectors come in pairs
differing by an overall sign, which is an element of SO(8). Thus identifying the mass
vectors related by SO(8) in diagram 2.12, we find that it is equivalent to diagram 2.11.

2.3.2 Group action

The action
T × M −→ M

(g,m) 7−→ g · m
(2.89)

of the triality group T on mass space M can be studied in great detail. It is easy to
check that the action is faithful10, but neither free11 nor transitive12.

10For every g ̸= h ∈ T there exists an m ∈ M such that g · m ̸= h · m.
11A group action is free if it has no fixed points, but m = 0 is a fixed point for any g ∈ T .
12For each pair m, m̃ ∈ M there exists g ∈ T such that a g · m = m̃. A counterexample would be

m = 0 and m̃ ̸= 0.
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(0, 0, 0, 2m) (m,−m,−m,m)

(0, 0, 0,−2m) (m,−m,−m,−m)

(−m,m,m,−m) (−m,m,m,m)

S

TT

SS

T

Fig. 2.12 Orbit of the mass vector m = (0, 0, 0, 2m) under T and S.

Up to conjugation, S3 ∼= T has four subgroups. They are: the trivial group Z1, the
symmetric group S2 ∼= Z2, the alternating group A3 ∼= Z3, and S3 itself. They have
order 1, 2, 3, and 6, respectively. All three proper subgroups are abelian. For a given
m, triality thus not always act by the full S3 but rather by a subgroup. For every
m ∈ M we can study the orbit T · m = {g · m | g ∈ T }. The sets of orbits of M

then give a partition of M under the action (2.89).
First, notice that since T is a finite group, all elements have finite order. In

particular, T 2 = S2 = (T ST )2 = 1 and (ST )3 = (T S)3 = 1. The stabiliser subgroup
of a mass m ∈ M is defined as Tm = {g ∈ T | g · m = m}. By the orbit-stabiliser
theorem

|T · m| = |T |/|Tm|, (2.90)

it suffices to study the fixed point equations in order to identify the stabiliser subgroups
{Z1, S2, A3, S3} with the subgroups of T . It is straightforward to identify the fixed
point loci

LT = {m ∈ M |m4 = 0},
LS = {m ∈ M |m1 = m2 +m3 +m4},

LST S = {m ∈ M |m1 = m2 +m3 −m4},
LST = LT S = {m ∈ M |m1 = m2 +m3 and m4 = 0},

(2.91)

where Lg = {m ∈ M | g · m = m}. For m in precisely one of LT , LS or LST S , one
finds that |T · m| = 3. From (2.90) it then follows that |Tm| = 2, such that Tm

∼= S2.
In fact, since T , S and ST S are all order 2 elements of T , the stabiliser groups Tm

for m in either of the three loci are precisely the three order 2 conjugate subgroups of
T ∼= S3.



2.3 The special case of four flavours 51

The intersection

L1 = LT ∩ LS = {m ∈ M |m1 = m2 +m3 and m4 = 0} (2.92)

is the locus of triality invariant masses, T · m = m. Thus, according to (2.90) we have
|Tm| = 6 for such masses, such that indeed Tm = T . For the last locus in (2.91), we
see immediately that LST = LT S = LT ∩ LS contains precisely the invariant masses.
Therefore, if m is kept fixed by either T S or ST then it is also fixed by both T and
S and therefore by all of T . Since ST and T S are the only elements of T of order
3, there is actually no mass m such that T · m has 2 elements, and so there is no
stabiliser subgroup isomorphic to A3. By case analysis, it is also easy to prove that the
set T · m has 1, 3 or 6 elements.

Let us summarise. If m ∈ L1, it is invariant under T . If m is in any of LT , LS

or LST S , it could be in the intersection of any two of them. These intersections are
however all equal to L1, which is of course because any two elements of {T ,S,ST S}
generate T . This is depicted in Fig. 2.13.

m1

m4

LSLST S

LT

L1

Fig. 2.13 The loci (2.91) with nontrivial stabiliser groups on the subspace m2 = m3 = 0 in
M . They all mutually intersect in the locus L1 of triality invariant masses.

If m is then an element of

L3 = LT ∪ LS ∪ LST S \ L1, (2.93)

then the stabiliser group of m is isomorphic to S2. If m does not lie in either L1 or L3,
then there is no remaining symmetry. It lies in

L6 = M \ L1 ∪ L3, (2.94)

and its stabiliser group is trivial.
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2.3.3 Order parameters and bimodular forms

The massless case where m0 = (0, 0, 0, 0) is very simple, as j(τ) = J (u, 0, τ0) = j(τ0)
and therefore

τ(u) = τ0 (2.95)

is constant over the whole Coulomb branch B4 ∋ u. In other words, the coupling τ is
fixed and thus does not run, which is a consequence of the massless Nf = 4 theory
being exactly superconformal. There are six singularities, which all sit at the origin
u = 0 and form the non-abelian Coulomb point with a five quaternionic-dimensional
Higgs branch [70].

To make the analysis in the previous sections more explicit, we can study some
less trivial cases. Namely, the three cases E, F and G, with mE = (m,m, µ, µ),
mF = (m+ µ,m− µ, 0, 0) and mG = (m,m, µ,−µ). The action of T and S on these
theories was shown in Fig. 2.11. By taking various limits of the masses we can further
use these three cases to recover the four cases A, B, C and D of Table 2.2. For example,
if we send µ → 0 all three cases become case A, while if we send µ → m we see that E
becomes B, F becomes C and G becomes D. However, due to the fact that we now have
two distinct mass parameters, the theories become more complicated, in the same way
as discussed for the asymptotically free theories in Sec. 2.1, e.g., superconformal fixed
points of Argyres-Douglas (AD) type appear, as well as branch points due to square
roots [70].

By following the procedure outlined in Sec. 2.1 we can find the order parameters

uE = ϑ3(τ0)4

6(λ− λ0)(λλ0 − 1)

[
(m2 + µ2)(1 + λ0)(λ0 + λ(2 + λ0(λ− 6 + 2λ0)))

+ 3(λ2 − 1)(λ0 − 1)λ0

√
(m2 − µ2)2 + 4m2µ2 λ

λ0

(λ0 − 1)2

(λ− 1)2

]
,

uF = ϑ3(τ0)4

6(λ− λ0)(λ(λ0 − 1) − λ0)

[
(m2 + µ2)(λ0 − 2)(λ2(λ0 − 1) + 2λ2

0(λ− 1))

+ 3(λ− 2)(λ0 − 1)λ0

√
(m2 − µ2)2λ2 + 4m2µ2λ2

0
λ− 1
λ0 − 1

]
,

uG = ϑ3(τ0)4

6(λ2 − λ− λ2
0 + λ0)

[
(m2 + µ2)(2λ0 − 1)((λ0 − 1)λ0 + 2λ2 − 2λ)

+ 3(2λ− 1)(λ0 − 1)λ0

√
(m2 − µ2)2 + 4m2µ2 λ

λ0

λ− 1
λ0 − 1

]
,

(2.96)

where we have abbreviated λ(τ) = λ, λ(τ0) = λ0.
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We can note that, by acting on both τ and τ0 at the same time, using T : λ 7→ λ
λ−1

and S : λ 7→ 1 − λ, we find

T :

uE(τ + 1, τ0 + 1) = uG(τ, τ0),
uF(τ + 1, τ0 + 1) = uF(τ, τ0),

S :

uE(− 1
τ
,− 1

τ0
) = τ 2

0uF(τ, τ0),
uG(− 1

τ
,− 1

τ0
) = τ 2

0uG(τ, τ0),

(2.97)

which is the expected behaviour under the triality action of these transformations. Due
to the square roots, the transformation on each parameter separately is however more
subtle.

If we send µ → 0 we find that the order parameter of all three cases becomes the
order parameter of case A,

uA(τ, τ0) = −m2

3 ϑ3(τ0)4λ(τ0)2 + 2 (λ(τ) − 1)λ(τ0) − λ(τ)
λ(τ0) − λ(τ) . (2.98)

Now the square roots have disappeared and we can more easily examine the function
uA. First of all, since all three cases E, F and G degenerated to the same function
we directly see that under the simultaneous action of SL(2,Z) on both τ and τ0 as in
(2.97), we find

uA(γτ, γτ0) = (cτ0 + d)2 uA(τ, τ0), γ =
a b

c d

 ∈ SL(2,Z). (2.99)

Secondly, since λ(τ) is a Hauptmodul for Γ(2) we easily find that uA transforms as a
modular function for Γ(2) when acting only on τ , while keeping τ0 fixed, and as a weight
two modular form when instead acting on τ0 and keeping τ fixed. Following Definition
1 of Appendix B.4, we then say that uA : H × H → C in (2.98) is a bimodular form of
weight (0, 2) for the triple

(Γ(2),Γ(2); SL(2,Z)), (2.100)

with trivial multipliers χ and ϕ. In fact, m 7→ uA is a 1-parameter family of such
bimodular forms.
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If we instead take the limit µ → m we find that uE → uB, uF → uC and uG → uD,
with

uB(τ, τ0) = − m2

3 ϑ2(τ0)2ϑ3(τ0)2 2f(τ0)2 + f(τ)f(τ0) − 12
f(τ0) − f(τ) ,

uC(τ, τ0) = − m2

3 ϑ3(τ0)2ϑ4(τ0)2 2f̃(τ0)2 + (10f̃(τ) + 1)f̃(τ0) + 2f̃(τ)
f̃(τ0)(f̃(τ0) − f̃(τ))

,

uD(τ, τ0) = − m2

3 ı̊ ϑ2(τ0)2ϑ4(τ0)2 2f̂(τ0)2 + f̂(τ)f̂(τ0) − 12
f̂(τ0) − f̂(τ)

,

(2.101)

the order parameters of cases B, C and D, respectively, and where we further expressed
the Hauptmoduln of the congruence subgroups Γ0(4), Γ0(4) and Γ̃0(4) = TΓ0(4)T−1,
respectively, as

f :=ϑ
4
2 + ϑ4

3
ϑ2

2ϑ
2
3
,

f̃ := ϑ2
3ϑ

2
4

(ϑ2
3 − ϑ2

4)2 ,

f̂(τ) :=f(τ + 1) = ı̊
ϑ2(τ)4 − ϑ4(τ)4

ϑ2(τ)2ϑ4(τ)4 .

(2.102)

Similar to the case A, we now find that these three order parameters transforms as
bimodular forms for the triples

uB :
(
Γ0(4),Γ0(4); Γ0(2)

)
,

uC : (Γ0(4),Γ0(4); Γ0(2)) ,

uD :
(

Γ̃0(4), Γ̃0(4); Γθ

)
,

(2.103)

See Appendix A for the relevant definitions. However, as seen from Fig. 2.11 we further
expect them to transform into each other under the simultaneous action of the whole
group of SL(2,Z). This can be checked explicitly, and we thus find that they satisfy
Definition 2 in Appendix B.4 of a vector valued bimodular form.

Another new phenomena in Nf = 4, as compared to the asymptotically free theories,
is that there is now also a singularity in the interior of the fundamental domain where
τ → τ0 and u → ∞, as can be seen from (2.96). This is also present in the theory with
one adjoint hypermultiplet [39].

Special points

As in the theories with 0 < Nf ≤ 3 there is a plethora of theories in the moduli space
of generic masses Nf = 4 where the singularity of the fibres is of a higher type, in the
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sense of Kodaira, and where mutually non-local dyons become massless [70].13 These
can be classified similarly as in the asymptotically free theories by finding the values of
m and u such that g2 = g3 = 0. Compare with the discussion in Sec. 2.1.2.

As we have just seen, there are also theories where the order parameter has branch
points due to square roots, exactly as we saw in the cases with 0 < Nf ≤ 3. The
natural interpretation that arose from the analysis of the asymptotically free theories
in [2] and Sec. 2.1, is to think of the branch points as signalling a first order phase
transition connected to the second order transition that is the Argyres-Douglas (AD)
theories. This implies that we might expect to have branch cuts whenever we have an
AD theory. It is straightforward to check that the cases A, B, C and D of Nf = 4 only
have as superconformal fixed points m → 0, u → 0, so that the lack of branch points in
these theories is consistent with the above claim. For the more general cases the story
changes as we have just seen for cases E, F and G. Let us therefore study the special
points of these theories in more detail.

AD points

Similar to what we did in Sec. 2.1.2, we define the AD loci as the values of the masses
for which there exists an AD theory. This can then be expressed as the zero loci of the
polynomials

PAD
E =

(
m2λ0 − µ2

) (
µ2λ0 −m2

)
PAD

F =
(
m2(λ0 − 1) + µ2

) (
µ2(λ0 − 1) +m2

)
,

PAD
G =

(
m2(λ0 − 1) − λ0µ

2
) (
µ2(λ0 − 1) − λ0m

2
)
,

(2.104)

Since T : λ 7→ λ
λ−1 and S : λ 7→ 1 − λ we see that the AD loci also satisfy triality, such

that if we act on PAD
E with T we get PAD

G (up to an overall non-zero factor which is not
important since we are looking for the roots of the polynomial) and if we act with S we
get PAD

F .
By tuning the mass to any of the AD values we find that three singularities merge.

Depending on which AD mass is chosen, one of the degeneracy two singularities umi

merge with one of the degeneracy one singularities u±. This gives rise to a singular fibre
of type III (ord(g2, g3,∆) = (1, 2, 3)), implying that three mutually non-local states
are becoming massless [70]. It is now easy to find closed expressions for u for any of
the three theories, and the square roots all disappear.14

13Note however that we should not expect to find any new types of theories, compared to the ones
of Nf ≤ 3 in this moduli space, but only types II-IV [70]. This is because an overall scaling of the
masses is not a true parameter of the theory.

14Note that for some of the values of the masses the solution we have picked for general m and µ
will become a constant function of τ , this is because the chosen solution corresponds to the solution
for u near a singularity that merges with others to become the AD singularity.
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To give an example we take case E and tune the masses such that m = µ
√
λ0, where√

λ = ϑ2
2

ϑ2
3

is a holomorphic modular form. The order parameter becomes

uAD
E = 2µ2ϑ3(τ0)4

3
(λ0 − 1)(λ0(λ0(f2 + 8(7 + λ0))) − 56) − 8

λ0(32 + f2 − 16λ0) − 16 , (2.105)

where f2 = f2(τ) = 16 ϑ4(τ)8

ϑ2(τ)4ϑ3(τ)4 is a Hauptmodul of the index 3 congruence subgroup
Γ0(2) ⊂ SL(2,Z). It is straightforward to check that uAD

E has weight 0 under separate
transformations on τ for Γ0(2), and weight 2 under separate transformations on τ0 for
Γ(2). Thus, the group of simultaneous transformations contains Γ0(2) ∩ Γ(2) ∼= Γ(2).
We therefore find that uAD

E is a bimodular form of weight (0, 2) for the triple

(Γ0(2),Γ(2); Γ(2)). (2.106)

Note that this is our first example of a bimodular form that has two different modular
groups for the two couplings. The fact that the index in SL(2,Z) of the modular group
of τ shrinks by the number of merged non-local singularities, 2 + 1 in this case, is the
expected behaviour of AD theories, as we argued for in Sec. 2.1.2.

Since the two separate duality groups, Γ0(2) and Γ(2), are different, we cannot
choose the fundamental domains for τ and τ0 to coincide as in previous cases. Instead,
we can choose the fundamental domain for τ as a subset of that for τ0. Equation (2.105)
demonstrates that uAD

E has a single pole as a function of τ ∈ H/Γ0(2) for fixed τ0, while
it has two poles as function of τ0 ∈ H/Γ(2) for fixed τ . The two points in τ0 ∈ H/Γ(2)
are related by an element in Γ0(2)/Γ(2).

We can further note that the AD mass, mAD = µ
√
λ0, is not invariant under Γ(2)

acting on τ0, due to the square root. We rather have that mAD → −mAD under T 2,
which is of course another AD point of the theory, and the order parameters of the two
theories are given by the same expression. Furthermore, acting with S and T on τ0

sends this AD mass to the corresponding AD masses of cases F and G, respectively.
We also have the possibility of tuning τ0 to a specific value such that more singularities

merge. In the above solution, if we fix τ0 = 1+ ı̊, or λ0 = −1, we find that the remaining
degeneracy two singularity merge with the degeneracy one singularity such that we
get the weight vector k = (3, 3). The relation between the masses is now m = ı̊ µ

and the order parameter is actually independent of τ , the curve is simply given by
J = j(τ0) = 123. Therefore, the coupling τ(u) = τ0 = 1 + ı̊ is fixed over the whole
Coulomb branch. This is expected from the same argument as before since we merge
two sets of 3 non-local singularities, such that the fundamental domain for τ just shrinks
to a point τ0.
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Branch points

As previously mentioned, in the more generic cases there will also be branch points.
For the theories E, F and G these are given by the branch points of the square roots in
2.96,

E : λ

(λ− 1)2 = − λ0

(λ0 − 1)2
(m2 − µ2)2

4m2µ2 ,

F : λ− 1
λ2 = 1 − λ0

λ0

(m2 − µ2)2

4m2µ2 ,

G : λ(λ− 1) = λ0(1 − λ0)
(m2 − µ2)2

4m2µ2 .

(2.107)

In the u-plane they are given by

E : ubp = − ϑ3(τ0)4(1 + λ0)
m4 − 4m2µ2 + µ4

3(m2 + µ2) ,

F : ubp = − ϑ3(τ0)4(λ0 − 2)m
4 − 4m2µ2 + µ4

3(m2 + µ2) ,

G : ubp =ϑ3(τ0)4(2λ0 − 1)m
4 − 4m2µ2 + µ4

3(m2 + µ2) .

(2.108)

It is straightforward to see that also these points satisfy triality.
We can now use the same methods as in 2.1 and 2.2 to construct fundamental

domains of the theories with four flavours and study the decoupling to other theories.
For example, in the case of theory A we get the domain in Fig. 2.14. From (2.96) we
can also calculate other important functions, such as du

da
, du

dτ
and ∆, using the methods

described in the previous Sections.

− 1
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2

1 3
2

F T

TSS

ST−1 TST

ST−2 TST 2

ST−2S TST2S

τUV

Fig. 2.14 Fundamental domain of the Nf = 4 theory with mass m = (m,m, 0, 0). The six
singularities on the Coulomb branch B4 are described by the three cusps, each of width 2.
The I∗

0 singularity corresponding to u = ∞ sits at τ = τ0 = τUV.



58 Cutting and gluing with running couplings

This concludes our discussion of the modular properties of the SU(2) SW theories
with fundamental matter. We have seen that in general there are branch points in the
order parameter as a function of the coupling. These branch points then make the
modular transformations more subtle to understand. We have still showed how we can
analyse the Coulomb branch in great detail and construct fundamental domains for
the running coupling. In certain limits of the masses the fundamental domain changes.
The branch points and their corresponding cuts provide a natural mechanism for these
changes.



Chapter 3

Elliptic loci of SU(3) vacua

Let us now return to the pure theory but change the gauge group to SU(3). Instead of
an elliptic curve the Seiberg-Witten curve will now be a genus two curve [33]. Many
aspects of the non-perturbative dynamics have previously been analysed [92, 19], while
we will focus on the modular properties of the theory. We will in particular study two
subloci of the moduli space where one of the order parameters vanish, and see that
the genus two curve degenerates to two elliptic curves. On these loci, we show how
the non-vanishing order parameter can be expressed in terms of modular forms. This
Chapter is based on the paper [1].

3.1 Seiberg-Witten geometry of SU(3)

Similar to the SU(2) theory, the vector multiplet scalar ϕ can be gauge rotated into
the Cartan subalgebra of SU(3). Then, ϕ can be expanded in terms of the two Cartan
generators HI , I = 1, 2, as

ϕ = a1H1 + a2H2. (3.1)

Non-vanishing vevs of ϕ break the gauge group in general to U(1)2. We denote electric-
magnetic charges under U(1)2 as γ = (p1, p2, q1, q2), where pi are the magnetic and qi the
electric charges respectively. The period vector is denoted as π = (aD,1, aD,2, a1, a2)T .
The central charge for a generic γ is then given by Zγ = γ · π, where · is the standard
scalar product.

Classically, there are three singular points where gauge bosons are becoming massless.
Their charge vectors are given by the roots of the gauge algebra such that the central
charges take the form

Z1 = 2a1 − a2,

Z2 = 2a2 − a1,

Z3 = a1 + a2.

(3.2)
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Just as in the SU(2) theory, the Coulomb branch is parametrised by vevs of Casimirs
of ϕ, uI ∼ ⟨TrϕI⟩, I = 2, 3. Gauge invariant combinations for SU(3) are

u = u2 = 1
2⟨Tr(ϕ2)⟩R4 = a2

1 + a2
2 − a1a2,

v = u3 = 1
3⟨Tr(ϕ3)⟩R4 = a1a2(a1 − a2).

(3.3)

These relations can be rewritten in terms of two cubic equations for a1 and a2 as

a3
1 − ua1 − v = 0,
a3

2 − ua2 + v = 0.
(3.4)

There is a spontaneously broken global Z3 ×Z2 symmetry acting on u and v by u 7→ αu

and v 7→ −v, with α = e2π ı̊ /3. Classically, the discriminant is the determinant ∆classical

of the matrix BIJ = ∂uI+1
∂aJ

. It reads

∆classical = detBIJ = (a1 − 2a2)(2a1 − a2)(a1 + a2), (3.5)

and vanishes when one of the gauge bosons (3.2) becomes massless.
Let us denote the space parametrised by u and v by U . We parametrise points on

this space by (u, v) ∈ U , where u is the normalised parameter, u = 3
√

4
27 u. We further

introduce the two loci of U where one of the order parameters vanish, Eu where v = 0
and Ev where u = 0. The moduli space U parametrises a complex two-dimensional
family of hyperelliptic curves of genus two [93, 94],

y2 = (x3 − ux− v)2 − Λ6, (3.6)

where Λ = ΛSU(3) is the dynamically generated scale. The discriminant of this curve

∆Λ = Λ18(4u3 − 27(v + Λ3)2)(4u3 − 27(v − Λ3)2). (3.7)

This can be viewed as a product of the discriminants of two elliptic curves whose
v parameters are separated by 2Λ3. Note that the Z6 global symmetry leaves the
discriminant invariant. It vanishes if and only if u3 = (v ± Λ3)2. For the discussion in
this Chapter we will mostly use units where the dynamical scale Λ = 1 and we note
that it can always be restored from dimensional analysis.

If we restrict to Im v = 0, the zero locus of the discriminant describes six singular
curves which intersect in the following points. On the v = 0 plane, there are four
singularities, namely u ∈ {∞, 1, α, α2}. On the other hand for u = 0, there are two
singularities at v = ±1. These are the Argyres-Douglas (AD) points, where mutually
non-local BPS states become massless and the theory becomes superconformal [9].
Analogous to what we saw in the SU(2) theories with matter. In fact, the AD theories
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appearing in the pure SU(3) are of the same type as those appearing in the Nf = 1 SU(2)
theory [70]. Figure 3.1 sketches the singular lines on the subset of U where Im v = 0.
The singular lines represent regions in U where the effective action of the pure N = 2
theory becomes singular, and they are associated with vacua where hypermultiplets
become massless.

Re(v)

Im(u)

Re(u)Eu

Ev

Fig. 3.1 Singular lines ∆(u, v) = 0 in the SU(3) moduli space with Im v = 0, associated to
massless dyons [95]. The red dots represent the strong coupling points (u, v) = (1, 0), (α, 0)
and (α2, 0), with α = e2π ı̊ /3, on the v = 0 plane Eu, where two singular lines intersect. The
blue dots represent the AD points (u, v) = (0, 1) and (0,−1) respectively, where three singular
lines intersect. They lie on Ev, which is represented by the Re v axis here. The two loci Eu

and Ev intersect in the origin (u, v) = (0, 0) (brown).

Similarly to the SU(2) case, the periods transform under monodromies which generate
the duality group of the theory. The classical part of the monodromy group is given by
the Weyl group of the SU(3) root lattice, which acts as reflections on lines perpendicular
to the positive roots. The perturbative quantum correction comes from the one-loop
effective action. It contributes to the prepotential as

F1−loop = ı̊

2π
∑

α

Z2
α logZα, (3.8)

where the sum runs over all positive roots α1, α2 and α3 = α1 + α2. Here, Zα are the
central charges (3.2) of the gauge bosons.

The semi-classical monodromies can be derived in the following way. The Weyl
group of the root lattice A2 is generated by two reflections, r1 and r2. The element rk

reflects the root lattice on the line perpendicular to αk . For instance, r2 induces the
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map α2 7→ −α2, α1 7→ α1 + α2. Using (3.2), we find that a1 7→ a1 and a2 7→ a1 − a2.
The semi-classical transformation of the dual variables can be obtained using (3.8)
and the fact that, semi-classically, aD,I = ∂F1−loop

∂aI
holds. The crucial insight is that

Z2 7→ −Z2 induces a shift of π ı̊ due to the logarithm, and the result can be written as
an integer linear combination of the periods. The other two Weyl elements transform
a1 and a2 in the following way,

r1 : (a1, a2) 7→ (a2 − a1, a2),
r2 : (a1, a2) 7→ (a1, a1 − a2),
r3 : (a1, a2) 7→ (−a2,−a1).

(3.9)

The corresponding monodromies can be obtained in a similar fashion, the result is

M(r1) =


−1 0 4 −2

1 1 −2 1

0 0 −1 1

0 0 0 1

 , M(r2) =


1 1 1 −2

0 −1 −2 4

0 0 1 0

0 0 1 −1

 , M(r3) =


0 −1 1 −2

−1 0 4 1

0 0 0 −1

0 0 −1 0

 , (3.10)

which satisfy M(r3) = M(r2)M(r1)(M(r2))−1 [33].

3.2 Non-perturbative analysis

The non-perturbative analysis can be approached in a few different ways. We will
first discuss the use of hypergeometric functions as solutions of a Picard-Fuchs type
system of differential equations satisfied by the periods of the SW solution. After this
we will relate the SW curve to a generic form of a genus two curve where absolute
invariants, similar to the j-invariant of the elliptic curve, can be used to express the
order parameters in terms of modular forms.

3.2.1 Picard-Fuchs solution

One way to find the non-perturbative solution is to notice that the periods satisfy
second order partial differential equations of Picard-Fuchs (PF) type, whose solution
space is spanned by the generalised hypergeometric function F4 of Appell [95]. We
review some aspects of the PF solution in the following, and leave further details for
Appendix C. We study two interesting regions, one where u is large and v small, and
the other one where v is large and u is small.

The non-perturbative effective action is characterised by the holomorphic prepoten-
tial F , which allows to define the dual periods aD,I = ∂F

∂aI
. Both periods aI and aD,I
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are given by linear combinations of Appell functions. The large u expansion reads [95]

aD,1(u, v) = − ı̊

2π

(√
u+ 3

2
v

u

)
log
( 27

4u3

)
− 1
π

(
ı̊

2 + 2α1

)
√
u+ . . . ,

a1(u, v) =
√
u+ 1

2
v

u
+ . . . ,

(3.11)

with aD,2(u, v) = aD,1(u,−v), a2(u, v) = a1(u,−v) and α1 ∈ C a constant (see Appendix
C.2). The coupling constants of the U(1)2 theory, τIJ = ∂aD,I

∂aJ
, are determined using

the chain rule,

τ11(u, v) = τ22(u,−v) = ı̊

π
log(8u3) + 9 ı̊ v

2π u−3/2 −
(

129 ı̊
32π + 63 ı̊ v2

8π

)
u−3 + . . . , (3.12)

The off-diagonal τ12 is given by the series

τ12(u, v) = −τ11(u, v) + τ22(u, v)
4 − 1

2π ı̊ log(8) + 1
2π ı̊

27
4 f(u, v), (3.13)

where
f(u, v) = (1 − 4v2)

8 u−3 +
( 453

1024 − 3v2 − 31
16v

4
)
u−6 + . . . . (3.14)

Similarly, we find that the large v expansion of the coupling matrix reads (see
Appendix C.3 for details, ω = eπ ı̊ /6)

τ11 ∼ ı̊

π
log(108v2) − 1 + ω

π
uv−2/3 + ω5

6πu
2v−4/3 −

(
11 ı̊
18π + 4 ı̊

27πu
3
)
v−2 + . . . , (3.15)

and τ12 and τ22 are given by similar series. At u = 0 we have τ11 = τ22 + 1 and
τ12 = − τ11

2 + 1.

3.2.2 Invariants of genus two curves

Every genus two hyperelliptic curve can be brought to the Rosenhain form [96]

y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3). (3.16)

The three roots λi of the polynomial are also referred to as Rosenhain invariants. These
invariants are complementary to the Igusa invariants, [97, 98], which we will discuss
below.

