
Dissertation

Presented to the University of Dublin, Trinity College

in fulfilment of the requirements for the Degree of

Doctor of Philosophy in Computer Science

December 2022

Spatio-Temporal Processes for Volumetric Video

Content Creation

Matthew Moynihan



ii



iii



Abstract

Volumetric Video is an emerging media platform which has recently un-

dergonemanynewcaptivatingdevelopments. It could arguablybe stated

that recent uptake of volumetric video in consumer media would sug-

gest that the platform is approachingmaturity. That said, there still exists

a very large barrier to entry for content creators as the technological re-

quirements far exceed that of budget-constrained creators. Furthermore,

even the more affluent creators find it difficult to navigate the large data

footprint of volumetric video. Hence, there is a huge demand from these

communities for new systems that improve upon the quality and accessi-

bility of this medium. Techniques which seek to ensure Spatio-temporal

coherence have yieldedgreat successwith traditional 2D video fromqual-

ity improvements to reduced data compression overheads. In this disser-

tation we aim to investigate how spatio-temporal processes may be ap-

plied to volumetric video content creation with the ultimate goal of im-

proving quality and accessibility by means of editing and compression.

Specificallywewill investigate this under three applications, includingup-

sampling and filtering of point cloud sequences, autonomous tracking

and registration of mesh sequences and frameworks for learnable reg-

istration of mesh sequences. Improvements to point cloud sequences

allow for volumetric video content pipelines to improve spatio-temporal

coherence from early stage reconstructions, propagating these qualities

towards the final volumetric mesh outputs. Tracking and registration of
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meshes further improves thequality of volumetric videowhile also adding

temporal redundancy that can be exploited for compression. Finally the

advantages of deep learning provide faster processing times and present

a framework formore spatio-temporally awarenetwork architectures. Un-

der these three applications this dissertationwill seek to answer the ques-

tion, how can spatio-temporal processes be applied to improve volumet-

ric video content creation?.
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Chapter 1

Introduction

To begin the discussion of topics related to Volumetric Video, one must
first have a clear understanding of what is considered as volumetric con-
tent. Thus, this chapter serves to prime the reader by defining Volumetric
Video bymodern standards as well as it’s current and potential use cases.
This chapter also explores the technical aspects of creating such content
aswell as some of the challenges that creators facewhen using this emer-
gent technology. Following in this context, the key research questions,
contributions and structure of the document are presented.
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1.1 Motivation

In traditional media such as film and TV, the viewer has no control over
their viewdirection and is subjected to a 2D impression of theworld. How-
ever, with the rise of new immersive media like Augmented and Virtual
Reality (AR&VR), there is a need for new types ofmedia that allow the user
to freely move around a 3D scene. Free-Viewpoint Video (FVV) is a form
of 3D video in which the viewer experiences visual content with 6 degrees
of freedom (6DOF). FVV offers viewers the freedom to explore content
within a 3D environment and the choice to experience it from arbitrary
viewpoints.

To captureFVVsequences a set of cameras indifferent locations surround-
ing the 3D scene are typically used. In this context we classifymethods for
representing this 3D environment in which the user can freely navigate
as a continuum of two extremes: image-based methods and geometry-
basedmethods [1, 2]. While image-basedmethods generate virtual inter-
mediate views by interpolating available natural views, geometry-based
methods seek to build a 3Dmodel of the scene that can be rendered from
any novel viewpoint. We define Volumetric Video (VV) as the group of
geometry-based FVV methods that build a 3D model of the scene, espe-
cially human performances.

While various forms immersive media exist, VV offers more by means of
immersionand realismwhereother immersivemediamight compromise.
For instance, 360 video is a similarly emergent form of immersive media
which has been adapted widely by major platforms such as YouTube due
to its relative accessibility. However, while VV offers complete 6DOF, 360
video offers only 3 degrees of freedom in that the viewer is restricted to
explore the content via rotation about a fixed point. In short, VV offers a
true experience of immersive depth while 360 video is equivalent to view-
ing a video projected on the inside of a dome. Figure 1.1 better illustrates
this distinction.
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Figure 1.1: Volumetric Video vs 360 Video. Top: Volumetric video refers to
3Dmedia in which the user can freely navigate the scene and experience
it from arbitrary viewpoints, [3]. Bottom: 360 video is a medium by which
omni-directional videos are captured and projected to a viewing sphere,
allowing only 3 DoF, [4]

1.2 How to Create Volumetric Video: A Typical Ap-
proach

Many sophisticated developments have occurred since the earliest pro-
posedVVcapture setups, fromnewcapturingdevices andcomputepower
to efficient, high quality processing algorithms. What has remained con-
stant in this time is the core concept of the VV studio configuration. This
setup almost always consists of multiple cameras arranged about a cen-
tral performance area in such a way as to maximise the number of view-
ing angles about the subject. This can be seen in the modern VV capture
setup described by Collet et al. [5] whereby they utilize a combination of
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RGB, Infra-red (IR) cameras and IR structured light projectors arranged in
clusters alongside uniform white light on green-screen background. The
useof RGBand IR allows for leveraging the advantages ofmultiple sensors
while the uniformwhite light reduces shadows, allowing for more natural
representation in digital environmentswhere theVV contentmayneed to
realistically respond to digital environment lighting. Collet et al. propose
a 3D reconstruction system which produces high-quality VV content but
at the expense of requiring more than 100 sensors.

Others may take amore versatile approach, such as the system proposed
by Pagés et al. [3], which opts for amore affordable approach using as few
as 12 commodity RGB cameras. Removing the need for custom RGB and
IR sensors results in a systemwhich is affordable and lightweight but also
highly dependant on the robustness of the 3D reconstruction algorithms.
Such a systemmay reduce the barrier to entry for aspiring VV content cre-
ators but it can impart some constraints due to the lack of viewing angles
as well as a comparable difference in quality against the aforementioned
approach.

Further extreme developments towards accessibility of VV content cre-
ation have emerged only recently with the arrival of monocular 3D recon-
struction approaches, often targeting consumer smart phone cameras as
the only input to the system. The works of Saito et al. [6] and Habermann
et al. [7] rely heavily on modern deep learning developments to propose
3D content creation captured by a single device, potentially unlocking vol-
umetric video for the average smartphone user. While being the most
accessible option, it continues the trend of being themost restrictive and
lowest quality of the VV capture counterparts as one further reduces the
number of imaging devices used. We show a visual comparison of the
capturing methods discussed in figure 1.2.
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Figure 1.2: How To Capture Volumetric Video. Left: The state of the art
studio proposed by Collet et al. [5] featuring dense arrays ofmixed sensors
and lighting. Middle: A lightweight, mobile setup with sparse RGB cam-
eras as proposed by Pagés et al. [3] and implemented by Volograms [8].
Right: A single view input example as proposed by Saito et al. [6].

1.3 Problems with Volumetric Video Capture

Despite the many achievements of VV research and development in re-
cent year, VV content still has some flaws and obstacles which will have to
be overcome in order for it to experiencewidespread adaptability. Among
these issues is thenatureof howcontent is captured. Asmentionedabove,
different studios will produce VV content with varying and inconsistent
quality. This not only contributes to an overall negative quality of expe-
rience, but inconsistent content is highly challenging for standard com-
pression and streaming algorithms, thus impacting distribution potential
as well. As of recently, the need for such standards have been confirmed
and recognised in the MPEG 136 call for proposals on dynamic mesh en-
coding [9]. In particular, many VV systems of the types described gen-
erate content on a per-frame basis, analogous to how old cartoons were
hand-drawn one sheet at a time. Similarly, in frame-wise reconstructed
VV we see temporal artifacts manifest in the form of flickering shape, in-
coherent topology and textures. Such spatio-temporal inconsistency has
a drastic impact on the quality of VV content and offers none of the tem-
poral redundancy which modern algorithms need for compression stan-
dards. Figure 1.3 shows an example of sequential meshes with differing
topologies in service to no particular motion.

Additionally, as an emergent media, it’s novelty combined with the afore-
mentioned technical obstaclesmeans that any formof post-production is
either minimal or non-existent. Consequentially, creators have very little
control over the output of a VV capture system after recording. This lack
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Figure 1.3: Typical unprocessed output from framewise VV reconstruction
results in temporally incoherent geometry. The above image consists of
temporally adjacentmeshes in a sequencewith face normals rendered as
to highlight topology disparities.

of post-production along with the costs involved in assembling a high-
quality professional studio make the idea of VV content creation some-
what unappealing to all but the more eager early-adopters. In summary,
the following points can be seen as the most significant barriers to entry
for VV content creation:

• Varying quality of reconstruction

• Lack of compression standards for distribution and playback

• Practically no existing post-production techniques

• Prohibitively demanding technical and equipment requirements

Across thesepoints there is a common influencing factor of spatio-temporal
incoherence. In short this refers to how the volumetric content behaves
in a temporal manner i.e. how it moves and evolves about the duration
of a VV sequence. While not immediately apparent, it can be argued that
spatio-temporal analysis and applications can rectify or at least mitigate
the major issues outlined. Indeed, it is the aim of this dissertation to for-
mulate this argument and demonstrate it on applications for modern VV
content. However, in order to present the research question in a com-
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prehensive way, it will be necessary to explore what is meant by spatio-
temporal coherence within the context of VV.

1.4 Spatio-Temporal Analysis

Thediscussion of spatio-temporal (ST) coherence of VV content arises nat-
urally as it increases in spatial complexity compared to 2D content and
very rarely concerns temporally static content. From a practical point of
view, VV content creation can involve multiple types of 3D data represen-
tations includingpoint clouds, signeddistancefields andpolygonmeshes.
In the context of this dissertation, ST coherence pertains to the properties
and consequences of these data representations. For instance, ST analysis
of polygonmeshesmay refer to the evolution and persistence of different
vertices and vertex connectivity across a sequence as well as the implica-
tions regarding texturemapping and redundancies for compression i.e. a
sequenceofmesheswith identical connectivitymay share a single texture
map (or, at least, texture coordinates) and offer significant redundancy for
compression. Furthermore, shared texture maps and topology opens up
the possibility of some post-production editing.

Similarly, this context can be applied to point cloud sequences, a common
intermediate step found in VV content pipelines [5, 3, 10, 11]. Typically, the
3D reconstruction methods used to generate point cloud sequences in-
troduce some stochastic noise when observed sequentially (the nature of
which we will explore later). This is especially true for sparse camera se-
tups as in [3, 11]. As a result, this ST incoherence propagates through each
subsequent step in the pipeline ultimately manifesting as noise in the fi-
nal output. An example of this can be seen in figure 1.4 as the point cloud
structure varies in patches about the subjects head as well as density in
the far arm.
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Figure 1.4: Filtering Point Cloud Sequences. An incoherent point cloud
sequence typical of a modern sparse VV system such as that of Pagés et
al. [3].Notice in particular the structure noise patches around the head.

With this context in mind we can now revisit the major issues outlined in
the previous section and see how ST process may be applied to solve or
mitigate them:

• Varying quality of reconstruction - As ST incoherence has a direct
and obvious impact on quality, a good ST process should be robust
to highly incoherent output from even sparse ormonocular systems

• Lackof compression standards for distribution andplayback - Ide-
ally, ST processes could be applied in order to create data redundan-
cies such as shared topology and textures.

• Practically no existingpost-production techniques - Shared topolo-
gies and textures would allow for trivial editing of texture data and
even some potential for propagating topology modifications

• Unobtainable by those without access to the correct technical
resources or intellectual property - If ST processes can be applied
to noisy data such as that which is generated from monocular and
sparse camera setups, then high-quality VV content could be pro-
duced from low-cost studios
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1.5 Research Question and Contributions

In this section, we formally present the research question studied in this
dissertation and summarize the key contributions discussed above.

Research Question

Broadly, we investigate — “How can spatio-temporal processes
improve Volumetric Video content creation?”.

We study this problem in the context of three objectives:
• Filtering and Upsampling Point Cloud Sequences.
• Tracking Mesh Sequences to allow Compression and Editing.
• Learnable Frameworks for Mesh Tracking and Registration.

Contributions

• We study the effectiveness of spatio-temporal filtering on the
task of point cloud upsampling and de-noising as an es-
sential processing step for typical VV systems. The proposed
method achieves state-of-the-art results on synthetic and real
data captured from a professional VV studio.

• We present a pipeline for autonomous tracking of mesh se-
quences which ensures spatio-temporally consistent output
andallows for propagationof user editing. Webuild this frame-
work based on highly conditioned correspondence matching
across a hierarchy of geometry abstractions. Our system out-
performs the state-of-the-art onmesh tracking tasks, in partic-
ular those targeting low-fidelity data from camera-sparse VV
studios.

• We propose a deep learning framework for tracking mesh
sequenceswith significantly faster computation time than tra-
ditional alternatives. Our method achieves competitive re-
sults on common benchmarks with considerably less compu-
tational overheads than the state-of-the-art .
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1.7 Dissertation Structure

This document is divided into six chapters with two appendices. In this
first chapter we presented a brief introduction to VV, as well as the moti-
vation and problems addressed in the dissertation.

In Chapter 2, we discuss the evolution of VV including earlier systems as
well as modern systems and the issues they face. We then discuss some
applications of graphics within the context of VV and conclude with an
exploration ofmodern deep learning on 3D data and how it could be used
for VV content creation.

In Chapter 3 we present a system for upsampling and filtering noisy point
cloud sequences as a method for improving modern VV pipelines.

Chapter 4 will delve into mesh sequence tracking and registration, using
ST for improved visual quality and consistent topology to enable compres-
sion. The proposed system is entirely autonomous and allows for geome-
try recovery as well as propagated user-edits.

Having established the value ofmesh tracking and registration in the pre-
vious chapter, chapter 5 will propose a deep learning framework for reg-
istration of mesh sequences.

Eachof these chapters standon their ownand canbe read independently.
The ordering is based on a rough chronological order followed during this
dissertation. In Chapter 6, we conclude this dissertation by summarizing
the key contributions and future research directions.
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Chapter 2

Background

In this chapter, we discuss howVV came to be aswell as previous research
related to VV and other related areas. We explore some of the fundamen-
tal processes behind modern VV setups and the root of common issues
acrossmodernVV systems. Within the scope of VVweobserve someover-
laps between the fields of vision and graphics and how shared techniques
lead to VV content creation. Finally, we briefly summarize some modern
advances in 3D deep learning which allow us to develop neural network
architectures for learning on VV outputs.

2.1 The Evolution of Volumetric Video

As is true for many innovative technologies, VV as we know it today has
emerged from a history of preliminary works. Since the late 90’s VV has
roots in research streams that have gone under different titles in a rela-
tively short spaceof timeas the researchevolved. Kanadeetal. [15] present
a very early work under the title of ”Virtualized Reality” which proposed
some of the key concepts such as achieving arbitrary viewpoints, using a
dome-shaped capture studio and depth-estimation frommultiple imag-
ing devices. This approach inspired many follow-up works and had been
cited among research streams presenting their newworks under the title
of ”3D Video” [16, 17]. In these emergent works it can be seen that more
attention has been given to the quality of the volumetric structure with
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Figure 2.1: Early Virtualized Reality Studio Concept (a) The conceptual
diagram for the virtualized reality studio (b) A photo of the actual studio
from Kanade et al. [15].

the introduction of silhouette-based volume estimation to the pipeline.
However, the term ’3D Video’ become interchangeable with early stereo-
scopic techniques involving creating two unique views which only gave
the impression of depth [18]. As such the concept underwent another title
change as the term ”Free Viewpoint Video” appears in the work proposed
by Carranza et al. [19]. While this work builds upon the 3D reconstruc-
tion techniques of it’s predecessors, it deviates from direct shape estima-
tion and instead introduces a system for performingmarker-less motion-
capture in order todrive the animationof pre-constructed 3Dmodel.