By a lemma of Picard, the Rosenhain invariants can be expressed in terms of even
theta constants as

λ1 = Θ2
1 Θ2

3
Θ2

2 Θ2
4
, λ2 = Θ2

3 Θ2
8

Θ2
4 Θ2

10
, λ3 = Θ2

1 Θ2
8

Θ2
2 Θ2

10
. (3.17)
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The functions Θj are instances of genus two Siegel modular forms,

Θ
a
b

 (Ω) =
∑

k∈Z2

exp
(
π ı̊(k + a)T Ω(k + a) + 2π ı̊(k + a)T b

)
, (3.18)

where the entries of the column vectors a and b take values in the set {0, 1
2}. The

argument Ω is a 2 × 2-matrix

Ω =
τ11 τ12

τ12 τ22

 , (3.19)

valued in the Siegel upper half-plane H2. We refer to Appendix B.5 for a precise
definition and references. The moduli space of genus two curves, M2, is complex
three-dimensional. Since the SW order parameters u and v are two complex parameters,
the SU(3) Coulomb branch maps out a complex two-dimensional space U ⊂ M2 in the
moduli space of genus two curves. In other words, U is a divisor of M2.

Another set of invariants for genus two curves are the Igusa invariants. There are
five invariants J2, J4, J6, J8 and J10 which are the analogues of the functions g2 and g3

in the genus one case, in the sense that they are not absolute invariants. From these
invariants we can define three absolute invariants

x1 = 144J4

J2
2
, x2 = −1728J2J4 − 3J6

J3
2

, x3 = 486J10

J5
2
. (3.20)

These various functions can then be related to Siegel modular forms in a similar way as
for the genus one curves.

To this end, we define

ψk(τ) =
∑

(C,D)
det(Cτ +D)−k, (3.21)

where the sum is over all inequivalent bottom rows (C,D) of elements of Sp(4,Z). They
are the normalised genus 2 Eisenstein series of even weight k ≥ 4. We furthermore
define two functions [99, 100]

χ10 = − 43867
21235527 · 53(ψ4ψ6 − ψ10),

χ12 = 131 · 593
213375372337(3272ψ3

4 + 2 · 53ψ2
6 − 691ψ12),

(3.22)

which are in the kernel of the Siegel operator Φ and therefore cusp forms. The ring
M∗(Γ2) of Siegel modular forms on Sp(4,Z) =: Γ2 is then generated by ψ4, ψ6, χ10, χ12

and χ35 [97], and every meromorphic Siegel modular form of weight 0 on X2 := Γ2\H2

is a rational function in the generators. The J-invariants are related to M∗(Γ2) by



3.2 Non-perturbative analysis 65

[100, 101]

J2 = −23 · 3χ12

χ10
, J4 = 22ψ4, J6 = −23

3 ψ6 − 25ψ4χ12

χ10
, J10 = −214χ10. (3.23)

Note that χ10 is proportional to the discriminant of the curve and so we assume it
is nonzero. We can see that J{2,4,6,10} are modular forms for Γ2 of weight 2, 4, 6, 10.
Inserting the Ji into (3.20) we find a more natural definition of the absolute invariants
in terms of Siegel modular forms [98]

x1 = ψ4χ
2
10

χ2
12

, x2 = ψ6χ
3
10

χ3
12

, x3 = χ6
10
χ5

12
. (3.24)

It is known that ψ4, ψ6, −4χ10 and 12χ12 have integral Fourier coefficients which are
relatively prime [102].

3.2.3 Seiberg-Witten curve in Rosenhain form

In this section, we will relate the SU(3) Seiberg-Witten curve to the curve in Rosenhain
form, which is a degree 5 equation.

To relate the Rosenhain curve (3.16) to the Seiberg-Witten curve (3.6), note that a
degree 5 polynomial as in (3.16) can be obtained by a linear fractional transformation
of a degree 6 hyperelliptic equation y2 = ∏6

j=1(x− rj), which maps three of the roots to
∞, 0 and 1. Linear fractional maps leave cross-ratios invariant, which is a convenient
way to relate the λj to u and v. Let us define the cross-ratio of four points zi ∈ CP1 as

C(z1, z2, z3, zj) = (z1 − z3)(z2 − zj)
(z1 − zj)(z2 − z3)

, (3.25)

such that C({∞, 0, 1, λj}) = λj.
Note that we have 120 different possibilities to map three roots among the {rj} to

0, 1,∞, and another 3! possibilities to identify the three cross-ratios in the hyperelliptic
setting with the λj. By studying the large u expansions of these for non-zero v, one
can easily identify which cross-ratios, in terms of the ri, correspond to which λj. To
this end, let α = e2π ı̊ /3 as before. The roots of the rhs of (3.6) are then given by (with
Λ = 1)

r1 = s+(u, v + 1) + s−(u, v + 1), r4 = s+(u, v − 1) + s−(u, v − 1),
r2 = α s+(u, v + 1) + α2 s−(u, v + 1), r5 = α s+(u, v − 1) + α2 s−(u, v − 1),
r3 = α2 s+(u, v + 1) + α s−(u, v + 1), r6 = α2 s+(u, v − 1) + α s−(u, v − 1),

(3.26)

where

s±(u, v) = 3

√√√√v

2 ±
√
v2

4 − u3

27 . (3.27)
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To simplify notation, let us set s±± := s±(u, v ± 1). The large u, small v expansions for
the roots are

r1 =
√
u+ 1 + v

2u + . . . , r4 =
√
u− 1 − v

2u + . . . ,

r2 = −
√
u+ 1 + v

2u + . . . , r5 = −
√
u− 1 − v

2u + . . . ,

r3 = −1 + v

u
+ . . . , r6 = 1 − v

u
+ . . . .

(3.28)

Plugging the weak-coupling expansions (3.12) into the Rosenhain invariants gives the
leading behaviour for the λj. From this we can see that each invariant λj approaches 1
in the large u limit.

We continue by determining which of the 720 possible sets of cross-ratios matches
with the theta constants. We have to determine which roots correspond to the first
three points zi, i = 1, 2, 3, in the cross-ratio (3.25). Since the three theta constants
approach 1 in the large u limit, we should take for {z1, z2} in (3.25) the roots which
vanish in this limit, thus {r3, r6}. Together with the choice of z2, this reduces to 8
possible triplets. From a further comparison between the Rosenhain invariants and the
cross-ratios, we determine that z1 = r6, z2 = r3 and z3 = r2. With Cj := C(r6, r3, r2, rj)
for j = 1, 4 and 5, we arrive at

λ1 = C5, λ2 = C1, λ3 = C4. (3.29)

These are three equations for five unknowns, namely τ11, τ12, τ22, u and v. To make it
more manifest that the right hand side depends on only two variables, let us express
the cross-ratios Cj in terms of s±±,

C1 = α2 [α s+− + s−− − s++ − α s−+] [s++ − α s−+]
[α2s+− + α s−− − s++ − s−+] [s−+ − s++] ,

C4 = − [α s+− + s−− − s++ − α s−+] [α2 s++ + α s−+ − s+− − s−−]
3[s+− − α s−−] [s−+ − s++] ,

C5 = −α2 [α s+− + s−− − s++ − α s−+] [α s++ + s−+ − s+− − α s−−]
3[s−− − s+−] [s−+ − s++] .

(3.30)

Note that these expressions are true on the full moduli space. For u ̸= 0, we can
define

X = s++√
u/3

, Y = s+−√
u/3

, (3.31)
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such that X−1 = s−+/
√
u/3 and Y −1 = s−−/

√
u/3, since s+± s−± = u/3. The cross-

ratios can then be expressed as

C1 = − α2X(X − αY )(X − Y −1)(X − αX−1)
(X2 − 1)(X − α2Y )(X − αY −1) ,

C4 = − 1
3α

2 (X − αY )2(X − Y −1)(X − αY −1)
X(X2 − 1)(Y − αY −1) ,

C5 = 1
3

(X − αY )(X − Y −1)2(X − α2Y )
X(X2 − 1)(Y − Y −1) .

(3.32)

We thus see that the Coulomb branch can be identified with the zero-locus of the three
equations (3.32) inside the space (λ1, λ2, λ3, X, Y ). One may in principle eliminate X
and Y to arrive at a single equation in terms of the λj. In the following two sections,
we will restrict to the two one-dimensional sub-loci Eu and Ev of the solution space of
(3.29), where v = 0 and u = 0 respectively.

Another natural method of attack would be the direct generalisation of what we did
in the SU(2) theories. Namely, we calculate the absolute invariants of the SW curve
and equate it with the absolute invariants expressed in modular forms as in (3.24). The
absolute invariants of the SW curve are

x1 =9 − 162
30 + 4u3 − 27v2 + 81(5 − 36u3)

(30 + 4u3 − 27v2)2 ,

x2 =27
(

−1 + 27
30 + 4u3 − 27v2 + 27(18u3 − 1)

(30 + 4u3 − 27v2)2 − 27(5 + 486u3)
(30 + 4u3 − 27v2)3

)
,

x3 =243(729 − 216u3 + 16u6 − 1458v2 − 216u3v2 + 729v4)
256(30 + 4u3 − 27v2)5 .

(3.33)

However, it turns out that equating these with the expressions in (3.24) and solving for
u and v gives a very long and unusable answer, for this reason we do not print it here.
One thing we can note, though, is that it comes with square roots of Siegel modular
forms. In the SU(2) theories, the observation was that the branch points seem to always
be connected, in some sense, to having AD points in the theory. See Chapter 5 for
more on this. Based on this observation, the appearance of square roots in the order
parameters of the full SU(3) theory is expected, since we know that there are also AD
points [9].

3.3 Locus Eu: v = 0
In this section we analyse the locus v = 0. We will demonstrate that the order parameter
u can be expressed in terms of classical modular forms on this locus. In fact, we will
arrive at two distinct expressions depending on a choice of effective coupling. In Section
3.5 we will discuss this from the geometric point of view.
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3.3.1 Algebraic relations

On the locus v = 0 we have that τ11(u, 0) = τ22(u, 0) and τ12(u, 0) is given by (3.13).
Let us analyse these coupling constants, now from the perspective of Section 3.2.3. For
u large and positive, s+± has a large magnitude and phase eπ ı̊ /6. Similarly, the phase
of s−± is approximately given by e−π ı̊ /6. This means that

s−− = −α s++, s+− = −α2 s−+, X = −α2 Y −1. (3.34)

Using this and (3.31), we find that (3.32) now turns into

C1 = − (X +X−1) (X − αX−1)
(X −X−1) (X + αX−1) ,

C4 = − 1
3

(X +X−1)2

(X −X−1)2 ,

C5 = + 1
3

(X +X−1) (X + αX−1)
(X − αX−1) (X −X−1) .

(3.35)

Since the rhs of (3.35) depends only on one variable X, the cross-ratios Cj satisfy two
algebraic equations, which can be determined by solving the equations for X2. One
finds

C1 C5 − C4 = 0,
(3C4 − C1)2 − C4(C1 + 1)2 = 0.

(3.36)

Using (3.29) and (3.17), the cross-ratios are identified with quotients of Siegel theta
functions (see Appendix B.5), and the above equations take the form

0 = Θ4
3 − Θ4

4, (3.37)
0 = Θ2

1Θ2
2Θ4

8Θ4
3 − Θ4

2Θ2
8Θ2

10Θ4
3 + 8 Θ2

1Θ2
2Θ2

4Θ2
8Θ2

10Θ2
3 + Θ2

1Θ2
2Θ4

4Θ4
10 − 9 Θ4

1Θ4
4Θ2

8Θ2
10.

The two systems of equations above are equivalent given that none of the λj vanish or
are infinite, which is an assumption of Picard’s lemma (3.17). We can use the second
relation of (3.35) to solve for u,

u3 =
√

27
2

(3C4 + 1)3
√
C4(C4 − 1)

, (3.38)

and in terms of theta constants this gives

u3 =
√

27
2

(3Θ2
1Θ2

8 + Θ2
2Θ2

10)3

Θ1Θ3
2Θ8Θ3

10(Θ2
1Θ2

8 − Θ2
2Θ2

10)
. (3.39)
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This can be viewed as a generalisation of the rank 1 result (1.40), in the sense that we
can write the parameter u as a rational function of theta series. It follows naively that
u transforms as a weight 0 function under a subgroup of Sp(4,Z).

3.3.2 A modular expression for u

The solutions to the algebraic relations (3.37) are not unique due to the periodicity
in the τIJ . The first equation implies τ11 − τ22 = 2k with k ∈ Z, but we know from
(3.12) that k = 0. From (3.13) we can make a power series expansion for τ12 in terms
of p = e2π ı̊ τ11 . One finds

τ12 = −1
2τ11 − 1

2π ı̊ log(8) + 1
2π ı̊

27
4 h(p), (3.40)

with
h(p) = p

1
2 − 63

16 p+ 1447
64 p

3
2 − 307679

2048 p2 + O(p 5
2 ), (3.41)

by satisfying the second relation in (3.37) order by order. Substitution of (3.40) in
(3.38) gives the following p-expansion for u,

u = 1
2 p

− 1
6 + 43

8 p
1
3 − 2923

128 p
5
6 + 1713

16 p
4
3 + O(p 11

6 ). (3.42)

One can verify agreement with the Picard-Fuchs approach by substituting this expansion
in Eq. (3.12). As this series is only an expansion for small p, it is not very elucidating.
To arrive at a closed expression, we aim to express u as a function of a “coupling
constant” which transforms well under the duality transformations. This is not the case
for τ11.

However when τ11 = τ22, the inversion S = ( 0 −1
1 0 ) ∈ Sp(4,Z) acts naturally on the

linear combinations τ± = τ11 ± τ12, which are in one-to-one correspondence with τ11

and τ12. From (B.39), we deduce for the action of S on τ±

S : τ11 ± τ12 7→ − 1
τ11 ± τ12

. (3.43)

That is to say, it reduces to the ordinary S-transformation τ± 7→ −1/τ±. Moreover,
τ± ∈ H for both ±. To see this note that since Im(Ω) is positive definite, we have that
y11 > 0 and y11y22 − y2

12 > 0, where yIJ = Im(τIJ). Whenever y11 = y22, the latter
inequality implies that y2

11 > y2
12. Since y11 > 0, it implies y11 > y12 and y11 > −y12

simultaneously. From this we learn that y11 − y12 and y11 + y12 are both positive and
therefore τ± := τ11 ± τ12 ∈ H.

We will proceed by considering τ− =: τ , leaving the discussion on τ+ for Section
3.3.3. To determine u as function of τ , one can first find the series expansion for τ in
terms of p, invert and substitute p(τ) in (3.42). Alternatively, one can revert to the
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Picard-Fuchs solution, by inverting the series (3.12) for v = 0,

q = e2π ı̊(τ11(u)−τ12(u)) = U3 + 45U4 + 1512U5 + 45672U6 + . . . , U = 1
4u3 . (3.44)

Either method gives us the following series for u,

3
√

4u = q− 1
9 + 5 q 2

9 − 7 q 5
9 + 3 q 8

9 + 15 q 11
9 − 32 q 14

9 + O(q 17
9 ). (3.45)

This expansion is also known as the McKay-Thompson series of class 9B for the Monster
group [103, 86, 87, 36]. Thus similarly to the u for the modular rank 1 theories, we find
a McKay-Thompson series. We then have

u = u−(τ) = 3
√

27
4

b3,0
(

τ
3

)
b3,1

(
τ
3

) , (3.46)

where b3,j are theta series for the A2 root lattice,

b3,j(τ) =
∑

k1,k2∈Z+ j
3

qk2
1+k2

2+k1k2 , j ∈ {−1, 0, 1}. (3.47)

The theta series b3,j transform under the generators of SL(2,Z) as (α = e2π ı̊ /3)

S : b3,j

(
−1
τ

)
= − ı̊ τ√

3
∑

l mod 3
α2jl b3,l(τ),

T : b3,j(τ + 1) = αj2
b3,j(τ).

(3.48)

The solution u− can also be expressed in terms of the Dedekind η-function (B.5) as

u−(τ) = 3
√

27
4

1 + 1
3
η
(

τ
9

)3

η(τ)3

 . (3.49)

Using Theorem 1 of Appendix B.1, one shows that u−(9τ) is a modular function for
the congruence subgroup Γ0(9). This implies that u is a modular function for Γ0(9),
which is generated by the matrices T 9, STS and (T 3S)T (T 3S)−1.

Let us analyse the strong coupling singularities u3 = 27
4 for v = 0 in terms of the

variable τ . We will demonstrate that these correspond to τ → 0, 3 and −3. Using
(3.48), one finds that the expansion around 0 takes the form

3
√

4
27 u−,D(τD) = b3,0(3τD) + 2b3,1(3τD)

b3,0(3τD) − b3,1(3τD)
= 1 + 9 qD + 27 q2

D + 81 q3
D + 198 q4

D + O(q5
D),

(3.50)
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with τD = −1/τ , qD = e2π ı̊ τD and u−,D(τD) := u−(−1/τD). In the same notation we
can invert the series to find

qD = χ− 3χ2 + 9χ3 − 22χ4 + 21χ5 + 207χ6 + O(χ7), (3.51)

where χ := ( 3
√

4/27u− 1)/9. It follows that qD → 0 for 3
√

4/27u → 1 or χ → 0. This
can be directly confirmed by analytically continuing the Picard-Fuchs expansion around
u = 3

√
27/4.

The expansion around ±3 can then be obtained from the one around 0 by shifting
the argument τD,± = − 1

τ
± 3, and one finds using the T -transformation (3.48) that

u−,D(τD,±) = α∓1 3
√

27
4
b3,0(3τD) + 2b3,1(3τD)
b3,0(3τD) − b3,1(3τD) (3.52)

The expansions around the points 3 and −3 differ from the one around 0 only by the
phases α−1 = α2 and α. Together with (3.50), this proves that indeed τ → {0,−3, 3}
corresponds to the three singularities u → {1, α, α2}. Due to the T 9-invariance of the
solution (3.46), there is an ambiguity in identifying the τ -parameter with τ +9Z. These
Z2 points are studied in detail in [94, 104]. They correspond to the 3 vacua of the
N = 1 theory after deforming the N = 2 theory by relevant or marginal terms.

The modular analysis is completely analogous to the SU(2) theories: The cusps
of Γ0(9) are {0,−3, 3, ı̊∞}, which is exactly where u assumes the Z2 vacua and the
semi-classical limit. The fundamental domain of Γ0(9) is given in Figure 3.2 and is the
union of 12 images of the SL(2,Z) key-hole fundamental domain F ,

Γ0(9)\H =
4⋃

ℓ=−4
T ℓF ∪ SF ∪ T 3SF ∪ T−3SF . (3.53)

−5 −4 −3 −2 −1 0 1 2 3 4 5

F TF T 2F T 3F T 4FFT−1FT−2FT−3FT−4F

SF T 3SFT−3SF

Fig. 3.2 Fundamental domain Γ0(9)\H of the congruence subgroup Γ0(9). It consists of 12
images of the key-hole fundamental domain F .
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Using (3.49), we can find the exact coupling at the origin of the moduli space. We
have that u(τ0) = 0 for the Γ0(9) orbit of

τ0 =
√

3ω = 3
2 +

√
3

2 ı̊, (3.54)

with ω = eπ ı̊ /6. The point τ0 lies on the boundary of the fundamental domain, on the
point where the boundary arcs from different cusps meet. The elements (STS)k ∈ Γ0(9)
map τ0 7→ τ0 − 3k for integer k, which identifies the “corners” in Figure 3.2. This is
compatible with the global Z3 symmetry, which also acts by T−3 and leaves the origin
invariant. It is in complete analogy to the SU(2) picture, see Section 1.1.1: We find
the nice picture that the cusps of Γ0(9)\H are in one-to-one correspondence with the
singularities u3 = 27

4 and u = ∞ and the origin is the symmetric point where the
boundary arcs meet.

We will derive the modular expression for u from the SW geometry in Section
3.5. Section 3.6.2 will discuss how the action of the SU(3) monodromies reduce to the
generators of Γ0(9) for the action on τ−.

The connection between elliptic curves and theta constants furthermore allows to
express the periods ∂aI

∂uJ
as modular forms. Indeed, the period matrix ∂aI

∂uJ
can be written

as a combination of even, odd and differentiated theta constants [105]. By substituting
the solution for u and v into the asymptotic expansion of the periods, we can confirm
this for some cases. Recall that in the SU(2) theory, a is a quasi-modular form and da

du

is a modular form of Γ0(4) with non-trivial multipliers, both of weight 1 [16]. For rank
2, one finds that on v = 0 and with τ = τ−,

∂a1

∂v
(τ) = −∂a2

∂v
(τ) = 1

3 3
√

2
b3,1( τ

3 ) = 1
3
√

2
η(τ)3

η( τ
3 ) . (3.55)

This is a modular form of weight 1 on Γ0(9), which of course is the same modular group
as for u.

3.3.3 The other solution for u

While we chose in the above the modular parameter τ− = τ11 − τ12, Equation (3.43)
shows that we could equally well consider τ+ = τ11 + τ12. We will consider the variable
τ := τ+ in this subsection. We can determine the first terms in the q-expansion of u,
which results in

u = u+(τ) = 1
4
(
q−1/3 + 104 q2/3 − 7396 q5/3 + O(q8/3)

)
. (3.56)
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This series can be recognised as the q-expansion of

u+(τ) = 3
√

27
2

E4(τ)1/2

(E4(τ)3/2 − E6(τ))1/3 , (3.57)

where E4 and E6 are the Eisenstein series (B.7). We will derive this explicitly in Section
3.5. We can recognise this function as the order parameter of SU(2) theory with one
massless fundamental hypermultiplet [20]. Exactly as we saw in Sec. 2.2 for the case of
two fundamental hypermultiplets, the fractional powers in (3.57), makes the modularity
of u+ more subtle and it is not a modular function for SL(2,Z). In fact, E1/2

4 and u+

are not invariant under any subgroup of SL(2,Z). One way to see this is that E4 has a
simple zero for τ = α, such that the square root introduces a branch point.

It is known since the time of Fricke and Klein that similar fractional powers of
modular forms as in u+ do appear in the context of Picard-Fuchs equations and
hypergeometric functions [106, 107].

As mentioned before, the fractional powers in (3.57) are incompatible with any
subgroup of SL(2,Z). Nevertheless, if we choose a basepoint, we can show that u+ is
invariant under transformations of τ , which combine to a closed trajectory with starting
and endpoint equal to the base point. We choose the base point τb with Re(τb) = 0
and Im(τb) ≫ 1. First, using the modular transformation of E4 and E6, we find for the
expansion of τ near 0,

τ → 0 : u+(τ) = u+,D(−1/τ), (3.58)

with

u+,D(τD) = 3
√

27
2

E4(τD)1/2

(E4(τD)3/2 + E6(τD))1/3

= 3
√

27
4

(
1 + 144 qD − 3456 q2

D + 596160 q3
D + . . .

)
.

(3.59)

From Eq. (3.56) we see that u+ is invariant under τ 7→ τ + 3 at weak coupling,
Im(τ) ≫ 1. Let us introduce Tw for the translation at weak coupling. Moreover at
strong coupling, 0 < Im(τ) ≪ 1, u+ is invariant under τD = −1/τ 7→ τD + 1. Let
us introduce Ts for the translation at strong coupling. We can get the monodromies
around the other cusps, τ = ±1 from conjugation with Tw. We then find that u+ is left
invariant by

T 3n
w , (T ℓ

wS)Ts(T ℓ
wS)−1, ℓ, n ∈ Z, (3.60)

where S is the usual inversion τ 7→ −1/τ , mapping τ from weak to strong coupling.
These transformations are sketched in Figure 3.3 for n = 1 and ℓ = 0,±1.

We denote the invariance group of u+ by Γu+ . It is generated by the elements in
(3.60) with n = 1, and ℓ = 0, 1. From the invariance under (3.60), one derives that a
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fundamental domain is given by

Γu+\H =
1⋃

ℓ=−1
T ℓF ∪ T ℓSF . (3.61)

It consists of six copies of F . This fundamental domain is the grey area in Figure 3.3.
The domain is clearly topologically equivalent to the fundamental domain in Figure
3.2. The expansions of u+ and u+,D demonstrate that u+(̊ı∞) = ∞, u+(0) = 3

√
27
4 and

−2 −1 0 1 2

τb

Ts TsTs

SS S

Tw Tw

T 3
w

Fig. 3.3 Fundamental domain for u+. The vertical lines at τ = ±3/2 are identified, as well
as each pair of the two arcs meeting at a cusp −1, 0 or 1. The point τb is the base point
for the monodromies, which are compositions of Tw, Ts and S. Tw is a shift τ 7→ τ + 1 at
weak coupling, Ts circles around a strong coupling cusp, and S maps τ from weak to strong
coupling.

u+(±1) = α∓ 3
√

27
4 . We will derive u+ from the SW geometry in Section 3.5, and the

transformations (3.60) in Section 3.6.2 from the SU(3) monodromies around the strong
coupling cusps.

Because u+ is not a weakly holomorphic modular form, but involves fractional
powers of modular forms, it is problematic to identify the transformations (3.60) with
elements of SL(2,Z). One way to see that this identification is problematic is that the
composition of S, Tw and Ts does not satisfy the relation (ST )3 = −1, if we identify

Tw = Ts = T =
 1 1

0 1

. To further study this aspect, let us list the SL(2,Z) matrices
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corresponding to (3.60),

T 3 =
 1 3

0 1

 ,
STS−1 =

 1 0
−1 1

 ,
(TS)T (TS)−1 =

 0 1
−1 2

 ,
(T−1S)T (T−1S)−1 =

 2 1
−1 0

 .

(3.62)

These matrices fix each of the cusps {∞, 0, 1,−1}. On the other hand, u+ is not
invariant under the modular action of the matrices on τ , τ 7→ (aτ + b)/(cτ + d) except
for T 3n. For example, STS−1 would map τ = ı̊∞ to −1. The values of u+ are however
different for these two arguments: u+(̊ı∞) = ∞ and u+(−1) = α 3

√
27
4 . Furthermore,

the matrices (3.62) generate the full modular group SL(2,Z), analogous to the case of
equal mass Nf = 2 studied in Sec. 2.2.

The origin u+(τ0) = 0 of the moduli space is again given by the points where the
boundary arcs meet: At τ0 = α we have that E4 vanishes but E6 does not. From (3.57)
it is then clear that τ0 + Z are indeed the zeros of u+. This is also compatible with
the Z3 global symmetry, which according to (3.56) acts as T−1 and leaves the origin
invariant.

Using the parameter τ = τ+ we now find

∂a1

∂u
(τ) = ∂a2

∂u
(τ) = 1

25/6 ·
√

3
(
E4(τ)3/2 − E6(τ)

)1/6
. (3.63)

3.4 Locus Ev: u = 0
We will now consider the second elliptic locus, namely where u = 0. By doing a similar
analysis as in Section 3.3 but now for large v, we find that the correct matching between
the cross-ratios and the Rosenhain invariants for this limit is

λ1 = C5, λ2 = C4, λ3 = C1. (3.64)

Note that the only difference from before is that the roles of λ2 and λ3 have been
interchanged. One could perform a change of symplectic basis to have the same
matching as (3.29). This can be be done by acting on the periods with the matrix
Tθ = ( 1 θ

0 1
) ∈ Sp(4,Z) with θ =

(
−1 2
2 −4

)
.1 This changes the ω1, ω2 prefactors of aD,1 in

1Note that there is an ambiguity in the choice of Tθ. The λj are invariant under a subgroup of
Sp(4,Z). Multiplying Tθ with an element of this group thus gives the same result.
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(C.16). This would however also change the Rosenhain form, and we therefore prefer to
continue with the identification in (3.64).

We will proceed by deriving the relations satisfied by the couplings τIJ on the locus
u = 0.

3.4.1 Algebraic relations

To determine the algebraic relations among the theta constants, we assume that v is
real, large and positive. In this limit we find that s+± = 3

√
v ± 1 and s−± = 0. The

cross-ratios (3.30) simplify to

C1 = − α2 s++ − αs+−

s++ − α2s+−
,

C4 = − α2

3
(s++ − αs+−)2

s++s+−
,

C5 = + 1
3

(s++ − αs+−) (s++ − α2s+−)
s++s+−

.

(3.65)

From this we find two algebraic relations between the cross-ratios, namely

C1C5 − C4 = 0,
C2

5 + C2
4 − C5C4 − C4 = 0.

(3.66)

Writing these in terms of the theta constants, we have

0 = Θ4
1 − Θ4

2,

0 = Θ4
2Θ2

3Θ4
8 + Θ4

1Θ2
3Θ4

10 − Θ2
1Θ2

2Θ2
3Θ2

8Θ2
10 − Θ4

2Θ2
4Θ2

8Θ2
10.

(3.67)

3.4.2 Modular expression for v

Our next aim is to determine a modular expression for v on this elliptic locus. The first
relation in (3.67) implies τ11 = τ22 +2Z+1, while the second one implies τ12 = ±1

2τ11 +Z.
We claim that these are all the solutions. As in the case v = 0, the PF solution (3.15)
fixes these relations,

τ11 = τ22 + 1, τ12 = −τ11

2 + 1. (3.68)

In contrast to the locus Eu, these linear relations between the τ11, τ22 and τ12 are exact
on Ev. Using the first equation in (3.65), we can solve for v,

v = − ı̊√
27

(C1 − 2)(C1 + 1)(2C1 − 1)
C1(C1 − 1) . (3.69)
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This can again be written as a rational function of Siegel theta functions,

v = − ı̊√
27

(Θ2
8 − 2Θ2

10)(Θ2
8 + Θ2

10)(2Θ2
8 − Θ2

10)
Θ2

8Θ2
10(Θ2

8 − Θ2
10)

. (3.70)

As a function of τ− = τ11 − τ12, one finds (q− = e2π ı̊ τ−)

v = ı̊

2
√

27

(
α q

− 1
6

− − 33α2 q
1
6
− − 153 q

1
2
− − 713α q

5
6
− + O(q

7
6
−)
)
. (3.71)

The expansion in terms of τ+ = τ11 + τ12 is very similar. One can recognise these series
as

v = ı̊
2
√

27 m( τ+
2 ),

v = ı̊
2
√

27 m( τ−
6 + 2

3),
(3.72)

where

m(τ) =
(
η (2τ)
η (6τ)

)6

− 27
(
η (6τ)
η (2τ)

)6

= q−1 − 33 q − 153 q3 − 713 q5 − 2550 q7 − 7479 q9 + O(q11).
(3.73)

The function m is known in the literature as the completely replicable function of
class 6a [86, 87, 36]. The perturbative expansion (3.71) can be verified from the
Picard-Fuchs solution by starting from Eq. (3.15) and setting u = 0. Then, expand
q = e2π ı̊(τ11(v)−τ12(v)) as a series in v and invert it to find (3.71).

3.4.3 The Z3 vacua

Let us study the solution (3.72) near the strong coupling vacua. To this end, we
eliminate the phases in (3.71) by substitution of τ := τ− + 1 in (3.72). In the new
variable τ , the solution reads

v = − ı̊
2
√

27 m
(

τ
6

)
. (3.74)

It can be shown that the values of τ at the Argyres-Douglas (AD) vacua vAD,1 = 1 and
vAD,2 = −1 are (ω = eπ ı̊ /6)

τAD,1 = −3
2 +

√
3 ı̊
2 =

√
3ω5,

τAD,2 = +3
2 +

√
3 ı̊
2 =

√
3ω,

(3.75)

and the origin (u, v) = (0, 0) is located at τ0 =
√

3 ı̊. Note that these values lie in the
interior of the upper half-plane, rather than at the boundary.

The modular group of v is closely related to the duality group of the SU(3) theory
on this locus. It can be shown that v is a modular form for the principal congruence
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subgroup Γ(6). However, the fundamental domain of this group has twelve cusps, and
v diverges at all of them. This suggests that we found strongly coupled vacua in the
region of the moduli space where v is large. But from the discriminant ∆Λ|Ev = v2 − 1
we expect the only singularities to be at v ∈ {1,−1,∞}. Since the singularities at
v = ±1 correspond to AD points, we further might expect them to correspond to elliptic
points of the duality group, following the analysis of the SU(2) theories.

To resolve this problem, let us study the function m in more detail. It is a linear
combination of eta quotients, whose modular properties have been studied extensively
[108, 109]. Applying Theorem 1 in Appendix A, one finds that m is a modular function
for the Hecke congruence subgroup Γ0(12). In addition, it satisfies the following
non-SL(2,Z) transformations

m
(
τ − 1

2

)
= −m(τ), (3.76a)

m
(
− 1

12τ

)
= −m(τ). (3.76b)

The transformation (3.76b) is also known as a Fricke involution. Translating both
equations to the argument of v, we find that v picks up a minus sign under both T−3 and
F = ( 0 −3

1 0 ). Taking products, we find that v is properly invariant under FT−3 =
(

0 −3
1 −3

)
and T−6. Let us normalise the former to X = 1√

3

(
0 −3
1 −3

)
, and denote the subgroup of

PSL(2,R) generated by these two elements as

Γv =
〈
X,T−6

〉
. (3.77)

This group is a proper subgroup of the modular group Γ0(6|2) + 3 of Atkin-Lehner
type, in the notation of [36]. This Atkin-Lehner group extends the ordinary congruence
subgroup Γ0(6

2) by elements in PSL(2,R). See Appendix A for the precise definition.
If we allow for a non-trivial multiplier system, the modular group associated with m

is Γ0(6|2) + 3 [36] . The latter contains for example T−3, under which we have shown
that v is anti-invariant. We can write a similar set of matrices as (3.62),

M1 =
 −3 −3

1 0

 , M2 =
 0 3

−1 3

 , M∞ =
 1 −6

0 1

 = T−6, (3.78)

under which v ∼ m(τ/6) is invariant. If we consider their normalisation to unit deter-
minant, Π(Mj) := |det(Mj)|−1/2 Mj, they lie in the group Γv (3.77), and furthermore
satisfy

Π(M1)Π(M2) = M∞. (3.79)

We will show in Section 3.6.2 that these generators match with the monodromies.
A fundamental domain for Γv can be drawn using the algorithm given in [36], and it

is shown in Figure 3.4. The element T 6 contains the domain to |Re τ | < 3. X identifies
the interior of the circle with radius

√
3 centered at 0, with a region inside the blue
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−3 −2 −1 0 1 2 3

τAD,1 τAD,2

Fig. 3.4 Fundamental domain Γv\H for the group Γv. The values of the special points are:
τAD,1 =

√
3ω5 and τAD,2 =

√
3ω, with ω = eπ ı̊ /6.

domain in Figure 3.4. Similarly, the interior of the circles centered at ±3 is identified
with a region of the blue domain. We conclude,

Γv\H = {z ∈ H | |Re z| < 3} \
1⋃

ℓ=−1
D√

3(3ℓ). (3.80)

where Dr(c) is the closed disc of radius r and center c.
The Argyres-Douglas vacua v = 1 and v = −1 correspond to the special points

τAD,j (3.75). They are stabilised by M1 and M2, respectively. This makes the AD
vacua elliptic points of Γv. They are in fact expected to not get mapped to cusps of
v, since their coupling matrix (3.105) lies inside the Siegel upper half-space H2. As
we saw in Chapter 2 this is a familiar property of superconformal points [9, 110, 2].
It is different from the Z2 points where the coupling matrices (3.104) are located on
the boundary ∂H2 and therefore mapped to the real line ∂H1. The origin τ0 =

√
3 ı̊ is

mapped under FT−3 to τ0 − 3, which is identified with τ0 since v = 0 is a fixed point
under T−3 : v 7→ −v. The anti-invariance under T−3 is in fact directly derived from the
Z2 symmetry ρ : v 7→ eπ ı̊v computed in (3.103). The large v monodromy ρ2 acts on τ

as T−6, under which v is invariant. The origin of the Fricke involution can therefore be
understood from the global structure on the u = 0 plane.

Similarly to Section 3.3.2, we can express the periods in terms of modular forms.
We have in terms of τ = τ11 − τ12 + 1,

∂a1

∂u
(τ) = ∂a2

∂u
(τ) =

3
√

2ω√
3
η( τ

3 )η(τ). (3.81)
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The discussion is similar for the parameter τ+ = τ11 + τ12. If we introduce here
τ = τ+ − 1, v equals − ı̊

2
√

27 m(τ/2), which is again invariant under Γ(6). It is multiplied
by a sign under T as well as under the Fricke involution F̃ = ( 0 −1

3 0 ). This means that
it is invariant under T 2 together with the involution X̃ := F̃ T−1 =

(
0 −1
3 −3

)
, which again

generate an Atkin-Lehner type group. The fundamental domain of this group equals
that in Figure 3.4, but with all points divided by 3.

3.5 Geometrical interpretation in terms of elliptic
curves

It is natural to expect that the complexified couplings τ± for both loci Eu and Ev have
an interpretation as complex structures of elliptic curves. Moreover, these elliptic curves
are expected to be related to the geometry of the genus two Seiberg-Witten curve (3.6).
We will make these expectations precise in this section.

Recall that the moduli space M2 of genus two curves is complex three-dimensional.
The moduli space M2 contains two-dimensional loci L2 ⊂ M2, for which the genus two
curves can be mapped to genus one with a map of degree 2 [111]. The map can be
lifted to a map of the Jacobians of the curves. The Jacobian of the genus two curve is
a four-torus, while the Jacobian of a genus one curve is a two-torus. For the curves
contained in L2, there is a degree two map from the genus two Jacobian to the genus
one Jacobian. The Jacobian of a curve in L2 factors, T 4 ≡ T 2 ×T 2, which demonstrates
that for a generic curve in L2, there are two distinct maps φj : Σ2 → Σ1,j, j = 1, 2 to
two elliptic curves Σ1,j. We will see in this section that these elliptic curves Σ1,j have
precisely the complex structures τ± introduced above.

The locus L2 can be characterised as the zero locus of a weight 30 polynomial in
the genus two Igusa invariants J2, J4, J6, J10 [112, Theorem 3]. Additionally, the SU(3)
vacuum moduli space also corresponds to a two-dimensional locus U in M2. It is easy
to show that U and L2 intersect in three one-dimensional loci, where two are exactly
given by Eu and Ev, while the third one is defined by

E3 : 784u9 − 24u6
(
297v2 + 553

)
− 15u3

(
729v4 + 5454v2 − 4775

)
+ 8

(
27v2 − 25

)3
= 0.

(3.82)

This locus does not include any special points of the SU(3) theory, and we will not
study it further.

The locus L2 can also be characterised in terms of Rosenhain invariants of the
curve [112, Equation (18)]. By plugging in the cross-ratios we can check that the SU(3)
Seiberg-Witten curve is not in L2 for generic u, v. For v = 0 we rediscover the first
algebraic relation (3.36), while for u = 0 we find both relations (3.66). This arises from
an additional symmetry of the u = 0 curve, which we will comment on below.
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The curves described by the locus L2 can be written in the form [112]

Y 2 = X6 − s1X
4 + s2X

2 − 1, (3.83)

with s1 and s2 complex coordinates for L2. This family of curves is left invariant
by a non-trivial automorphism group, which contains the Klein four-group V4 [113].
Namely, the curve (3.83) is left invariant by (X, Y ) 7→ (−X, Y ) and (X, Y ) 7→ (X,−Y ),
which generate the dihedral group D4 ∼= V4 ∼= Z2 × Z2. We interpret this group as the
symmetry group of the BPS/anti-BPS spectrum, and more precisely the central charges
of the W-bosons Zj (3.2) and their charge conjugates. For v = 0, Eq. (3.11) shows that
a1 = a2 = a, such that Z1 = Z2 = a, and Z3 = 2a. One Z2 ⊂ D4 corresponds to the
charge conjugation symmetry, while the other Z2 corresponds to the a1 ↔ a2 symmetry
on Eu. Note that the automorphism group of a generic genus two curve is Z2, which is
consistent with the charge conjugation symmetry for arbitrary (u, v).

For v = 0, the Seiberg-Witten curve Y 2 = (X3 − uX)2 − 1 is of the form (3.83),
with s1 = 2u and s2 = u2. We can map this to an elliptic curve through the degree two
map

(x, y) = (X2, Y ), (3.84)

which maps the algebraic equation (3.83) to

y2 = x(x− u)2 − 1. (3.85)

Using the methods of Chapter 2 we can thus determine u as

u(τ) = 3

√
27
2

√
E4(τ)

(E4(τ)3/2 − E6(τ))1/3 = 1
4
(
q−1/3 + 104 q2/3 − 7396 q5/3 + O(q8/3)

)
.

(3.86)
We immediately recognise this function as the function u+ (3.56), which was obtained
from the Picard-Fuchs solution for the modular parameter τ+ = τ11 + τ12. The curve
(3.85) is exactly the Seiberg-Witten curve for the SU(2) theory with one massless
hypermultiplet in the fundamental representation and scales related by ΛSU(2) = 2ΛSU(3),
Eq. (2.1).

The elliptic curve corresponding to the order parameter u− is found in a similar way
by first transforming (X, Y ) 7→ ( 1

X
, ı̊ Y

X3 ) followed by the identification (x, y) = (X2, Y )
as before. This results in the elliptic curve

y2 = x(x2 − u2x+ 2u) − 1, (3.87)

which gives the order parameter u = u− from Section 3.3.2 when applying the methods
of Chapter 2.
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A similar analysis can of course be made on the locus with u = 0. An interesting
feature of this SW curve, Y 2 = X6 − 2vX3 + v2 − 1, is that it has enhanced symmetry
compared to the Klein four-group for (3.83). Since v2 − 1 is the discriminant, we can
divide and rescale X to find

Y 2 = X6 − 2v√
v2 − 1

X3 + 1. (3.88)

It is easy to show that any curve of the form Y 2 = X6 − aX3 + 1 is invariant under
(X, Y ) 7→ ( 1

X
, Y

X3 ) and (X, Y ) 7→ (αX,−Y ), where again α = e2π ı̊ /3. These order 2 and
6 elements generate the dihedral group D12. Similarly to the enhanced automorphism
group for Eu, we interpret this group as a symmetry group of the BPS/anti-BPS
spectrum. From Appendix C.3, we know that a2 = −αa1 on Ev. The central charges Zj

(3.2) of the W-bosons, together with their charge conjugates, span therefore a regular
6-gon, whose symmetry group is D12.

Hyperelliptic curves C ∈ L2 with Aut(C) ∼= D12 satisfy an additional constraint,
it is given by the zero locus of a weight 20 polynomial in the Igusa invariants [114,
Eq. (24)]. Moreover, the elliptic subcovers of hyperelliptic curves with Aut(C) ∼= D12

are isogenous [112]. We can check explicitly that the u = 0 curve is of this form.
This explains why the elliptic curves for the two complex structures produce a single
modular function (3.72), rather than the two independent functions u± for Eu. On
Eu the first algebraic relation in (3.36) holds and places the curve in L2. On Ev both
relations (3.66) hold, where the first one projects into L2 and the second one gives the
augmented D12 symmetry. This is consistent with the argument of Section 3.3.2 that
the maps φj should exist as long as Im(τ11) = Im(τ22), such that it is possible to define
τ± = τ11 ± τ12 ∈ H. The first relations in both (3.36) and (3.66) are equivalent to this
condition.

The expressions for the periods (3.55) and (3.63) on the locus Eu can be partially
understood in this setting as well, as periods of the elliptic subcovers. Note that the
periods of the genus two curve are given by

∂aI

∂uJ

=
∫

αI

ωJ−1, I, J = 2, 3, u2 = u, u3 = v, (3.89)

where ωI are the holomorphic differentials [95]

ω1 = XdX

Y
, ω2 = dX

Y
. (3.90)

Under the mappings to the elliptic subcovers, given above, for the v = 0 curve these
differentials are mapped to

ω1 7→ dx

2y , ω2 7→ dx

2
√
xy
, (3.91)
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for the τ+ map and
ω1 7→ ı̊ dx

2
√
xy
, ω2 7→ ı̊ dx√

2y
, (3.92)

for the τ− mapping. As discussed in Sec. 2.1.4, we use the Néron differential, dx
y

, to
calculate the periods of the elliptic curves through

da

du
= β

∫
γ1

dx

y
, (3.93)

for some proportionality constant β. This can be done using the formula, derived in
Sec. 2.1.4,

da

du
= β̃

√
g2

g3

E6

E4
, (3.94)

for some other constant β̃ which is related to the first one through the change of basis
to the modular Weierstraß curve.

We thus see from the above that we should expect that applying this formula to
the τ+ curve we should find a period proportional to ∂a1

∂u
, while for the τ− we should

instead expect to find a period proportional to ∂a1
∂v

, which is exactly what we find, giving
the formulas (3.55) for τ− and (3.63) for τ+. This gives a partial understanding of the
periods of the genus two curve in terms of the elliptic subcovers. However, it does not
say anything about the remaining genus two period in either case, and it further does
not seem to work on the locus with u = 0.

3.6 Monodromies

We study the weak and strong coupling monodromies in this section. In this way, we
are able to derive the modular groups of the order parameters in Section 3.3, which
parametrise the elliptic loci. As before, we are interested in studying the two patches of
the moduli space where one of the parameters u and v is large compared to the other.

3.6.1 Weak coupling monodromies

The spontaneously broken global Z3 and Z2 symmetries are generated by σ : u 7→ αu

and ρ : v 7→ eπ ı̊v, respectively. Using the explicit Picard-Fuchs solutions (C.10) and
(C.16), we can determine how these symmetries act on the periods in the weak coupling
region of the Coulomb branch.
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Weak coupling in locus Eu

In the large u regime we are interested in the action of σ on the PF solutions in (C.10).
We can readily determine that it acts on the periods as the matrix

σu = α2P


0 1 1 −2
1 0 −2 1
0 0 0 1
0 0 1 0

 , (3.95)

where the subscript u indicates that the base point is at large u, and P =
(

−1 0
0 −1

)
is the

central element of Sp(4,Z). The matrix σu conjugates the semi-classical monodromies
(3.10) to each other,

σ−1
u M(r1)σu = M(r2),

σ−1
u M(r2)σu = M(r1),

σ−1
u M(r3)σu = M(r1)M(r2)(M(r1))−1.

(3.96)

It holds that σ̄u = ασu ∈ Sp(4,Z). We introduce moreover the translation of τIJ at
weak coupling,

Tw,u =


0 1 −1 2
1 0 2 −1
0 0 0 1
0 0 1 0

 = α2Pσ−1
u ∈ Sp(4,Z), (3.97)

which maps

Tw,u :
 τ11 τ12

τ12 τ22

 7→

 τ22 + 2 τ12 − 1
τ12 − 1 τ11 + 2

 . (3.98)

Using (3.3), one checks that σu maps u 7→ αu, while v 7→ v is left invariant. Moreover,
σ3

u : u 7→ e2π ı̊u leaves u invariant, but acts as a monodromy on the periods,

σ3
u = PT −3

w,u = M(r2)M(r1)M(r2) =


0 −1 −3 6

−1 0 6 −3
0 0 0 −1
0 0 −1 0

 . (3.99)

This corresponds to the monodromy around u = ∞ by construction. In a similar way,
we can determine the action of the Z2 symmetry generated by ρ : v 7→ eπ ı̊v. Here, one
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finds the matrix representation

ρu =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∈ Sp(4,Z). (3.100)

This matrix conjugates the semi-classical monodromies analogous to (3.96), with σu

replaced by ρu. The large u monodromy for v is trivial, ρ2
u = 1. We will see later

that σu and ρu have a natural action on the charge vectors of the dyons that become
massless at the various strongly coupled singular vacua. The full Z6 symmetry can now
be represented as

ρ−1
u Tw,u = Tq, (3.101)

with Tq = ( 1 C
0 1

), where C =
(

2 −1
−1 2

)
is the Cartan matrix of SU(3). This represents

the quantum monodromy corresponding to a rotation of the scale Λ6 → e2π ı̊Λ6 [33].

Weak coupling in locus Ev

We now turn to the patch with v large and perform the analogous analysis as in the
above. The action of σ : u 7→ αu on the solution (C.12–C.16) can be represented by
the matrix

σv = α2


−1 −1 2 −1
1 0 −1 −1
0 0 0 −1
0 0 1 −1

 , (3.102)

where now the subscript v indicates that we are in the large v regime. It satisfies σ3
v = 1

and the large v rotation is therefore a trivial monodromy. On this patch, the generator
of the Z2 symmetry ρv : v 7→ eπ ı̊v is more interesting. Here, instead of (3.100), we now
find

ρv =


0 −1 1 1
1 1 −2 −2
0 0 1 −1
0 0 1 0

 . (3.103)

Since ρ2
v ̸= 1, v 7→ e2π ı̊v acts on the periods as a monodromy, while leaving v invariant.

The full Z6 symmetry is again given by Pα2ρ−1
v σ−1

v = Tq, as in (3.101).

3.6.2 Strong coupling monodromies

Analytically continuing the PF solution (C.10) to strong coupling, we can compute
the periods near the singularities. At the Z2 point (u, v) = (1, 0), the coupling matrix
can be computed explicitly and we can then use σu to rotate to the other Z2 points
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u = α, α2 by means of the action (B.39). The coupling matrices at these points evaluate
to

Ω(1, 0) =
0 0

0 0

 , Ω(α, 0) =
−2 1

1 −2

 , Ω(α2, 0) =
 2 −1

−1 2

 . (3.104)

The above matrices lie on the boundary ∂H2 of the Siegel upper half-plane. The
relations among the entries are consistent with the results from Section 3.3.

The coupling matrices at the Z3 (AD) points (u, v) = (0,±1) are

Ω(0, 1) =
−1 + ı̊√

3
9−

√
3 ı̊

6
9−

√
3 ı̊

6 −2 + ı̊√
3

 , Ω(0,−1) =
1 + ı̊√

3
3−

√
3 ı̊

6
3−

√
3 ı̊

6
ı̊√
3

 . (3.105)

They lie in the interior of the Siegel upper half-space H2.
To determine the monodromies around these singularities, we recall the formula

from [33, 95]. It gives the monodromy matrix in terms of the charge vector γ of the BPS
state with vanishing mass. The charge vector is a left eigenvector with unit eigenvalue.
The monodromy Mγ reads

Mγ =
1 + q ⊗ p q ⊗ q

−p⊗ p 1 − p⊗ q

 (3.106)

for γ = (p, q) with p = (p1, p2) and q = (q1, q2) the magnetic and electric charge vectors.
In locus Eu we have three singular points where two mutually local dyons become
massless, respectively, while in locus Ev three mutually non-local dyons become massless
at each of the two singular points.

Strong coupling in locus Eu

To calculate the monodromies using (3.106), we need to first choose a symplectic basis
for the homology cycles. In locus Eu we choose it such that two monopoles γ1 = (1, 0, 0, 0)
and γ2 = (0, 1, 0, 0) become massless at (u, v) = (1, 0). For gauge group SU(N) this
choice is always possible [95]. In this subsection, we will consider monodromies in locus
Eu, keeping v = 0 fixed. Restricting to this locus, a monodromy circles a point rather
than a line. We denote the monodromy around the point (u, 0) in Eu by M(u,0). The
charges of the dyons that become massless at the singular points (u, v) = (α, 0) and
(u, v) = (α2, 0) are obtained by acting on the periods with σu and σ−1

u from the left, it
turns out that this corresponds to acting on the charges γ1,2 from the right with −Tw,u
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and its inverse. We find

γ1 = (1, 0, 0, 0), γ2 = (0, 1, 0, 0),
γ3 = −γ1Tw,u = (0,−1, 1,−2), γ4 = −γ2Tw,u = (−1, 0,−2, 1), (3.107)
γ5 = −γ1T −1

w,u = (0,−1,−1, 2), γ6 = −γ2T −1
w,u = (−1, 0, 2,−1),

where each row corresponds to the charges of the mutually local states becoming
massless at the respective points.

We will first derive the four-dimensional monodromy matrices, and then determine
their action on the effective couplings constants τ±. The monodromy around (u, v) =
(1, 0) can be computed from the PF solution, it is

M(1,0) = Mγ1Mγ2 =


1 0 0 0
0 1 0 0

−1 0 1 0
0 −1 0 1

 (3.108)

and agrees with the product of the monodromies (3.106) of the singular lines associated
with the massless states of charges γ1 and γ2 [95]. This monodromy can be written as a
“trajectory” in the space of coupling constants as

M(1,0) = STs,uS−1, (3.109)

where S is the symplectic inversion and Ts,u is the translation at strong-coupling,

S =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , Ts,u =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 . (3.110)

The monodromies around u = α and u = α2 can be obtained from the charges of
the corresponding states that become massless at the different points. Alternatively, we
can write them as conjugations of Ts,u. We find

M(α,0) =Mγ3Mγ4 = (T −1
w,uS)Ts,u(T −1

w,uS)−1 =


3 −1 5 −4

−1 3 −4 5
−1 0 −1 1
0 −1 1 −1

 ,

M(α2,0) =Mγ5Mγ6 = (Tw,uS)Ts,u(Tw,uS)−1 =


−1 1 5 −4
1 −1 −4 5

−1 0 3 −1
0 −1 −1 3

 .
(3.111)
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They satisfy the consistency condition

PT −3
w,u = M∞ = M(α,0)M(1,0)M(α2,0) =


0 −1 −3 6

−1 0 6 −3
0 0 0 −1
0 0 −1 0

 . (3.112)

Due to the singularity structure, the matrices (3.108)-(3.112) are all the monodromies
in the region where v is small. They all lie in Sp(4,Z), since (3.106) do.

For the elliptic locus v = 0, we analysed the couplings τ± = τ11 ± τ12 in Section 3.3.
We will study here the action of M∞ and M(αj ,0) on τ±. We will find for τ− that the
action of the monodromies generate a proper congruence subgroup Γ0(9) ⊂ SL(2,Z).
Therefore, the action of Tw,u and Ts,u can be represented in terms of the same two-
dimensional matrix T = ( 1 1

0 1 ). The weak coupling shift Tw,u corresponds to the
two-dimensional matrix T 3 for τ−, while the strong coupling shift Ts,u corresponds
to T . Moreover, the four-dimensional symplectic S reduces to the two-dimensional
modular inversion S. Since τ11 = τ22 on Eu, it is easy to show that the four-dimensional
monodromies reduce to the matrices

M(∞,0) 7→ M−
(∞,0) = T−9 =

 1 −9
0 1

 ,
M(1,0) 7→ M−

(1,0) = STS−1 =
 1 0

−1 1

 ,
M(α,0) 7→ M−

(α,0) = (T−3S)T (T−3S)−1 =
 4 9

−1 −2

 ,
M(α2,0) 7→ M−

(α2,0) = (T 3S)T (T 3S)−1 =
 −2 9

−1 4

 ,

(3.113)

for τ−. They all lie in Γ0(9) and do in fact generate Γ0(9), and furthermore satisfy

M−
(α,0)M

−
(1,0)M

−
(α2,0) = M−

(∞,0). (3.114)

Note that there is no sign between M−
(∞,0) and T−9 here. Of course, this sign is irrelevant

for the action on τ−. A good consistency check is that these monodromies fix the τ− at
the cusps τ− = {−3, 0, 3}.

The weak coupling shift Tw,u corresponds to the two-dimensional matrix Tw,u for τ+,
while the strong coupling shift is Ts,u. For the parameter τ+, the monodromies reduce
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to
M+

(∞,0) = PT−3
w,u,

M+
(1,0) = STs,uS

−1,

M+
(α,0) = (T−1

w,uS)Ts,u(T−1
w,uS)−1,

M+
(α2,0) = (Tw,uS)Ts,u(Tw,uS)−1,

(3.115)

which satisfy
M+

(α,0)M
+
(1,0)M

+
(α2,0) = M+

(∞,0). (3.116)

This precisely reduces to the group Γu+ (3.61), which leaves the function u+ invariant.
As discussed in Section 3.3.3, these monodromies do not generate a congruence subgroup
of SL(2,Z) if we identify Tw,u and Ts,u with T .

Strong coupling in locus Ev

We can perform a similar analysis in the region where v is large and u small. At each
of the two singular points we find that three mutually non-local states become massless.
The corresponding charges are

ν1 = (1, 1, 0, 0), ν2 = (0, 1, 0, 0),
ν3 = ν1σ̄

−1
v = (−1, 0,−1, 2), ν4 = ν2σ̄

−1
v = (−1,−1, 1, 1), (3.117)

ν5 = ν1σ̄v = (0,−1, 1,−2), ν6 = ν2σ̄v = (1, 0,−1,−1),

where the left column represents the states that becomes massless at (u, v) = (0, 1) and
the second column the ones for (u, v) = (0,−1), and σ̄v = ασv ∈ Sp(4,Z).

The monodromy around v = ∞ is given by

M(0,∞) = ρ2
v =


−1 −1 4 1
1 0 −5 1
0 0 0 −1
0 0 1 −1

 . (3.118)

For u = 0, the monodromy around the AD point (u, v) = (0, 1) can be calculated from
the Picard-Fuchs solution,

M(0,1) =


2 0 1 −2

−2 1 −2 4
−1 −1 1 0
0 −1 1 −1

 = Mν1Mν3 = Mν3Mν5 . (3.119)
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The remaining monodromy is fixed by the global consistency M(0,∞) = M(0,1)M(0,−1).
This gives us

M(0,−1) =


0 −1 1 1

−1 0 1 1
−1 −1 2 1
0 −1 0 1

 = ρ−1
v M(0,1)ρv = Mν2Mν4 = Mν4Mν6 , (3.120)

All of the above matrices are in Sp(4,Z). Due to the relations (3.68) among τ11, τ12

and τ22, they act on τ− = τ11 − τ12 as

M−
(0,1) =

 −4 −7
1 1

 ,
M−

(0,−1) =
 1 1

−1 2

 ,
M−

(0,∞) =
 1 −6

0 1

 .
(3.121)

We conjugate with ( 1 −1
0 1 ), to match with the coupling τ = τ− + 1 for (3.74). This

reproduces precisely the matrices (3.78), which leave v invariant.
Similarly to the above, we can consider the action of the matrices M(0,∞) and

M(0,±1) on the parameter τ+ = τ11 + τ12. This gives

M+
(0,1) =

 0 1
−3 3

 ,
M+

(0,−1) =
−3 7

−3 6

 ,
M+

(0,∞) = T−2,

(3.122)

with again M+
(0,1)M

+
(0,−1) = M+

(0,∞) up to normalisation. These matrices agree with what
we found in Section 3.4, below (3.81).

3.6.3 BPS quiver and origin of U

A potential application of the previous sections is to interpolate between weak and
strong coupling. One may follow the BPS spectrum along such a trajectory using the
connection to BPS quivers [73, 115, 116]. We briefly address this connection in this
subsection.