The work by Smolic [1, 2] presents the taxonomy of the modern definition
of FVV, where its complete pipeline, from capture to display, is analysed
in detail. As introduced in Chapter 1.1, FVV can be understood as the func-
tionality to freely navigate within real world visual scenes, and its meth-
ods for representing this 3D environment are classified as a continuum
in between two extremes: image-based methods and geometry-based
methods.

As an example of an image-based method, the work by Zitnick et al. [20]
smoothly interpolates between the views of a camera array to generate
novel views that compose the virtual viewpoints. This achieved a similar
effect to the ’bullet-time’ effects made popular by in The Matrix movies.
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These works are worth acknowledging due to the similar goals that they
strove for however, theywere concernedpurelywith view interpolation.

In contrast, geometry-based methods, which we include under the defi-
nition of VV as it is known today, include the works which attempt to ac-
quire an actual 3D reconstruction of the scene. This is largely achieved us-
ing image-based 3D reconstruction, either throughmore traditional tech-
niques, suchas shape-from-silhouette andphotogrammetry, ormoremod-
ern algorithms that make use of deep learning. Most state-of-the-art VV
pipelines include a combination of some of these methods to guarantee
a complete and accurate result, either with dense camera setups and dif-
ferent types of sensors [5, 10] or with sparser setups that use commodity
cameras [3, 11].

2.1.1 Feature-based 3D Reconstruction

Kanade et al. [15] built their seminal virtualized reality studio by largely
building on a technique known as Multi-Baseline Stereo by Okutomi et
al. [21]. Briefly, this technique allows one to use multiple overlapping im-
ages and triangulation to estimate andpixel depth andperform3D recon-
struction. This technique belongs to a family of processes known as pho-
togrammetry which, as the namemight suggest, involves using imaging
sensors to infer 3D information from a scene. These techniques would
form the primary backbone of nearly all traditional VV capture setups to
follow.

The geometric premise of photogrammetry in it’s simplest form is basic
triangulation; for two ormore views of a givenpoint, estimate the distance
between each view and said point. A stereo example of this is given in
Figure 2.2 where we have two images, of the same point viewed from two
different angles. In an ideal scenario, one would know the exact position
and orientation of the cameras and could draw a line directly through the
origin of each cameras and their respective points in the imaging plane
to find that the lines intersect at the 3D point in space, marking the depth
from each camera to this point.

This principle can be extended toward the multi-view scenario where the
use of many cameras can provide multiple viewpoints and baselines for
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Figure 2.2: Depth from Stereo Images A simplistic model of an image
sensing setup for depth estimation [22]

extracting 3D structure. This feature-based 3D reconstruction from mul-
tiple baselines is known as Structure-from-Motion which originated from
[23] but more modern approaches follow the work of Snavely et al. [24]. It
relies heavily on robust, invariant feature detection to be able to correctly
match points frommultiple views. Some widely used feature descriptors
suchas SIFT [25] orA-KAZE [26] have seenwidespreadusedue to their abil-
ity to detect very robust features that are invariant to rotations and light-
ing changes. However, structure-from-motion generally assumes that
the viewpoints are presented in an ordered manner and that each new
baseline is an increment on the previous. As a consequence, the resulting
point cloud structure can often be somewhat sparse. A technique called
Multi-View Stereo [27] can be used to combine the sparse point cloud,
multiple baselines and approximately known camera positions to further
densify the output by estimating dense disparity maps between narrow
baseline pairs. Modern applications exist for public use which implement
someof the latest developments in structure-from-motion (COLMAP [28])
and multi-view stereo (OpenMVG [29]).

A myriad of other refinement techniques can be applied to reduce out-
liers (RANSAC [30]) and refine camera positions (Bundle-Adjustment [31]),
but ultimately where feature-based reconstruction excels is in providing
detailed structure for high-fidelity, feature-rich components such as tex-
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Figure 2.3: The effect of image feature richness vs feature sparsity on
feature-based 3D Reconstruction

tured garments or faces. In contrast, reconstructions can be somewhat
lacking when presented more planar, feature-sparse objects as seen in
figure 2.3. Evenmore so,whenpresentedwith translucent or non-lambertian
surfaces prominent artifactsmay sabotage the reconstruction entirely. To
mitigate this shortcoming, it is common to use silhouette-based volume
estimation techniques for a more low-fidelity but robust support solu-
tion.

2.1.2 Multi-View Volume Estimation

Shape-from-silhouette (SfS) is a group techniques that derive the volume
of the scene from the intersection of silhouette cones arranged about
the subject. These cones have the camera position as apex and the seg-
mented silhouette of the subject as the base. Figure 2.4 illustrates the
process first introduced by Baumgart [32] that has been refined and ex-
panded on for applications in VV by others [16, 33]. The resulting ”visual
hull” of the scene can be considered as an upper bound of the 3D scene
that is being reconstructed.

In early works this was used in isolation as a volumetric solution on its
own [34], albeit a low-fidelity one in comparison to later developments.
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Figure 2.4: Shape From Silhouette Concept Given a set of cameras ar-
ranged about a subject with known position and orientations, a recon-
struction of the subject can be formed by the intersection of silhouette
images in space[33].

It allows for a very robust method of extracting a volume from multiple
viewpoints and is not dependant on image feature detection, allowing
it to be used to support some of the weaknesses of feature-based pho-
togrammetry.

It does have it’s drawbacks however. In addition to relying on the quality
of the silhouettes and camera extrinsics, it also features a heavy reliance
on angular resolution i.e. significant camera coverage. A consequence of
this is how it responds when presented with significant occlusions. For
example, in a lot of physical setups the vertical angular coverage is not as
dense as the horizontal coverage, practically speaking, as it is more dif-
ficult to suspend or mount cameras and even more so to place cameras
beneath the subject without obstruction. This in turn creates ”shelf-like”
artifacts when a horizontal occlusion occurs as seen in Figure 2.5. Further-
more, SfS-based methods cannot create concavities in the resulting vol-
ume, as these concavities (such as the eye sockets) cannot be represented
in the subject silhouettes. This is partly mitigated by more advanced SfS
techniques that use photo-consistency across cameras [35] to further dec-
imate the visual hull, converting it into a ”photo hull” [36].
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Figure 2.5: Shape from Silhouette: Occlusion Artefacts Left: A case of
severe occlusions where few if any cameras were used to resolve the sil-
houette from a higher vantage. Right: A more ideal visual hull as a result
of photo-consistent refinement and point cloud conditioned carving [3]

2.1.3 Active Depth Sensing

Up to this pointwe’ve discussedpurely passive sensingmethods for 3D re-
construction. It would be remiss to discount the benefits of using a direct
approach such as direct depth sensing. These systems are quite robust in
that true depth canbe acquired due to the nature of active depth sensing.
In the literature this was achieved using two types of technology:

• Structured Light: An infrared pattern is projected from a source at a
knownbaseline fromthe sensor. The sensor then receives adistorted
version of the pattern which can be used to infer a disparity map

• Time of Flight: A sensor floods an area with infrared pulses and cal-
culates depth based on the time it takes for reflected light to return
to the sensor

Whilebothachievea similar goal of using IR light todirectly observedepth,
ToF has emerged as the superior approach in recent years due to it’s rela-
tively improved quality and clarity. In general these are both widely used

18



Figure 2.6: Time of Flight Vs Structured Light Depth Sensors A simple
illustration of the principles behind these two sensors [37].

technologies for various commercial applications andalthough theypresent
different issues when used for VV capture: artifacts along depth discon-
tinuities, temporal flickering of depth values which increases significantly
with distance, problems with some materials and dark colours that ab-
sorb IR light, and in some cases, interference among sensors when using
multi-sensor setups that need to be especially synced.

Nevertheless, there are plenty of interesting works that rely on RGBD in-
formation to reconstruct dynamic humans [38, 39, 40, 41, 42].

How Does It Fit Together?

It canbe seen that thediscussed techniques eachhave their ownstrengths
which support the other’s weaknesses when it comes to different aspects
of 3D reconstruction. However, up to this point the discussion has ne-
glected the consequences of the temporal domain, opting only to look at
artefacts on a static momentary basis.

Considering that these reconstructions are performed on a per-frame ba-
sis, the impact of incoherent random noise encountered across a tempo-
ral sequence of reconstructions is amplified. To loosely draw comparison
to a familiar example, this noise could be considered akin to the temporal
flickering artefacts seen in cartoons of the mid-20th century, as these too
were created in a frame-wise manner.
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Figure 2.7: Modern Volumetric video often uses a combination of 3D re-
construction techniques to achieve the final topology. In this image we
show a typical point cloud from a modern photogrammetry pipeline, a
visual hull extracted from image silhouettes and a refined surface model
which combines these inputs along with some other mesh refinements
as in Pagés et al. [3]

While point cloud sequences are not often then end-product for volumet-
ric video sequences, they are an essential part of the pipeline and as such,
noise introduced at this stage can propagate into later stages and even-
tually the final output. We explore this further in Chapter 3 where the
motivation behind this problem is explored in greater detail and a solu-
tion is proposed in the form of a self-regulating temporal filter. Similarly,
as the outputs from these systems are fused into unified meshes, we see
temporally incoherent structures and disruptions to the surface geome-
try manifesting across the volumetric sequence. To cease the discussion
here would be to yield a volumetric mesh sequence which is geometri-
cally incoherent across time and provides not only sub-par visual qual-
ity but also no redundancy for compression and distribution. As we take
the discussion further along the typical VV processing pipeline we begin
to venture into the space between computer vision and graphics. In the
next section we discuss how developments in computer graphics can be
used to improve the temporal coherence and redundancy in volumetric
sequences.
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2.2 Graphics Applications in Volumetric Video

Previously we discussed how to acquire the most fundamental 3D recon-
structions on a per-frame basis and howmultiple types of acquisition can
be performed to optimize the result, producing a volumetric represen-
tation of the scene. It was also mentioned that if we consider only the
per-frame results we ignore the temporal inconsistency of the final result
when processed or experienced as a volumetric sequence. In the follow-
ing section we will discuss how developments in computer graphics can
be used to greatly improve the ST coherence of a volumetric sequence
as well as add computational redundancy to improve encoding and com-
pression.

As an emergent field there exists no such industry-standard processes or
data formats for VV. Thus, in order to present a focused discussion we will
assume that the desired output for a VV system is a sequence of polygon
meshes with corresponding texture images.

2.2.1 Coherence and Compression

When considering how to improve coherence and compression of a se-
quence of individual textured polygon meshes it helps to consider them
as two data streams, a geometry sequence and texture sequence. Both
need to be compressed to enable efficient distribution and both need to
be spatio-temporally coherent for quality of experience. Luckily the an-
swer for texture is quite simple given the widely established literature on
image/video coding. For image-based texture compression there is am-
ple choice of compression methods with trade-offs in PSNR vs compres-
sion to suit a range of applications. On the other hand, geometry com-
pression does not enjoy such a variety of options. We have seen some suc-
cess with point cloud compression from the DRACO format [43], however
polygon mesh compression is still a very open question for research. The
current naive method would be to add redundancy by means of shared
connectivity acrossmeshes. That is, to attempt to apply consistency to the
number of vertices, the ordering of vertices and the vertex neighbour in-
dices in a temporalmanner. In doing sowe remove the overheads caused
by monitoring these parameters on a per-frame basis and instead must
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Figure 2.8: Deformation Graphs: The work of Sumner et al. proposes
an embedded graph which supports shape deformation by applying an
affine transformation at each graph node. The vertices of the underlying
shape are deformed by a blended skinning towards nearby graph nodes
[46]. In this example the deformations are driven by the displacement of
the vertices highlighted in yellow.

only consider the vertex positions for a given sequence. Furthermore, the
use of shared vertex topology allows for a singular texture mapping, re-
ducing overheads even more.

For volumetric sequences the most natural way to achieve this redun-
dancy is to perform non-rigid shape registration, a process by which one
estimates a non-rigid deformation of one shape towards a target shape.
This can be performed in sequence by deforming a ”keyframe”mesh iter-
atively onto a sequence of targetmeshes, thusmaintaining the keyframe
topology and storing only the deformations estimated at each step [5, 44,
14, 45]. While the concept seems straight forward to somedegree, there is
significant complexity involved in non-rigid shape registrationwhichwar-
rants further discussion.

2.2.2 Non-Rigid Shape Registration

Shape registration is a taskwhichhas seennumerous applications in com-
puter graphics problems across medical, entertainment, automotive and
other industries [47, 48, 49, 50]. Non-rigid shape registration (NRR) is a
subset of registration taskswhichextends the solution spacebeyondaffine
transformations, greatly increasing the complexity of the task. This com-
plexity largely results in having to make trade offs between the accuracy
and rigidity. Thankfully, due to the demand for solutions in this field there
exists a rich state of the art for general shape registration emanating from
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seminal works such as the Iterative Closest Point (ICP) by Besl and McKay
[51] (and simultaneously to some degree but more application-specific,
Chen and Medioni [52]). The basic procedure of ICP is as follows:

• For eachpoint in the source shape, find the closest point in the target
shape

• Estimate the rigid transformationwhichminimizes thepoint topoint
distance for all matched points

• Apply the estimated transformation

• Iterate until convergence e.g. no significant difference between suc-
cessive transformations

The ICP algorithm can be considered one of the most fundamental algo-
rithms used in shape processing today, being widely cited and providing
the basis for further developments such asGeneralized ICP [53]. It has also
been expanded towards NRR byworks such as the Optimal Step Nonrigid
ICP Algorithms by Amberg et al. [54] and the probabilistic approach of
Coherent Point Drift by Myronenko and Song [55]. With the exception of
Amberg et al., these methods are generally most applicable to tasks con-
cerningpoint clouddata. That is, whenapplied to surfacemeshes theyne-
glect to retain some of the vital structural information contained in mesh
topology data and can lead to destructive effects. The seminal work by Li
et al. addresses this issue by supporting the non-rigid transformation of
the surfacewith adeformationgraphandapplyingamore conditional ICP
variant that filters outliers [56]. This deformationgraph is the core concept
behind the As Rigid As Possible deformation scheme. The graph itself is
created by uniformly sampling points about the surface and establishing
edges via geodesic proximity. Each node in the graph represents an esti-
mated rotation and translation which is applied to the underlying surface
by interpolation of the skinning weights between the graph nodes and
the surface vertices.

In chapter 4wewill present an autonomous shape registration system for
unstructuredmesh sequences which expands on the deformation graph
framework with robust correspondences and geometry recovery.
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2.3 Deep Learning for Volumetric Video

In prior sections we considered the fundamental components of tradi-
tional VV production. We have established what may be the closest re-
semblance to a conventional pipeline for such an emergent and dynamic
field. There are however, some significant and potentially disruptive de-
velopments emerging fromdeep learning research that couldhave future
implications on how we create VV. In recent years we have seen some ex-
tensions from established 2D deep learning techniques such as pose es-
timation being applied to specific VV tasks with some success. However,
it is with recent revelations in the 3D learning space that we can see vastly
different approaches to learning-based VV creation. In this sectionwewill
present some of the earlier uses of Deep Learning (DL) for VV creation and
its limitations. We will also look at the challenges of applying deep learn-
ing to 3D data and how recent developments have unlocked new poten-
tial for high quality, learning-based shaped estimation as well as direct
learning on surfaces. In many cases, the desired task for learning-based
VV is to allow for monocular capture as opposed to cumbersome studios.
Thus, most of the works presented in this section will be targeting data
from personal devices such as smartphone cameras.