Let us consider the origin of the moduli space, (u, v) = (0, 0). At this point, the two
elliptic loci, Eu and Ev, touch. It is a perfectly regular point, since ∆ = 729Λ18 does
not vanish. We can compute the coupling matrix at the origin of the moduli space U
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starting from large u, and find

Ωu(0, 0) =
1 +

√
3

2 ı̊ −1
2

−1
2 1 +

√
3

2 ı̊

 . (3.123)

The above matrix can be obtained by expanding the periods to first order in v but
exact in u, computing the coupling matrix, setting v = 0 and taking the limit u → 0
for u < 0. This is consistent with the argument given in [73] that the origin should be
approached on the negative real u-line, as it avoids the singularity u = 1 where the
periods pick up a monodromy.

Analytically continuing the solutions for large v (C.16), we find that the coupling
at the origin (0, 0) ∈ U is given by

Ωv(0, 0) =
 2 ı̊√

3 1 − ı̊√
3

1 − ı̊√
3 −1 + 2 ı̊√

3

 (3.124)

The two different matrices (3.123) and (3.124) are related through the action (B.39) as

Tθ (M(r2))−1Mν2 : Ωu(0, 0) 7→ Ωv(0, 0), (3.125)

with Tθ as below (3.64). The two effective couplings at the origin Ωu,v(0, 0) are therefore
related by a monodromy up to Tθ. This is expected, since Tθ transforms (3.64) to (3.29).

As shown in [73], the central charge configuration at the origin can be obtained
from the one for large u by following the negative real axis on the v = 0 plane from
large u to 0. At this point, the full Z6-symmetry is restored and none of the central
charges are zero. We find that, for example, Zν1 = Zν2 = e

9π ı̊
6 = − ı̊, Zν3 = Zν4 = e

5π ı̊
6

and Zν5 = Zν6 = e
π ı̊
6 in the normalisation of Table C.1. Together with their charge

conjugates, they all map into each other by 2π
6 rotations. In fact, the symmetry group is

larger than Z6. Since the symmetry group for the central charges of (νj, νj+1,−νj,−νj+1)
for j = 1, 3, 5 is D4, and the symmetry group of the equilateral triangle is D6, the total
symmetry group becomes D4 ⋊D6. This group is known to be isomorphic to the group
Z3 ⋊D8, which is the automorphism group of this genus 2 curve [112]. Moreover, this
group is isomorphic to D12 ⋊Z2, such that the automorphism group D4 of Eu, and D12

of Ev are both subgroups of the automorphism group at the origin.
The BPS quiver for strong coupling [73] is presented in Figure 3.5. Every charge

vector in the basis is represented by a node. The number of arrows is determined by
the symplectic inner product between a pair of charges. The global Z2 symmetry σv

acts in the picture to the right as νk 7→ νk+2 mod 6.
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Fig. 3.5 The mutation algorithm produces a finite spectrum consisting of 6 particles at strong
coupling [73]. The generating matrix σ̄v = ασv maps the charges to the right. The coloured
part does not belong to the SU(3) quiver, it merely highlights how all the charges at strong
coupling can be obtained from σ̄v.



Chapter 4

Integrating over the u-plane

Now that we have seen how to construct fundamental domains of the running couplings
in more generic SW theories we will, in this Chapter, discuss how these domains can help
us when calculating correlation functions in the topologically twisted SU(2) theories.
Sections 4.1-4.5 are based on [5] and will address the construction and definitions
of the Coulomb branch, or u-plane, integral of the theories with Nf ≤ 3 flavours,
leaving the explicit evaluations for future work [117]. The u-plane integrals have seen a
recent revival of interest due to new connections to the theory of mock modular forms
[43, 46]. The analyses of these papers was restricted to the case of simply connected
four-manifolds. In Section 4.6, based on [4], we show how this generalises, for the pure
theory, when allowing for non-simply connected four-manifolds. In the same section
we further provide an explicit example of the evaluation of the u-plane integral for the
pure theory on a non-simply connected manifold.

4.1 Special geometry and SW theories

We return now to the Seiberg-Witten theories with gauge group SU(2) and Nf ≤ 3
fundamental hypermultiplets. We will in this Section introduce a new set of couplings
for these theories that will be crucial when defining the topologically twisted theory on
an arbitrary four-manifold. For this we also need the action of the monodromies on
these couplings, as well as on the running coupling τ . We derive these here.

4.1.1 Periods and couplings

As has been stated previously in this thesis, the non-perturbative effective action of
N = 2 SQCD is characterised by the prepotential F (a,m), with m again being the
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mass vector m = (m1, . . . ,mNf
). The semi-classical part of F reads [25–28]

F (a,m) = 2 ı̊
π
a2 log(a/ΛNf

) − 1
2

Nf∑
j=1

(
nj
mj√

2
a+ 3

8
ı̊

π
m2

j

)

− ı̊

4π

Nf∑
j=1

(
a+ mj√

2

)2
log((a+ mj√

2)/ΛNf
) +

(
a− mj√

2

)2
log((a− mj√

2)/ΛNf
)

+ . . . ,

(4.1)

where the . . . indicate further non-perturbative corrections.
The nj ∈ Z in (4.1) are the magnetic winding numbers of the dual periods aD

[25, 26, 118]. These numbers seem to be only rarely discussed in the literature beyond
these references.1 Generally, the theory allows for Nf electric winding numbers for a
and Nf magnetic winding numbers for aD. These appear in the massive Nf > 0 theories
since the Seiberg-Witten differentials now have poles with nonzero residues [25]. The
choice (4.1) of the prepotential corresponds to fixing the electric winding numbers to be
zero, or equivalently fixing the monodromy at infinity to map a → eπ ı̊a. Compare for
example with [25, Eq. (2.17)]. In Section 4.4, we will discuss that the single-valuedness
of the u-plane integral requires nj ≡ −1 mod 4.

Besides the period aD dual to a we introduce the parameters mD,j dual to mj by

mD,j =
√

2 ∂F
∂mj

. (4.2)

These parameters are further combined into the (2 + 2Nf )−dimensional vector Π,

Π =



aD

a

mD,1
m1√

2...
mD,Nf

mNf√
2


. (4.3)

This vector forms a local system over the u-plane. The elements of the vector form the
symplectic form,

ωNf
= daD ∧ da+ 1√

2

Nf∑
j=1

dmD,j ∧ dmj. (4.4)

1Nekrasov’s partition function gives a specific choice upon expanding the function γℏ(x; Λ) in the
perturbative part [28, 119].
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We also introduce the couplings vj and wjk with j, k ∈ 1, . . . , Nf ,

vj =
√

2 ∂2F

∂a∂mj

, wjk = 2 ∂2F

∂mj∂mk

. (4.5)

These will play an important role later.

4.1.2 Monodromies

Let us determine the monodromy matrices around the Nf + 2 singular points. We leave
the winding numbers nj, j = 1, . . . , Nf , for aD generic. Starting with the monodromy
around infinity, a → eπ ı̊a, we deduce from the prepotential (4.1) that the vector Π
transforms as Π → M∞ Π, with M∞ given by

M∞ =



−1 4 −Nf 0 −n1 · · · 0 −nNf

0 −1 0 0 · · · 0 0
0 n1 1 1 · · · 0 0
0 0 0 1 · · · 0 0
... ... . . .
0 nNf

0 0 · · · 1 1
0 0 0 0 · · · 0 1


. (4.6)

The monodromy matrix M∞ is in SL(2 + 2Nf ,Z), while it acts on the couplings by
a symplectic transformation, i.e. it preserves the symplectic form (4.4). This can be
checked by requiring that any monodromy M∞ satisfies MT JM = J, with

J =
 0 1

−1 0

⊕Nf +1

. (4.7)

The action on the couplings τ , vj and wjk is thus

M∞ :


τ → τ +Nf − 4,
vj → −vj − nj,

wjk → wjk + δjk,

(4.8)

with δjk the Kronecker delta.
If we assume that the mass mj is large, we can also deduce the monodromies around

the point where a hypermultiplet becomes massless, a = mj√
2 , j = 1, . . . , Nf from the

perturbative prepotential (4.1). For a encircling m1√
2 counterclockwise, Π → M1Π, we
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find for the monodromy matrix M1,

M1 =



1 1 0 −1 · · · 0 0
0 1 0 0 · · · 0 0
0 −1 1 1 · · · 0 0
0 0 0 1 · · · 0 0
... ... . . .
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1


, (4.9)

while the Mj for other values of j are given by permutations. Its action on the couplings
is

Mj :


τ → τ + 1,
vk → vk − δjk,

wkl → wkl + δklδjl.

(4.10)

The picture we are considering here is the analogues of Fig. 2.6 (d). In this regime of
the masses, there is one monodromy with periodicity 3 and one with periodicity 1. See
also [2, Fig. 10 (d)].

Besides the monodromies M∞ and Mj , there are monodromies Mm and Md around
the points where a monopole and a dyon becomes massless, respectively. By requiring
that the electro-magnetic charges of the massless particles are (nm, ne) = (1, 0) and
(1,−2), respectively, we can fix the upper left blocks of the monodromies. We fix the
remaining entries by assuming that the masses remains invariant, mj → mj, and that
the other periods only change by a multiple of the vanishing cycle at the corresponding
cusp, together with the requirement that

M∞ = MmMd

Nf∏
j=1

Mj. (4.11)

For Nf = 1 and n1 = n, this gives for Mm,

Mm =


1 0 0 0

−1 1 0 −(n+ 1)/2
(n+ 1)/2 0 1 (n+ 1)2/4

0 0 0 1

 . (4.12)

This acts on the couplings as

Mm :


τ → τ

−τ+1 ,

v → v+(n+1)τ/2
−τ+1 ,

w → w + (v+(n+1)/2)2

−τ+1 .

(4.13)
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The monodromy Md around the dyon singularity for Nf = 1 is

Md =


−1 4 0 −n− 1
−1 3 0 −(n+ 1)/2

(n+ 1)/2 −n− 1 1 (n+ 1)2/4
0 0 0 1

 , (4.14)

This acts on the couplings as

Md :


τ 7→ −τ+4

−τ+3 ,

v 7→ v+(n+1)τ−n−1
−τ+3 ,

w 7→ w + (v+(n+1)/2)2

−τ+3 .

(4.15)

We can note that all the above monodromy matrices leave the symplectic form (4.4)
invariant and are independent of the masses.

For a small mass m, the fourth “hypermultiplet” cusp of the fundamental domain
for Nf = 1 lies naturally near the real axis, τ → 1. See for example [2, Fig. 10 (a)], or
2.6 (a) for the Nf = 2 analogue. Having determined M∞, Mm and Md, we can easily
determine the monodromy M̃1 in this regime as

M̃1 = M−1
m M∞M−1

d =


0 1 0 (1 − n)/2

−1 2 0 (1 − n)/2
(n− 1)/2 (1 − n)/2 1 (n− 1)2/4

0 0 0 1

 (4.16)

Thus for n = −1, the massless particle has charge ±(−1, 1, 0, 1).
We get similar monodromies for Nf = 2, 3. The action on the running couplings τ

are the same for all Nf , by construction. The transformations of vj and wjk also take
the same form for all Nf and can be summarised as

Mm :

vj → vj+(nj+1)τ/2
−τ+1 ,

wjk → wjk + (vj+(nj+1)/2)(vk+(nk+1)/2)
−τ+1 ,

Md :

vj → vj+(nj+1)τ−nj−1
−τ+3 ,

wjk → wjk + (vj+(nj+1)/2)(vk+(nk+1)/2)
−τ+3 .

(4.17)

4.2 The UV theory on a four-manifold

We now review various aspects of the formulation of the UV theory on a compact
smooth four-manifold.
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4.2.1 Aspects of four-manifolds

We let X be a smooth, compact, oriented Riemannian four-manifold, with Euler number
χ = χ(X) and signature σ = σ(X) = b+

2 − b−
2 . As discussed in Sec. 1.2.3, the u-plane

integral is non-vanishing only for four-manifolds X with b+
2 ≤ 1. In this thesis, we

consider manifolds with b+
2 = 1. Such four-manifolds admit a linear complex structure J

on the tangent space TXp at each point p of X. The complex structure varies smoothly
on X, such that TX is a complex bundle. We introduce furthermore the canonical class
KX = −c1(TX) of X, with c1(TX) the first Chern class of TX. In Sections 4.1-4.5 we
mainly consider the case that also b1 = 0, leaving the detailed analysis of b1 ̸= 0 to
Section 4.6. For a manifold X with (b1, b

+
2 ) = (0, 1), we have that

K2
X = 8 + σ(X). (4.18)

The middle cohomology H2(X,Z) of X gives rise to the uni-modular lattice L. More
precisely, we identify L with the natural embedding of H2(X,Z) in H2(X,Z)⊗R, which
mods out the torsion of H2(X,Z). A characteristic element K ∈ L is an element which
satisfies l2 + B(K, l) ∈ 2Z for all l ∈ L. The Riemann-Roch theorem demonstrates
that the canonical class KX of X is a characteristic element of L. The Wu formula
furthermore shows that any characteristic vector K of L is a lift of w2(X).

The quadratic form Q of the lattice L for a 4-manifold with (b1, b
+
2 ) = (0, 1) can

be brought to a simple standard form depending on whether Q is even or odd [120].
This divides such manifolds into two classes, for which the evaluation of their u-plane
integrals needs to be done separately [46, 117]. The period point J ∈ H2(X,R) is
defined as the unique class in the forward light cone of H2(X,R) that satisfies J = ∗J
and J2 = 1.

All four-manifolds without torsion and even intersection form admit a Spin structure.
More generally, for any oriented four-manifold one can define a spinC-structure. The
group spinC(4) can be defined as pairs of unitary 2 × 2 matrices with coinciding
determinant,

spinC(4) = {(u1, u2) ∈ U(2) × U(2)| detu1 = detu2}. (4.19)

There exists a short exact sequence

1 −→ U(1) −→ spinC(4) −→ SO(4) −→ 1. (4.20)

A spinC-structure s on a four-manifold X is then a reduction of the structure group
of the tangent bundle on X, i.e. SO(4), to the group spinC(4). The different spinC-
structures correspond to the inequivalent ways of choosing transition functions of the
tangent bundle such that the cocycle condition is satisfied. The spinC-structure defines
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two rank two hermitian vector bundles W±. We let c(s) be the first Chern class of the
determinant bundles, c(s) := c1(detW±) ∈ H2(X,Z).

If s is the canonical spinC structure associated to an almost complex structure on
X, then c(s)2 = 2χ+ 3σ. More generally,

c1(s)2 ≡ σ mod 8. (4.21)

4.2.2 Topological twisting with background fluxes

We discuss in this section topological twisting of theories with fundamental hypermul-
tiplets including background fluxes. The discussion is parallel to the case of N = 2∗

[39], where the hypermultiplet is in the adjoint representation of the gauge group and
generalises the discussion in Sec. 1.2.2 by the inclusion of background fluxes.

We let (E → X,∇) be a principal SU(2)/Z2 ∼= SO(3)-bundle with connection ∇.
The second Stiefel-Whitney class w2(E) ∈ H2(X,Z2) measures the obstruction to lift E
to an SU(2) bundle, which will exist locally but not globally if w2(E) ̸= 0. We denote a
lift of w2(E) to the middle cohomology lattice L by w̄2(E) ∈ L, and define the ’t Hooft
flux µ = w̄2(E)/2 ∈ L/2. The instanton number of the principal bundle is defined as
k = −1

4
∫

X p1(E) and satisfies k ∈ −µ2 + Z, where p1 is the first Pontryagin class.
To formulate the theories with Nf fundamental hypermultiplets on a compact four-

manifold, we perform a topological twist. Coupling the four-dimensional N = 2 SU(2)
theory to background fields means choosing two sets of data:

• A principal SU(2)R R-symmetry bundle, with connection ∇R,

• and a principal bundle L with connection for global symmetries (the flavour
symmetries) [39].

As mentioned already in Sec. 1.2.2, the relevant twist for the N = 2 supersymmetry
algebra in four dimensions is the Donaldson-Witten twist which is the local identification
of the SU(2)+ with the diagonal subgroup of the SU(2)+×SU(2)R factor of the spin lift
of the local spin group Spin(4) ∼= SU(2)+ × SU(2)− [37]. Alternatively, one can view the
fields as sections of a non-trivial R-symmetry bundle, isomorphic to the spin bundle S+.
Application of this to the representations of the vector multiplet (1.1) and (1.2) gives:

bosons: (2,2) ⊕ (1,1) ⊕ (1,1),
fermions: (2,2) ⊕ (3,1) ⊕ (1,1).

(4.22)

Thus the bosons remain unchanged, a vector and a complex scalar, while the fermions
reorganise to a vector, self-dual two-form and real scalar, which we denote as ψ, χ
and η, respectively. We note that none of these fields are spinors, and can thus be
considered on a non-spin four-manifold. The original supersymmetry generators also
transform in the representations for the fermions above. Thus the theory contains a
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scalar fermionic supercharge Q = ϵȦḂQȦḂ, whose cohomology provides the operators
in the topological theory [37]. As we discussed also in Sec. 1.2.2.

For the fields of a hypermultiplet, (1.3) and (1.4), one finds

bosons: (1,2) ⊕ (1,2),
fermions: (2,1) ⊕ (1,2) ⊕ (2,1) ⊕ (1,2).

(4.23)

Thus hypermultiplet bosons become spinors, i.e. sections of the spin bundle S+, while
the fermions are sections of S+ and S−. The twisted hypermultiplets can in this case
therefore only be formulated on four-manifolds which are spin, i.e. w2(X) = 0 [121, 40].

However, if the hypermultiplets are charged under a gauge field or flux, the product
of these bundles with S± may be a spinC bundle, W+ or W− [121, 16, 39]. The latter
are defined for arbitrary four-manifolds. For example, an almost complex structure on
X determines two canonical spinC bundles W± ≃ S± ⊗K

−1/2
X with KX the canonical

class determined by the almost complex structure. Since the hypermultiplets are in
the fundamental, two-dimensional representation of SU(2), the topologically twisted
hypermultiplets are well-defined on a non-spin four-manifold if µ = −KX/2 [40].

Let us state this also in terms of the gauge bundle E. To this end, we label the
two components of the fundamental, two-dimensional representation of SU(2) by ±.
The two components are sections of a line bundle L±1/2

E with c1(LE) = w̄2(E). Of
course, the square root L1/2

E only exists if w2(E) ∈ 2L. On the other hand, the physical
requirement is that S+ ⊗ L1/2

E is well defined, or w̄2(X) + w̄2(E) ∈ 2L. Therefore, the
obstructions can cancel each other for a suitable choice of w2(E). Thus the topological
twisted theory is not well-defined for an arbitrary choice of ’t Hooft flux µ := 1

2w̄2(E);
but rather µ has to satisfy µ = 1

2w̄2(X) mod L [40], or

w̄2(X) = w̄2(E) mod 2L. (4.24)

To consider more general ’t Hooft fluxes µ or equivalently w2(E), we can couple the
j’th hypermultiplet to a background flux or line bundle Lj, with Lj possibly different
for each j. We let Ej = LE ⊗ Lj. Then the requirement that S± ⊗ E±1/2

j is globally
well-defined is that

c1(Ej) ∈ w̄2(X) + 2L, (4.25)

which can be satisfied for any w̄2(E) for a suitable choice of Lj . Thus we can formulate
the u-plane integral for arbitrary w̄2(E), if we require that the background fluxes satisfy

c1(Lj) ∈ w̄2(X) + w̄2(E) + 2L, (4.26)

for each j. This is consistent with (4.24) for c1(Lj) = 0.
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The Chern classes c1(Lj) can also be seen as the splitting classes of the Spin(2Nf )
principal bundle L. The Chern class of L reads

c(L) =
2∑

l=0
cl(L) =

Nf∏
j=1

(1 + c1(Lj)). (4.27)

The scalar generators of the equivariant cohomology of Spin(2Nf) are the masses mj,
which generate the Nf -dimensional Cartan subalgebra of Spin(2Nf ). The gauge bundle
Ek is also Spin(2Nf ) equivariant. For generic masses, the flavour group is U(1)Nf , and
is enhanced for special loci of the masses, for example to U(Nf ) for equal masses [8].

The Q-fixed equations are the non-Abelian monopole equations with Nf matter
fields, M j, in the fundamental representation. For generic gauge group G and with
representation R, these equations read [122]

(
F a

α̇β̇

)+
+ ı̊

2

Nf∑
j=1

M̄ j
(α̇T

aM j

β̇) = 0,

/DM j =
∑

µ

σµ DµM
j = 0,

(4.28)

where T a is a generator of the Lie algebra in the representation R. Including the sum
over matrix elements, we have

M j
(αT

aM j
β) =

∑
k,l

(M j)k
(α(T a)kl(M j)l

β). (4.29)

We denote the moduli space of solutions to (4.28) by MQ,Nf

k,Lj
, and leave the dependence

on the ’t Hooft flux µ and the metric J implicit. For Nf = 4 on X = CP2, such moduli
spaces are studied in [123].

The moduli spaces MQ,Nf

k,Lj
are non-compact for vanishing masses [124–126]. This is

improved upon by turning on masses and localising with respect to the U(1)Nf flavour
symmetry, M j

α → ei φjM j
α, which leave invariant the Q-fixed equations (4.28). There

are two components:

• the instanton component, with F+ = 0 and M j = 0, j = 1, . . . , Nf . The moduli
space for this component is denoted Mi

k. Since the hypermultiplet fields vanish,
this component is associated to the Coulomb branch.

• the abelian or monopole component, for which a U(1) subgroup of the flavour
group acts as pure gauge. Here the connection is reducible, and a U(1) subgroup
of the SU(2) gauge group is preserved. For generic masses, there are Nf such
components, where M ℓ is upper or lower triangular for some ℓ, and M j = 0 for all
j ̸= ℓ. The moduli space of this component is denoted Ma,j

k , j = 1, . . . , Nf . Since
some of the hypermultiplet fields are non-vanishing, this component is associated
to the Higgs branch [125, 127].
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The instanton component Mi
k is non-compact due to point-like instantons. This can

be cured using the Uhlenbeck compactification or algebraic-geometric compactifications.
We assume that the physical path integral chooses a specific compactification, whose
details are however not manifest at the level of the low energy effective field theory other
than that the compactification must be in agreement with the correlation functions.

The topological twist for N = 2 supersymmetric QCD can be further made dependent
on a cocycle ζgauge

αβγ representing the ’t Hooft flux, and ζs
αβγ a cocycle representing w2(X)

(the cocycles are the U(1) valued functions measuring the obstruction of the cocycle
condition for transition functions) [39]. Without additional line bundles, w̄2(X) = w̄2(E)
is equivalent to the cocycle ζgauge

αβγ ζs
αβγ being trivialisable. We leave it for future work to

explore whether the invariants depend on the choice of trivialisation.

4.2.3 Correlation functions and moduli spaces

The Q-fixed equations (4.28) include a Dirac equation for each hypermultiplet j =
1, . . . , Nf in the fundamental representation. The corresponding index bundle W j

k

defines an element of the K-group of Mi
k. Its virtual rank rk(W j

k ) is the formal
difference of two infinite dimensions. It is given by an index theorem and reads

rk(W j
k ) = −k + 1

4(c1(Lj)2 − σ) ∈ Z, (4.30)

where c1(Lj) is the first Chern class of the bundle Lj. Note that the rhs is not an
integer for an arbitrary c1(Lj) ∈ H2(X,Z). To verify that the rhs is integral for the
c1(Lj)’s satisfying (4.26), we rewrite rk(W j

k ) as

rk(W j
k ) = −(k + µ2) − c1(Lj) · µ + 1

4
(
(c1(Lj) + 2µ)2 − σ

)
. (4.31)

Then the first term on the rhs is an integer since k ∈ −1
4w2(E)2 +Z for an SO(3) bundle.

The second term is an integer because c1(Lj) · µ = (w̄2(X) − 2µ) · µ mod Z ∈ Z,
and the third term is an integer using (4.21) and the fact that c1(Lj) + 2µ equals the
characteristic class of a spinC-structure sj by (4.26),

c1(Lj) + 2µ = c(sj), (4.32)

for each j.
The mass mj is the equivariant parameter of the U(1) flavour symmetry associated

to the j’th hypermultiplet. The equivariant Chern class of W j
k reads in terms of the

splitting class xl,

c(W j
k ) =

−rk(W j
k

)∏
l=0

(xl +mj) = m
−rk(W j

k
)

j

∑
l

cl(W j
k )

ml
j

. (4.33)
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We abbreviate cl(W j
k ) to cl,j, and let c(Wk) = ∏Nf

j=1 c(W
j
k ).

The moduli space MQ
k,µ,Lj

for Nf hypermultiplets corresponds to the vanishing
locus of the obstructions for the existence of Nf zero modes of the Dirac operator.
As a result, the virtual complex dimension of the moduli space MQ

k,µ,Lj
is that of the

instanton moduli space plus the sum of (typically negative) ranks of the index bundles
W j

k , vdim(MQ,Nf

k,Lj
) = vdim(MQ

k )Nf =0 +∑Nf

j=1 rk(W j
k ) [128, 124, 129, 39]. This gives

vdim(MQ,Nf

k,Lj
) = (4 −Nf )k + 1

4

−3χ− (3 +Nf )σ +
Nf∑
j=1

c1(Lj)2

 . (4.34)

It is argued in [130] that the inclusion of massive matter amounts to inserting an
integral of the equivariant Euler class of the Dirac index bundle over the moduli space.
Therefore, the correlation functions are the generating functions for the intersection
numbers of the standard Donaldson observables and the Poincaré duals to the Chern
classes of the various vector bundles.

The correlation functions on X in the theory with Nf massive fundamental hyper-
multiplets are conjectured to be [130]

⟨O1 . . .Op⟩ =
∑

k

Λ
vdim(M

Q,Nf
k,Lj

)
Nf

∫
M

Q,Nf
k,Lj

c(Wk)ω1 ∧ · · · ∧ ωp. (4.35)

Here ωi = µ(Oi) are the Donaldson classes associated to the physical observable Oi,
and c(M) is the Euler class of the matter bundle [131–134]. Localising to the fixed
point locus in MQ,Nf

k,Lj
with respect to U(1)Nf gives

⟨O1 . . .Op⟩ =
∑

k

Λ
vdim(M

Q,Nf
k,Lj

)
Nf

∫
Mi

k
∪Ma

k

Nf∏
j=1

m
−rk(W j

k
)

j

∑
l

σj,l

ml
j

 ω1 ∧ · · · ∧ ωp.

(4.36)

where the integral is over the union Mi
k ∪ Ma

k of the instanton component Mi
k [130,

Eq. (5.13)] and the monopole component Ma
k [39, 29]. The equation together with

the dimension of the moduli spaces (4.34) demonstrate a selection rule for observables
together with powers of ΛNf

and mj.
In the decoupling limit mNf

→ ∞, ΛNf
→ 0 (2.2), the only contribution for j = Nf

is from l = 0, c0,Nf
= 1. The powers of mj and ΛNf

work out such that the correlation
functions reduce to those of the theory with Nf − 1 hypermultiplets [135]

⟨O1 . . .Op⟩Nf
→
(

ΛNf

ΛNf −1

)α

⟨O1 . . .Op⟩Nf −1, (4.37)
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We deduce from (4.36) that

α = vdim(MQ,Nf

k ) + (4 −Nf ) rk(WNf

k )

= 1
4

−3χ− 7σ + (5 −Nf ) c1(LNf
)2 +

Nf −1∑
j=1

c1(Lj)2

 . (4.38)

The overall factor can be accounted for by an overall renormalisation in the decoupling
limit.

The correlation function has a smooth massless limit mj → 0, for which only terms
with the top Chern classes contribute. These are given by

⟨O1 . . .Op⟩ =
∑

k

Nf∏
j=1

Λ
vdim(M

Q,Nf
k,Lj

)
Nf

∫
Mi

k
∪Ma

k

clj ,j ω1 ∧ · · · ∧ ωp (4.39)

with lj = −rk(W j
k ) for each cl,j . For a non-vanishing result, the degree of ω1 . . . ωp must

equal vdim(MQ,Nf

k,Lj
).

4.3 The effective theory on a four-manifold

We consider in this Section the low energy effective field theory on a four-manifold. We
derive the semi-classical action of the theory coupled to background U(1) fields. As in
previous cases [42, 40, 136, 39], the final expression takes the form of a Siegel-Narain
theta series multiplied by a measure factor.

4.3.1 Hypermultiplets and background fields

The effective theory coupled to Nf background fluxes can be modelled as that of a
theory with gauge group SU(2) × U(1)Nf , where the fields of the U(1) factors have been
frozen in a special way [137, 39]. To derive the precise form, we recall the low-energy
effective Lagrangian for the r multiplets (ϕJ , ηJ , χJ , ψJ , F J) of the topologically twisted
U(1)r SYM theory [19]. Since the u-plane integral reduces to an integral over zero-
modes [40], it suffices to only include the zero-modes in the Lagrangian. For simply
connected four-manifolds, there is no contribution from the one-form fields ψJ . The
Lagrangian is then given in terms of the prepotential F ({aJ}) and its derivatives to
the vevs ⟨ϕJ⟩ = aJ , as

L = ı̊

16π (τ̄JKF
J
+ ∧ FK

+ + τJKF
J
− ∧ FK

− ) − 1
8πyJKD

J ∧DK

+ ı̊
√

2
16π F̄JKLη

JχK ∧ (D + F+)L,

(4.40)
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with yJK = Im(τJK), τJK = ∂J∂KF ({aJ}) and FJKL = ∂J∂K∂LF ({aJ}). It is left
invariant by the BRST operator Q, which acts on the zero modes as

[Q, AJ ] = ψJ = 0, [Q, ψJ ] = 4
√

2daJ ,

[Q, aJ ] = 0, [Q, āJ ] =
√

2 ı̊ ηJ ,

[Q, ηJ ] = 0, [Q, χJ ] = ı̊(F+ −D+)J ,

[Q, DJ ] = (dψJ)+ = 0.

(4.41)

Using this operator, we can write L as the sum of a topological, holomorphic term and
a Q-exact term,

L = ı̊

16πτJKF
J ∧ FK + {Q,W}, (4.42)

with
W = − ı̊

8πyJKχ
J(F+ +D)K . (4.43)

The low-energy theory of SU(2) gauge theory with Nf hypermultiplets coupled
to Nf background fluxes can then be modelled by the above rank r description with
r = Nf + 1. We identify F ({aJ}) with F (a,m). We let the indices J,K run from 0 to
Nf and identify the index 0 with the unbroken U(1) of the SU(2) gauge group and the
indices j, k, l = 1, . . . , Nf with that of the frozen U(1)Nf factors. We further set ϕ0 := ϕ

for any field ϕ. We will proceed by using lower indices for j, k, l, except where the
summation convention is explicitly used, to avoid confusion with powers of the fields.

The masses of the hypermultiplets are the vevs of the frozen scalar fields of the
corresponding vector multiplets, mj√

2 = ⟨ϕj⟩ = aj [137]. We set [Fj] = 4πkj with

kj = c1(Lj)/2 ∈ L/2. (4.44)

To make the BRST variations of the fields from the frozen U(1) factors vanish, we set
ηj = χj = 0, as well as Dj = F j

+. With these identifications, the Lagrangian becomes

L = ı̊

16πτJKF
J ∧ FK + 1

8πy00F+ ∧ F+ − 1
8πy00D ∧D

+ ı̊
√

2
16π F̄000ηχ ∧ (D + F+) + ı̊

√
2

8π F̄00jηχ ∧ F j
+

+ 1
4πy0j(F+ −D) ∧ F j

+.

(4.45)

Integrating over D, η and χ in the standard way [19, 40, 39], we end up with∫
dDdηdχ e−

∫
X

L

= ∂

∂ā

(̊
ı
√
y00 B

(
F + y0j

y00
F j, J

))
e−
∫

X
L0 ,

(4.46)
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where

L0 = ı̊

16πτJKF
J ∧ FK + 1

8πy00F+ ∧ F+ + y0j

4π F+ ∧ F j
+ + 1

8π
y0jy0k

y00
F j

+ ∧ F k
+

= ı̊

16π (τ̄F+ ∧ F+ + τF− ∧ F−) + ı̊

8π (vjF− ∧ F j
− + v̄jF+ ∧ F j

+)

+ ı̊

16πwjkF
j ∧ F k + y

8π Im(vj)Im(vk)F j
+ ∧ F k

+,

(4.47)

and we identified τ := τ00, y = Im(τ) = y00, vj := τ0j and wjk := τjk. Thus the coupling
wjk is holomorphic, but the coupling vj is non-holomorphic. This is similar to the
couplings for N = 2∗ [39].

4.3.2 Sum over fluxes

The path integral includes a sum over fluxes k = [F ]/4π ∈ L/2. After summing the
exponentiated action (4.46) over the fluxes k and multiplying by dā

dτ̄
, we find that this

takes the form

∑
k∈L+µ

∫
dDdηdχ e−

∫
X

L =
 Nf∏

j,k=1
C

B(kj ,kk)
jk

 ΨJ
µ(τ, τ̄ ,z, z̄). (4.48)

The couplings Cjk are given in terms of wjk (4.5) by

Cjk = e−π ı̊ wjk , (4.49)

for j, k = 1, . . . , Nf . Such couplings were first put forward in [136], and were also crucial
in [39].

The term ΨJ
µ is an example of a Siegel-Narain theta function. It reads explicitly

ΨJ
µ(τ, τ̄ ,z, z̄) = e−2πyb2

+
∑

k∈L+µ

∂τ̄ (4π ı̊√yB(k + b, J))

× (−1)B(k,K)q−k2
−/2q̄k2

+/2e−2π ı̊ B(z,k−)−2π ı̊ B(z̄,k+),

(4.50)

and is discussed in more detail in Appendix B.2. The elliptic variable reads in terms of
vj and kj,

z =
Nf∑
j=1

vjkj, and b = Im(z)
y

, (4.51)

thus inducing a non-holomorphic dependence on vj. Furthermore, K appearing in the
fourth root of unity (−1)B(k,K) is a characteristic vector of L. Note that ΨJ

µ changes
by the sign (−1)B(µ,K−K′) upon replacing K by a different characteristic vector K ′

[40, 138, 39].
For Nf = 0, this phase can be understood as arising from integrating out massive

fermionic modes [42]. It also appears naturally in decoupling the adjoint hypermultiplet
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in the analogous function for N = 2∗ [39]. For Nf > 0, the constant part of the
couplings vj (4.5) effectively contribute to the phase, such that the total phase reads

eπ ı̊ B(k,K)
Nf∏
j=1

eπ ı̊ nj B(kj ,k), (4.52)

with nj the magnetic winding numbers. For arbitrary nj ∈ Z, the phase is an eighth
root of unity. It would be interesting to understand this phase from integrating out
massive modes.

We deduce from (4.52) that the summand of ΨJ
µ changes by a phase

eπ ı̊(n′
j−nj)B(kj ,k) (4.53)

if the winding numbers nj are replaced by n′
j . Since kj ∈ K/2 − µ mod L (see (4.26))

and k ∈ L + µ, this phase is 1 if n′
j − nj = 0 mod 4. We can therefore restrict to

nj ∈ Z4. For specific choices of µ and kj, the nj can lie in a subgroup of Z4.
The modular transformations of ΨJ

µ are discussed in Appendix B.2, which are crucial
input for single-valuedness of the u-plane integrand. We will demonstrate in Section
4.4.2 that the u-plane integrand is single-valued if we impose further constraints on the
winding numbers nj.

Finally, if the theory is considered on a curved background, topological couplings
arise in the effective field theory [42]. These terms couple to the Euler characteristic
and the signature of the four-manifold X, respectively denoted A and B. These take
the form [42, 40],

A = α

(
du

da

)1/2

, B = β∆1/8
Nf
. (4.54)

Here, ∆Nf
is the physical discriminant incorporating the singularities of the effective

theory, while du
da

is the (reciprocal of) the periods of the SW curves as introduced
in Chapter 2. As discussed in that chapter, both can be determined directly from
the SW curve. The prefactors α and β are independent of u, but can be functions
of other moduli such as the masses m, the dynamical scale ΛNf

or the UV coupling
τUV. However, it turns out that for the theories with fundamental matter they are
independent of the masses and only depend on the scale [135, 139]. They satisfy several
constraints from holomorphy, RG flow, homogeneity and dimensional analysis, and can
in principle be fixed for any Lagrangian theory from a computation in the Ω-background
[44, 135, 139, 61].

4.3.3 Observables and contact terms

The observables in the topologically twisted theories are the point observable or 0-
observable u, as well as d-observables supported on a d-dimensional submanifold of X.
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The d-observables are only non-vanishing if the submanifold corresponds to a non-trivial
homology class. For b1 = 0, the d-observables with d odd therefore do not contribute.
In Section 4.6 we will consider the case of b1 ̸= 0 when evaluating the u-plane integral
for the pure theory, until then we restrict to b1 = 0 for brevity.

To introduce the surface observable, let x ∈ H2(X,Q). Then the surface observable
reads in terms of the UV fields,

I(x) = 1
4π2

∫
x

Tr
[
ψ ∧ ψ − 1√

2
ϕF

]
. (4.55)

In the effective infrared theory, this operator becomes,

Ĩ(x) = ı̊√
2π

∫
x

1
32
d2u

da2 ψ ∧ ψ −
√

2
4
du

da
(F− +D). (4.56)

Generating functions of correlation functions are obtained by inserting

e
p u/Λ2

Nf
+Ĩ(x)/ΛNf (4.57)

in the path integral. The surface observable leads to a change in the argument of the
sum over fluxes (4.50),

z → z + x

2πΛNf

du

da
, z̄ → z̄. (4.58)

and to analytically continue b (4.51) to the complex number by setting b = (z−z̄)/(2 ı̊ y).
The inclusion of the surface observable also gives rise to a contact term [140, 40, 133],

which in particular ensures that the u-plane integrand is single-valued. For 0 ≤ Nf ≤ 3,
the contact term is exp(x2 GNf

) with [141, 130, 142]

GNf
= − 1

24 Λ2
Nf

E2

(
du

da

)2

+ 1
3 Λ2

Nf

(
u+ Λ2

3
64 δNf ,3

)
, (4.59)

while for Nf = 4 it is given by [141, 143]

GNf =4 = − 1
24 Λ2

4
E2

(
du

da

)2

+ u

3 Λ2
4
E2(τUV) + 1

18 Λ2
4

q
m2

1
y
E4(τUV). (4.60)

This expression (4.59) is valid for the theories with Nf arbitrary hypermultiplet masses.
The reason for it is the following [141, 19, 90]: G is guaranteed to be Q-closed and
hence locally holomorphic. First, notice that ∂F

∂τ0
= u

4 , where Λ4−Nf =: eπ ı̊ τ0 for the
asymptotically free theories (Nf ≤ 3) and τ0 = τUV for Nf = 4. The real part of
the exponential prefactor of ΨJ

µ can be added to G to give a monodromy-invariant
contribution Ĝ which multiplies the intersection x2. From the action of a duality



4.4 The u-plane integral 109

transformation on Ĝ it can be inferred that

GNf
= − 4 ı̊

πΛ2
Nf

∂2F

∂τ 2
0
. (4.61)

The expressions (4.59) follow by direct computation. A more general scheme to fix the
contact terms is proposed in [130]. Contact terms can also be derived from the corre-
sponding Whitham hierarchies [144, 142]. In the presence of surface observables, there
are additional mixed contact terms ∂2F

∂τ0∂m
for the external fluxes {kj} as encountered in

[39] for the N = 2∗ theory.

4.4 The u-plane integral

In this section, we set up the u-plane integral schematically given in the introduction
1.2.3, and demonstrate that it is well-defined on the integration domain for any µ with
appropriate background fluxes. The case µ = w̄2(X)/2 and kj = 0 was analysed in [40].

4.4.1 Definition of the integrand

As discussed in the previous sections, the u-plane integral on a closed four-manifold X

with (b1, b
+
2 ) = (0, 1) depends on many parameters. We summarise:

• The scale ΛNf
and masses m = (m1, . . . ,mNf

) of the theory. See Section 4.1 and
Chapter 2.

• The magnetic winding numbers nj, j = 1, . . . , Nf . See Section 4.1.1.

• The four-manifold X, in particular its signature σ = σ(X), Euler characteristic
χ = χ(X), period point J and intersection form Q. See Section 4.2.1.

• The ’t Hooft flux µ, and the external fluxes {kj} = (k1, . . . ,kNf
). See Section

4.2.3.

• The fugacities for the point and surface observables p and x. See Section 4.3.3.

In terms of these parameters, the u-plane path integral reduces to the following
finite-dimensional integral over FNf

(m),

ΦJ
µ,{kj}(p,x,m,ΛNf

) =

KNf

∫
FNf

(m)
dτ ∧ dτ̄ ν(τ ; {kj}) ΨJ

µ(τ, τ̄ ,z, z̄) e2pu+x2GNf .
(4.62)

We summarise the different elements on the rhs:
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• KNf
is an overall normalisation factor. For Nf = 0, it is fixed by matching to

known Donaldson invariants. Due to χ+ σ = 4, there is an ambiguity [44]

(KNf
, α, β) ∼ (ζ−4KNf

, ζα, ζβ), (4.63)

with α and β the u-independent prefactors in (4.54).

• The integration domain FNf
(m) in (4.62) is crucially the fundamental domain

of the effective gauge coupling. As discussed in Chapter 2, this domain requires
new aspects compared to integration domains for earlier discussions of u-plane
integrals. The evaluation of integrals over FNf

(m) will be discussed in more detail
in Section 4.5.

• ν is the “measure factor" [42, 40, 135, 130, 39]

ν(τ ; {kj}) = da

dτ
AχBσ

Nf∏
i,j=1

C
B(ki,kj)
ij . (4.64)

It combines the topological couplings (4.54) and the couplings to the background
fluxes (4.49) with the Jacobian da

dτ
of the change of variables from a to τ .

• The function ΨJ
µ arises from the sum over U(1) fluxes. It is a Siegel-Narain theta

function (4.50) and discussed in detail in Section 4.3.2. The elliptic parameter z

of the Siegel-Narain theta function reads

z = x

2πΛNf

du

da
+

Nf∑
j=1

vjkj,

z̄ =
Nf∑
j=1

v̄jkj.

(4.65)

• Finally, GNf
is the contact term, discussed in more detail in Section 4.3.3.

4.4.2 Monodromy transformations of the integrand

We continue by explicitly verifying that the u-plane integral is single-valued around
the singular points of the moduli space. We find that this puts a constraint on the
magnetic winding numbers nj, in addition to the constraints on the background fluxes
kj discussed in Section 4.2.3.

Monodromy around infinity

Let us determine how the u-plane integrand transforms under the monodromy around in-
finity. As a function of the effective coupling τ , the measure factor (4.64) is proportional
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to da
dτ

(
du
da

)χ
2 ∆σ

8 times the product over the couplings Cij. We take the monodromy
at infinity to be oriented as u → e2π ı̊u and a → eπ ı̊a, as in Section 4.1.2. Then this
path also encircles all singularities uj, which are the roots of the physical discriminant,
∆ = ∏Nf +2

j=1 (u− uj). We thus have that ∆ → e2π ı̊(Nf +2)∆, and hence

∆σ
8 → eπ ı̊(Nf +2)σ/4∆σ

8 (4.66)

Next, since u → e2π ı̊ and a → eπ ı̊a we find du
da

→ eπ ı̊ du
da

, and therefore

(
du

da

)χ
2

→ eπ ı̊ χ/2
(
du

da

)χ
2

. (4.67)

For da
dτ

we have that a → eπ ı̊a, while dτ → dτ , and thus

da

dτ
→ −da

dτ
. (4.68)

From (4.8) we recall that wij → wij + δij, such that with the definition (4.49) we find
Cij → e−π ı̊ δijCij. The couplings Cij transform in the measure factor as

Nf∏
i,j=1

C
B(ki,kj)
ij → e−π ı̊

∑
j

k2
j

Nf∏
i,j=1

C
B(ki,kj)
ij . (4.69)

Combining (4.66), (4.67), (4.68), (4.69), and using χ = 4 − σ, we obtain

ν → −eπ ı̊ Nf σ/4e−π ı̊
∑

j
k2

j ν. (4.70)

This phase for kj = 0 can be checked directly by taking q-expansions from the SW
curves, for generic masses.

From (4.8) we recall that under the monodromy around infinity vj → −vj − nj , and
thus

z → −z −
Nf∑
j=1

njkj. (4.71)

For the sum over fluxes we can now deduce using (B.20) that

ΨJ
µ

(
τ +Nf − 4,−z −

Nf∑
j=1

njkj

)

= eπ ı̊(Nf −4)(µ2−µ·K) ΨJ
µ

(
τ,−z −

Nf∑
j=1

njkj + (Nf − 4)(µ − K
2 )
)
,

(4.72)

where we suppressed the dependence on the anti-holomorphic parts. Recall from (4.26)
that

c1(Lj) ≡ K − 2µ mod 2L. (4.73)
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and as such we can express kj = c1(Lj)/2 as

kj = K

2 − µ + ℓj, ℓj ∈ L. (4.74)

We have then
k2

j = σ

4 −K · µ + µ2 − 2µ · ℓj mod 2Z, (4.75)

where we used that K is a characteristic vector of L, and K2 = σ mod 8. Using (B.20)
and substitution of (4.74) in this expression, (4.72) equals

eπ ı̊(Nf −4)(µ2−µ·K) ΨJ
µ

(
τ,−z −

Nf∑
j=1

njℓj + (Nf − 4 +
∑

j

nj)(µ − K
2 )
)
. (4.76)

Our aim is to write this as a phase times ΨJ
µ(τ, z). The constraints on the winding

numbers should be independent of µ and kj , since the prepotential is. From (B.23), we
therefore get the first constraint

∑
j

nj = Nf mod 2. (4.77)

Using identity (B.23), 2µ2 −K · µ ∈ Z and 4(µ − K
2 ) ∈ 2L, this simplifies to

eπ ı̊(Nf −4)(µ2−µ·K)+2π ı̊ µ·
∑

j
njℓj−2π ı̊(Nf +

∑
j

nj)(µ2−µ·K/2)ΨJ
µ(τ,−z)

= −eπ ı̊ Nf (µ2−µ·K)+2π ı̊ µ·
∑

j
njℓj−2π ı̊(Nf +

∑
j

nj)(µ2−µ·K/2) ΨJ
µ(τ, z)

= −e−π ı̊ Nf µ2+2π ı̊ µ·
∑

j
njℓj−2π ı̊

∑
j

nj(µ2−µ·K/2) ΨJ
µ(τ, z).

(4.78)

Finally using (4.75), we can express the phase in terms of kj,

M∞ : ΨJ
µ(τ, z) → −e−π ı̊ Nf µ2−π ı̊

∑
j

nj(k2
j +µ2−σ/4) ΨJ

µ(τ, z). (4.79)

By multiplying (4.70) with (4.79), we find

ν(τ ; {kj}) ΨJ
µ(τ, z) → e−π ı̊

∑
j
(nj+1)k2

j + πi
4
∑

j
(σ−4µ2)(nj+1) ν(τ ; {kj}) ΨJ

µ(τ, z). (4.80)

Combining (4.32) with (4.21), we have that 4(kj + µ)2 ≡ σ mod 8 for every j =
1, . . . , Nf . We insert this into the second exponential of (4.80), such that

M∞ : ν(τ ; {kj}) ΨJ
µ(τ, z) → e2π ı̊ µ

∑
j
(nj+1)kj ν(τ ; {kj}) ΨJ

µ(τ, z), (4.81)

and the u-plane integrand is invariant under TNf −4 if and only if µ
∑

j(nj + 1)kj ∈ Z.
Using (4.74) and the fact that K is a characteristic vector of L, we find

nj = 1 mod 2 (4.82)
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for all j = 1, . . . , Nf , which implies the above constraint (4.77).

Monodromy around the other singularities

The analogous analysis can be performed for the monodromies around the other
singularities, i.e., the mass singularities a = mj√

2 , as well as the monopole and dyon
singularities. A detailed analysis is performed in [5, Sec. 5] but we omit it here for
brevity. The result is that the monodromy around the mass singularities does not
impose any new constraints while those around the monopole and dyon points do. We
find that for the u-plane integral to be single-valued we need to impose the constraint

nj = −1 mod 4, j = 1, . . . , Nf , (4.83)

for the magnetic winding numbers. To see this, we consider the transformation of the
Siegel-Narain theta function when going around the monopole point in the Nf = 1
theory, (4.12),

ΨJ
µ( τ

−τ+1 ,
vk1+(n+1)/2 τk1

−τ+1 ) = (−τ + 1)b2/2(−τ̄ + 1)2 eπi(n+1)k1·K/2−(n+1)2k2
1/4 e−πiσ/4

× exp
[
πi

(v + (n+ 1)/2)2

−τ + 1 k2
1

]
ΨJ

µ+(n+1)k1/2(τ, z).

(4.84)
Now, since ΨJ

µ is required to transform to itself up to an overall factor, we must
demand that (n+ 1)k1/2 ∈ L. Therefore for k1 ∈ L/2, we find the requirement that
n = −1 ∈ Z4. After incorporating this constraint it is straightforward to show that the
phases cancel with the corresponding transformations from the measure factor [5].

4.5 Integration over fundamental domains

As discussed in Sections 4.1 and 4.4, u-plane integrals for massive N = 2 theories
with fundamental hypermultiplets include new aspects. This section discusses how to
evaluate such integrals (4.62). More concretely, we aim to define and evaluate integrals
of the form

If =
∫

F(m)
dτ ∧ dτ̄ y−s f(τ, τ̄), (4.85)

with s ≤ 1. The domain F(m) is the fundamental domain for the effective coupling
constant as discussed in Chapter 2, and f a non-holomorphic function of weight
(2 − s, 2 − s) arising from the topologically twisted Yang-Mills theory. For F(m) a
fundamental domain of a congruence subgroup, such integrals (4.85) have been studied
in the context of theta lifts of weakly holomorphic modular forms and harmonic Maass
forms [145–147] as well as one-loop amplitudes in string theory [148–150].
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We assume that the integrand y−s f(τ, τ̄) can be expressed as

∂τ̄ ĥ(τ, τ̄) = y−s f(τ, τ̄), (4.86)

for a suitable function ĥ(τ, τ̄) using mock modular forms. This was indeed the case in
[43, 46, 39, 4], and will be demonstrated for massive N = 2 theories with fundamental
hypermultiplets in an upcoming work [117]. In Sec. 4.6 we further show this for the
pure theory on non-simply connected four-manifolds, generalising the results of [43, 46].
The integral If then reads

If = −
∫

∂F(m)
dτ ĥ(τ, τ̄), (4.87)

with ∂F(m) the boundary of F(m).
There are a number of aspects to be addressed in order to evaluate integrals over

F(m):

1. Identifications of boundary components of F(m) due to monodromies on the
u-plane.

2. Contributions from the cusps, that is τ → ı̊∞ or τ → γ(̊ı∞) ∈ Q for an element
γ ∈ PSL(2,Z).

3. Contributions from a singular point in the interior of F(m).

4. Contributions from an elliptic point p ∈ H of PSL(2,Z).

5. Branch points and branch cuts.

We will discuss these aspects 1.–5. in the following.

1. Identifications
The modular transformation induced by monodromies identify components of the
boundary of the fundamental domain ∂F(m) pairwise. Their contributions to the
integral (4.87) vanish, which is, for example, familiar from deriving valence formulas for
modular forms [151, Fig. 2]. See Fig. 1.2 for an example of how the boundaries are
identified.

2. Cusps
At the cusps, the topological theory is singular due to extra contributions from the
supersymmetric configurations of (4.28). The contributions to the integral near the
cusps thus require a regularisation [40, 45]. Such regularisations have been developed in
the context of string amplitudes [148–150] and analytic number theory [152, 151, 146].

Let us first consider the cusp τ → ı̊∞. To regularise the divergence, one introduces
a cut-off Im τ = Y ≫ 1, and takes the limit Y → ∞ after evaluation. We require that
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f near ı̊∞ has a Fourier expansion of the form2

f(τ, τ̄) =
∑

m≫−∞,n≥0
c(m,n) qm q̄n. (4.88)

Then the function ĥ has the form,

ĥ(τ, τ̄) = h(τ) + 2s
∫ ı̊ ∞

−τ̄

f(τ,−v)
(− ı̊(v + τ))s

dv, (4.89)

where h(τ) is a weakly holomorphic q-series, with expansion

h(τ) =
∑

m≫−∞
d(m) qm. (4.90)

The cusp τ → ı̊∞ then contributes

[If ]∞ = w∞ d(0), (4.91)

with d(0) the constant term of h(τ) (4.90), and w∞ the width of the cusp F(m) at ı̊∞.
For Nf ≤ 3, w∞ is 4 −Nf as we have seen in previous chapters.

The other cusps can be treated in a similar fashion using modular transformations.
We label the nc cusps in F(m) by j = 1, . . . , nc. If the cusp is on the horizontal axis at
−dj

cj
∈ Q with relative prime (cj, dj) ∈ Z2, we can map the cusp to ı̊∞ by a modular

transformation

γj =
aj bj

cj dj

 . (4.92)

We let τj = γjτ . Then the holomorphic part hj(τj) of (cjτ + dj)−2 ĥ(γτj, γτ̄j) can be
expanded for τ near −dj

cj
as

hj(τj) =
∑

dj(n) qn
j , qj = e2π ı̊ τj . (4.93)

As a result, the cusp j contributes

[If ]j = wj dj(0). (4.94)

3. Singular points in the interior of F(m)
The integrand can be singular at a point τs in the interior of F(m). Such singularities
appear typically for deformations of superconformal theories, such as the N = 2∗ theory
and the Nf = 4 theory, where the UV coupling τUV gives rise to such a singularity

2Also if f does not satisfy this requirement, the integral can be regularised as explained in [45, 146].
We do not need this regularisation for the correlators in this thesis.
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[39, 3]. See Fig. 2.14 for an example. We require that the expansion of f near such a
singularity reads,

f(τ, τ̄) =
∑

m≫−∞,n≥0
cs(m,n) (τ − τs)m (τ̄ − τ̄s)n. (4.95)

Then, the anti-derivative ĥ(τ, τ̄) has similar expansion,

ĥ(τ, τ̄) =
∑

m≫−∞,n≥0
ds(m,n) (τ − τs)m (τ̄ − τ̄s)n. (4.96)

That this holds will be discussed in more detail in the upcoming work [117]. The
contour integral for a small contour around τs,

Cε(τs) =
{
τ = τs + ε e̊ı φ, φ ∈ [0, 2π)

}
, (4.97)

is bounded for such a function. Close to the singularity we have
∫ r0

ε
rdr

∫ 2π

0
dφ(τ − τs)m(τ̄ − τ̄s)n = 2πδm,n

∫ r0

ε
drr2m+1, (4.98)

with (τ − τs) = re̊ı φ. This is convergent for n ≥ 0 when ε → 0 [39]. We define the
“residue” of a non-holomorphic function g(τ, τ̄)

nRes
τ=τs

[g(τ, τ̄)] = 1
2π ı̊ lim

ε→0

∮
Cε(τs)

g(τ, τ̄) dτ. (4.99)

The reason why this procedure works, and does not depend on the contour, is due to
the fact that the anti-holomorphic dependence is controlled by having n ≥ 0 in (4.96),
as seen above. See also [45] for a more in depth study of the regularisation procedure
of these types of integrals. For the expansion (4.95) we then find

[If ]s = 2π ı̊ nRes
τ=τs

[
ĥ(τ, τ̄)

]
= ds(−1, 0), (4.100)

with ds(−1, 0) the coefficient in the expansion (4.96).

4. Elliptic points
For N = 2 SQCD, AD points are the elliptic points of the duality group, and lie on
the boundary of F(m). See Fig. 2.5 for an example. The elliptic points are α = eπ ı̊ /3

and ı̊, and their images under PSL(2,Z). Contour integrals around such points can be
regularised using a cut-off ε. We assume that the anti-derivative ĥ has the following
expansion near an elliptic point τe,

ĥ(τ, τ̄) =
∑

m≫−∞,n≥0
de(m,n) (τ − τe)m (τ̄ − τ̄e)n. (4.101)
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As a result, the boundary arc around τAD in H is a fraction of 2π, which needs to
be properly accounted for. These neighbourhoods have an angle 2π

ke
, with ke = 2 for

τe = ı̊, and ke = 6 for τe = α [79]. Furthermore, it is important how many images of
F in F(m) coincide at the elliptic point. We denote this number by ne. For N = 2
SQCD, we found examples with ne = 2 and 4 for τe ∼ α, while for τe ∼ ı̊, ne = 1 [2].
The contribution from an elliptic point is then,

[If ]e = 2π ı̊ ne

ke
nRes
τ=τe

[
ĥ(τ, τ̄)

]
= ne

ke
de(−1, 0), (4.102)

In an upcoming work, [117], we will argue in more detail that the non-holomorphic
residue is well-defined for the elliptic points of the theory since the dependence on τ̄ is
well behaved.

5. Branch points and cuts
Branch points and cuts are a new aspect compared to previous analyses (see for instance
Fig. 2.3). We will demonstrate that their contribution vanishes for the integrands of
interest.

We assume that the integrand f satisfies

ĥ(τ, τ̄) = (τ − τbp)n g(τ, τ̄), (4.103)

with n ∈ Z/2 and n ≥ −1/2, g(τ, τ̄) being a real analytic function near τbp. This
assumption is satisfied for the twisted Yang-Mills theories [117]. To treat this type of
singularity, we remove a δ neighbourhood and analyse the δ → 0 limit. Let Cδ be the
contour

Cδ = {τbp + δ e̊ı θ | θ ∈ (0, 2π)} (4.104)

around τbp with radius δ > 0. Therefore, on the contour |y−sf | is bounded by

|ĥ| ≤ δn K (4.105)

for some K > 0. The integral around the branch point therefore vanishes in the limit,

Ibp
f = lim

δ→0

∫
Cδ

ĥ |dτ | ≤ lim
δ→0

∫ 2π

0
δn K δ dθ

= lim
δ→0

2πKδn+1 = 0.
(4.106)

The branch points necessarily give rise to branch cuts. For the purpose of integration,
we remove a neighbourhood with distance r from the cut, and take the limit r → 0
after determining the integral. Since the value of the integrand is finite near the branch
cut, the contribution to the integral vanishes.
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Summary
Combining all the contributions discussed above, we find

If =
n∑

j=1
wj dj(0) +

∑
s

ds(−1, 0) +
∑

e

ne

ke
de(−1, 0). (4.107)

This formula generalises [40] for the pure Nf = 0 theory on a smooth four-manifold
X that admits a metric of positive scalar curvature, [46, Equation (5.10)] for the pure
theory on generic X, [39, Equation (4.88)] for the N = 2∗ theory on X, and [153] for
the massless Nf = 2 and Nf = 3 theories on X = CP2.