2.3.1 Template-driven Monocular VV

As deep learning was rapidly becoming ubiquitous among the computer
vision community, we saw some early attempts to translate this success
into the 3D domain for graphics applications [57, 58, 59]. The immedi-
ate challenge with adapting existing architectures was that the funda-
mental building block behind the most popular networks, the convolu-
tion kernel, is not particularly scalable when applied to 3D data. Some
success was seen with PointNet[60], a network designed particularly for
structured point clouds but significant obstacles appear when we con-
sider such approaches for the primary format of VV, the polygon mesh.
Indeed, essential concepts for convolution such as stride and padding be-
come non-trivial to implement in the context of graph-like structures. As
the literature evolved to tackle this problem we began to see novel archi-
tectures such as graph nets[61, 62] as well as spectral convolution oper-
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Figure 2.9: STAR: A Sparse Trained Articulated Human Body Regressor.
STAR is a parametric human body with learned local blend shapes, that is
proposed as a modern update for the SMPL model[67]

ations designed to replace or generalize traditional convolution kernels
[63, 64, 65, 66]. We will explore these in more detail in section 2.3.3 after
we consider some of the novel approaches to monocular VV used before
it was possible to directly infer high quality meshes.

One way monocular VV was achieved efficiently was through the use of
deformable templates created a priori of the given capture[7, 68]. Some
of these methods saw transferable success from leveraging robust pose
estimation networks in order to drive the deformation of the template[69].
The estimated pose could be lifted to 3D space where it would drive the
articulated parameters of a skinned model. Improvements on this saw
workswhichfit the scanned template to theparameters of theSMPLmodel
[70], a parametric human body model. This modification allowed net-
works to perform estimations of these parameters instead of predicting
a kinematic structure. In this way the estimated template deformations
could model more fine-grained parameters than the limited kinematic
joints thus leading to more visually pleasing deformation. This template-
based approach is a continuous trend of research today and sees con-
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sistent novelties and improvements, however some limitations are still
present. As fine-grained and robust deformations continue to improve,
thefidelity of theoutput is still limited to the representative capacity of the
initial template. For example, one would be limited to the geometry and
connected components represented by the template i.e. a template of an
unclothed person could not accommodate the introduction large flowing
garments or represent the sudden introduction of new objects like props
or bags. Some very recent work has acknowledged this and is beginning
to show some capacity for modelling clothed humans [71, 72, 73].

2.3.2 Occupancy Estimation for Shape Generation

A more generalized approach to monocular VV over template manipu-
lation is to directly estimate the shape of the subject from image data
alone. This is naturally a significantlymore difficult challenge and had ex-
isted only in a very limited state prior to the emergence of learned implicit
functions. Earlier template-free methods used a voxelisation approach
to shape estimation [74]. These approaches were largely limited by high
memory requirements and thus finer details were often absent. Most
notably for the context of VV, the PIFu framework by Saito et al. [6, 75]
uses implicit functions to directly infer a volumetric model of a subject
given only an RGB image with an impressive degree of fidelity. This pixel-
aligned implicit function is part of a family of works which utilize the con-
cept of deep level-sets. Some concurrent works includedOccupancy Net-
works [76], DeepSDF [77] and others [78, 79]. A later work by Mustafa et
al. would extend the concept to multi-person scenarios [80]. The implicit
function idea expands on the classical concept of a level-set representa-
tion of surfaces [81] replacing the need for solving a differential equation
with a deep learning framework. In this way the network is designed to
model an embedded continuous function which can be discretized at in-
ference at an arbitrary resolution. Another useful property of these net-
works in relation to VV content creation is that they can be supported by
multi-view inputs allowing for higher fidelity reconstruction inmulti-view
studio setups.

As promising as these networks are they can still be difficult to train for
human shape estimation, especially as high-quality datasets are relatively

26



Figure 2.10: The deep Level-set Learning Architecture of Michalkiewicz et
al. [78].During training, a 3Dauto-encoder is used toproject the shape into
a z-dimensional latent space and back to 3D while a 2D predictor project
image data into the same latent space. At test inference the encoder part
is removed and only the 2D image data is used alongwith the 3D decoder
to infer shape.

sparse among the research community. Among the available datasets, it
is often seen that they are locked behind a paywall [82], low-resolution [83]
or completely synthetic [84]. Additionally, while great improvements have
beenmade in terms of scalability, these networks are still relatively expen-
sive to train at highfidelity. Thuswehave yet to seeonewhich canperform
some spatio-temporally consistent shape estimation for video sequence
data. As a result the use of these network in a VV pipeline effectively still
requires post-process tracking in order to reduce temporal noise.

Some notable works present spatio-temporally consistent results in that
the general shape and motion is coherent. Caliskan et al. [85] propose
a temporal-consistency loss for learning based shape estimation. Bozic
et al. [86] propose a learnable deformation graph framework for tempo-
rally consistent reconstruction fromRGBDdata. It should be clarified that
while these methods produce ST coherent shapes, they do not maintain
the topological consistency required for compressionand streaming. Hence,
when we refer to ST coherent shape estimation we also assume some de-
gree of topological consistency.
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Figure 2.11: The work of Wiersma et al. [89] propose a framework which
learns on surfaces via rotation-equivariant kernels. The learned features
are robust to symmetry problems but rely on computationally expensive
parallel transport operations in order to traverse the input.

2.3.3 Deep Learning on Surfaces

As new architecturesmake strides towards viable shape estimation for VV
content creation we can continue to consider their application to other
stages of the pipeline. As there currently exists no practical way of ap-
plying topologically consistent ST coherence to existing shape estimation
networks, we should consider the post-processing approach. Sequen-
tial registration and tracking would be considered within the domain of
shape analysis which leads us towards recent developments deep learn-
ing approaches to learning on surfaces. As mentioned in section 2.3.1,
naively applying the success of convolution neural networks to polygon
mesh data is inherently difficult due to the lack of shared properties be-
tween image data and mesh representations. While many point-based
learningapproaches exist [87, 60] they tend tobe less accurate than surface-
based methods and require extremely large datasets in order to achieve
accurate results on shape deformation tasks [88].

Initial works which learn directly on surfaces tended toward generaliz-
ing convolution operations using local surface parameterization [90, 91].
Other works expand on this by introducing equivariance to rotation in or-
der to address the lack of rotation invariance in the tangent plane of local
parameterizations [89].

In a recent work, Sharp et al. [63] propose a DiffusionNet for learning on
surfaces which employs a diffusion mechanism in place of established
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parallel transport methods. Their semi-spectral approach demonstrates
adaptability to generalized 3D data inclusive of point clouds, structured
and un-structured polygonmeshes. In chapter 5we present a deep learn-
ing framework of sequential mesh registration that leverages Diffusion-
Net’s capacity for learning robust features on meshes.

2.4 Summary

We conclude this chapter with a brief summary of the areas presented in
the last few sections and highlight how that connects with our work in
the next three chapters.

Some of the earliest works in VV were introduced as well as a brief intro-
duction to the fundamental technologies that evolved and currently sup-
port VV. Among these we explored traditional photogrammetry, shape
from sihouette and active depth sensing as well as how some of the is-
sues they present individually.

From this basis we then went on to introduce contemporary graphics
applications to temporally incoherent VV sequences for quality improve-
ment and compression. Specifically we discussed non-rigid shape regis-
tration as a method for enforcing shared vertex connectivity across a se-
quence of incoherent meshes.

Finally we reviewed the latest developments in deep learning for shape
estimation in relation to VV content creation and how deep learning on
surfaces is still a growing area of research with distinct limitations that
have yet to be overcome.

In the following three chapters we will rely on this knowledge to explore
how ST analysis can be used to improve VV content in three domains.
These includepoint cloudfilteringandupsampling for pre-volumetric pro-
cesses, autonomous tracking and registration for incoherent mesh se-
quences, and learning-based mesh sequence registration.

29



Chapter 3

Filtering and Upsampling
Point Cloud Sequences

Figure 3.1: Dense point clouds generated using an affordable VV cap-
turing platform [3]. Even after densification via multi-view stereo, the in-
put clouds still exhibit large gaps in structure as well as patches of noise.

The generation andprocessing of point cloud sequences can be an essen-
tial component of modern VV content creation pipelines. Often times us-
ing sparse camera setupsorunusual capture subjects (e.g. non-lambertian
reflective objects) can lead to noisy point cloud data which must be fil-
tered. Further, it would be highly beneficial for meshing algorithms if
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the underlying point clouds were accurately densified. We have identi-
fied these concerns as a particularly useful application for ST solutions.
Thus, in this chapter we present a self-regulating filter that is capable of
performing accurate upsampling of dynamic point cloud data sequences
captured using wide-baseline multi-view camera setups. This is achieved
by using two-way temporal projection of edge-aware upsampled point
clouds while imposing coherence and noise filtering via a windowed, self-
regulating noise filter. We use a state of the art ST Edge-Aware scene flow
estimation to accurately model the motion of points across a sequence
and then, leveraging the ST inconsistency of unstructured noise, we per-
form a weighted Hausdorff distance-based noise filter over a given win-
dow. Our results demonstrate that this approach produces temporally
coherent, upsampled point cloudswhilemitigating both additive and un-
structured noise. In addition to filtering noise, the algorithm is able to
greatly reduce intermittent loss of pertinent geometry. The system per-
forms well in dynamic real world scenarios with both stationary and non-
stationary cameras aswell as synthetically renderedenvironments for base-
line study. Thiswork extends our priorwork inMoynihan et al. [12] towhich
we will refer during the evaluation discussions.
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3.1 Motivation

One of the fundamental processes in modern VV pipelines is ST consis-
tency. Ensuring this consistency across the sequence of 3Dmodels helps
reduce the impact of small geometry differences among frames and sur-
face artifacts, which result in temporal flickering when rendering the VV
sequence. Most techniques apply a variation of on the non-rigid ICP al-
gorithm [92, 40], such as the coherent drift pointmethod [55], performing
a geometric temporal constraint to align the meshes resulting from the
3D reconstruction process on a frame-by-frame basis [93, 94]. This works
specially well when the 3D models acquired for every frame are detailed
and accurate, as registration algorithms are not always robust to big ge-
ometry differences or loss of portions of the mesh (something that can
often happen for human limbs). A good example of this is the system by
Collet et al. [5]: they apply mesh tracking in the final processing stage,
both to provide a smoother VV sequence and also to improve data stor-
age efficiency as, between keyframes, only the vertex positions vary while
face indices and texture coordinates remain the same. They achieve very
appealing results by utilizing a sophisticated, very dense camera setup of
over 100 sensors ( RGB and IR), ensuring a high degree of accuracy for the
reconstructed point clouds on a frame-to-frame basis.

This type of temporal consistency is also key in the methods proposed by
Dou et al. [39, 42], where they are able to perform registration in real-time,
using data coming from depth sensors. These methods ensure tempo-
ral consistency at the end of their pipeline, but differently to the method
proposed, they do not address the loss of geometry in the capture stage,
which can only be solved using temporal coherence at the point cloud
generation.

Theworkof Cagniartet al. [95] improves onglobal ICP registration atmesh
level by leveraging a patch-based registration approach while Budd et al.
[96] improve global registration strategies by using shape similarity trees
and non-sequential registration to minimise the global deformation re-
quired for registration.

Mustafa et al. [97] ensure temporal consistency of their VV sequences by

32



first, using sparse temporal dynamic feature tracking as an initial stage,
followed by a shape constraint based on geodesic star convexity for the
dense model. These temporal features are used to initialize a constraint
which refines the alpha masks used in visual-hull carving and are not di-
rectly applied to the input point cloud. The accuracy of their results is
not comparablewith themethodsmentioned above, but they showgood
performance with a reduced number of viewpoints and wide baseline.
Mustafa et al. extended their work to include sequences that are not only
temporally but also semantically coherent [98], and even light-field video
[99].

An interesting way of pursuing ST consistency is by using optical flow.
For example, Prada et al. [100] use mesh-based optical flow for adjusting
the tracking drift when generating texture atlases for the VV sequence,
adding an extra layer of ST consistency at the texturing step. It is possible
to address temporal coherence by trying to use the scene flow to recover
not only motion, but also depth. Examples of this are the works by Basha
et al. [101] and Wedel et al. [102]. These techniques require a very dense
and accurate motion estimation for every pixel to acquire accurate depth
maps, together with a camera setup with a very narrow baseline. Alterna-
tively, our systemuses the temporally consistent flowproposedby Lang et
al. [103] applied tomulti-view sequences, allowing us to track dense point
clouds across the sequence even with a wide baseline cameras configu-
rations.

Other ways of improving incomplete 3D reconstructions, such as the ones
acquired with wide baseline camera setups, include upsampling or den-
sifying [104, 105, 106] them in a spatially coherent way. These systems are
designed to perform upsampling for a single input point cloud, and not
specifically a VV sequence, so they are unable to leverage any of the tem-
poral information within a given sequence of point clouds. As a result,
the use of such techniques alone will still suffer from temporally incoher-
ent errors. Our system takes advantage of the geometric accuracy of the
state of the art Edge-Aware Point Set Resampling technique proposed
by Huang et al. [104] and supports it using the temporal information ob-
tained from the inferred 3D scene flow along with some ST noise filter-
ing. The reasoningbehind this approachbeing that increasing thedensity
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Figure 3.2: Point Cloud Filtering Pipeline The input to the algorithm re-
quires a sequence of temporally independent point clouds alongwith the
corresponding RGB images and calibration data. At timeframe j, the in-
put cloud is upsampled and projected into the subsequent frame t + 1.
This is done via an edge-aware scene flow generated from the input RGB
images. Expanding on [12], this is performed iteratively across awindowof
frames centered about the input frame i.e. we recursively project frames
within the given window toward the center frame. The output consists
of a spatio-temporally coherent merge and averaging system which up-
samples the input point clouds and filters against temporal noise.

of coherent points improves the accuracy of surface reconstruction algo-
rithms such as Poisson Surface Reconstruction [107] and thus, propagates
visual improvement through the VV pipeline.

3.2 Filter Design

We use a low-cost VV pipeline similar to the system by [3] to generate the
input clouds for the proposed algorithm. Such pipelines generally max-
imise the baseline between cameras in order to reduce the cost of extra
hardware while still providing full coverage of the subject. The camera in-
trinsics are assumed to be known from prior calibration while extrinsics
can be calculated automatically using sparse feature matching and in-
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cremental structure-from-motion [108]. In some cases the cameras may
be handheld, whereby more advanced techniques like CoSLAM [109] can
be applied to better produce dynamic poses. The input sparse clouds are
further densified usingmulti-view stereo. The examples presentedwithin
the context of our systemuse the sparse point cloud estimation systemby
Berjón et al. [110] and are then further densified by using the unstructured
MVS systemof Schönberger et al. [111]. Formally, wedefine S = {si=1, ..., sm}
as the set of all m video sequences, where si(j), j ∈ {1, ..., J} denotes the
jth frame of a video sequence si ∈ S, with J frames. Then for every frame
j, therewill be an estimated point cloudPj . In a single iteration, Pj is taken
as the input cloud which is upsampled using Edge-Aware Resampling
(EAR) [104]. This initializes the geometry recovery process with a den-
sified point cloud prior which will be temporally projected into the next
time frame j + 1 and geometrically filtered to ensure both temporal and
spatial coherence. With the windowed filtering approach this iteration is
performed recursively in such a way that each frame within the window
is iteratively projected toward the center frame via it’s respective interme-
diate frames.

3.2.1 Spatio-Temporal Edge-Aware Scene Flow

Accurately projecting geometry frombetween different timeframes is di-
rectly dependent on the accuracy of the scene flow used to achieve it. In
the context of this paper the scene flow used is actually a dense, pseudo-
scene flow which is generated from multi-view videos as opposed to di-
rectly extracting it from the clouds themselves. This scene flow is calcu-
lated as an extension to dense 2Dflow, thus, for every sequence siwecom-
pute its corresponding scene flow fi. This view-independent approach
ensures that the system is robust to wide baseline input.

To retain edge-aware accuracy and reduce additive noise we have chosen
a dense optical flow pipeline that guarantees ST accuracy:

• Initial dense optical flow is calculated from the RGB input frames
using the Coarse to fine Patch Match(CPM) approach described in
[112].