4.6 Non-simply connected manifolds

If we allow for the theory to be placed on a non-simply connected four-manifold, the
analysis will be slightly more complicated. The presence of zero modes for the one-forms
add many ingredients that were glossed over in the above analysis. Let us now for
simplicity turn again to the pure theory but to see how the explicit analysis works out
when allowing for four-manifolds that are non-simply connected. This analysis follows
closely [4]. The starting point will be the topologically twisted pure theory.

4.6.1 Effective Lagrangian

The low-energy U(1) effective Lagrangian L of the twisted pure theory, including the
one-forms, is given in [40, (2.15)]. For brevity, we do not print it here. The Q-exact
terms as well as the kinetic terms do not contribute since the zero modes are constant
in Donaldson-Witten theory on a four-manifold X with b+

2 (X) = 1. For such manifolds
there is a useful fact stating that for any β1, β2, β3, β4 ∈ H1(X,Z), we have [154]

β1 ∧ β2 ∧ β3 ∧ β4 = 0. (4.108)

We will make extensive use of this below.
Let us define L′ as the part of the zero-mode low-energy U(1) effective Lagrangian

that contributes to the u-plane integral. It is given by [40]

L′ =π ı̊ τ̄k2
+ + π ı̊ τk2

− − y

8πD ∧ ∗D + ı̊
√

2
16π

dτ̄

dā
ηχ ∧ (F+ +D)

− ı̊
√

2
27π

dτ

da
ψ ∧ ψ ∧ (F− +D),

(4.109)

where F± = 4πk±, as before. Compare with (4.45). In L′, we disregard any summands
in L containing Q-exact terms, exact differential forms and ∧-products of four 1-forms.
Here and throughout the rest of the chapter we use units where the dynamical scale Λ0
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of the low-energy effective U(1) theory is equal to one. The gravitational contributions
to L′ are described in the following subsection.

4.6.2 Measure factors

Assuming X is connected and allowing for b1 ̸= 0, the measure factor of (4.64), for the
pure theory, can now be rewritten as [16, 40]

ν(τ) := −
(
27/2π

) b1
2 2

3σ(X)
4 +1

π
(u2 − 1)

σ(X)
8

(
da

du

)σ(X)
2 +b1−2

da

dτ
. (4.110)

Here we used χ(X) + σ(X) = 4 − 2b1 to eliminate χ(X).
The zero modes of the one-forms ψ live in the tangent space of a b1-dimensional torus

Tb1 = H1(X,R)/H1(X,Z) = H1(X,O∗
X) which corresponds to isomorphism classes

of invertible sheaves (for X a smooth complex variety that means holomorphic line
bundles) on X which are topologically trivial. We can expand ψ in zero-modes as
ψ = ∑b1

i=1 ciβi with βi an integral basis of harmonic one-forms, and ci Grassmann
variables. We then have the measure

b1∏
i=1

dci√
y

= y− b1
2

b1∏
i=1

dci. (4.111)

The photon partition function, (4.50), will now also include an integration over b1 zero
modes of the gauge field corresponding to flat connections [155]. These zero modes span
the tangent space of Tb1 . As a consequence of this, the photon partition function will
have an overall factor of y 1

2 (b1−1) [42]. Combining this with the measure factor (4.111)
we see that the only surviving factor in the end will be y−1/2.

We can also consider the cj in the expansion of ψ as a basis of one-forms β#
j ∈

H1(Tb1 ,Z), dual to βj, such that

ψ =
b1∑

j=1
βj ⊗ β#

j . (4.112)

A useful fact about four-manifolds with b+
2 = 1 is that the image of the map

∧ : H1(X,Z) ⊗H1(X,Z) → H2(X,Z) (4.113)

is generated by a single rational cohomology class, which we denote as W [154].3 This
means that we can write βi ∧ βj = aijW , i, j = 1, . . . , b1, where aij is an anti-symmetric

3This class is denoted Σ in [155] and Λ in [156]. However, since we want to reserve Σ for the
Riemann surfaces studied below and Λ0 for the dynamical scale of the theory we choose to call the
class W .
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matrix. This further implies that the two-form on Tb1 can be written as

Ω =
∑
i<j

aijβ
#
i ∧ β#

j , (4.114)

where β#
i ∈ H1(Tb1 ,Z), such that

vol(Tb1) =
∫
Tb1

Ωb1/2

(b1/2)! . (4.115)

Below, we will study four-manifolds of the type X = CP1 × Σg with Σg a genus g
Riemann surface. For these manifolds we have that W = [CP1] and vol(Tb1) = 1 [155].

Using the analysis above we can now write ψ ∧ ψ = 2(W ⊗ Ω) [155]. This will be
very useful later on when we want to perform the integral over Tb1 for the product ruled
surfaces.

4.6.3 Observables

Observables that are Q-invariant can be constructed using the celebrated descent
formalism. By starting with the zero-form operator O(0) = 2u, we find all k-form valued
observables O(k) for k = 1, 2, 3, 4 that are Q-invariant modulo exact forms by solving
the descent equations

dQ(j) = {Q,O(j+1)} (4.116)

inductively. This ensures that for a k-cycle Σ(k) ∈ Hk(X) in X, the integrals
∫

Σ(k) O(k)

are Q-invariant and only depend on Σ(k). Fortunately, there is a canonical solution to
the descent equations: Due to the fact that the translation generator is Q-exact, there
is a one-form valued descent operator K, which satisfies d = {Q, K} [40]. This implies
that (4.116) can be solved by O(j) = KjO(0), where the iterated (anti)-commutators
are implicit.

The action of the operator K can be inferred from the BRST transformations (4.41)
as [40]

[K, a] = 1
4
√

2
ψ, [K, ā] = 0, [K,ψ] = −2(F− +D), [K,A] = −2 ı̊ χ,

[K, η] = − ı̊√
2
dā, [K,χ] = −3

√
2 ı̊

4 ∗ dā, [K,D] = 3 ı̊
4 (2dχ− ∗dη) .

(4.117)

Let us study the insertion of all possible observables. For ease of notation, let us
denote p = Σ(0) a point class, γ = Σ(1) a 1-cycle, x = Σ(2) a 2-cycle and Y = Σ(3) a
3-cycle. The cycles γ, x and Y can be expanded in formal sums as

γ =
b1∑

i=1
ζiγi, x =

b2∑
i=1

λixi Y =
b3∑

i=1
θiYi, (4.118)



4.6 Non-simply connected manifolds 121

where γi, xi and Yi are a basis of one-, two- and three-cycles respectively, λi are complex
numbers, while ζi and θi are Grassmann variables. By a common abuse of notation, we
use the same notation for the 3-, 2-, and 1-forms Poincaré dual to the cycles.

The most general Q-invariant observable we can add is then

IO = 2pu+ a1

∫
γ
Ku+ a2

∫
x
K2u+ a3

∫
Y
K3u, (4.119)

where a2 = ı̊√
2π

is fixed from matching with the mathematical literature [40] and

Ku = 1
4
√

2
du

da
ψ,

K2u = 1
32
d2u

da2ψ ∧ ψ −
√

2
4
du

da
(F− +D),

K3u = 1
27

√
2
d3u

da3ψ ∧ ψ ∧ ψ − 3
16
d2u

da2ψ ∧ (F− +D) − 3
√

2 ı̊
16

du

da
(2dχ− ∗dη).

(4.120)

4.6.4 Contact terms

The existence of the canonical solution to the descent equations allows to map an
observable of the UV theory to the low-energy U(1) effective theory on the u-plane. For
instance, the operator I(x) =

∫
x K

2u of the UV theory is mapped to the same observable
Ĩ(x) =

∫
x K

2u in the IR. This is not quite true for products I(x1)I(x2) . . . I(xn) of
such operators for distinct Riemann surfaces xi ∈ H2(X,Z). At the intersection of
the surfaces, contact terms will appear, as in Section 4.3.3, [40, 130]. When mapping
a product of surface operators to the IR, the product is corrected by a sum over the
intersection points. Due to the Q-invariance, the inserted operator is holomorphic and
the point at which it is inserted is irrelevant.

Such contact terms appear for all cycles in X that can intersect. They have been
classified and the corresponding contact terms have been found in [155, Equations
(2.8)-(2.12)],

I∩ =
∫

x∩x
G+ a13

∫
Y ∩γ

G+ a32

∫
Y ∩x

KG+ a33

∫
Y ∩Y

K2G

+ a332

∫
x∩Y ∩Y

∂3F

∂τ 3
0

+ a333

∫
Y ∩Y ∩Y

K
∂3F

∂τ 3
0

+ a3333

∫
Y ∩Y ∩Y ∩Y

∂4F

∂τ 4
0
.

(4.121)

As before, τ0 is the deformation parameter of the prepotential, related to the dynamical
scale by Λ4

0 = eπ ı̊ τ0 . The coefficient functions can all be expressed as quasi-modular
functions on the u-plane. The contact term for x ∩ x we already discussed in Sec. 4.3.3.
For the pure theory it is given by, (4.59),

G = u

2 − a

4
du

da
= ϑ4

2 + ϑ4
3 − E2

6ϑ2
2ϑ

2
3

. (4.122)
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As mentioned before, it is related to the prepotential, F , by G(τ) = 4
π ı̊

∂2F
∂τ2

0
[141]. It

furthermore satisfies the identities [155]

dG

da
= 1

4

(
du

da
− a

d2u

da2

)
,

d2G

da2 = −a

4
d3u

da3 ,
∂3F

∂τ 3
0

= −π2

24

(
2G− a

dG

da

)
. (4.123)

We can further use the action (4.117) to find the last contact terms

KG = 1
4
√

2
dG

da
ψ,

K2G = 1
32
d2G

da2 ψ ∧ ψ − 1
2
√

2
dG

da
(F− +D).

(4.124)

The intersection constants can be obtained from duality invariance [155]

a1 = π− 1
2 2 3

4 e− π ı̊
4 , a3 = π− 3

2 2 1
4 e

π ı̊
4 /6,

a13 = −6π2a1a3, a32 = −6
√

2π ı̊ a3, a33 = −9π2a2
3,

a332 = −72
√

2π ı̊ a2
3, a333 = 36π2 ı̊ a3

3, a3333 = −(6π)3 ı̊ a4
3.

(4.125)

Due to the identity (4.108), the two last terms in (4.121) vanish and we can disregard
them. Thus, from (4.121) and (4.124) we see that all terms in I∩, (4.121), except for
one are only integrated over ψ and τ . The remaining term

−
√

2a33

4
dG

da
B(F− +D, Y ∧ Y ). (4.126)

is to be integrated over D, χ and η.

4.6.5 Q-exact operators

As we discussed in Sec. 4.3.2, the photon path integral combines with the insertion of
the surface observable to a Siegel-Narain theta function ΨJ

µ(τ, z). See also Appendix
B.2. This function can be expressed as a total derivative to a non-holomorphic modular
completion of an indefinite theta function, as has been previously shown in the simply
connected case [43, 46] and will be further discussed for the theories with fundamental
matter in an upcoming work [117]. To facilitate the calculation further, the authors of
[43] added the Q-exact operator [43, (2.11) and (2.12)]

Ix = − 1
4π

∫
x

{
Q, dū

dā
χ

}

= −
√

2 ı̊
4π

d2ū

dā2

∫
x
ηχ− ı̊

4π
dū

dā

∫
x
(F+ −D).

(4.127)

The u-plane integrand with Ix inserted can also in the case where b1 ̸= 0 be written as
an anti-holomorphic derivative. However, it does not give the same kind of Siegel-Narain
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theta function as in the simply-connected case. The reason is that the putative elliptic
argument z of ΨJ

µ does not couple to H2
−(X) symmetrically to how its conjugate z̄

couples to H2
+(X). The insertion of Ix in the case b1 = 0 can be viewed as the unique

correction to the path integral that symmetrises the couplings to H2
±(X). Without

such an insertion, the resulting theta functions are not symmetric, see for instance [40,
Equation (3.18)].

It turns out that, to get the non-simply connected theta function to be symmetric,
one needs to add the insertion

I(x, Y ) := Ix + IY + IY ∩Y

= − ı̊

2
(√

2B(ηχ, ∂āz̄) +B(F+ −D, z̄)
)
,

(4.128)

where we defined

z =ρ + 2 ı̊ yω, ρ = x

2π
du

da
, b = Im(ρ)

y

ω :=
√

2 ı̊
27πy

dτ

da
ψ ∧ ψ − 3a3

24y

d2u

da2ψ ∧ Y −
√

2a33

4y
dG

da
Y ∧ Y,

(4.129)

with y = Im(τ) and besides Ix we have introduced the Q-exact insertions

IY = −3 ı̊ ā3

16

∫
Y

[
Q, d

2ū

dā2χ ∧ ψ

]
+

√
2

27π

∫
X

{
Q, dτ̄

dā
χ ∧ ψ ∧ ψ

}

= 3
√

2ā3

24
d3ū

dā3B(ηχ, ψ ∧ Y ) + 3ā3

24
d2ū

dā2B(F+ −D,ψ ∧ Y )

+ ı̊

26π

d2τ̄

dā2B(ηχ, ψ ∧ ψ) +
√

2 ı̊
27π

dτ̄

dā
B(F+ −D,ψ ∧ ψ)

(4.130)

and

IY ∩Y = −
√

2 ı̊ ā33

4

∫
Y ∩Y

{
Q, dḠ

dā
χ

}

= ā33

2
d2Ḡ

dā2 B(ηχ, Y ∧ Y ) +
√

2ā33

4
dḠ

dā
B(F+ −D, Y ∧ Y ).

(4.131)

It is clear that I(x, Y ) is purely anti-holomorphic. The operator I(x, Y ) is then
included into the path integral. The addition of such Q-exact operators to the u-plane
integral has been shown to not alter the end result [45]. See also [4, App. B].
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4.6.6 The u-plane integral for π1(X) ̸= 0
The u-plane integral can now be expressed as

Zu(p, γ,x, Y ) =
∫
dτ ∧ dτ̄

∫
[dηdχdD]

∫
Pic(X)

dψ
dā

dτ̄
ν(τ) 1

√
y
e−
∫

X
L′+IO+I∩+I(x,Y ),

(4.132)
where

∫
Pic(X) denotes a sum over isomorphism classes of line bundles, equivalent to a

sum over H2(X,Z), followed by an integration over Tb1 and the factor of dā
dτ̄

comes from
the fact that we have changed integration variables from a, ā to τ, τ̄ as discussed in the
previous sections. The ψ zero modes are tangent to Pic(X), so the integral over these
modes is understood as the integral of a differential form on Pic(X) [40]. At this point
let us make a remark. The Q-exact operator I(x, Y ) is not strictly required in order to
derive our end result (4.144). As a matter of fact, as shown in [46] this operator can be
added freely as αI(x, Y ), with α any number.4 However, the case of α = 1 makes the
analysis simpler and more elegant.

Let us perform the integrals above in steps, using an economical notation. Just as
in Sec. 4.3, We integrate first over the auxiliary field D, and then over the fermionic 0-
and 2-forms, η and χ.

Integration over D, η and χ

Using (4.129), we can expand the terms in the exponential of (4.132) that are affected
by the integrals over D, η and χ as (ignoring the remaining terms for now)

−
∫

X
(L′ + a2K

2u+ a3K
3u) + I(x, Y ) −

√
2a33

4
dG

da
B(F− +D, Y ∧ Y )

= −π ı̊ τ̄k2
+ − π ı̊ τk2

− + y

8πD
2 −

√
2 ı̊
4

dτ̄

dā
B(ηχ,k+) −

√
2 ı̊

16π
dτ̄

dā
B(ηχ,D)

− ı̊√
2
B(ηχ, dρ̄

dā
) − 2π ı̊ B(k−,ρ) − 2π ı̊ B(k+, ρ̄) + yB(D, b+) +

√
2 ı̊

25 B(ψ ∧ ψ, dρ
da

)

−
√

2ηB(χ, ∂ā(yω̄)) + 4πyB(k−, ω−) − 4πyB(k+, ω̄) + yB(D,ω+) + yB(D, ω̄+).
(4.133)

At any point we discard terms that vanish identically, such as 4-fermion terms or any
instance of (4.108) such as ψ ∧ ψ ∧ ψ ∧ ψ, ψ ∧ ψ ∧ ψ ∧ Y or ω ∧ ω. The exponential
(4.133) is Gaussian in D with saddle point

D =
√

2 ı̊
4y

dτ̄

dā
ηχ− 4π(b+ + ω+ + ω̄+). (4.134)

4In particular, we can have α = 0.
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This can be found by differentiating (4.133) with respect to D and setting it to zero.
Inserting D in (4.133) gives

+
√

2 ı̊
25 B(ψ ∧ ψ, dρ

da
) − 2πy(b+ + ω+ + ω̄+)2 − π ı̊ τ̄k2

+ − π ı̊ τk2
−

− 2π ı̊ B(k−,ρ) − 2π ı̊ B(k+, ρ̄) + 4πyB(k−, ω) − 4πyB(k+, ω̄)

−
√

2 ı̊
4

dτ̄

dā
B(ηχ,k+ − b+ − ω+ − ω̄+) − ı̊√

2
B(ηχ, dρ̄+

dā
) −

√
2ηB(χ, ∂ā(yω̄)).

(4.135)

The third line gives the only terms involving η and χ, which we will integrate over next.
To this end, we combine those terms in the expression

−
√

2 ı̊
4

dτ̄

dā
B (ηχ,k − b − ω + ω̄ − 4 ı̊ y∂τ̄ ω̄ + 2∂τ̄ ρ̄) . (4.136)

Integrating over η and χ, we can rewrite this in a compact way as a total anti-holomorphic
derivative times an overall factor that cancels with contributions from the rest of the
measure,

√
2 ı̊
4

dτ̄

dā
B (k − b − ω + ω̄ − 4 ı̊ y∂τ̄ ω̄ + 2∂τ̄ ρ̄, J) = √

y
dτ̄

dā
∂τ̄

√
2yB(k + b + ω + ω̄, J),

(4.137)
where ∂τ̄ acts on everything to its right and J = J/

√
Q(J) ∈ H2

+(X) is the normalised
self-dual harmonic form on X, called simply J in the previous Sections. This result
follows directly from the identities

∂τ̄y = ı̊

2 , ∂τ̄

√
2y =

√
2 ı̊

4√
y
, ∂τ̄

1
y

= 1
2 ı̊ y2 , ∂τ̄ b = b − ∂τ̄ ρ̄

2 ı̊ y , ∂τ̄ω = 1
2 ı̊ yω. (4.138)

As previously discussed, the photon path integral together with the measure for the
zero modes of ψ contains a sum over all fluxes times a factor of 1/√y, and additionally
contributes (−1)B(k,K), where K is the canonical class of X [42]. The 1/√y factor is
thus absorbed by the √

y on the rhs of (4.137). The factor of dτ̄
dā

is cancelled against
the inverse factor in (4.132).

Siegel-Narain theta function

Let us demonstrate that the u-plane integrand for π1(X) ̸= 0, as in the simply-connected
case [43], evaluates to a Siegel-Narain theta function. See also Sec. 4.3. To this end, let
us define

ΨJ
µ(τ, z) = e−2πyβ2

+
∑

k∈L+µ

∂τ̄

(√
2yB(k + β, J)

)
× (−1)B(k,K)q−k2

−/2q̄k2
+/2e−2π ı̊ B(z,k−)−2π ı̊ B(z̄,k+)

(4.139)
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with q = e2π ı̊ τ and β = Imz
y

∈ L⊗ R, where L = H2(X,Z).
For the elliptic variable z = ρ + 2 ı̊ yω, we have β = b + ω + ω̄ (here, we use that

yω is holomorphic). Both variables appear naturally in (4.135) and (4.137). In fact, we
can combine everything to find

Zu(p, γ,x, Y ) =
∫

Γ0(4)\H

dτ ∧ dτ̄
∫
Tb1

[dψ] ν ΨJ
µ(τ,ρ + 2 ı̊ yω)eI′

O+I′
∩ . (4.140)

Here,

I ′
∩ =

∫
x∩x

G+ a13

∫
Y ∩γ

G+ a332

∫
x∩Y ∩Y

∂3F
∂τ 3

0
+ a32

4
√

2
dG

da

∫
Y ∩x

ψ (4.141)

and
I ′

O = 2pu+
√

2a1

8
du

da

∫
γ
ψ +

√
2 ı̊

26π

d2u

da2

∫
x
ψ ∧ ψ, (4.142)

are the (holomorphic) remainders of the collections of 0, . . . , 3-form observables and
their contact terms that has not yet been integrated over, and we eliminated all terms
that do not contribute.

Let us check that (4.140) is indeed true from the computations in Section 4.6.6. Aside
from the ψ∧ψ term, the exponential of the first two lines in (4.135) immediately combine
into the definition (4.139) with said parameters, z = ρ + 2 ı̊ yω and z̄ = ρ̄ − 2 ı̊ yω̄.
Everything not exponentiated is given by the τ̄ derivative term in (4.137), which
precisely gives the derivative term in (4.139). This proves (4.140).

The expression (4.140) generalises the result of the u-plane integral [46, (4.32)] to
four-manifolds X with b1(X) > 0 by giving a decomposition of the integrand into a
holomorphic and metric-independent measure ν eI′

O+I′
∩ and a metric-dependent, non-

holomorphic component ΨJ
µ(τ, z). Therefore, the evaluation techniques of [46] apply.

Namely, we can express the integrand of the u-plane integral as an anti-holomorphic
derivative,

d

dτ̄
ĤJ

µ(τ, τ̄) = ν ΨJ
µ(τ, z)eI′

O+I′
∩ . (4.143)

The holomorphic exponential eI′
O+I′

∩ does not affect the anti-holomorphic derivative, and
thus the extension to π1(X) ̸= 0 is simply through the elliptic argument z = ρ + 2 ı̊ yω.

Once ĤJ
µ(τ, τ̄) is found, we can use coset representatives of SL(2,Z)/Γ0(4) to map

the six images of F = SL(2,Z)\H back to F (see Fig. 1.2). The regularisation and
renormalisation of such integrals originating from insertions of Q-exact operators has
been rigorously established in [45]. As in Sec. 4.5, this then allows to evaluate the
partition function as

Zu(p, γ, S, Y ) = 4 Iµ(τ)
∣∣∣
q0

+ Iµ(− 1
τ
)
∣∣∣
q0

+ Iµ

(
2τ−1

τ

) ∣∣∣
q0
, (4.144)
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where by |q0 we denote the q0 coefficient of the resulting Fourier expansion, and the
τ -integrand of (4.140) is given by 5

Iµ(τ) =
∫
Tb1

[dψ]ĤJ
µ(τ, τ̄). (4.145)

The prefactors in (4.144) can be recognised as the widths of the cusps ı̊∞, 0 and 2 of
the modular curve Γ0(4)\H.

To derive a suitable anti-derivative ĤJ
µ(τ, τ̄), it is auxiliary to choose a convenient

period point J . The u-plane integral for a different choice J ′ is then related to the
one for J by a wall-crossing formula, given explicitly in [155]. It is shown in [46] that
for convenient choices of J , ΨJ

µ(τ, z) factors into holomorphic and anti-holomorphic
terms, and the anti-derivative ĤJ

µ can be found for both L even and odd. Furthermore,
the u-plane integral can be evaluated using mock modular forms for point observables
p ∈ H0(X) and Appell-Lerch sums for surface observables x ∈ H2(X) [46].

In [45] it is furthermore shown that in the above mentioned renormalisation, any
Q-exact operator (such as I(x, Y )) decouples in DW theory. However, it is clear that
the insertion of I(x, Y ) crucially changes the integrand, making the Siegel-Narain theta
function symmetric. Instead of inserting I(x, Y ), we can contemplate adding αI(x, Y )
for an arbitrary constant α. It was noticed in [46] that the Siegel-Narain theta function
ΨJ

µ,α for b1 = 0 with the insertion αIx remains finite at weak coupling (Imτ → ∞) if
and only if α = 1. This can be seen from the exponential prefactor in (4.139), whose
exponent is negative definite if and only if z̄ (which we suppress in the notation) is the
complex conjugate of z.

Single-valuedness

Similar to the analysis in Section 4.4.2 we need to make sure that the u-plane integral
is single-valued. This is straightforward, but tedious, and we leave the detailed analysis
for the interested reader to look up in [4]. The results are collected in Table 4.1.

object dτ ∧ dτ̄
∫
Tb1[dψ] ν ΨJ

µ(τ, z) eI′
O+I∩ J J

µ

weight (−2,−2) (−b1, 0) (2 − b2
2 + b1, 0) ( b2

2 , 2) (0, 0) (0, 0)
T 4 1 1 −1 −1 1 1

S−1T−1S 1 1 e− π ı̊ σ
4 e

π ı̊ σ
4 e− π ı̊ z2

τ+1 e
π ı̊ z2
τ+1 1

Table 4.1 Modular weights and phases of the u-plane integrand under Γ0(4) transformations.
This proves that the u-plane integrand J J

µ (τ) transforms trivially, J J
µ (γτ) = J J

µ (τ) for any
γ ∈ Γ0(4).

5One could also contemplate switching the order of integration, and integrate over ψ first. This
would however not necessarily result in a function similar to (4.144), and it might not be possible to
use the results of [46].
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4.6.7 Computation for product ruled surfaces

As an interesting application of our results we can study the u-plane integral for a
four-manifold of the type X = CP1 × Σg, where Σg is a genus g Riemann surface.
This is a product ruled surface with b+

2 (X) = 1.6 The DW theory for these manifolds
was worked out in [155, 156] and we can use these results as a check of our formula.
By shrinking the size of the Riemann surface Σg we get a topological σ-model, more
specifically the topological A-model, on CP1 [157]. By calculating certain correlation
functions on both sides we can make an indirect connection between mock modular
forms and the topological σ-model on CP1. We do not investigate this further in the
thesis, but see the discussion in [4, Sec. 5].

The product ruled surfaces that we consider have b1 = 2g, b2 = 2, b+
2 = 1, KX = 0,

which in turn means that σ = 0 and χ = 4(1 − g) [155]. We consider a general period
point

J(θ) = 1√
2
(
eθ[CP1] + e−θ[Σg]

)
, (4.146)

where [CP1] and [Σg] are the cohomology classes that generate H2(X,Z) [155].7 For
these manifolds we further have that the rational cohomology class W, discussed in Sec.
4.6.2, is simply given by W = [CP1] [154]. The intersection matrix is

Q =
0 1

1 0

 , (4.147)

such that indeed J(θ)2 = 1. Natural representatives of [CP1] and [Σg] are found by
choosing coordinates z ∈ C for [CP1] and representing [Σg] (for g > 1) as a quotient of
the Poincaré disk, D = {w : |w| < 1} with a Fuchsian group. This gives [155]

[CP1] = ı̊

2π
dz ∧ dz̄

(1 + |z|2)2 ,

[Σg] = ı̊

2π(g − 1)
dw ∧ dw̄

(1 − |w|2)2 .

(4.148)

The scalar curvature for this metric is 8π(eθ − e−θ(g − 1)). We see that this is positive
for e2θ > g − 1, such that we do not get any contributions from the Seiberg-Witten
invariants in these chambers. In particular, this is true when the volume of CP1 is
small, since this has θ large and positive.

The connection to the topological σ-model is made in the chamber where we shrink
the volume of Σg [157]. For completeness, we will calculate the u-plane integral in both

6One could alternatively consider products Σg × Σh of Riemann surfaces, however those have b+
2 = 1

if and only if either g = 0 or h = 0, such that for g, h ≥ 1 the u-plane integral vanishes.
7Sometimes we will be sloppy and write simply CP1 and Σg for these classes, and hope that this

does not confuse the reader.



4.6 Non-simply connected manifolds 129

chambers, where either of the factors shrink. The calculations are similar in both cases
and we will start with the chamber where the volume of CP1 is small.

From Eq. (4.110) we find that the measure factor for these manifolds simplifies to

ν = − 2
π

(27/2π)g

(
da

du

)2(g−1)
da

dτ
. (4.149)

As we discussed above, we further have that the ΨJ
µ of (4.140) can be written as a total

derivative
ΨJ

µ(τ, z) = ∂τ̄ Θ̂JJ ′

µ (τ, z), (4.150)

where for these manifolds we can take Θ̂JJ ′
µ as the indefinite theta function [158]

Θ̂JJ ′

µ (τ, z) =
∑

k∈L+µ

1
2
[
E(

√
2yB(k + β, J)) − sgn(

√
2yB(k + β, J ′))

]
× (−1)B(k,K)q−k2/2e−2π ı̊ B(z,k),

(4.151)

where k2 = k2
+ + k2

−, J ′ is a reference vector lying in the negative cone such that
Q(J ′) < 0,8 and

E : R → (−1, 1), t 7→ 2
∫ t

0
e−πx2dx (4.152)

is a reparametrisation of the error function. See also Appendix B.3 for more details on
these indefinite theta functions. This means that we can take as ĤJ

µ(τ, τ̄) in (4.145)

ĤJ
µ(τ, τ̄) = νΘ̂JJ ′

µ (τ, z)eI′
O+I′

∩ . (4.153)

For the evaluation of the u-plane integral using this ĤJ
µ, one may replace Θ̂JJ ′

µ in (4.153)
after the modular transformations as in (4.144) with the mock modular form ΘJJ ′

µ

defined in Appendix B.3. This is also in line with the approach in [43].