• The dense optical flow is then refined using a ST edge aware filter
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Table 3.1: Investigation by [12] on the effect of STEA filter initialization on
geometry recovered expressed as % increase in points. Tested on a syn-
thetic ground-truth sequence. Flow algorithms tested: Coarse-to-Fine
PatchMatch (CPM) [112], Fast Edge-Preserving PatchMatch (FEPPM) [115],
Pyramidial Lukas-Kanade (PyLK) [116] and Gunnar-Farnebäck (FB) [113].

STEA Initialization Area Increase (%)

CPM 37.73
FEPPM 34.9
PyLK 34.77
FB 29.7

based on the Domain Transform [103].

The CPM optical flow is used to initialize a ST edge aware (STEA) filter
which regularizes the flow across a video sequence, further improving
edge-preservation and noise reduction.

While the STEA can be initializedwithmost dense optical flow techniques
such as the popular Gunnar-Farnebäck algorithm [113], the proposed sys-
temuses the coarse-to-finepatchmatchalgorithmby [112] as recommended
in [114]. Table 3.1 provides a breakdown of the amount of pertinent geom-
etry recovered via different optical flow techniques.

The STEA filter consists of the following implementation as in [103]. This
implementation further builds upon the Domain Transform [117] extend-
ing into the spatial and temporal domains given the optical flow as the
target application:

1. The filter is initialized as in [114], using coarse-to-fine patch match
[112]. TheCPMalgorithmestimatesoptical flowasaquasi-densenear-
est neighbour field (NNF) using a subsampled grid.

2. The edges of the RGB input are then calculated using the Structure
Edge Detection Toolbox [118].

3. Using the calculated edges, the dense optical flow is then interpo-
lated using Edge-Preserving Interpolation of Correspondences [119].
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Figure 3.3: From left to right, dense optical flow calculation: For a partic-
ular viewpoint, the input RGB image, (1) nearest neighbour field estimate
from CPM, (2) SED detected edges, (3) interpolated dense STEA output.
Conventional colour codinghasbeenused to illustrate theorientation and
intensity of the optical flow vectors. Orientation is indicated by means of
hue while vector magnitude is proportional to the saturation i.e. negligi-
blemotion is represented by white, high-speedmotion is shown in highly
saturated color [12]

This dense optical flow field is then regulated by the STEA filter via mul-
tiple ST domain iterations to reduce temporal noise. Figure 3.3 visualizes
the intermediate stages of the flow processing pipeline.

3.2.2 Scene Flow Point Projection

Given known per-camera intrinsics (Cj1 , ..., Cjm , at timeframe j), the set of
scene flows (fj1 , ..., fjm), and the set of point clouds (Pj , ...,PJ ), themotion of
any given point across a sequence can be estimated. To achieve this, each
point is back-projected Pk ∈ Pj to each 2D flow fi at that specific frame j.
We check the sign of the dot product between the camera pointing vec-
tor and the normal of the point Pk to prune any point projections which
may otherwise have been occluded for the given view. Using the flow, we
can predict the position of the back-projected 2D points pik in sequential
frames, p′

ik .
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The set of projected 3D points P ′
j , at frame j + 1, is then acquired by trian-

gulating the flow-projected 2D points p′
ik , using the camera parameters

of frame j + 1. This is done by solving a set of overdetermined homoge-
neous systems in the form ofHP′

k = 0, whereP′
k is the estimated 3D point

and matrix H is defined by the Direct Linear Transformation algorithm
[120]. The reprojection error is minimized using a Gauss-Markov weighted
non-linear optimisation [121].

3.2.3 Windowed Hausdorff Filter

The aforementioned point cloud projection framework can now be used
to support the coherent merging and noise filtering process. For a given
windowofwidthw for frames

{
j(c−w/2)...jc...j(c+w/2)

}
⊂ J where c is the cen-

ter frame, we project the point cloud at each frame towards the center
frame using the above method in a recursive manner. In this way struc-
tural information is retained and propagated. However, this also has the
effect of accumulating any inherent noise within this window. For this
reason we extend the two-way Hausdorf filter in [12] with the addition of
an energy density term Edens. This density term takes into account the av-
erage voxel density of the merged window of frames which is essentially
the sum of the propagated clouds. Using density as a conditioning term
takes advantage of the stochastic nature of noise in that statistically, per-
sistently occupied space due to noise is far less common than occupancy
due to pertinent geometry.

The coherentmerged cloud P∗
j+1 is given by the logical definition in equa-

tion 3.1whereDP ′
j
is the summed result of projectingall point cloudswithin

window w recursively toward the center frame j.

Given an ordered array of values DP ′
j
such that DP ′

j(k)
is the distance from

pointPj(k)′ to its indexedmatch inPj+1. We also defineDPj+1 as an array of
distances in the direction of Pj+1 to P ′

j . We then define themerged cloud
to be the union of two subsetsM ⊂ P ′

j and T ⊂ Pj+1 such that,

M ⊂ P ′
j ∀ P ′

j(k) : DP ′
j(k)

< dj , k ∈ {1...j} ,

T ⊂ Pj+1 ∀ Pj+1(k) : DPj+1(k) < dj , k ∈ {1...j} ,

P∗
j+1 = M ∪ T

(3.1)
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Figure 3.4: The windowed merge process. Left: a 5-frame window of
input clouds, Middle: the cumulative merge of the upsampled and pro-
jected input clouds. Right: the filteredmerge process visualizedwith nor-
malized error given by distance of each point to it’s correspondingmatch
in the input cloud. This error term is then augmented with the energy
terms Edynamic and Edens.

By this definition, P∗
j+1 contains only the points in Pj+1 and P ′

j whose dis-
tance to their nearest neighbour in the other point cloud is less than the
computed threshold dj . The intention of this design is effectively to re-
move any large outliers and incoherent points while encouraging consis-
tent and improved point density. Figure 3.4 shows an example of how the
coherent merge works.

3.2.4 Dynamic Motion Energy Term

Due to the distance-based nature of the Hausdorff-based filter, it is often
observed that fast-moving objects are pruned after being projected into
the next frame. This approach to filtering greatly reduces the amount of
temporally inconsistent noise, but simultaneously, it over-filters dynamic
objects due to the lack of spatial overlap between frames. This is espe-
cially true for sequences captured at 30fps or less, which is often the case
for affordable VV setups where bandwidth and storage are concerned.
To address this issue, we supplement the distance-based threshold term
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with a dynamic motion energy which is designed to add bias towards
fast-moving objects. This energy term is proportional to the average mo-
tion observed across the scene-flow estimates for a given timeframe. For
faster-moving objects, higher confidence is assigned to clusters of fast-
moving points. Given that P ′

j is a prediction for frame j + 1, we validate
each predicted point by back-projecting P ′

j into the respective scene flow
frames for time j + 1. The flow values for the pixels in each view are then
averaged to calculate the motion for a given pixel at that time. As in sec-
tion 3.2.2 we again filter out occluded points using the dot product of the
camera pointing vector and the point normal.

3.2.5 Spatio-Temporal Density Term

Theproposed systemoffers an expansion to the two-wayHausdorff-based
filter presented in [12] by sampling a window of frames about the current
timestamp. While the two-way filter is robust to temporal noise it isn’t
capable of recovering large sections of missing geometry over a span-
ning timeframe. As illustrated in figure 3.6, the two-way approach fails to
recover much from the sequence where large patches are missing over
a longer time period. To address this, the proposed system introduces
a windowed approach which combines the projected information from
multiple frames while retaining comparable noise filtering. In order to
reduce the added noise we propose an additional energy term for the fil-
tering threshold based on ST density within the given window. The new
threshold score criteria is then given by:

Eth = d− (Edens + Edynamic) (3.2)

The Edens term is calculated as follows:

• For a window of width w we iteratively project each frame into the
current timestamp such that a single point cloud object is created
consisting of the points projected from the frame range{
t(c−w/2)...tc...t(c+w/2)

}
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Figure 3.5: An example of the proposed upsampling and filtering system.
Pictured left: a sequence captured outdoors with handheld devices. Pic-
tured right: a sequence captured in a low-cost controlled studio environ-
ment with fast-moving objects. For both sequences, (a) corresponds to
the input cloud prior to filtering while (b) represents the upsampled and
filtered result [12].

• An octree-based occupancy grid is then constructed on this object
where each leaf is assigned a normalized density score. This score
is the Edens term for any point given its index within the occupancy
grid.

Figure 3.4 illustrates this process for any given window. The size of this
window is variable but is limited by practical limitations of computation
time and the trade-off of adding multiple sources of noise. For our pur-
poses we concluded that a window size of w = 5was within practical time
constraints while still providing good results. As with any filtering or av-
eraging algorithm, there is an inherent risk of over-smoothing data and
thus, such decisions may differ for various sequences depending on the
degree of dynamic motion.

3.3 Experiments

In figure 3.5 we demonstrate a side-by-side comparison of the process re-
sults vs unprocessed input for two challenging yet conventional scenar-
ios. Weevaluate the systemonanumber of sequences captured outdoors
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with as little as 6 to 12 handheld devices (i.e. smartphones, tablets etc..) as
well as a controlled green screen environment comprised of 12 high-end,
rigidlymounted cameras (6 4K resolution, 6 Full HD). A ground-truth com-
parison is also presented by comparing reconstruction results against a
known synthetic model within a virtual environment with rendered cam-
eras.

3.3.1 Outdoor Handheld Camera Sequences

Shooting outdoors with heterogenous handheld devices can present a
numberof challenging factors including: non-uniformdynamicbackgrounds,
increased margin of error for intrinsics and extrinsics calculations, insta-
bility of automatic foreground segmentationmethods andmore. The cu-
mulative effect of these factors results in temporal inconsistncies with the
reconstructed point cloud sequence as well as the addition of structured
noise and omission of pertinent geometry. Figure 3.5 (left model) shows
the difference between using framewise reconstruction (a) and the pro-
posed system (b). A significant portion of structured noise has been re-
moved whilst also managing to fill-in gaps in the subject.

To further demonstrate the impact of our system targeting volumetric
reconstruction, we present the effect of applying screened Poisson sur-
face reconstruction (PSR) [107] to the input point cloud. In general, the di-
rect application of PSR creates a fully closed surface which usually creates
bulging or ”inflated-looking” surface meshes. Instead we use the input
cloud to prune outlying faces from the PSR mesh such that the output
surface mesh more accurately represents the captured data. Thus, in fig-
ure 3.6 the gaps in the input data can be visualized clearly. This figure also
shows the appreciable increase in pertinent surface area after ST upsam-
pling.

3.3.2 Indoor Studio Sequences

In general, sequences shot in controlled studio environments exhibit far
less temporal noise and structural inconsistencies in comparison to ”in-
the-wild” dynamic outdoor shots. To further test our systemwe introduce
an extra degree of challenge in the form of multiple, fast-moving objects
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Figure 3.6: A non-sequential set of frames from an outdoor VV shoot us-
ing handheld cameras. (Top): The RGB input to the system. (Middle):
The result of applying poisson reconstruction to the unprocessed, tempo-
rally incoherent point clouds. (Bottom): The same Poisson reconstruction
method applied to the upsampled and filtered output of the propsed sys-
tem [12]
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Figure 3.7: A qualitative comparison of surface areas recovered from PSR
meshing of point clouds from comparable systems. All meshes were cre-
ated using the same octree depth for PSR and same distance thresh-
old for outlier removal. From left to right: SIFT+PMVS [122, 123], RPS [3],
RPS+PU-Net [106], RPS+EAR [104], Proposed systemapplied in two-frame,
forward direction only[12], the proposed systemwith windowed temporal
filter centered on a window of 5 frames.

while still using no more than 12 cameras for full, 360-degree coverage.
This introduces further difficulty due to occlusions caused when the ball
passes in front of performer as well as testing the limits of the flow-based
projection system. In spite of these challenges, the proposed system is
still able to filter a lot of the noise generated and can recover a modest
amount of missing geometry, Figure 3.5, (right model).

3.3.3 Synthetic Data Sequences

As a baseline for ground-truth quantitative benchmarking, we evaluate
our system using a synthetic virtual scenario. This synthetic data con-
sists of a short sequence featuring a human model performing a simple
animated dance within a realistic environment. 12 virtual cameras were
evenly spaced around a 180◦ arc centered about the animated character
model. The images rendered from these virtual cameras provided the in-
put to the VV systems for testing. Using this data we compare our results
with those of temporally incoherent VV systems by applying PSR to the
output point clouds and using the Hausdorff distance as an error metric.
This is shown in Figure 3.9.
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Figure 3.8: An animated charactermodel within a realistic virtual environ-
ment to generate synthetic test data [124, 12]

Wecompare our results against similar framewisepoint cloud reconstruc-
tion systems, SIFT+PMVS [123] and RPS [3] as well as some state of the art
upsampling algorithms for whichwe provide themethod of RPS as input;
PU-Net [106] and the Edge-Aware Resampling [104] method.

Benchmarking against RPS+EARalso provides a formof ablation study for
the effect of the proposedmethod as this is the approach used to initialize
the system.

The proposed system demonstrates an overall improvement in quality in
Table 3.2 yet the synthetic dataset lacks the noise which would be inher-
ent to data captured in a real-world scenario. Wewould expect further im-
provements in such a scenario where the input error for the framewise re-
construction systems would be higher. Figure 3.7 qualitatively shows the
effect of applying the proposed system to much noisier input data.

3.3.4 Flow Initialization

While practically any dense optical flow approach can be used to initialize
theSTEAfilter in section 3.2.1, improvements canbeachievedbyapplication-
appropriate initialization. We show the results of initializing the STEA fil-
ter with CPM against other dense-flow alternatives in table 3.1. The ad-
vanced edge-preservation of CPM results in it out-performing the alterna-
tives but comparable results can achieved using GPU-based alternatives
which may somewhat trade off accuracy for speed [115].
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Figure 3.9: Ground-truth evaluation of the proposed system against the
virtual reference model using Hausdorff distance as the error metric. The
left model shows a frame generated using framewise reconstruction [3],
themiddlemodel is the forward-projection, two frame filter [12], while the
right shows the proposed systems[12] for a filtering window of 5 frames.

Table 3.2: Synthetic baseline comparison between the proposed method
and similar state of the art approaches. Figures represent the Hausdorff
distancemetric with respect to the bounding box diagonal of the ground
truth (%) [12]

Method Mean Error(%) RMS Error(%)

SIFT+PMVS 6.18 8.09
RPS 2.17 3.27
RPS + PU-Net 2.44 3.50
RPS + EAR 2.40 3.64
Moynihan et al. 1.78 2.72
Proposed 1.56 2.30
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3.4 Conclusions

Throughout this chapter we have demonstrated that the application of ST
processes in the form of a self-regulating filter can have significant ben-
eficial effects on early-stage VV production processes. Improvements to
quality at this fundamental part of VV pipelines can propagate to subse-
quent stages yielding higher quality throughout. In particular we demon-
strated that this improves the quality ofmeshes frompoisson reconstruc-
tion of filtered point clouds .

Due to the temporal nature of the algorithm, it is not possible to directly
parallelize the proposed system as themost accurate scene flow is gener-
ated by providing the full length of the video sequence. Yet, if parallelism
is a necessity, a compromise can be achieved in the form of a keyframe-
based system whereby the input timeline is divided in reasonably-sized
portions. Future work may employ some automatic keyframe detection
which could maximise inter-keyframe similarity.

We demonstrate a qualitative baseline by means of a synthetic recon-
struction scenario, however it would be highly beneficial for future bench-
marks to establish a common ground truth dataset for evaluation which
are often sparse or non-existent within the VV community.

In the next chapter we will present a system which does exactly this for
surface mesh sequences in order to apply ST via surface mesh registra-
tion.
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Chapter 4

Spatio-Temporal Coherence
for Mesh Sequences

Figure 4.1: We present a robust, autonomous method for tracking vol-
umetric sequences which can detect missing geometry and propagate
user edits. Pictured left to right are step-by-step visualizations of the
process. The input to our system is a temporally incoherent and noisy
sequence of meshes. We perform pairwise registration using abstrac-
tion layers, volumetric segmentation and a keyframing system which al-
lows for user edits, e.g. the hand recovered in red. We establish corre-
spondences which maintain edits and propagate geometry throughout
a graph-based deformation process.

Previously we discussed how ST analysis could support early stages in VV
content creation pipelines for reducing this barrier to entry. In this chap-
ter we support this goal further by presenting a system for robustly and
autonomously performing temporally coherent tracking for volumetric
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sequences, specifically targeting those from sparse setups or with noisy
output. The proposed system can detect and recover missing pertinent
geometry across highly incoherent sequences aswell as provide users the
option of propagating drastic topology edits. In this way, affordablemulti-
view setups can leverage temporal consistency to reduce processing and
compressionoverheadswhile alsogeneratingmore aesthetically pleasing
volumetric sequences.
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4.1 Motivation

To capture these realistic human performances in VV, one typically needs
a multi-camera system that records the performer from different view-
points, such as the one proposed by Collet et al. [5] or Guo et al. [10], which
uses more than one hundred high-end cameras (including infra-red pro-
jectors and cameras) to achieve the best reconstruction possible in a very
controlled environment. In these systems, 3D reconstruction algorithms
are run on a per-frame basis and the output is a sequence of 3D models
(i.e., an independent mesh and texture image per frame).

Somemethods address this problemby enforcing temporal coherence in
the 3D reconstruction process [13, 12, 97], however, to avoid storing large
amounts of data per frame it becomesnecessary to apply amesh tracking
algorithm that introduces temporal consistency in the sequence and en-
ables the reuse of a significant amount of data. This compression can be
facilitated by keeping the same topology for as long as possible through-
out the sequence and updating only the mesh vertex positions. Further-
more, to enable heterogeneous sequences with variations in the mesh
geometry and topology, it is necessary to split the sequence into regions
controlledby keyframemeshes, similar tomethods employed in video en-
coding. The current state of the art formesh tracking in thismannerworks
well when consecutive meshes are very similar to each other which is the
case for high-end setups; however, they can fail when applied to capture
methods which use sparser camera setups [125, 3] or evenmonocular sys-
tems [6, 75] where there is a significant amount of noise, or if geometry
is lost (for example a hand or entire limb) due to the challenging capture
conditions.

Our proposed approach prioritises generality and scalability by applying
temporal coherence to an unstructured series of meshes in a completely
autonomous fashion, requiring no systempriors, and supporting the chal-
lenging conditions presented above. Lastly, our system allows for the re-
covery of missing geometry and enables the user to introduce geometry
edits that can be seamlessly propagated through the sequence. In partic-
ular, the proposed system presents the following contributions towards
tracking noisy volumetric data from sparse multi-view capture:
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• An automatic, similarity-driven keyframe selection process based on
spherical harmonics thatminimises keyframes and supports varying
geometry and topology.

• A volume-based segmentation and registration method for robust
tracking of volumetric sequences.

• A tracking system that enables missing geometry recovery and real-
istic propagation of user edits.

MeshTracking. Mesh trackingand registrationalgorithms, especiallywhen
representing the shape and appearance of humans, are an essential part
of VV processing pipelines. Such systems use variably dense arrays of RGB
and depth cameras to perform per-frame 3D reconstruction [5, 10], while
other methods use monocular RGBD sensors [126, 41, 127, 40] and online
character template generation [128, 129, 41, 130]. For each of these systems
mesh tracking and registration is a fundamental process, ensuring tem-
poral coherence for visual appeal and reduction of data overheads.

The use of a template-driven method helps constrain the problem focus
toward reliable pose estimation. With recent developments inmonocular
3D pose algorithms [131, 132], similarly, single-camera performance cap-
ture systems can produce reliable results [7, 69]. However, even if one was
to take pose estimation for granted, the template deformation can still
become a challenging task and quite often the approach will be some
amalgamation of a customised avatar fitted to a pre-defined parametric
model such as SMPL [70]. While the use of a template generally produces
robust results, these systems cannot capture dynamic changes in topol-
ogy without the use of some adaptive surface deformation. Habermann
et al. [7] present a hybrid of pose-driven template deformation as well as
graph-based surface alignment driven by 2D keypoints. While this sys-
tem is more capable of modelling the dynamic motion of clothing, it is
still unable to capture drastic changes in topologywhichwould stray from
the input template such as the introduction of new objects or changing
clothes.

Some approaches acknowledge this problem and instead opt for the use
of an evolving, canonical model which is constructed over the course of
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the capture [39, 38, 41]. Thesemethods arewell adapted tomodelling tem-
porally sensitive, high-frequency details and can faithfully produce tem-
porally coherent models from noisy RGBD data. However, these systems
are input-limited to the use of depth sensors which may not be as widely
available or scalable as commodity RGB cameras.

For the proposed work we seek to improve content created from scalable
studio setups, some of which employmultiple arrays of RGB and infra-red
structured light sensors [5, 10] while others present extremely flexible and
economical sparse arrays of commodity cameras only [125, 3]. Given a se-
quence of unstructuredmeshes generated from such setups, the general
approach towards adding temporal coherence is to perform keyframe-
based tracking of sequential mesh pairs.

Likemany of the previously addressed tracking algorithms, this work also
leverages thedeformationgraphof [46]. The correspondenceswhichguide
the deformation in suchgraph-based approaches are often based on con-
strained ICP variants [56] or supported by photometric data [133]. Few
systems address the scenario of missing geometry [93] and even so, they
require strong priors and robust skeleton estimation. In contrast the pro-
posed work requires no priors and doesn’t impose any constraints on the
mesh topology or number of independent components.

KeyframeDetection. Many sequential tracking systems for unstructured
mesh sequences rely on some form of keyframing system in order to se-
lect the ideal candidate frames to begin tracking. Collet et al. [5] pro-
pose a number of heuristics metrics for keyframe selection based on the
genus, surface area and number of connected components. These met-
rics are combined to formulate a feasibility score which is used to drive
the keyframe selection.This approach is reasonably suited to consistent,
high-quality input which would be expected from the system presented
in [5]. However, when applied to the highly inconsistent data typical of
sparse setups, any metric directly dependant on the input topology be-
comes uninformative (e.g. the mesh genus can be wrongly represented
if the mesh presents numerous small holes).

This same issue is present in the work by Guo et al. [10], which solves a dis-
creteMarkovRandomField inferenceproblem tominimise thenumber of
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keyframes and reduce artifacts, but relies on the error of amesh deforma-
tionmethod that takes very detailed and accuratemesh sequences.

Huang et al. [93] present a keyframe selection system based on pose vari-
ance, however their approach relies on accurate skeleton fitting along
with image and silhouette priors. While this approach works well for rela-
tively high-quality data, when applied to the noisy data expected from
sparse setups the skeleton-optimization approach becomes unreliable.
Furthermore the joint-vertex skinning can suffer where the body shape
is obscured by loose clothing.

Buddetal. [96] proposeaglobal, non-sequential registration strategywhich
minimizes the deformation discrepancy. While this approach implies the
use of a canonical template for deformation, the application of shape sim-
ilarity is still very useful for keyframe-based approaches.

Our work opts for an autonomous keyframe system based on shape sim-
ilarity via spherical harmonics descriptors. By using spherical harmonics
as an abstract shape descriptor, a shape similarity map can be built that
is robust to frequent and disruptive noise in the input sequence.

4.2 Geometry-Aware Tracking andEditing Framework

We propose a tracking system that applies ST coherence whilst also re-
maining faithful to the underlying motion and structure of the captured
volumetric sequence. This is a challenging task as the input to such a
system typically involves a lot of temporal noise, can present high-speed
motion and may require demanding shape deformation, especially if the
sequences are captured with sparse camera setups. We propose a sys-
tem which requires no priors other than the input mesh sequence and
can be equally evaluated on any VV platform which generates unstruc-
tured mesh sequences.

As abundantnoise and irregularity canbeexpected, theproposedmethod
seeks to generate simplistic representations of the input data for some
steps of the system via abstraction layers, without the use of model fit-
ting or templates in order to maintain generality. Abstraction layers are
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Figure 4.2: Shape similarity descriptors are used to generate a similarity
score for each mesh which is used to define tracking regions. Keyframe
meshes are selected by using a feasibility score within regions and track-
ing is then performed sequentially outwards from the keyframemesh to-
ward region boundaries.

generated by detaching the vertex data from the mesh, filtering outliers
and small unconnected components, and applying an adaptive isotropic
remeshing [134] which results in a quasi-uniformly distributed set of sam-
ple points with sufficient density. This creates an abstraction of the in-
put mesh which supports some key aspects of our system such as the
preliminary step of automatic keyframe mesh selection driven by shape-
similarity (Section 4.3). They are also used in the following step for estab-
lishing dense volumetric correspondences capable of detecting missing
geometry and propagating user edits (Section 4.3.1). These correspon-
dences drive a sequential registration by means of a deformation graph
(Section 4.3.2). Finally, we apply a post-processing step in the formof a dy-
namic 3D Kalman filter applied to mesh vertices tracked across a region
(Section 4.3.2).
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4.3 Similarity-Driven Automatic Keyframe Mesh Se-
lection

The goal of the keyframing system is to simultaneously minimize the cu-
mulative error from sequential tracking and select theminimumnumber
of meshes, N , which can encapsulate the shape and motion represented
by anunstructured sequenceofmeshes,M{1..T}. With this goal inmindwe
propose a systemwhich partitionsM{1..T} into sequential groups based on
shape similarity. Thus, given a shape-similarity score for all meshes in the
sequence which indicates a per-frame similarity to the other meshes, we
infer that highly dissimilar frames will introduce errors when attempting
to track back against other meshes in the sequence.

The centralmetric exercised in this process is the shape-similarity score. In
order to establish shape similarity in a computationally effective manner,
rotation-invariant descriptors, di, are generated for each mesh using the
spherical harmonic representation system by Kazhdan et al. [135]. With
thismetric, we compute a similaritymatrix amongallmeshes, [did⊤j ]1≤i,j≤T ,
where the value at [di, dj ] is the dot product of di and dj . Mesh similarity
score is then defined as the mean value of the matrix per row. To reduce
high frequency variance, this one dimensional signal can then be filtered
using a moving average filter.

Figure 4.2 illustrates the process further by plotting a typical similarity
score overlaid by the determined tracking regions and keyframemeshes
determined as above. From these keyframes the framewise registration
will be performed outwardly toward region boundaries. By defining re-
gion boundaries on frames with low similarity score we effectively iso-
late the error that would be introduced by attempting to force dissimilar
frames to register to adjacent frames. Despite filtering high-frequency
variance in the similarity score, we still employ a fixed minimum separa-
tion value λmin between selected minima i.e. region boundaries, which
maintains a minimum keyframe to frame ratio.

Within each region, a keyframe must be selected which produces the
smallest cumulative error when tracked sequentially towards the region
boundaries. Collet et al. [5] propose a feasibility score based on heuris-
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tically determined characteristics of the mesh topology, specifically the
surface area, genus and number of connected components. For noisy in-
put this score is unreliable and incoherent. Instead we apply the score
to abstracted representations of the input meshes which filters out high-
frequency topology noise and provides coherent input. We further mod-
ify the equation to accommodate the larger impact of genus over surface
area on keyframe selection and add a negative weight for region bound-
ary proximity to discourage keyframe selection adjacent to tracking re-
gion boundaries.

4.3.1 Dense Volumetric Correspondences

Given a selection of keyframes and defined regions, the tracking process
is performed outwardly from the keyframe up to the region boundaries
as shown in Figure 4.2. Each pair-wise mesh registration is driven by ro-
bust, volumetric correspondences and a topologically coherent deforma-
tion graph. We use the abstraction-layer meshes on both the source and
the target mesh, as a robust framework for matching reliably significant
details. The use of abstraction means that the correspondence accuracy
and cost is relatively constant regardless of the size of the input.

The abstraction layers are used as the basis to establish dense pairwise
correspondencespreserving robustness tomissinggeometry. This is done
by volumetrically segmenting them, andperforminga series of alignments
from the source layer to the target layer via matching segments. To en-
sure a reasonable alignment there must be consistent segmentation be-
tween the source and target abstraction layers, so we need to segment
the former and transfer that same segmentation to the latter.

Previous works have met success by using patch-based registration of
meshes [95, 93]. However, these patches are often uniformly distributed
or determined by surface geometry.

Our approach follows the idea of a pseudo-semantic segmentation, i.e.,
creating segments at sharp changes in volumewhich generally resemble
the boundaries of joints and limbs. In comparison with traditional anima-
tion rigs, this approach is motivated by the idea that articulated motion
tends to bemost non-rigid at joints and less so along bones. Thus, we pri-
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Figure 4.3: The abstraction and segmentation process as a precursor to
segment-based alignment. A typical 25K vertex mesh is reduced to 4.5K
and segmented.

oritise the semi-rigid parts of themesh to drive the correspondences. The
pseudo-semantic segmentationmap is createdusing the shapediameter
function as proposed by Shapira et al. [136] and it is organised in a hierar-
chy from least-connected to most-connected components as a guide for
resolving segmentation issues. For example, if the segmentation creates
many small components, they are fused to the least-connected neigh-
boring segment. Thus, fusion tends to occur from limb-ends towards the
central component. Figure 4.3 shows the abstraction layer creation for a
typical mesh and the segmentation result.

A global rigid ICP alignment is performed between the source and tar-
get abstraction layers prior to transferring the segmentation of the source
layer to the target abstraction layer. Semi-sparsematches between target
and segmented source are then calculated using ICP with strict normal
alignment tolerance. Typically, in the case of missing geometry (e.g., a
limb or other thin structure) there is a largemismatch in segment size. So
weperforma coherence check to compare the size of a segment between
the source and target abstraction layers and if amismatch is detected, the
segment is flagged to be fused with its nearest connected neighbor. The
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Figure 4.4: Segmentationmap is transferred from the source abstraction
layer to the target abstraction layer. Anymissing segments are fused and
flagged for rigid ICP.

flagged segments are recorded and will aligned differently so as to pre-
serve the structure. Figure 4.4 illustrates typical segmentation transfer
from source to target.

Once the segment map has been successfully transferred, a segment-
wise alignment is performedusinganaugmented versionof theCoherent
Point Drift (CPD) algorithm [55], applied to the point cloud represented
by the vertices of the meshes. In some cases large segments can be en-
countered, for example, the central chest region or instances of multiple
fused segments. Instead of applying the standard CPD algorithm and en-
countering performance bottlenecks due to size, we provide the following
adaptation to the CPD algorithm which allows for upscaling the align-
ment that would register two smaller point clouds. This effectively ap-
proximates the alignment of a large dataset for the computational cost of
a significantly smaller one. If the source and target segment are relatively
large clouds S and T respectively, then given some uniformly downsam-
pled clouds s and t, the alignment via standard CPD is given as:

s′ = s+GstW (4.1)

where the aligned cloud s′ is calculated as the input cloud plus the affin-
ity matrix Gst times a weighted transformation matrix W , which is solved
in the main part of the CPD algorithm. Following this calculation, if Gst
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is replaced by the affinity matrix between s and S i.e. GsS, the alignment
can be upscaled to the original size of S by a second application of Equa-
tion 4.1:

S′ = s′ +GsSW (4.2)

WhereW is the same transformationmatrix solved for in Equation4.1. This
upscaling naturally simplifies the alignment calculated forW but requires
much less computation time. Considering that at a segmentation level
the alignment is approximately rigid, so any loss of accuracy due to scaling
is negligible. This process is applied to all segments with the exception of
those flagged with missing geometry. These segments instead undergo
a purely rigid ICP alignment to prevent deforming a segment into a tar-
get which is significantly absent. This segment-based alignment of the
source abstraction layer to the target abstraction layer can now be used
to drive the deformation graph optimization.