Shrinking CP1

Let us start by analysing the chamber where the volume of CP1 is small. In this chamber
we fix the primitive null vector to be J ′ = [CP1] = W . Due to (4.147), with this choice
we have that B(ψ ∧ ψ, J ′) = 0. As above, we denote z = ρ + 2 ı̊ yω and β = b + ω + ω̄.
We can introduce the split k = m + nW , with m chosen such that

B(m + β, J)
B(W,J) ∈ [0, 1). (4.154)

8The reason for picking J ′ in the negative cone is to assure that it does not contribute to Eq.
(4.150). Had we picked J in the positive cone, we would end up with the wall-crossing contributions
from the chambers where J and J ′ live respectively.
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With this split the mock modular form ΘJJ ′
µ coming from (4.153) can be written as

ΘJW
µ (τ, z) =

∑
n∈Z

∑
m∈L+µ

B(m+β,J)
B(W,J) ∈[0,1)

q− m2
2 e−2π ı̊ B(z,m)q−nB(W,m)e−2π ı̊ nB(ρ,W )

× 1
2

[
sgn

(√
2y(B(m + β, J) + nB(W,J)

)
− sgn

(√
2yB(m + β,W )

)]
=

∑
m∈L+µ

B(m+b,J)
B(W,J) ∈[0,1)

q− m2
2 e−2π ı̊ B(z,m)

1 − q−B(W,m)e−2π ı̊ B(ρ,W ) ,

(4.155)

where, in the second equality, we performed the sum over n. This is an Appell-Lerch
sum [158]. The u-plane vanishes in chambers where w2(E) · [CP1] ̸= 0 [40]. This means
that we only have solutions for w2(E) = 0 or w2(E) = W , implying that B(µ,W ) ∈ Z.
The only solutions for the conditions on m are then m = 0 for w2(E) = 0 and m = 1

2W

for w2(E) = W , this means that the contributions from the theta function are

ΘJW
0 (τ, z) = 1

1 − e−2π ı̊ B(ρ,W ) ,

ΘJW
W (τ, z) = − e−π ı̊ B(ρ,W )

1 − e−2π ı̊ B(ρ,W ) .

(4.156)

We note that these are independent of ψ. The u-plane integral in this chamber can now
be written as

Zu,µ(p, γ,x, Y ) = 4
[(∫

Tb1
[dψ]eI′

O+I′
∩

)
νΘJW

µ (τ,ρ)
]

q0
, (4.157)

with ΘJW
µ as above. If we only include point and surface observables it is straightforward

to do the integral over the torus. The final result is

Zu,µ(p,x) =


4
[(√

2 ı̊
25π

d2u
da2 s

)g
e2pu+2stGν 1

1−e
− ı̊ du

da
s

]
q0
, for µ = 0,

− 4
[(√

2 ı̊
25π

d2u
da2 s

)g
e2pu+2stGν e

− ı̊
2

du
da

s

1−e
− ı̊ du

da
s

]
q0
, for µ = W,

(4.158)

where we also defined x = s[Σg] + t[CP1].9

Shrinking Σg

We now go on to discuss the chamber where we instead shrink the volume of Σg. For
this chamber we pick the primitive null vector to be J ′ = [Σg]. The procedure is similar
to the above. However, note that now B(ψ ∧ ψ, J ′) ̸= 0. We start as before by splitting

9There is a small discrepancy between this result and that of [155], namely they differ by an overall
phase ı̊g. This is most likely due to a known discrepancy in the literature for the normalisation of ψ.
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k = m + nΣg with m now chosen such that

B(m + β, J)
B(Σg, J) ∈ [0, 1). (4.159)

Let us start by looking at the contribution from infinity. After performing the sum
over n we find that the indefinite theta function becomes

ΘJ,[Σg ](τ, z) =
∑

m∈L+µ
B(m+β,J)

B(Σg ,J) ∈[0,1)

q−m2/2e−2π ı̊ B(z,m)

1 − q−B(Σg ,m)e−2π ı̊ B(z,Σg) . (4.160)

This is again an Appell-Lerch sum [158]. Following [156] we now pick ω2(E) = [CP1] +
ϵ[Σg], with ϵ = 0, 1. For this flux there is no contribution from infinity, as can be seen
from the above by realising that there are now no solutions to the conditions on m.
We therefore turn to the other cusps.

For the monopole cusp at τ = 0 we can use the formulas in Appendix B.3 to define
the dual indefinite theta function as

ΘJ,[Σg ]
µ,D (τD, zD) := τ−1e

π ı̊
z2

D
τD ΘJ,[Σg ]

µ (−1/τ, z/τ) = ΘJ,[Σg ]
0 (τD, zD − µ, z̄ − µ), (4.161)

where we used that KX = 0 and b2(X) = 2 together with the transformation formulas
of the appendix. Following the procedure from above, splitting and summing over n,
and simplifying by only including point and surface observables, we eventually find that

ΘJ,[Σg ]
0 (τD, zD − µ, z̄D − µ) = 1

1 − e−2π ı̊ B(zD−µ,Σg)

=
(

1 + exp
[
−2π ı̊

(
B(ρD,Σg) −

√
2

25π

(
dτ

da

)
D

Ω
)])−1

.

(4.162)
Here we have used that B(µ,Σg) = 1

2 and that ψ ∧ ψ = 2W ⊗ Ω together with the
explicit expressions for ω when only including points and surfaces as observables. We
also continue to denote dual functions with a subscript D.

Next, we want to integrate over the torus. If we only write down the parts that are
actually dependent on ψ, or equivalently Ω, the integral over the torus is∫

Tb1
dψ exp

[√
2 ı̊

25π

(
d2u

da2

)
D

W ∧ x ⊗ Ω
](

1 + exp
[
−2π ı̊

(
B(ρD,Σg) −

√
2

25π

(
dτ

da

)
D

Ω
)])−1

.

(4.163)

A neat trick we can use is to realise that

1
1 + et+x

= 1
1 + et

+
∑
n≥1

Li−n(−et)x
n

n! , (4.164)
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where Lin(y) is the polylogarithm [156]. Using this and again splitting x = s[Σg]+t[CP1]
we find that the integral over the torus evaluates to

g∑
n=1

(
g

n

)
Li−n

(
− exp

[
−it

(
du

da

)
D

])(√
2 ı̊

25π

(
d2u

da2

)
D

s

)g−n(√
2 ı̊

24

(
dτ

da

)
D

)n

(4.165)

where we dropped the first term coming from (4.164) since this does not contribute to
the u-plane integral (it will give a term whose q-series starts with a positive exponent).
Combining this with the other terms in the u-plane integral we find that the contribution
from the cusp at τ = 0 is given by

Zϵ
g,τ=0 =

[ 2
π
e2puD+2stGD

g∑
n=1

(
g

n

)
Li−n

(
− exp

[
− ı̊ t

(
du

da

)
D

])(
− ı̊

2

(
da

du

)2

D

(
d2u

da2

)
D

s

)g−n

×

(
− ı̊ π

(
da

du

)2

D

(
dτ

da

)
D

)n(
du

da

)2

D

(
da

dτ

)
D

]
q0

D

.

(4.166)

The contribution from the other cusp is easily calculated using the same procedure.
The result is

Zϵ
g,τ=2 =

[2 ı̊
π

(−1)ϵe−2puD−2stGD

g∑
n=1

(
g

n

)
Li−n

(
− exp

[
−t
(
du

da

)
D

])(
ı̊

2

(
da

du

)2

D

(
d2u

da2

)
D

s

)g−n

×

(
−π
(
da

du

)2

D

(
dτ

da

)
D

)n(
du

da

)2

D

(
da

dτ

)
D

]
q0

D

.

(4.167)

The full u-plane integral in this chamber is then the sum of these two terms.10

Genus one

For g = 1 the Seiberg-Witten contributions vanish and the only contributions comes
from the u-plane integral [156]. The above expressions simplifies to

Zϵ
1 := Zϵ

1,τ=0 + Zϵ
1,τ=2 = 2 ı̊

[
e̊ı tfD+2stGD+2puD

(1 + e̊ı tfD)2 + (−1)ϵ e
tfD−2stGD−2puD

(1 + etfD)2

]
q0

, (4.168)

where we introduced fD =
(

du
da

)
D

to keep the expressions shorter. We can make various
expansions for this. For example, if s = t = 0 we get

Z0
1(p) = ı̊

(
1 + 2p2 + 2

3p
4 + 4

45p
6 + 2

315p
8 + O(p9)

)
,

Z1
1(p) =2 ı̊

(
p+ 2

3p
3 + 2

15p
5 + 4

315p
7 + O(p9)

)
.

(4.169)

For p = 0 we instead find (expanding in small t)

Z0
1 (s, t) = ı̊

(
1 + 1

2s
2t2 − st3 + 1

24(16 + s4)t4 + 1
6s

3t5 + 1
720s

2(240 + s4)t6 + O(t7)
)
,

Z1
1 (s, t) = ı̊

(
st− t2 + 1

6s
3t3 − 1

2s
2t4 + 1

120s(80 + s4)t5 − 1
360(136 + 15s4)t6 + O(t7)

)
.

(4.170)

10These expressions again differ from that of the older literature [156] by an overall phase (−1)ϵ (− ı̊)g.
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Genus two

For g = 2 we find

Zϵ
2 =π ı̊2

(dτ
da

)
D

(
da

du

)2

D

e−2(stGD+puD)

×

− e4stGD+4puD sec2(tfD/2) (aDs− tan(tfD/2))

+ (−1)ϵ sech2(tfD/2) (aDs− tanh(tfD/2))


q0

,

(4.171)

where by aD we actually mean ı̊
π

(
da
dτ

)
D

(
d2u
da2

)
D

, which are equivalent when expressed in
terms of theta functions [74]. For s = t = 0 we simply get zero, but for p = 0 we get

Z0
1 (s, t) =1

8s
2t− 1

8st
2 + 4 + s4

48 t3 − 1
48s

3t4 + s4 − 40
960 s2t5 + 272 − 3s4

2880 st6 + O(t7),

Z1
1 (s, t) =1

8s− 1
8 t+ 1

16s
3t2 − 1

16s
2t3 + 1

192s
5t4 − 1

192s
4t5 + s4 − 160

5760 s3t6 + O(t7).
(4.172)

For g = 2 there will also be the Seiberg-Witten contributions given by [156, Eq.(3.33)],

Zg=2
SW (p, s, t) = 1

32(−1)ϵ
(
e−2p−st sin(2s− 2t) − (−1)ϵe2p+st sinh(2s− 2t)

)
. (4.173)

The first few terms in the expansion for small s and t, and p = 0, are

Zg=2,ϵ=0
SW (s, t) =

(
− s3

12 − s7

630 + O(s8)
)

+
(
s2

8 − s6

180 + O(s8)
)
t

+
(

−s

8 + s5

120 + O(s8)
)
t2 + O(t3),

(4.174)

and
Zg=2,ϵ=1

SW (s, t) =
(

−s

8 − s5

60 + O(s8)
)

+
(1

8 + O(s8)
)
t

+
(
s3

48 − s7

2520 + O(s8)
)
t2 + O(t3).

(4.175)





Chapter 5

Conclusions and outlook

In this thesis we have discussed duality properties of N = 2 supersymmetric Yang-Mills
theory as well as its application to the calculation of topological correlators. We were
mainly interested in studying the low-energy effective theories, and in particular the
Coulomb phase, governed by Seiberg-Witten geometry. We developed new tools for
constructing fundamental domains for the running coupling parameterising distinct
dynamics. In some specific cases we find ordinary modular behaviour and the domains
correspond to fundamental domains of congruence subgroups of SL(2,Z). However, one
of the main results of this thesis, following our results in [1–3], was to show that this is
not the general story. In theories with massive hypermultiplets we typically find branch
points and corresponding branch cuts in the domains. These branch points make the
discussion of modularity much more subtle. We developed new tools to deal with these
subtleties and showed how one can still construct fundamental domains, even though
they do not correspond to those of any subgroup of SL(2,Z).

Many open questions remain with regards to this work. A possible physical inter-
pretation of the branch points has not been understood yet. This would be a very
interesting question for further research. One apparent lesson we can draw from the
examples studied so far is that the branch points, and their corresponding cuts, provide
a mechanism for the fundamental domains to evolve as functions of the masses. At
special points in mass space, we find that the branch points can coincide and thus
resolve. The observation is that this sometimes happen in the massless limit, while,
in contrast, it always seem to happen when the mass is tuned to the value for the
superconformal fixed points of Argyres-Douglas type. Physically, these are known to
correspond to a second order phase transition of the gauge theory, [159], and perhaps
the physics of the branch points can be understood along these lines.

It would furthermore be very interesting to see how this story generalises to more
complicated theories. For example the more general theories of class S [160], or five-
dimensional gauge theories that are found from geometrical engineering [61, 62], or even
the full SU(3) theory beyond the results of Chapter 3. We expect that the methods
developed in the papers underlying this thesis can be used to gain better understanding
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of these more complicated theories. Another compelling question along these lines is
that of mirror maps for compact Calabi-Yau threefolds. In the geometrical engineering
setting, the order parameter u, that we have been discussing throughout the thesis,
corresponds to the mirror map of the non-compact Calabi-Yau [10]. It is well-known
that for compact onefolds (complex tori) and two-folds (K3 surfaces) the mirror map
often show modular properties [161, 92, 106, 162]. For threefolds, much less is known
and the story seems more subtle. Even though the underlying story is quite different,
perhaps the knowledge gained through the work presented in this thesis can be a
guiding light in understanding this better. Motivated by the discussion of Chapter 3, for
threefolds with h1,1 > 1 it could be worth looking at interesting subloci of the moduli
space. Partial results along this direction has been carried out for certain Calabi-Yau
threefolds, with similar results as in the gauge theory, namely duality groups including
Fricke involutions play a prominent role [163].

Using the knowledge of the fundamental domains we further showed how to calculate
correlators in topologically twisted versions of the supersymmetric gauge theories. In
Chapter 4 we constructed the u-plane integral for the theories with gauge group SU(2)
and Nf ≤ 3 fundamental hypermultiplets. In an upcoming work we will elaborate
on this and explicitly calculate the integral for certain four-manifolds, similar to the
analysis done for the pure theory on a non-simply connected manifold in Sec. 4.6. It
would furthermore be interesting to calculate the partition functions of topological
versions of more general N = 2 theories, such as those of class S.



Appendix A

Elliptic and modular curves

In this Appendix, we give a brief overview of the important concepts from the theory
of elliptic curves as well as introduce the relevant subgroups of SL(2,Z).

A.1 Elliptic curves and complex tori

A hyperelliptic curve of genus g is an algebraic curve defined by an equation of the form

y2 + f1(x)y = f2(x), (A.1)

with f1(x) a polynomial of degree less than g + 2 and f2(x) a polynomial of degree
2g + 1 or 2g + 2. In this appendix we will only be concerned with genus one curves,
which are generally referred to as elliptic curves. We further focus on the case where
f2(x) is a cubic polynomial, as the case of a quartic polynomial can be transformed into
this form through a simple change of variables [164]. The cubic case is furthermore the
relevant one for the analysis of the SW curves in this thesis. A generic elliptic curve, E,
can then be written on the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (A.2)

where ai are constants [165].
It is useful to introduce two more sets of coefficients, {bi}, {ci}, defined by

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4,

c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216b6.

(A.3)

It is interesting to study when the curve is singular, this happens whenever two or more
roots of the polynomial f2(x) coincides. This is captured by the discriminant, ∆, of the
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polynomial, defined as

∆ = (r1 − r2)2(r1 − r3)2(r2 − r3)2, (A.4)

where ri are the roots of f2(x). In terms of the coefficients ci the discriminant can be
determined as

∆(E) = 1
123 (c3

4 − c2
6). (A.5)

We can further introduce the j-invariant

j(E) = c3
4

∆ . (A.6)

Under an admissible change of variables, j remains invariant. It thus captures isomor-
phism between elliptic curves, i.e., two elliptic curves E and E ′ are isomorphic if and
only j(E) = j(E ′).

Complex elliptic curves are complex tori [165, 79]. Let us introduce a lattice L, i.e.,
a set

L = ω1Z ⊕ ω2Z, (A.7)

with ω1, ω2 ∈ C and normalised such that ω1/ω2 ∈ H. Furthermore, we have that two
lattices L and L′ are equal if and only ifω′

1

ω′
2

 =
a b

c d

ω1

ω2

 ,
a b

c d

 ∈ SL(2,Z). (A.8)

A complex torus is now a quotient of the complex plane with such a lattice, C/L. Every
complex torus is isomorphic to one whose lattice is generated by the complex structure
τ = ω1/ω2 and the number 1. The complex structure is only determined up to the
action of SL(2,Z), due to the non-uniqueness of the lattice under these transformations.
In other words, a complex torus determines a point, τ , in the upper half-plane up to
the transformations

τ ′ = aτ + b

cτ + d
,

a b

c d

 ∈ SL(2,Z). (A.9)

An important property of elliptic curves is that any elliptic curve can be put on the
Weierstraß form

W : y2 = 4x3 − g2 x− g3, (A.10)

where g2 and g3 are certain functions of the complex structure τ . The discriminant of
this curve is given by ∆ = g3

2 − 27g2
3. In terms of the coefficients ai, (A.2), they are

given by

g2 = −4
(
a4 − a2

2
3

)
, g3 = −4

(
a6 + 2a

3
2

27 − a2a4

3

)
. (A.11)



A.2 Modular curves and subgroups 139

We therefore find that the j-invariant can be written as

j = 123 g3
2

g3
2 − 27g2

3
. (A.12)

A.2 Modular curves and subgroups

In this Appendix we introduce the subgroups of SL(2,Z) that are important for the
analysis of this thesis. The main objects are the congruence subgroups

Γ0(N) =

a b

c d

 ∈ SL(2,Z)
∣∣∣ c ≡ 0 mod N

 ,
Γ0(N) =


a b

c d

 ∈ SL(2,Z)
∣∣∣ b ≡ 0 mod N

 ,
(A.13)

and are related by conjugation with the matrix diag(N, 1). We furthermore define
the principal congruence subgroup Γ(N) as the subgroup of SL(2,Z) ∋ A with A ≡ 1

mod N .
A subgroup Γ of SL(2,Z) is a congruence subgroup if Γ ⊃ Γ(N) for some N ∈ N,

which is called the level of Γ. The (projective) index of a congruence subgroup Γ is
defined as

ind Γ = [PSL(2,Z) : Γ], (A.14)

and it is finite for all N . By SL(2,Z) we strictly mean PSL(2,Z) in the following. In
fact, one can prove [79]

ind Γ(N) = N3 ∏
p|N

(
1 − 1

p2

)
, ind Γ0(N) = N

∏
p|N

(
1 + 1

p

)
, (A.15)

where the sum is over all prime divisors of N . It can also be computed in the following
way. The volume of the curve Γ\H is defined as

vol(Γ\H) =
∫

Γ\H
dµ, (A.16)

where dµ = y−2 dxdy is the hyperbolic metric on H, with τ = x + ı̊ y. Since
vol(SL(2,Z)\H) = π

3 can easily be computed, the index of any Γ ⊆ SL(2,Z) is then
given by

ind Γ = 3
π

vol(Γ\H). (A.17)

For completeness, let us note that the group SL(2,R) is generated by the set of
generators

Tt =
1 t

0 1

 , S =
0 −1

1 0

 , t ∈ R, (A.18)
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while the discrete subgroup SL(2,Z) is generated by the two elements T1 =: T and S.
We will furthermore make use of the theta group [166]

Γθ := ⟨T 2, S⟩ ⊆ SL(2,Z). (A.19)

A fundamental domain for Γθ is

Γθ\H = F ∪ TF ∪ TSF , (A.20)

with F = SL(2,Z)\H. This demonstrates that Γθ has index 3 in SL(2,Z). It is a
congruence subgroup of SL(2,Z), as [167, 168]1

Γθ = {A ∈ SL(2,Z) |A ≡ 1 or S mod 2} . (A.21)

Let Γ be a congruence subgroup of SL(2,Z). Cusps of Γ are Γ-equivalence classes
of Q ∪ {∞}. Adjoining coordinate charts to the cusps and compactifying gives the
modular curve X(Γ) := Γ\(H ∪ Q ∪ {̊ı∞}). The isotropy (stabiliser) group of ∞ in
SL(2,Z) is the abelian group of translations,

SL(2,Z)∞ = {( 1 m
0 1 ) : m ∈ Z} . (A.22)

For each cusp s ∈ Q∪ {̊ı∞} some δs ∈ SL(2,Z) maps s 7→ ∞. The width of s is defined
as

hΓ(s) =
∣∣∣SL(2,Z)∞/(δsΓδ−1

s )∞

∣∣∣ . (A.23)

It can be proven that this definition is independent of δs. For a fixed group Γ it can be
viewed as a well-defined function Q ∪ {̊ı∞} → N0. It is straightforward to show that
the sum over the widths of all inequivalent cusps C is equal to the index [169]

∑
s∈CΓ

hΓ(s) = ind Γ. (A.24)

Other invariants of modular curves are the elliptic fixed points. A point τ ∈ H is an
elliptic point for Γ if its isotropy group is nontrivial. The period of τ is defined as the
order of the isotropy group. It can be shown that any congruence subgroup of SL(2,Z)
has only finitely many elliptic points, and the period for any point τ ∈ H is 1, 2 or 3.

A.3 Kodaira classification of singular fibres

Let us study the singular structure of families of elliptic curves in more detail. To
this end, we return to the Weierstraß curve (A.10), where we consider g2 and g3 to be

1It can also be written as the group of matrices
(

a b
c d

)
with a+ b+ c+ d ≡ 0 mod 2, or ab ≡ cd ≡ 0

mod 2.
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functions of a parameter u, parameterising the family of elliptic curves. This is the case
for the Seiberg-Witten curves we consider in the thesis. As mentioned above, singular
points are determined by the zeros of the discriminant ∆(u) = g2(u)3 − 27g3(u)2, and
we are therefore interested in studying the discriminant divisor {u|∆(u) = 0}. This
was done by Kodaira and resulted in a complete classification depending on the order
of vanishing of g2, g3 and ∆ [170, 171]. We list part of this classification in Table A.1,
where the order of vanishing of a function f is denoted ord f . The three types II, III
and IV always correspond to elliptic points of the SW curves.

type ord g2 ord g3 ord ∆
I0 ≥ 0 ≥ 0 0
Im 0 0 m
II ≥ 1 1 2
III 1 ≥ 2 3
IV ≥ 2 2 4

Table A.1 Part of the Kodaira-Tate table for singular fibres of the Weierstraß model [170, 171].

A.4 Atkin-Lehner involutions

The modular groups of n|h-type, used in Chapter 3, are defined in the following way
[36]. We consider matrices ae b/h

cn de

 (A.25)

having determinant e, where a, b, c, d, e, h, n ∈ Z, and h the largest integer for which
h2|N and h|24 with n = N/h. These matrices are generally referred to as Atkin-Lehner
involutions.

If n is a positive integer and h|n, we define Γ0(n|h) as the set of Atkin-Lehner
involutions with unit determinant, i.e., e = 1 in the above. Now, for any positive integer
e which satisfies e|n/h and (e, n/eh) = 1 (such an integer e is called an exact divisor
of n/h), one can include also Atkin-Lehner involutions with determinant equal to e,
forming a group denoted by Γ0(n|h) + e. In fact, this construction works for any choice
{e1, e2, . . . } of exact divisors of n/h, resulting in the group Γ0(n|h)+e1, e2, . . . . If h = 1,
we omit the |h in the notation, and in the case that all possible ei are included, the
group is denoted by Γ0(n|h)+.

In the Γ0 convention the notation simplifies, since Γ0(n|h) = Γ0(n
h
). This can be

checked by conjugating (A.25) with diag(n, 1). The extension by non-unit determinant
matrices follows by analogy.





Appendix B

Automorphic forms

This Appendix is dedicated to introducing and listing various important definitions and
properties of automorphic forms used throughout the thesis.

B.1 Elliptic modular forms

Let us collect some properties of elliptic modular forms for subgroups of SL(2,Z). For
further reading, see [151, 109, 172, 79, 60, 173].

The Jacobi theta functions ϑj : H → C, j = 2, 3, 4, are defined as

ϑ2(τ) =
∑

r∈Z+ 1
2

qr2/2, ϑ3(τ) =
∑
n∈Z

qn2/2, ϑ4(τ) =
∑
n∈Z

(−1)nqn2/2, (B.1)

with q = e2π ı̊ τ . These functions transform under T, S ∈ SL(2,Z) as

S :


ϑ2(−1/τ) =

√
− ı̊ τϑ4(τ),

ϑ3(−1/τ) =
√

− ı̊ τϑ3(τ),
ϑ4(−1/τ) =

√
− ı̊ τϑ2(τ),

T :


ϑ2(τ + 1) = e

π ı̊
4 ϑ2(τ),

ϑ3(τ + 1) = ϑ4(τ),
ϑ4(τ + 1) = ϑ3(τ).

(B.2)

They furthermore satisfy the Jacobi abstruse identity

ϑ4
2 + ϑ4

4 = ϑ4
3. (B.3)
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The derivatives of the Jacobi theta functions gives quasi-modular forms [151],

Dϑ4
2 = 1

6ϑ
4
2

(
E2 + ϑ4

3 + ϑ4
4

)
,

Dϑ4
3 = 1

6ϑ
4
3

(
E2 + ϑ4

2 − ϑ4
4

)
,

Dϑ4
4 = 1

6ϑ
4
4

(
E2 − ϑ4

2 − ϑ4
3

)
,

(B.4)

where D := 1
2π ı̊

d
dτ

= q d
dq

and E2 is the quasi-modular Eisenstein series (B.7) of weight
2, transforming as (B.8).

The modular lambda function λ = ϑ4
2

ϑ4
3

is a Hauptmodul for Γ(2). The Dedekind eta
function η : H → C is defined as the infinite product

η(τ) = q
1

24

∞∏
n=1

(1 − qn), q = e2π ı̊ τ . (B.5)

It transforms under the generators of SL(2,Z) as

S : η(−1/τ) =
√

− ı̊ τ η(τ),

T : η(τ + 1) = e
π ı̊
12 η(τ),

(B.6)

and relates to the Jacobi theta series as η3 = 1
2ϑ2ϑ3ϑ4.

The Eisenstein series Ek : H → C for even k ≥ 2 are defined as the q-series

Ek(τ) = 1 − 2k
Bk

∞∑
n=1

σk−1(n) qn, (B.7)

with σk(n) = ∑
d|n d

k the divisor sum. For k ≥ 4 even, Ek is a modular form of weight
k for SL(2,Z). On the other hand E2 is a quasi-modular form, which means that the
SL(2,Z) transformation of E2 includes a shift in addition to the weight,

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) − 6 ı̊

π
c(cτ + d). (B.8)

From the S-transformation, we find that

E4(eπ ı̊ /3) = 0, E6(̊ı) = 0, (B.9)

and the zeros are unique in SL(2,Z)\H according to the valence formula for modular
forms on SL(2,Z). Any modular form for SL(2,Z) can be related to the Jacobi theta
functions (B.1) by

E4 = 1
2(ϑ8

2 + ϑ8
3 + ϑ8

4), E6 = 1
2(ϑ4

2 + ϑ4
3)(ϑ4

3 + ϑ4
4)(ϑ4

4 − ϑ4
2). (B.10)
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All quasi-modular forms for SL(2,Z) can be expressed as polynomials in E2, E4 and
E6. The derivatives of the Eisenstein series are quasi-modular,

E ′
2 = 2π ı̊

12 (E2
2 − E4), E ′

4 = 2π ı̊
3 (E2E4 − E6), E ′

6 = 2π ı̊
2 (E2E6 − E2

4). (B.11)

These equations give the differential ring structure of quasi-modular forms on PSL(2,Z).
With our normalisation (B.7) the j-invariant can be written as

j = 1728 E3
4

E3
4 − E2

6
= 256(ϑ8

3 − ϑ4
3ϑ

4
4 + ϑ8

4)3

ϑ8
2ϑ

8
3ϑ

8
4

. (B.12)

Another class of theta series is provided by the one of the A2 root lattice, b3,j : H → C,

b3,j(τ) =
∑

k1,k2∈Z+ j
3

qk2
1+k2

2+k1k2 , j ∈ {−1, 0, 1}. (B.13)

It is clear that b3,−1 = b3,1. The transformation properties under SL(2,Z) are (ω3 =
e2π ı̊ /3)

S : b3,j

(
−1
τ

)
= − ı̊ τ√

3
∑

l mod 3
ω2jl

3 b3,l(τ),

T : b3,j(τ + 1) = ωj2

3 b3,j(τ).
(B.14)

The b3,j series can be expressed through the Dedekind eta function (B.5) as

b3,0(τ) =
η( τ

3 )3 + 3η(3τ)3

η(τ) , b3,1(τ) = 3η(3τ)3

η(τ) . (B.15)

It furthermore relates to the quasi-modular Eisenstein series E2 by

E2( τ
3 ) − 3E2(τ) = −2b3,0( τ

3 )2. (B.16)

A relation to the Jacobi theta functions is given by

b3,0(τ) = ϑ3(2τ)ϑ3(6τ) + ϑ2(2τ)ϑ2(6τ). (B.17)

Quotients of η-functions are frequently used to generate bases for the spaces of
modular functions for congruence subgroups of SL(2,Z). We use the following

Theorem 1 ([109, 108]). Let f(τ) = ∏
δ|N η(δτ)rδ be an η-quotient with k = 1

2
∑

δ|N rδ ∈
Z and ∑δ|N δrδ ≡ ∑

δ|N
N
δ
rδ ≡ 0 mod 24. Then, f is a weakly holomorphic modular

form for Γ0(N) with weight k.
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B.2 Siegel-Narain theta function

Let L be an n-dimensional uni-modular lattice with signature (1, n − 1). For the
application to the u-plane integral in Section 4.4, n = b2(X). Let K be a characteristic
vector of L. Its defining property is l2 = l ·K mod 2 for every l ∈ L. Furthermore, we
have that µ ∈ L/2.