4.3.2 Deformation Graph Construction and Application

After the first abstraction layer has been coarsely aligned with the target
mesh via segment-based registration, a second layer of abstraction is cre-
ated from the aligned first layer to assist in generating the structure for
the deformation graphwhichwill be used to smoothly reshape the source
mesh towards the target. In brief, the deformation graph framework con-
sists of a set of nodes evenly distributed about a mesh with edges con-
necting regions of influence. Each node n represents a rotation Rj and
translation tj for a set of nodes nj = n1..nJ . Thus, for any particular mesh
M of vertices vmϵM , the transformed vertex v′

m is given by:

v
′
m =

∑
njϵN(vm)

w(vj , nj) [Rj(vm − nj) + nj + tj ] (4.3)

WhereN(vm) is the set of nodeswhich influence vm andw(vj , nj) is the skin-
ning weight of a given node towards vm, following the work of Li et al.
[56]. The translations and rotations for each node are found by formulat-
ing them as a non-linear optimization problem. We model the optimiza-
tion problem in this work on the cost function of Guo et al. [44], driven by
the aforementioned correspondences.
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Detail Synthesis

Regardless of tracking accuracy, the nature of keyframing will introduce
popping artifacts as the topology changes across a region boundary. To
address this issue, one could attempt to directly re-align the output topol-
ogy to the temporally coherentfinedetails in the input sequenceas in [92].
This approach works best when the input noise is relatively small and fine
surface details deform slowly. Given that the input to our systemmay ex-
hibit extremely large perturbations due to noise, this approach will pro-
duce incoherent results. Instead we opt for a boundary-blending inter-
polation technique, analogous to deblocking filters used in decompres-
sion [137]. Given region sets of 0 < r ≤ R containing tracked frames rt,
for timesteps t ∈ [0..T ], we perform a boundary-crossing alignment of the
last frame in (r − 1)t=T to the first frame in rt=0 as if it were a normal pair-
wise alignment. We then perform a highly non-rigid surface alignment
by relaxing the rigidity parameters which creates a detail layer for synthe-
sising surface level details. For each step between the final frame and the
keyframe in (r − 1)we perform a LERP operation between the detail layer
and coarse alignment in order to create a gradient between the deforma-
tions. Using cached transformations from the tracking process we can
invert and accumulate them as needed to back-project the LERP states
to each time step between the last frame in the region and the keyframe.
This same process is repeated in the forward direction from (r − 1) to r. As
this approach is applied directly on top of the registered mesh sequence,
it can produce consistent results regardless of noisy surface perturbations
in the input raw data. Another advantage of caching the forward registra-
tions is the the reverse application is computationally ’free’.

Sequence Smoothing

Temporal noisemay still be observed in thefinal result despite the smooth
nature of the as-rigid-as-possible deformation framework. This noise usu-
ally takes the form of high frequency flickering of the vertex positions and
can be visually unappealing. However, given a sequence ofmesheswhich
now share the same topology it becomes possible to filter the vertex po-
sitions over time against high frequency noise. To achieve this we apply
a standard 3D Kalman filter [138] to the new vertex positions within the
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calculated regions treating the keyframe as the initial position and each
subsequent frame as a set of observations. The transition matrix used is
a simple linear motionmodel for points in 3D Cartesian coordinates in or-
der tomaintain complete generality and avoid introducing constraints via
any inherent assumptions of a more complex motion model. Regarding
the model parameters, a small process noise Q and larger measurement
noise R is used such that R/Q ≈ 1e2, thus prioritizing smoother motion
over observations.

In practice this Kalman filter can inhibit motion over time and lead to no-
ticeably larger popping effects between keyframes. To reduce this we
would like the Kalman filter to bemost effective when underlyingmotion
is small and to ignore vertices with large per-frame displacement vectors.
To address this we perform an offlinemotion dynamics analysis per vertex
and use the displacement deltas to negatively impact the model correc-
tion. To this effect we reduce the lag of “genuine motion” and apply the
filter in an adaptive manner.

4.4 Experiments

In the following section we validate the proposed method with quanti-
tative, qualitative and ablation studies. We evaluate the keyframe selec-
tion metric in comparison to the feasibility score heuristic presented by
Collet et al. [5]. We also assess the accuracy of the proposed correspon-
dence and deformation framework against the state of the art using nu-
merous challenging sequences, free from temporal noise as a baseline for
ground-truth evaluation. Furthermore, we perform qualitative evaluation
of several sequences with different levels of noise and artifacts, captured
with sparse multi-view setups. Finally, we demonstrate the application of
the geometry recovery, edit propagation and smoothing aspects through
realistic examples.

4.4.1 Keyframing

To evaluate our proposedmethod for keyframe selection we illustrate the
results of the similarity score compared to the feasibility metric proposed
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t t+1 t+2 t+3
Figure 4.5: Autonomous keyframe selection: (top) input from a sequence
featuring many similar topology changes. (mid) proposed algorithm
which identifies a keyframe at t>t+3 and tracks from t>3 toward t. (bot-
tom) the system of Collet et al. [5] which attempts to resolve the geome-
try change by stretching before eventually giving up and creating a new
keyframe at t=t+2.
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Ours Collet et al. [5]

Max Error 0.0651 0.0662

Median Error 0.0205 0.0208

# Keyframes 13 19

Table 4.1: Keyframe evaluation on twirl sequence containing 170 frames
with large topological changes and fast motion. Errors correspond to
Hausdorff distance in relative units.

(A) (B)
Figure 4.6: Detail Synthesis: (A) and (B) show a topology change where
tracking regions meet. (A) uses the temporal detail synthesis of Li et al.
[92] while (B) is the proposed method.

by [5]whenapplied to a challenging sequencewithdrastic topology changes,
Figure 4.5. Furthermore, this sequence was captured in a budget studio
using 12 RGB cameras and contains a lot of structured noise. We demon-
strate the tracking results for this sequence using the proposed keyframe
sequence against the greedy-selection algorithm proposed by Collet et
al. [5]. The proposed approach produces smaller error while significantly
reducing the number of keyframes needed, Table 4.1.

4.4.2 Tracking Evaluation

We evaluate the performance of our system against two state of the art
approaches which best represent common techniques in surface-based
non-rigid registration. Themost general of which beingAmberg et al. [54]
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Sequence
Max Error Median Error

Ours [44] [54] Ours [44] [54]

Crane 0.0424 0.3432 0.3753 0.0019 0.0338 0.0278

Jumping 0.2002 1.4723 0.3549 0.0019 0.0382 0.0145

Bouncing 0.0891 0.9982 0.4234 0.0027 0.0565 0.0151

Handstand 0.0054 0.6450 0.1706 0.0009 0.0023 0.0032

Swing 0.2386 0.4298 0.0813 0.0031 0.0185 0.0074

Table 4.2: Ground-truth evaluation of tracking. Figures are relative to the
scale of the input data. Results are given as Maximum Hausdorff Error
(max) and Median Hausdorff Error (med).

which is applicable to any type of surface ormotion and attempts to itera-
tively solve vertex positions globally with locally varying ”stiffness”. Lately,
however more systems closely resemble that of [44], iteratively solving
point-to-plane correspondence driven deformation graphs.

To objectively evaluate theperformanceof ourmethodweuse thedataset
from Vlasic et al. [139] which features mesh sequences generated by ani-
mating a pre-defined template. In this way the input can be considered
free from reconstruction artefacts which establishes a reliable reference
point for common error metrics like Hausdorff distance [140].

We also present qualitative results of each approach applied to a mix of
the above dataset as well as volumetric data captured from multi-view
capture setups. Furthermore, we demonstrate the ability of our system
to propagate user edits and recover lost geometry by conducting experi-
mentswhichwould replicate someexpecteduser edits or volumetric cap-
ture failure modes.

Ground Truth Evaluation

For a fair evaluation of the tracking error introduced by each system, each
dataset was given the same keyframes and tracking regions. In this way
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the error metric provides a direct indication of the correspondence ro-
bustness and deformation fidelity.

The results of Table 4.2 shows that our system introduces fewer errors in
multiple ground-truth sequenceswhich exhibit highly dynamic and vary-
ing motions.

Qualitative Evaluation

It can be seen from Figure 4.7 that where fast motion is concerned, the
proposed system shows robustness in both correspondence matching
and largedeformation. In contrast to [44] theuseof volumetric correspon-
dences over standard normal-constrained ICPmethods allows for reliable
matching along fast pose changes. The as-rigid-as-possible deformation
constraint prevents any large pose changes in [44] despite the likely er-
rors in correspondences resulting in either largely unchanged poses or
extreme deformations where the solver struggled to converge. This is evi-
dent in (b) for all cases of Figure 4.7. In contrast, the naive global deforma-
tion of [54] exhibits very little robustness to bad correspondences and can
compress thin structures due to fast motion. This is most clearly seen in
the hands and feet in (c) where we see a larger range of motion has led to
surface compression due to nearest-neighbour correspondences.

Persistent Geometry Evaluation

We demonstrate the ability of our system to recover and propagate perti-
nent features in some conventional and challenging sequences captured
from multi-view volumetric systems. In particular Figure 4.8 illustrates a
sequence which was highly occluded and contained a fast moving foot-
ball being volleyed. Large sections of the mesh exhibit intermittent miss-
ing portions aswell as difficulty reconstructing the ball, sometimes across
many sequential frames. Our geometry aware system was able to retain
important features including the ball, while still registering to the under-
lying motion. In comparison, template or skeleton-based approaches are
simply unable to track foreign objects withoutmanual intervention.

We further illustrate geometry propagation in Figure 4.9 as well as a sam-
ple case for user edits. In such a case the reconstruction failed to recover
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source target (a) (b) (c)

source target (a) (b) (c)

source target (a) (b) (c)

source target (a) (b) (c)

Figure 4.7: Qualitative results of some challenging sequences containing
fast motion. Presented for each sequence are: the source, final target,
(a): the proposed method, (b): Guo et al. [44], (c): Amberg et al. [54]. In
each case the results are the output of successively tracking the frames
between the source and target.
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Figure 4.8: Fast moving objects can be lost or cause occlusions (left, top
row). The proposed system can track multiple moving objects and pro-
vide geometry recovery (left, bottom row). Pictured right (light blue) are
3 successive frames tracked without motion smoothing. Pictured right
(dark blue), the same 3 frames where interpolation has occurred as a re-
sult of motion smoothing.

the finger detail in the hand of the actor (top right). The usermay edit the
nearest keyframe(s) and manually restore the data in any 3D modelling
software. Afterwards, the system inherently detects the absent geometry
through the tracking process and will propagate the edit throughout the
frames influenced by the given keyframe. The system is also capable of
much larger edits such as the addition of props. The added geometry be-
comes rigidly tracked along with the nearest connected component and
thus it realistically follows the underlyingmotionwhilemaintaining intact
structure.

4.4.3 Detail Synthesis

We compare our detail synthesis approach to that of Li et al. [92] which
was subsequently used by Guo et al. [44] and present the results in Fig-
ure 4.6 of a noisy sequence from a sparse camera studio setup. The ben-
efits of the proposed boundary-aware detail synthesis can be seen as a
smoother transition across frames while the approach of Li et al. [92] pro-
duces a sharp boundary transition with large topology changes, resulting
in noticeable popping effects. In addition, the proposed method is ro-
bust to input noise as it only seeks to smooth tracking region boundaries
while the synthesis of Li et al. [92] manifests input noise in the hands and
hair.
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Figure 4.9: Geometry recovery & propagation. Top left: A missing leg is
recovered from a walking sequence. Top right: A user manually restores
the hand to a keyframe which is then propagated. Bottom: Mesh data
fromCasas et al. [141](blue) and Volograms [8] (purple), user editsmay also
be extreme additions such as props.(a) source, (b) target, (c) edited source
(d) propagated to target over multiple frames
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4.4.4 Smoothing

Smoothing not only helps to reduce high-frequency, flickering motions,
it also improves the quality of propagated user edits and recovered ge-
ometry without the need for expensive 3D flow. Referring back to the re-
covered fast-moving football in Figure 4.8 (Right, light blue), the motion
of the ball becomes static in the recovered frames from having no con-
nected reference segment to propagate to. The smoothing filter helps to
interpolate the motion between the static frames and the next observa-
tion of the ball. Figure 4.8 (Right, dark blue) illustrates the ablation results
where the smoothing process can help interpolate the missing motion.
Thus, the smoothing and interpolatingmotion greatly improves the tem-
poral coherence of the end result.

It is important to note that missing geometry is not only flagged to be
excluded by pointwise correspondence matching, but also we ignore the
velocity-dependant smoothing for recovered geometry and instead opt
for a static covariance noise in the kalman filter in order to allow for mo-
tion interpolation of recovered data as is seen in Figure 4.8 of the main
paper.

4.5 Conclusions

In this chapter we presented a robust autonomous tracking algorithm
which can detect discrepancies in input data and can propagate perti-
nent geometry. The system outperforms the state of the art for available
datasets and requires no priors of the input sequence. Dense volumet-
ric correspondences through shape abstraction provide an indiscriminate
shape registration framework which is robust to large or fast motions.
Furthermore, our system allows for drastic alterations of the input mesh
which can be reliably integrated with the underlying motion, enabling a
new domain for creative freedom and post-production.

In conclusion we have demonstrated that the correct application of ST
analysis can be used to improve the quality of incoherent VV sequences,
provide a degree of post-production alteration and allow for better com-
pression potential.
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Chapter 5

A Deep Learning Framework
for Volumetric Sequence
Registration

Deep learning for shape estimation has seen significant developments
in recent years. Latest adaptations of implicit functions to deep learning
frameworks now enable efficient and high quality shape estimation even
from monocular RGB images. There has even been recent applications
of shape estimation towards VV content, that is to say, the estimation of
entire shape sequences.

As we have seen in previous chapters, in traditional VV applications it has
been commonplace to perform shape analysis and ST registration in or-
der to improve the visual quality as well as generate some temporal re-
dundancy for compression and streaming. The state of the art for learned
analysis on surfaces is either limited or constrained to consistent data for-
mats such as RGBD. In this section we present a study on existing archi-
tectures for learning on surfaces as well as a proposed pipeline for gen-
eralized volumetric sequence registration in a deep learning framework.
We will also provide extensive comparisons with the work presented in
the prior chapter henceforth referred to as ”AutoTracker”.
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Figure 5.1: An overview of the proposed system: Given as input as surface
mesh, we use the robust surface-agnostic feature descriptors of Diffusion-
Net as part of a labelling classifier to correctly identify correspondences
between the input and source template. A differentiable Gauss-Newton
solver for 3D deformation is then used to deform the target to the source
mesh. Our system is end-to-end optimized to enable training on mesh
sequence datasets.

5.1 Motivation

As mentioned in previous chapters, traditional VV content creation can
be prohibitively expensive and complicated, requiring large studio spaces
with dozens of sensors [5, 10]. Some works have addressed this problem
by allowingmore budget-friendly, sparse setups [3, 125]. However, the ulti-
mate convenience and ease of accesswould be exhibitedby aVVplatform
requiring only a single smart-device camera.

With recent advances in learned implicit functions [6, 75], deep-learning
for shape estimation hasmatured to a point that single-camera learning-
based frameworks can now be considered for consumer-grade VV con-
tent creation. Such single-frame shape estimation frameworks may be
applied to video sequences to enable sequential shape estimation but
they remain temporally noisy and incoherent. We require temporal co-
herence in order to provide improvements to visual quality as raw data
tends to exhibit temporally incoherent structured noise, largely varying
topology and other high frequency visual disturbances that greatly de-
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tract from the visual quality of the sequence. Further, as volumetric data
has a large footprint, it becomes desirable to try to exploit some tempo-
ral redundancies and apply compression or encoding. In particular, as we
expect the subject matter to exhibit geometric similarity on a frame by
frame basis, it would be ideal to retain a shared topology in so far as pos-
sible.

A naive solution could be to mimic some of the success seen in other
video-based learning frameworks whereby the architecture itself is tem-
porally receptive. Thismaybe a valid consideration, however thepractical-
ity is limited by the exponential increase in computational costs inferred
by extending existing architectures into the temporal dimension. In gen-
eral, it is significantly more practical to explore the domain of learning-
based shape analysis to infer properties such as scene-flow [142].

Traditional pipelines for volumetric sequence registration [44, 14] can ad-
dress this issue but they are often slow and prone to error in replicating
challenging scenarios such as evolving topologies and fast motion.

An appealing systemwould ideally leverage the efficiency and robustness
of deep learning frameworks to perform sequential surface registration
and minimize some of the failures seen in traditional approaches. In this
section we propose a system which consists of a generalizable learning-
based mesh tracking and registration framework which aims to improve
on the shortcomings of traditional approaches. In this regard we propose
ageneralized framework for trackingon surfaces under the followingnov-
elties:

• Combining the concept of surface agnostic learning with a differen-
tiable optimizer

• A new differentiable optimizer which removes prior constraints on
data formats towards more generalizable 3D data

Registration Frameworks

Traditionally, tracking and registration of incoherentmesh sequences had
been achieved using deformation-based frameworks largely inspired by
the Deformation Graph works of Sumner et al. [46] and the As-Rigid-As-
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Possible deformation policy of Li et al. [92]. These frameworks consist
of sequential, correspondence-driven deformations of keyframe meshes
within a temporal region [5, 44, 14]. The deformation graph provides a ve-
hicle for experimentation with various registration and deformation poli-
cies that have been explored by prior research. The L0-regularization of
Guo et al. [44] more accurately models the deformation of joints lead-
ing to less puckering when deforming clothes or elbows and knees in
human shapes. The segment-based correspondence matching of Auto-
Tracker is more robust to correspondence outliers and even provides a
degree of editing freedom if one wishes to track geometry edits across
keyframes.

Ingeneral,manyof theexpandingworks on thedeformationgraph frame-
work have offered improvements to correspondencematching, keyfram-
ing or deformation but as of yet not many works have proposed a learn-
able deformation framework. Existing works largely rely on some vari-
ants of traditional non-rigid ICP for correspondence estimation making
them susceptible to outliers and often costly to compute on higher den-
sity meshes.

The work of Li et al. [143] propose a differentiable Gauss-Newton solver to
enable a learning-based deformation framework on RGBD inputs. Bozic
et al. [144] extend thiswork to proposemore robust correspondenceswith
the addition of learnable correspondence weights and again by propos-
ing a learnable deformation graph for reconstruction [86]. These systems
produce compelling results on RGBDbenchmarks [145] however, they are
limited in application by being constrained to RGBD data. This constraint
eliminates the use cases of conventional surfacemeshes and does not ex-
ploit connectivity properties of topology representations.

We propose an extension to this learnable deformation framework which
releases the constraint on RGBD data input and explores the domain of
shapeanalysis using stateof theart networks for learningon surfaces.

Learning-based Surface Analysis

Akey component for theproposed system is anetwork architecturewhich
facilitates learning descriptive features on surfacemesh data. To this end,
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there have been recent attempts to provide learning frameworks on vari-
ous types of 3Ddata. For pointclouddata, there existsmany successful ap-
proaches stemming from the seminal PointNet [60] and PointNet++ [146],
namely PointCNN[147], DGCNN [148] and KPConv [64]. While point-based
methods have the advantages of simplicity, practicality and robustness,
they can lack the accuracy of approaches which utilize the connectivity of
surface meshes. Even more so, these approaches are not well-suited to
shape analysis on deformable data. As such, they make a poor choice of
feature descriptor for the shape analysis proposed in this work.

In contrast, there exists some works which attend to surface mesh data
andprovidemore suitable intuitionas a feature-descriptor candidate. Meth-
ods which learn directly on the surface via some local parameterization
such as that of Boscaini et al. [91] or Wiersma et al. [89] can be well suited
to modelling deformable data, however, they often come with the cost
of expensive geodesic methods such as parallel transport. Thus, such ap-
proaches arenot often scalable orpractical to implementon largerdatasets.
Furthermore, they tend to heavily rely on consistent mesh structure and
don’t generalize well to varying topologies.

An alternative to re-defining convolution operations directly on surface
components is to exploit the connection between convolution and mesh
operations in a computedbasis e.g. Laplace-Beltrami or Fourier. Theprob-
lem with this approach is that it is non-trivial to transfer features learned
fromone spectral basis to that of anothermesh. Thus, the architecturewe
have chosen as our feature detector, DiffusionNet, is not spectral in nature
but it does leverage the spectral acceleration to efficiently evaluate diffu-
sion along a mesh. The DiffusionNet of Sharp et al. [63] proposes a learn-
able diffusion method for propagating rotation-invariant spatial features
and has been shown to perform well on surface-agnostic tasks.
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Figure 5.2: An Overview of the system architecture showing the flow of
data. As input we take the target mesh and compute the DiffusionNet
features at a per-vertex level. Following a softmax activation function we
assign per-vertex labels to identify correspondences. These correspon-
dences drive the deformation solver which reduces the energy function
representing the disparity between the shapes. Negative Log Likelihood
(NLL) is used to evaluate the correspondence labels while the deform loss
evaluates the overall deformation quality.

5.2 AGeneralizableDeepLearningFramework forVol-
umetric Sequence Registration

Non-Rigid Deformation Notation

The non-rigid registration task can be viewed as the estimation of a warp
field F : R3 7→ R3 which minimizes the nearest point-to-point error be-
tween a source and target shape. For our task, we seek to estimate the de-
formation of a commondata format as opposed to device-limited formats
like RGBD. As such, we define the source and target shapes as meshes
consisting of vertices and faces given by S {Sv, Sf} and D {Dv, Df} respec-
tively. In order to perform a robust deformation of the source mesh S we
use an embedded deformation graph G = {V, E}where V is a set of nodes
with positions vi ∈ R3 and E is the set of edges which define the node-
graph connectivity as defined in the work of Sumner et al. [46].

Using this embedded framework, we must estimate for every node in V
a translation vector tvi

∈ R3 and rotation matrix Rvi
∈ R3×3. The graph

motion is then denoted as T = (tv1 ,Rv1 , . . . , tvi
,Rvi

) ∈ RN×9 for N number
of nodes. Thus, the deformation of a given point si in S is given by the
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following equation:

s
′
i =

∑
vi∈V

w (si, vi) [Rvi (si − vi) + vi + ti] (5.1)

where w (si, vi) is the influence or skinning weight of the node vi toward
s and are calculated as in [41]. The use of a skinning-weights approach
allows for the deformation of each point to be an weighted interpolation
of a given number of neighbouring graph nodes. The deformation graph
is driven by a correspondence map C as estimated by a neural network Φ

with parameters ϕ.

Deformation Estimation

To estimate tvi
and Rvi

for each node we seek to minimize the following
energy term:

Etotal = λrigidErigid + λsmoothEsmooth + λdataEdata (5.2)

The components Erigid and Esmooth seek to ensure that the deformation
is as-rigid-as-possible and that the variance between nodes is minimal
respectively. They are formulated as in AutoTracker and [44]. We expand
further on these in Appendix B.2.2 to avoid repetition. The Edata term is
themain component whichmotivates the deformation and derives from
the point-to-point distances of the correspondence estimates from our
neural network.

Minimising the total energy across each node for tvi
andRvi

forms a non-
linear systemwhich can be solved via Gauss-Newtonminimization. Thus,
our framework comprises of two main components:

• A surface-agnostic correspondenceestimator toproducea correspon-
dence map driving the deformation graph framework

• A differentiable Gauss Newton solver that allows the system to be
optimized, producing robust correspondence maps that minimize
deformation error.

We present an overview of this framework in figure 5.2.
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5.2.1 Surface Agnostic Feature Descriptors

In order for the proposed system to be generalizable i.e. independent of
input data structure, it must be able to learn robust, descriptive features
without restrictive, data-dependantmechanisms. TheDiffusionNet archi-
tecture of Sharp et al. [63] learns descriptive, rotation-invariant features
for any shape on which a spectral basis can be derived. The Laplacian
operator is most often used as it can be sufficiently descriptive with a rel-
atively low number of eigenvectors and can be generalized to common
3D formats such asmeshes and point clouds. For each point on the input
shape a pointwise perceptron is used to transform the input features into
a pointwise function f : RD 7→ RD for D input scalar features. While these
pointwisemulti-layer perceptronsmaydefinearbitrary functions at vertex
level, they cannot encapsulate spatial information. Another advantage of
this architecture is that it propagates learned features using a learnable
diffusion time-step parameter. This parameter is modelled from the clas-
sical heat equation,

d

dt
ut = ∆ut (5.3)

where ∆ is the Laplace-Beltrami operator. Initially, for when t = 0, the
Ht heat operator is the identity map, however as t → ∞ it tends towards
the domain average. By allowing t as a learnable parameter it enables the
network to learn spatial influence for a given learned feature. In this way
it can also generalize the concept of a receptive field to 3D data formats
without the need for restrictive message-passing operations as seen in
typical graph nets.

For our task we implement the DiffusionNet architecture as a classifier
network given the task of assigning vertex labels. This is done by scaling
the last linear layer up to the number of output vertex labels and applying
a softmax activation function. As it often occurs in template-based reg-
istration tasks, if Dv > Sv we filter out duplicate labels. We show in our
experiments that this approach is able to learn robust correspondences
across multiple datasets.
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Figure 5.3: A simplified illustration of the DiffusionNet Architecture [63]

A Differentiable Solver for 3D data

Given correspondences between the source and target mesh C, we re-
quire a deformation framework to warp the sourcemesh in such a way as
to minimize the aforementioned energy term in equation 5.2. In order to
do this within a learning context the deformation solvermust be differen-
tiable. We define the differentiable solver Ω as follows:

Ω : RN×3 → RN×9, (C,V) 7→ Ω(C,V) = T (5.4)

That is, we define the solver Ω to estimate the motion vector T of graph G
with N nodes and 3D node positions V . The motion vector T0 is initialized
such that the translation components are zero and the rotation compo-
nents are the identity matrix. For each iteration n of the solver, we com-
pute the respective Jacobianmatrix Jn and residual energy rn for the cur-
rent Tn and use them to solve a linear system of the form:

JT
nJn∆T = −JT

nrn (5.5)

Weuse the pytorch implementation of LUdecomposition in order to solve
this linear system. The system is solved to compute an increment ∆T
which updates the current motion vector as Tn+1 = Tn + ∆T . Most of
the computations in this process consist of eithermatrix-vector ormatrix-
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matrix multiplications which are easily differentiable. One major excep-
tion to traditional Gauss-Netwon solvers must be made in that the num-
ber of solver iterations must be fixed. That is, conventionally one would
set a convergence condition which is checked upon each iteration of the
solver and make an ”if/else” evaluation on whether the solver should pro-
ceed or return the current Tn. Naturally, this operation is not differentiable
so instead a fixed number of 3 solver iterations is allowed as heuristically
thiswas found to offer the best trade-off between computational cost and
error minimization. It should also be noted that while the optimizer is
fully differentiable, it contains no learnable parameters, thus the learning
capacity of the network resides fully within the correspondence estima-
tor.

The differentiable framework algorithm is described below:

Algorithm 1 Gauss-Newton Optimization
C ← Φ(Tv) ▷ Estimate Correspondence map
function SOLVER(C,V)
T ← 0
for n← 0 to max_iter do

J ,r← ComputeJacobianandResidual(C,V, T ,Sv,Dv)
∆T ← LUDecomposition(JTJ ∆T = −JT r) ▷ Solve linear system
T ← T +∆T ▷ Update motion vector

return your-text

5.2.2 Optimization

Given the parameters ϕ of the model Φ, we use three loss functions com-
bined to optimize ϕ as follows:

argmin
Φ

∑
Xs,d

λdataLdata + λwarpLwarp + λgraphLgraph (5.6)

Correspondence Loss

We train the system under a two-stage learning curriculum, beginning
by establishing good correspondences for only Ldata before opening the
network to the full deformation pipeline i.e. λwarp = λgraph = 0 and the
solver is skipped. That is, we begin by training the correspondences as a
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vertex-label classifier using negative log likelihood tomotivate the correct
label for each target vertex.

Warp Loss

Thewarp loss is used tominimize the error between the input S deformed
by the warp field T and the input S as transformed by the ground-truth
scene-flow S̃ :

Lwarp =
∥∥∥Q (S, T )− (S + S̃)

∥∥∥2
2

(5.7)

Graph Loss

The graph loss is given as the L2-loss of the graph node translations Tt and
the ground-truth node translations t̃.

Lgraph =
∥∥Tt − t̃

∥∥2
2

(5.8)

5.3 Experiments

In order to evaluate the proposedworkwe provide a series of experiments
which demonstrate the performance of the system against the state of
the art on common benchmarks.

Implementation

We implement the above framework in PyTorch [149] using the Adam op-
timizer [150] and a learning rate of 0.001 for all training schemes. Training
was performed on a single NVIDIA RTX 2070 GPU.

5.3.1 DFAUST Evaluations

We perform our baseline evaluations on the Dynamic FAUST or ”DFAUST”
dataset [151]. Thedataset consists of 10minimally-clothedhuman subjects
(5-masculine, 5-feminine) performing ∼10-14 action sequences with vary-
ing degrees of dynamic motion. Each subject also varies regarding body
mass and exhibits different motion physics. For our evaluations we leave
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Figure 5.4: Tracking failure during the DFAUST evaluations for subject
50027, sequence ”RunningOn Spot”. Above is the proposed systemwhich
shows some signs of stress when tracking the fingers, but still manages
to recover the motions of the arm. Below is the tracking failure of Auto-
Tracker where the correspondences have failed on some of the extremi-
ties causing the process to halt.

out one masculine and one feminine subject for testing, including all of
their respective activity sequences.

In table 5.1 we evaluate the accuracy of our approach on four sequences
from the DFAUST test set. ”Running On Spot” in particular demonstrates
fast-paceddynamicmotionwhich likely leads to the tracking failure of Au-
toTracker for one of the subjects. We show in figure 5.4 an example of this
failure illustrating that thehigh speedmotion likely led to correspondence
failure due to insufficient overlap between the source and targetmeshes.

Sequence
Max Error(mm) Median Error(mm)

Ours AutoTracker Ours AutoTracker

50025: Running On Spot 0.2563 5.0083 0.0800 0.1789

50025: Jiggle On Toes 0.1053 0.4083 0.0480 0.0315

50027: Running On Spot 0.3474 N/A 0.0738 N/A

50027: Jiggle On Toes 0.1492 0.2915 0.0405 0.0419

Table 5.1: State of the art evaluation onDFAUST dataset. Error is calculated
as theHausdorff distance inmm. N/A signifies that tracking failed and the
chosen method was unable to complete the sequence.
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Figure 5.5: This figure highlights the difference between the template and
remeshed registration tasks. In orange we see the mesh-graph structure
of the template, while blue is the isoptropic remeshing. The two poses are
used to show how the structure of the template remains constant in time
while the remeshed targets vary.

Task EPE (mm) Graph Error (mm)

Template Correspondence 2.2743 3.4976

Remeshed Correspondence 3.4413 5.5278

Table 5.2: Template registration task vs remeshed target registration. Er-
ror is given as the average End-Point-Error(EPE) that is, the average L2
distance measured between ground truth and output after deforma-
tion. Graph error is the average L2 distance between predicted graph
node translations and ground truth. Averages were calculated over all se-
quence from subjects 50025 and 50027 of the DFAUST dataset.

The results on DFAUST show that not only is the proposed method more
robust to high speed motion, it is also more accurate under most criteria.
We see little improvement on the ”JiggleOn Toes” sequences, likely as this
sequence doesn’t exhibit much dynamic motion.