We consider the Siegel-Narain theta function ΨJ
µ : H × C → C defined in the main

text in (4.50). We repeat it here for convenience,

ΨJ
µ(τ, τ̄ ,z, z̄) = e−2πyb2

+
∑

k∈L+µ

∂τ̄ (4π ı̊√yB(k + b, J))

× (−1)B(k,K)q−k2
−/2q̄k2

+/2e−2π ı̊ B(z,k−)−2π ı̊ B(z̄,k+),

(B.18)

where J is a normalised positive vector in L ⊗ R, k+ = B(k, J) J , k− = k − k+ and
b = Im(z)/y. The transformations under the generators S and T of PSL(2,Z) are most
easily determined if we shift µ → µ +K/2. One finds [43, 46]

S : ΨJ
µ+K/2(−1/τ,−1/τ̄ ,z/τ, z̄/τ̄) = − ı̊(− ı̊ τ)n/2(̊ı τ̄)2

× e−π ı̊ z2/τ+π ı̊ K2/2 (−1)B(µ,K) ΨJ
K/2(τ, τ̄ ,z − µ, z̄ − µ),

T : ΨJ
µ+K/2(τ + 1, τ̄ + 1, z, z̄) =

eπ ı̊(µ2−K2/4) ΨJ
µ+K/2(τ, τ̄ ,z + µ, z̄ + µ).

(B.19)

Using these transformations, one finds for the periodicity in τ ,

ΨJ
µ(τ + 1, τ̄ + 1, z, z̄) = eπ ı̊(µ2−B(µ,K))ΨJ

µ(τ, τ̄ ,z + µ −K/2, z̄ + µ −K/2) (B.20)

and for S−1T−kS = ( 1 0
k 1 ),

ΨJ
µ

(
τ

kτ+1 ,
τ̄

kτ̄+1 ,
z

kτ+1 ,
z̄

kτ̄+1

)
= (kτ + 1)n

2 (kτ̄ + 1)2e− π ı̊ kz2
kτ+1 e

π ı̊
4 kK2ΨJ

µ(τ, τ̄ ,z, z̄). (B.21)

We furthermore list the following transformations for z:

• For the reflection z → −z,

ΨJ
µ(τ, τ̄ ,−z,−z̄) = −e2π ı̊ B(µ,K) ΨJ

µ(τ, τ̄ ,z, z̄). (B.22)

• For shifting z → z + ν with ν ∈ L,

ΨJ
µ(τ, τ̄ ,z + ν, z̄ + ν) = e−2π ı̊ B(ν,µ) ΨJ

µ(τ, τ̄ ,z, z̄). (B.23)

• For shifting z → z + ντ with ν ∈ L⊗ R,

ΨJ
µ(τ, z + ντ) = e2π ı̊ B(z,ν)qν2/2(−1)−B(ν,K) ΨJ

µ+ν(τ, τ̄ ,z, z̄). (B.24)
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We can restrict to ν ∈ L/2, if the characteristic µ + ν is required to be in L/2.

B.3 Indefinite theta functions

In this appendix we present various aspects of indefinite theta functions and their
modular completions, which are important for the analysis in Sec. 4.6. As above, we
assume that the associated lattice L is uni-modular and of signature (1, n− 1).

To define the indefinite theta function, we choose two positive definite vectors J
and J ′ ∈ L⊗ R with B(J, J ′) > 0, such that they both lie in the same positive cone of
L. Let J and J ′ be their normalisations. The arguments of theta function are τ ∈ H,
z ∈ L ⊗ C and µ ∈ L ⊗ R. We let b = Im(z)/y ∈ L ⊗ R. In terms of this data, the
indefinite theta function ΘJJ ′

µ is defined as

ΘJJ ′

µ (τ, z) =
∑

k∈L+µ

1
2 (sgn(B(k + b, J)) − sgn(B(k + b, J ′)))

(−1)B(k,K)q−k2/2e−2π ı̊ B(z,k).

(B.25)

It is possible to show that the sum over L is convergent [158]. However, ΘJJ ′
µ does

only transform as a modular form after the addition of certain non-holomorphic terms.
Reference [158] explains that the modular completion Θ̂JJ ′

µ of ΘJJ ′
µ is obtained by

substituting (rescaled) error functions for the sgn-functions in (B.25). The completion
Θ̂JJ ′

µ then transforms as a modular form of weight n/2, and is explicitly given by

Θ̂JJ ′

µ (τ, z) =
∑

k∈L+µ

1
2

(
E(

√
2y B(k + b, J)) − E(

√
2y B(k + b, J ′))

)
× (−1)B(k,K)q−k2/2e−2π ı̊ B(z,k),

(B.26)

where E is a reparametrisation of the error function

E : R → (−1, 1), t 7→ 2
∫ t

0
e−πx2dx. (B.27)

Note that in the limit y → ∞, E in (B.26) approaches the original sgn-function of
(B.25),

lim
y→∞

E
(√

2y u
)

= sgn(u).

If we analytically continue E to a function with complex argument, then this limit is
only convergent for −π

4 < Arg(u) < π
4 .

For the action of the generators of SL(2,Z) on Θ̂JJ ′

µ+K/2(τ, z) one finds [158, 174]

Θ̂JJ ′

µ+K/2(τ + 1, z) = eπ ı̊(µ2−K2/4) Θ̂JJ ′

µ+K/2(τ, z + µ),
Θ̂JJ ′

µ+K/2(−1/τ, z/τ) = ı̊(− ı̊ τ)n/2 exp
(
−π ı̊ z2/τ + π ı̊K2/2

)
Θ̂JJ ′

K/2(τ, z − µ).
(B.28)
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For our applications, the τ̄ -derivative of Θ̂JJ ′
µ is of particular interest. This gives

the “shadow” of ΘJJ ′
µ , whose modular properties are easier to determine than those of

ΘJJ ′
µ . We obtain here

∂τ̄ Θ̂JJ ′

µ (τ, z) =ΨJ
µ(τ, z) − ΨJ ′

µ (τ, z), (B.29)

with ΨJ
µ defined in (B.18). The modular properties of ΨJ

µ were given above, and can be
obtained using standard Poisson resummation.

The completion (B.26) may simplify if the lattice L contains vectors k0 ∈ L with
norm k2

0 = 0. For such lattices J and/or J ′ can be chosen to equal such a vector,
and careful analysis of the limit shows that the error function reduces to the original
sgn-function [158]. We assume now that J ′ ∈ L such that (J ′)2 = 0. To ensure
convergence of the sum, one needs to require furthermore that B(k + b, J ′) ̸= 0 for any
k ∈ L+K/2 + µ, except if one also has B(k + b, J) = 0. Then the completion Θ̂JJ ′

µ is
given by

Θ̂JJ ′

µ (τ, z) =
∑

k∈L+K/2+µ

1
2

(
E(

√
2yB(k + b, J)) − sgn(B(k + b, J ′))

)
× (−1)B(k,K)q−k2/2e−2π ı̊ B(z,k),

(B.30)

with shadow
∂τ̄ Θ̂JJ ′

µ (τ, z) = ΨJ
µ(τ, z). (B.31)

B.4 Bimodular forms

For our application to Nf = 4 SQCD, Sec. 2.3, we will adopt the following definition of
a bimodular form, due to [3]:

Definition 1 (Bimodular form). Let (Γ1,Γ2; Γ) be a triple of subgroups of SL(2,R)
commensurable with SL(2,Z).1 A two-variable meromorphic function F : H × H → C
is called a bimodular form of weight (k1, k2) for the triple (Γ1,Γ2; Γ) if it satisfies both
Condition 1 & 2:

• Condition 1: For all γi =
(

ai bi
ci di

)
∈ Γi, i = 1, 2, F transforms as

F (γ1τ1, γ2τ2) = χ(γ1, γ2) (c1τ1 + d1)k1(c2τ2 + d2)k2F (τ1, τ2), (B.32)

for a certain multiplier χ : Γ1 ×Γ2 → C∗. We call this the separate transformation
of F under (Γ1,Γ2), and denote it by (Γ1)τ1 × (Γ2)τ2.

1A subgroup Γ ⊂ SL(2,R) is commensurable with SL(2,Z) if Γ ∩ SL(2,Z) has finite index in both
SL(2,Z) and SL(2,R). This includes in particular all congruence subgroups of SL(2,Z).



B.5 Siegel modular forms 149

• Condition 2: For all γ = ( a b
c d ) ∈ Γ, F transforms as

F (γτ1, γτ2) = ϕ(γ) (cτ1 + d)k1(cτ2 + d)k2F (τ1, τ2), (B.33)

for a multiplier ϕ : Γ → C∗. We call this the simultaneous transformation of F
under Γ, and denote it by Γ(τ1,τ2).

Note that condition 2 follows from condition 1 if Γ is the intersection of Γ1 and Γ2,
Γ = Γ1 ∩ Γ2 with ϕ(γ) = χ(γ, γ), γ ∈ Γ.

This definition contains the main aspects of other definitions of bimodular forms in
the literature [175–177, 39].

We further make use of the notion of a vector valued bimodular form introduced in
[3]:

Definition 2 (Vector-valued bimodular form). Let

F =


F1
...
Fp

 : H × H → Cp (B.34)

be a p-tuple of two-variable meromorphic functions, p ∈ N. Then F is called a vector-
valued bimodular form of weight (k1, k2) for Γ ⊂ SL(2,Z), if

• each component Fj is a bimodular form of weight (k1, k2) for some triple
(Γj

1,Γj
2; Γj), as in definition 1, and

• there exists a p-dimensional complex representation ρ : Γ → GL(p,C) such that

F (γτ1, γτ2) = (cτ1 + d)k1(cτ2 + d)k2ρ(γ)F (τ1, τ2) (B.35)

for all γ = ( a b
c d ) ∈ Γ and all τ1, τ2 ∈ H.

B.5 Siegel modular forms

Ordinary modular forms are constructed by the action of an SL(2,Z) Möbius trans-
formation on the upper half-plane H. Siegel modular forms [151, 178] generalise this
notion by introducing an action of Sp(2g,Z) on the so-called Siegel upper half-plane
Hg, which works for any genus g ∈ N.

Define the Siegel modular group of genus g as

Sp(2g,Z) = {M ∈ Mat(2g;Z) |MTJM = J} with J =
(

0 1g

−1g 0

)
. (B.36)



150 Automorphic forms

The group Sp(4,Z) can be generated [151] by the elements J and T =
(
1g s
0 1g

)
with

s = sT . The Siegel upper half-plane

Hg = {Ω ∈ Mat(g;C) | ΩT = Ω, Im Ω > 0} (B.37)

consists of complex symmetric g× g matrices whose (componentwise) imaginary part is
positive definite. This generalises the ordinary upper half-plane H = H1. For example,
for g = 2 this means that

Ω =
τ11 τ12

τ12 τ22

 , Im τ11 > 0, Im τ11Im τ22 − (Im τ12)2 > 0. (B.38)

An element γ = ( A B
C D ) ∈ Sp(2g,Z) acts on the Siegel upper half-plane by

Ω 7−→ γ(Ω) = (AΩ +B)(CΩ +D)−1. (B.39)

A (classical) Siegel modular form of weight k and genus g is then a holomorphic function
f : Hg → C satisfying

f(γ(Ω)) = det(CΩ +D)kf(Ω), ∀γ =
A B

C D

 ∈ Sp(2g,Z), (B.40)

where for g = 1 holomorphicity at ı̊∞ is required in addition.
Theta series provide an explicit class of classical Siegel modular forms. For a, b ∈ Q2

and Ω ∈ H2, define

Θ
a
b

 (Ω) =
∑

k∈Z2

exp
(
π ı̊(k + a)T Ω(k + a) + 2π ı̊(k + a)T b

)
. (B.41)

We are especially interested in the case where the entries of these column vectors take
values in the set {0, 1

2}. The corresponding theta functions are usually referred to as
the theta characteristics. We call γ = [ a

b ] an even (odd) characteristic if 4aT b is even
(odd). In the case of genus two there are ten even theta constants [179],

Θ1 = Θ
[

0 0
0 0

]
, Θ2 = Θ

[
0 0
1
2

1
2

]
, Θ3 = Θ

[
0 0
1
2 0

]
, Θ4 = Θ

[
0 0
0 1

2

]
, Θ5 = Θ

[
1
2 0
0 0

]
,

Θ6 = Θ
[

1
2 0
0 1

2

]
, Θ7 = Θ

[
0 1

2
0 0

]
, Θ8 = Θ

[
1
2

1
2

0 0

]
, Θ9 = Θ

[
0 1

2
1
2 0

]
, Θ10 = Θ

[
1
2

1
2

1
2

1
2

]
.

(B.42)

All even theta constants can be related through algebraic identities to four fundamental
ones, Θ1, Θ2, Θ3, Θ4 [179].

The above theta functions are weight 1
2 Siegel modular forms for a subgroup of

Sp(4,Z). Their transformation properties under the Siegel modular group can be found
in [178].



Appendix C

Picard-Fuchs solutions for SU(3)
theory

In the limit of large u and small v, reference [95] determines the aI and aD,I non-
perturbatively in terms of the fourth Appell hypergeometric function F4(a, b, c, d;x, y).
For

√
|x| +

√
|y| < 1, this function is given by

F4(a, b, c, d;x, y) =
∑

m,n≥0

(a)m+n (b)m+n

m!n! (c)m(d)n

xm yn, (C.1)

where (a)m = Γ(a+m)
Γ(a) is the Pochhammer symbol. We will also need expansions of F4

for large y, which can be achieved by replacing the sum over n by the hypergeometric
series 2F1,

F4(a, b, c, d;x, y) =
∑
m≥0

(a)m (b)m

m! (c)m
2F1(a+m, b+m, d; y)xm. (C.2)

While analytic continuations are known for 2F1, they are not well established for F4.

C.1 Classical roots

In order to match the Picard-Fuchs solutions with the periods, we need to expand the
periods around the classical solutions in (3.4). We therefore need to find the roots of
these two cubics.

The general formula for the roots of a depressed cubic equation, ax3 + bx+ c = 0, is
given by

ξk = − 1
3a

(
αkC + ∆0

αkC

)
, k ∈ {0, 1, 2}, (C.3)



152 Picard-Fuchs solutions for SU(3) theory

where α = e2π ı̊ /3, C3 = ∆1±
√

∆2
1−4∆0

2 , ∆0 = −3ab and ∆1 = 27a2c [180]. The choice of
sign in front of the square root in C is arbitrary, in the sense that it only corresponds
to a permutation of the roots.

It is however important to fix the ambiguities in taking the square and cubic root.
We fix the ambiguity in the square root by the following choice for the branch of the
logarithm: For any complex number z ∈ C∗, we set log(z) = log|z| + ı̊Arg(z) with
−π < Arg(z) ≤ π. The ambiquity in the cubic root of a complex number z is fixed by
demanding that the real part of 3

√
z has the largest absolute value among the three

solutions to ρ3 = z. Thus 3
√

1 = 1 and 3
√

−1 = −1. Two of the cube roots of i and −i
have equal real parts. We fix the remaining ambiguity by setting 3

√
ı̊ = eπ ı̊ /6 =

√
3

2 + ı̊
2

and 3
√

− ı̊ = e−π ı̊ /6 =
√

3
2 − ı̊

2 .
To list the roots of our two equations, we define

s±(a, b) = 3

√√√√ b

2 ±
√
b2

4 − a3

27 . (C.4)

Using Eq. (C.3), we then find that the roots of (3.4) for a1 are given by

ξ1(u, v) = s+(u, v) + s−(u, v),
ξ2(u, v) = α s+(u, v) + α2 s−(u, v),
ξ3(u, v) = α2 s+(u, v) + α s−(u, v),

(C.5)

and the roots for a2 by −ξj(u, v). This gives the 3 × 3 = 9 solutions to the equations in
(3.4). However, (3.3) is supposed to have only 2 × 3 = 6 solutions. Let us determine the
6 solutions in one of the regimes of interest for SU(3) Yang-Mills theory: we assume
u is large and close to the positive axis: u = λ − ı̊ ϵλ with λ real and very large and
0 < ϵ ≪ 1. Note that in this regime

s±(u, v) = 3

√√√√v

2 ± ı̊

√
u3

27 − v2

4 .
(C.6)

Furthermore, s+(u, v) s−(u, v) = u/3 and s−(u,−v) = e−π ı̊ /3s+(u, v) = −αs+(u, v)
hold. For v = 0, we have s+(u, 0) = eπ ı̊ /6

√
u/3 and s−(u, 0) = e−π ı̊ /6

√
u/3, and thus

ξ1(u, 0) =
√
u,

ξ2(u, 0) = −
√
u,

ξ3(u, 0) = 0.
(C.7)

This demonstrates that the solutions to (3.3) for (a1, a2) are given by

(ξ1,−ξ2), (ξ1,−ξ3), (ξ2,−ξ1), (ξ2,−ξ3), (ξ3,−ξ1), (ξ3,−ξ2). (C.8)
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C.2 Picard-Fuchs system for large u

To express aI and aD,I in terms of u and v, we will start by working in the patch with
large u and small v, and use the variables x = 27v2

4u3 and y = 27Λ6

4u3 . In [95] the authors
use the notation P3 for this patch and, similarly, P2 for the patch where v is large and
u is small and we will adopt this notation in the following. We have four solutions [95,
Eq. (6.1)] to the Picard-Fuchs system [95, Eq. (5.11)] for SU(3),

ωP3
1 =

√
3 2 2

3 Λ y− 1
6 F4

(
−1

6 ,
1
6 ,

1
2 , 1;x, y

)
,

ωP3
2 = 2 2

3 Λ
3

√
x y− 1

6 F4
(

1
3 ,

2
3 ,

3
2 , 1;x, y

)
,

ΩP3
1 = 36π e−π ı̊ /6 22/3Λ

Γ(1
3)

Γ(1
6)2 F4

(
−1

6 ,−
1
6 ,

1
2 ,

2
3 ; x

y
, 1

y

)
+ βP3

1 ωP3
1 ,

ΩP3
2 = −e

π ı̊
3

2 2
3 Λ√
3 2π

Γ(1
3)3

√
x

y
F4
(

1
3 ,

1
3 ,

3
2 ,

2
3 ; x

y
, 1

y

)
+ βP3

2 ωP3
2 ,

(C.9)

where βP3
1 = (̊ı−

√
3)π + 4 log(2) + 3 log(3) − 5 and βP3

2 = 1 + (̊ı+ 1√
3)π + 3 log(3). The

aI and aD,I are linear combinations of these periods found by comparing the expansions
of these solutions with the classical and semi-classical solutions in the previous section
for large u. Using the classical solutions (a1, a2) = (ξ1,−ξ2) one finds [95, Eq. 6.4],

aD,1(u, v) = − ı̊

4π (ΩP3
1 + 3ΩP3

2 ) − 1
π

(α1ω
P3
1 − α2ω

P3
2 )

= − ı̊

2π

(√
u+ 3

2
v

u

)
log
(

27Λ6

4u3

)
− 1
π

(
ı̊

2 + 2α1

)
√
u+O(u−1),

aD,2(u, v) = − ı̊

4π (ΩP3
1 − 3ΩP3

2 ) − 1
π

(α1ω
P3
1 + α2ω

P3
2 ) = aD,1(u,−v)

a1(u, v) = 1
2(ωP3

1 + ωP3
2 ) ∼

√
u+ 1

2
v

u
+ . . . ,

a2(u, v) = 1
2(ωP3

1 − ωP3
2 ) ∼

√
u− 1

2
v

u
+ . . . ,

(C.10)

with α1 = 5 ı̊
4 − ı̊ log(2) − 3 ı̊

4 log(3) and α2 = 3 ı̊
4 + 9 ı̊

4 log(3). The chain rule then allows
to compute the coupling matrix,

Ω(u, v) =
∂ua1 ∂ua2

∂va1 ∂va2

−1 ∂uaD,1 ∂uaD,2

∂vaD,1 ∂vaD,2

 . (C.11)

C.3 Picard-Fuchs system for large v

We can run a similar analysis as in the previous section for the patch P2, i.e., for large
v and small u. This is not done explicitly in [95] but the authors hint at how it should
be done. Here, we use the variables x = 4u3

27v2 and y = Λ6

v2 to express the solutions of the
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Picard-Fuchs equations as (α = e2π ı̊ /3)

ωP2
1 = 2y−1/6F4

(
−1

6 ,
1
3 ,

2
3 , 1;x, y

)
,

ωP2
2 = 21/3x1/3y−1/6F4

(1
6 ,

2
3 ,

4
3 , 1;x, y

)
,

ΩP2
1 = −α2

2 π
−3/2Γ

(
−1

6

)
Γ
(

2
3

)
F4
(
−1

6 ,−
1
6 ,

2
3 ,

1
2 ; x

y
, 1

y

)
+ βP2

1 ωP2
1 ,

ΩP2
2 = −α

3 π
−3/2 3

√
x
y
Γ
(
−2

3

)
Γ
(

1
6

)
F4
(

1
6 ,

1
6 ,

4
3 ,

1
2 ; x

y
, 1

y

)
+ βP2

2 ωP2
2 ,

(C.12)

with
βP2

1 = − ı̊

4π
(
2 log 2 + 3 log 3 − 6 + π(̊ı−2/

√
3)
)
,

βP2
2 = − ı̊

24/3π

(
2 log 2 + 3 log 3 + π(̊ı+2/

√
3)
)
.

(C.13)

Comparing the expansions of these solutions with the asymptotic expansions of
a(D),I for the semi-classical contributions fixes the coefficients. For this, one needs to
match the F4 expansions with the leading coefficients of the (differentiated) prepotential
[93]

F = τ0

6

3∑
i=1

Z2
i + F1−loop + Finst., (C.14)

where
τ0 = 9 − log 4

2π ı̊ . (C.15)

From this, one finds

aD,1 = − ı̊
√

3α
(
ΩP2

1 − 2−2/3αΩP2
2

)
+
(
αc1 − ı̊

√
3

2

)
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(
α2c2 + ı̊
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3

2

)
ωP2
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(
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3

2
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2
(
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2

)
,

a2 = −α

2
(
ωP2

1 + αωP2
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,

(C.16)

where c1 =
√

3
4π

(
2 log 2 + 3 log 3 + π√

3 − 6
)

and c2 = −
√

3
4π

(
2 log 2 + 3 log 3 − π√

3

)
. We

note that for u = 0, we find a2 = −αa1.

C.4 The Z2 vacua and massless states

In deriving the above results for the large v regime we have used a different symplectic
basis than what is used in for example [95, 19]. In this subsection we briefly comment
on how the two bases relate. The basis chosen in [95, 19] is more natural to use when
comparing such quantities as the strong coupling periods for the two different loci, and in
this basis we also compute the periods for all the points of interest. The change of basis
is done by interchanging the roots ξ2 ↔ ξ3 as given in (C.5). Quantum mechanically,
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the singular branch of the classical theory splits into two branches separated by the
scale Λ. Therefore, we must also interchange r2 ↔ r3 and r5 ↔ r6. One finds that this
symplectic change of basis is given by the semi-classical version of the second Weyl
reflection of the A2 root lattice,

R2 =


1 1 0 0
0 −1 0 0
0 0 1 0
0 0 1 −1

 ∈ Sp(4,Z). (C.17)

This merely changes some prefactors of the solution (C.16). The change of roots modifies
the cross-ratios in a trivial way, and they agree asymptotically with the theta quotients
(3.17) computed from the new periods, as expected. One can show that the algebraic
relations (3.66) for u = 0 take the same form. However, on this locus we now find

τ12 = 1 − τ11

2 , τ22 = τ11 − 2, (C.18)

from which it follows that

2 ı̊
√

27 v = −α2q− 1
6 + 33αq 1

6 + 153q 1
2 + 713α2q

5
6 + O(q 7

6 )
= m

(
−αq

1
6
)

= m
(

τ
6 − 1

6

)
,

(C.19)

which is identical to (3.71) up to phases.
We can use the new solution to analyse the Z3 symmetry u 7→ αu. This leads to

the matrix

σ̃v = α2


0 1 −1 2

−1 −1 2 −1
0 0 −1 1
0 0 −1 0

 . (C.20)

It can also be obtained from the previous result (3.102) by conjugation with R2. It
satisfies σ̃3

v = 1 and we can use it to generate the charges of the states that become
massless at the Z2 points. To this end, we introduce the purely integral matrix
U = α2σ̃−1

v ∈ Sp(4,Z), which is the matrix used in [95, 19], and act with this on the
monopole basis,

ν̃1 = (1, 0, 0, 0), ν̃2 = (0, 1, 0, 0),
ν̃3 = ν̃1U = (−1,−1, 1,−2), ν̃4 = ν̃2U = (1, 0,−2, 1), (C.21)
ν̃5 = ν̃1U

−1 = (0, 1,−1, 2), ν̃6 = ν̃2U
−1 = (−1,−1, 2,−1).

Using the periods from Table C.1 we can confirm that ν̃{1,3,5} become massless at the
AD point (0, 1) and ν̃{2,3,6} at the AD point (0,−1). Furthermore, the charges in row
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(u, v) π(u, v) normalisation
(0, 1) (0,−

√
3 ı̊, 1,−α2) Γ

(
1
3

)
Γ
(

7
6

)
/21/3√π

(0,−1) (−
√

3 ı̊, 0,−α, 1)
(1, 0) (0, 0, 1, 1)
(α, 0) (α2, α2, 0,−α2) 3

√
2π/3

√
3

(α2, 0) (−α,−α,−α, 0)
(0, 0) (− ı̊,− ı̊,−ω5, ω) 2

√
π
3 Γ
(

7
6

)
/Γ
(

2
3

)
Table C.1 Periods at the Z3, Z2 points and the origin, computed from the analytic continuation
of the large v PF solution and appropriately normalized.

k+ 1 in (C.21) become massless at the Z2 point (u, v) = (αk, 0). It can be checked that
the charges in each row are mutually local with respect to the symplectic inner product
induced by J , given in (B.36). The charges in both columns however are mutually
non-local. This is a crucial observation that lead to the discovery of new superconformal
theories [9, 70].

The matrix (C.20) conjugates the strong coupling matrices [95] as well as the
semi-classical matrices according to

σ̃−1
v M (r1)σ̃v = M (r2), σ̃−1

v M (r2)σ̃v = M (r3), σ̃−1
v M (r3)σ̃v = M (r1). (C.22)

The same equations hold for the Z2 symmetry

ρ̃v =


1 1 −2 1

−1 0 4 −2
0 0 0 1
0 0 −1 1

 , (C.23)

as is also the case for large u. As a consistency check, the pair (σ̃v, ρ̃v) again satisfies the
relation (3.101), and ρ̃2

v is a non-trivial monodromy. The matrix ρ̃v maps {ν̃2, ν̃4, ν̃6} to
{−ν̃1,−ν̃3,−ν̃5} and therefore exchanges the AD points v = ±1.

The periods in Table C.1 obtain different values depending on the direction from
which the various points are approached.1 On the locus Eu, where v = 0, we have three
singularities located at u = 1, α, α2. Reference [73] argues that one finds consistent
values if the points are approached from the negative real axis. In this way we can go
from weak to strong coupling without crossing walls of the second kind.2 On Ev, with

1This is not only a problem involving monodromies. By computing coupling matrices at the origin
from different directions we find that they generally do not lie in the Siegel upper half-plane H2, even
though it is a regular point of the curve. One cannot place them back in H2 by acting on them with
monodromy matrices in Sp(4,Z).

2Walls of the second kind are generally defined as hypersurfaces where a fixed quiver QM description
of the BPS spectrum breaks down, and one needs to mutate the quiver to find the spectrum on the
other side of the wall [73].
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u = 0, we instead have two singularities on the real line at v = ±1, analogous to the
u-plane in the pure SU(2) theory. There, we find a consistent picture by taking the
limits from the lower half-plane in order to avoid the singular points (see discussion in
[35]).

The two patches with large u and large v (from this subsection) respectively are
connected by a simple change of basis. It is given by

M = Mν̃2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1

 . (C.24)

This matrix is the strong coupling monodromy (3.106) associated with the magnetic
monopole ν̃2 = (0, 1, 0, 0) [95].
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