In order to demonstrate the ability of the proposed system to generalise
beyond learning the mesh-graph structure we show in table 5.2 the re-
sults of alternating the learning task from estimating template to tem-
plate labels and template to remeshed target labels. In previous works,
the correspondence task is evaluated such that the input is simply a se-
quence of meshes derived from the same annotated template, differing
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only in vertexpositions [152, 65]. It hasbeen suggested that suchapproaches
are over-fitting to the graph structure of the input [63]. For this reason we
demonstrate that DiffusionNet’s ability to generalize beyondmesh struc-
ture ismaintained by our deformation framework by observing aminimal
increase in error when the targetmesh structure has been effectively ran-
domized. In order to randomize the target meshes, we take the template
sequences and process them through isotropic remeshing, effectively re-
moving any consistency inmesh structure andpresenting amore realistic
task.

5.3.2 Vlasic Evaluations

We provide further evaluation against the state of the art on the limited
dataset available from Vlasic et al. [139]. This dataset consists of 10 se-
quences in total performed by 3 subjects. In comparison to DFAUST with
∼50K mesh samples, the Vlasic dataset contains ∼3K. Nonetheless, the
Vlasic data varies greatly from theDFAUST subjects in that Vlasic subjects
are clothed and perform very dynamicmotions not necessarily contained
to one spot i.e. ”Crane” and ”March” sequences involve a subject moving
about in a circular path. For this test we compare our approach to the
state-of-the-art on limited data by training on 8 sequences from Vlasic
and presenting the results on the remaining test sequences. We com-
pare ourwork to that of the previous chapter aswell as the state-of-the-art
prior. We show in table 5.3 that while our approach does not outperform
all state-of-the-art , it produces competitive results given limited training
data.

In figure 5.6 we provide a visual example of the proposed method along-
side the state-of-the-art . As expected from this challenging dataset we
can see that the proposed method shows signs of difficulty in high fre-
quency areas such as the face and wrinkles of the clothes. In comparison
we see that Guo et al. deformsmore naturally but fails to register the arm
where motion was fastest. Amberg et al. shows severe surface deforma-
tion in the same arm as it sacrifices structural integrity in order to resolve
the correspondence energy. In this particular instance we see no erro-
neous deformations from AutoTracker.
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Figure 5.6: Qualitative comparison on Vlasic ”Jumping” sequence. Each
row depicts from top to bottom a selection of frames from: The input se-
quence [139], the proposed system, AutoTracker, Guo et al. [44] and Am-
berg et al. [54]. Highlighted in red circles are notable errors. The proposed
system shows somedifficulty tracking the facial structure. Guo et al. show
large tracking errors for the arm. Amberg et al. shows shrinking errors in
the tracked limb.
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Sequence
Max Error Median Error

Ours AutoTracker [44] [54] Ours AutoTracker [44] [54]

Crane 0.9914 0.0424 0.3432 0.3753 0.0192 0.0019 0.0338 0.0278

Jumping 1.2235 0.2002 1.4723 0.3549 0.0302 0.0019 0.0382 0.0145

Table 5.3: State of the art evaluation on Vlasic dataset [139]. The error is
calculated as the Hausdorff error in relative units.

We also note that inference time for correspondences for the proposed
system is <1ms as opposed to 20s for AutoTracker or 5s for [54] on 5k
meshes. This significant improvementoncorrespondenceestimation time
removes one of themore cumbersomebottlenecks of previousworks and
demonstrates the type of advantages suchdeep learning frameworks can
produce.

5.4 Conclusions

In this work we presented some of the current challenges in learning on
surfaces without data conformity. We show that our system is able to
provide amore generalized framework for learning sequential shape reg-
istration on meshes and can out-perform the state-of-the-art on large
benchmarks. We also demonstrate that it performs in sparse training sce-
narios, where training data is limited. While this work demonstrates the
ability of the proposed system to perform learnable mesh registration on
the given datasets, it would be highly beneficial to re-evaluate this work
on a dataset whichmimics more realistic VV capture data. In general, the
meshes from DFAUST and Vlasic, albeit remeshed, are still highly struc-
tured and devoid of the noise and artefacts one would expect from real-
world captured data. We present thework in this chapter as a step toward
a realistic systemwhich could be implemented at such a time when a re-
alistic VV dataset exists to provide a benchmark.
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Chapter 6

Conclusion

This brings us to the end of the dissertation. Throughout this dissertation
we studied and evaluated the use of ST analysis as applied to a selection of
VV content creation contexts. In this chapter we will conclude the disser-
tation with a summary of the contributions made and how they address
the research question. We will then finalize the chapter with a discussion
on where future investigations may expand on this work.
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6.1 Summary

InChapter 1, wediscussed themotivationbehind this dissertationwhereby
the medium of VV was introduced along with the complications it brings
as an emerging platform. With this we presented the motivation for this
dissertation, the research question and the structure bywhichwe address
it.

In Chapter 2, we reviewed the state of the art for the relevant topics, giving
preface to allow latter chapters be explored indepthwith sufficient knowl-
edge for insightful discussion. Specifically we looked at early VV content
creation, modern VV capture, research trends for affordable systems and
their limitations. We followed this with relevant exploration of important
works in computer graphics in relation toVVcontent, namelydeformation
frameworks shape analysis techniques. We concluded this chapter with
a review of 3D deep learning frameworks, their evolution from early chal-
lenges adapting 2D networks to 3D data and how recent breakthroughs
may enable deep learning for VV content creation.

In Chapter 3, we demonstrated how ST analysis can be applied to early
stage VV processes. Specifically we looked at how one could improve
point cloud sequences and presented a system for simultaneously filter-
ing and upsampling sparse point clouds. We showed how this could be
achieved by leveraging ST edge-aware scene flow along with projected
motion filtering to improve the quality of sparse point cloud sequences,
leading to improved foundations for typical VVcontent creationpipelines.

In Chapter 4, we studied ST shape analysis in the graphics domain and
how it could be applied to registration and tracking to allow geometry re-
covery and some post-production editing. We proposed a system which
uses ST analysis to provide automatic keyframe selection and temporal
detail synthesis. We also expand on existing deformation frameworks to
provide robust correspondencematchingandevaluateour systemagainst
the state-of-the-art .

In Chapter 5, we explored similar ST shape analysis under a deep learning
framework. We showed that using deep learning can lead to compelling
applications in VV shape analysis and presented a framework that can

87



be used to learn on generic mesh sequence data. Where previous works
have been restricted to RGBD data, we proposed a framework which can
learn robust, descriptive features on surface meshes. Furthermore we ex-
panded on a differentiable solver which was then adapted for our mesh
sequence data to produce an end-to-end learnable deformation frame-
work for registration of incoherent mesh sequences.

6.2 Outlook and Future Work

Research Question Revisited

Broadly, we sought to investigate — “How can spatio-temporal
processes improve Volumetric Video content creation?”.

In this context, we studied three different applications:
• Filtering and Upsampling Point Cloud Sequences.
• Tracking Mesh Sequences to allow Compression and Editing.
• Learnable Frameworks for Mesh Tracking and Registration.

How well overall, did spatio-temporal coherence work within the ap-
plications explored?

Throughout the dissertation we presented a number of applications of
ST techniques with the key intention of highlighting the benefits for VV
content creation. In chapter 3 we showed that the use of ST analysis in
the form of a filtering process greatly improves the quality of early-stage
VV creation leading to more coherent and visually pleasing meshes. In
particular we were able to demonstrate that more significant gains can
be achieved for sparse, noisy VV capture setups which in turns reduces
the barrier to entry for low-budget creators in this space. From a more
conceptual point of view, the relaxation on constraints for demanding re-
sources could potentially free up resources for later stages in VV content
pipelines such as additional mesh filtering or improved resolution from
using wider camera baselines.

Our findings from chapter 4 support the argument for applied ST tech-
niques by providing a fully autonomous tracking and registration pipeline
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for VV mesh sequences. In particular, the benefits of ST analysis were at
the fore of the keyframe selection process and the detail synthesis contri-
butions.

Within the context of deep learningwe found in chapter 5 that ST analysis
is challenging to apply to generalized surfaces meshes however, the pro-
posed system was competitive with the state of the art on small datasets
andoutperformson larger ones. Thiswork shows thatdeep learning frame-
works have the capacity for ST analysis on surface meshes and that novel
architectures may further exploit this in the future. Overall, in three sep-
arate scenarios we see very clear benefits for considering ST processes
within volumetric video content creation systems.

Future Work

Throughout this dissertation we have presented some applications of ST
to VV content creation. We showed how the mesh tracking and registra-
tion concepts of chapter 4 could be expanded with deep learning frame-
works in chapter 5. A similar exploration could be done in applying ST
upsampling and filtering of pointclouds for VV. While methods already
exist for upsampling pointclouds [153, 154] they do so in a single-instance
manner. While some methods suggest temporally-receptive learning on
dynamic point cloud sequences [155, 156, 157], it would be interesting to
see an extension to this which targets upsampling point cloud sequences
from image-based reconstruction.

In chapter 4wedemonstratedamesh sequence registration systemwhich
allowed the user some degree of editing capability regarding the topol-
ogy. In a practical VV content creation setting one would also require
somemethod of inferring new texture data on top of edited geometry. A
model which could infer extended texturemaps in a STmanner for edited
mesh sequences would be useful in this application.

The deep learning framework we propose in chapter 5 demonstrates the
capacity for surface-mesh learning architectures to model deformation
tasks. While this approach is spatio-temporally consistent by nature of
sequential processing, the correspondence inference is performed in a
frame-wise manner. The architecture of the descriptor network could
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potentially be extended to accommodate or predict more sequential in-
formation in a similar way to how this is done in sparse 3D pose estima-
tion methods [158, 159]. Furthermore, while the proposed system per-
forms well on large datasets, we see that it’s accuracy suffers with limited
data. In order to leverage learned features frommultiple datasets it could
be worth investigating the use of deep functional maps [88] in place of
classifier-style vertex labelling.

Perspectives

It is the hope that this dissertation inspires more long-term work to con-
sider the benefits of a ST approach. Though often limited by the scalability
of expanding to the temporal domain, it has beendemonstrated through-
out this work that the benefits are worth consideration. It would be inter-
esting to see how future algorithms and architectures adapt to further
consider sequential 3D as they have for images and video. In particular
we saw a natural extension of image-based architectures towards video
data during the early days of deep learning research. It would be greatly
beneficial to the research community if 3D deep learning architectures
continue to grow in a similar fashion and tackle the difficult task of learn-
ing on 3D sequences.

With new datasets emerging that specifically target temporal 3D recon-
struction and deformation [160, 161, 162], we predict that these areas of
research will continue to drive compelling new breakthroughs in years to
come. However, as evidenced by need for synthetic data in Chapter 3 and
the concluding statement of Chapter 5, it is clear that there is a lack of
VV datasets which can provide accurate benchmarks for data captured
in a realistic VV capture studio. Especially as research trends further to-
wards learnable solutions, the necessity for realistic ground truth base-
lines on actual captured data has become incredibly apparent. We have
demonstrated the performance of the proposedworks in this thesis when
applied, for the most part, to synthetic or ”clean” data with some quali-
tative evaluation on real VV data. It is hoped that if a more challenging
dataset consisting of realistic, noisy data were created that it could bring
such works closer to practical applications in real VV scenarios by means
of better testing.
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Appendix A

Abbreviations

Short Term Expanded Term
6DOF 6 Degrees of Freedom
AR Augmented Reality
DL Deep Learning
FVV Free-Viewpoint Video
IR Infra-red
ICP Iterative Closest Point
MVS Multi-view Stereo
NRR Non-Rigid Registration
RGB Red, Green, Blue
SfM Structure fromMotion
SfS Shape from Silhouette
ST Spatio-Temporal
VR Virtual Reality
VV Volumetric Video
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Appendix B

Chapter 4, Supplemental
Info

This appendix serves as additionalmaterial to support thework presented
inChapter 4 including somevisual aids andexplanation of themathemat-
ical foundations.

B.1 Overview

B.2 Implementation Details

The proposed system was implemented in C++ on Ubuntu 18.04.4 LTS on
a laptopwith an Intel i7-9750H CPU. On average, our system solves for 20k
vertices per mesh in 45s per sequential alignment in comparison to 60s
for [44] and 30s for [54]. While the proposed system does not outperform
regarding speed, it is still competitivewhile producing significantly better
results as demonstrated in our experiments and video.

B.2.1 Keyframing

Wemodify the feasibility score of Collet et al. [5] as the following:

Si =
∑

c∈C(i)

(
1 + 2 ∗ (gmax − gc) +

Ac

2 ∗ (Amax + 1)

)
∗ λi (B.1)
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FigureB.1: 1. The input is an incoherent sequenceofmesheswith indepen-
dent topology. 2. Using shape similarity and abstraction proxies, a com-
bination of similarity and feasibility scores are used to select keyframes
which approximate the optimum selection of frames that will lead to
successful pairwise registration across the sequence. 3. Between pair-
wise registrations, correspondences are found using volumetric segmen-
tation and geometry-aware correspondenceswhich support the recovery
of missing geometry and allows for user-defined editing. 4. Using the
correspondences, a deformation graph deforms the source mesh to the
target. Detail synthesis is then performed to recover high-frequency de-
tails and reduce keyframe ”popping” effects. 5. 3D motion smoothing is
applied to further improve the temporal coherence of the output tracked
mesh sequence.

Where Si is the feasibility score for frame i, C is the number of connected
components and λi is the boundary weight which discourages keyrames
at regionedges and is formulated similarly to anactivation functionwhere
x is the number of frames from the region boundary:

λi = 1− 1

1 + x2
(B.2)

Empirically we found that surface area has less impact on the effect of
tracking for noisy input data, especially considering that the proposed al-
gorithm is designed to accommodate missing geometry. Genus has a
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Figure B.2: Analysis of Shape similarty vs Feasibility score. From the Vlasic
dataset [139] the above image shows the plot of feasibility score alongside
shape similarity for each frame in the sequence (left). After selecting re-
gion boundaries via shape similarity, the feasibility score is used to elect
keyframe candidates (right).

significantly large impact on the appearance of ”chewing gum” stretch-
ing artifacts which are still amajor concern. We show in figure B.2 a visual
analysis of the shape similarity score vs feasibility score. It shows how fea-
sibility score alone is not particularly informative yet combined with simi-
larity regions it can be used to isolate candidates from a region.

Guo et al. [44] use an L0-regularization to determine anchor frames, how-
ever, attempts to replicate this on real studio data failed as their system
requires a template mesh to initialize as well as relatively noise-free tar-
get meshes for tracking. For these reasons we were unable to provide a
similar analysis against their approach.
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B.2.2 Correspondence Conditioning and Alignment

In this section we provide extra implementation details about the corre-
spondence estimation process. For segmentation transfer we initialize
the process with global rigid alignment followed by a two-way ICPmatch
with normal-constrained alignment. In the event that some vertices in
the targetmesh do not have a segmentmatchwith themovingmeshwe
use a k-connected (k=2) region with a majority voting system to assign
values to the highly sparse, unmatched vertices.

We also provide an extended description of the key data terms in the de-
formation graph equation. Equation B.3, describes the main minimiza-
tion equation as in Guo et al. [44]

Etotal = Edata + αrigidErigid + αsmoothEsmooth (B.3)

WhereEdata is the data termwhich expands to describe the point-to-point
andpoint-to-plane correspondenceerror for a vertex vjwhichhas amatch-
ing vertex in the set of correspondences C :

Edata =
∑
vjϵC

αpoint

∥∥∥v′
j − cj

∥∥∥2
2
+ αplane

∣∣∣nT
cj

(
v
′
j − cj

)∣∣∣2 (B.4)

The Erigid term encourages as-rigid-as-possible deformation and is con-
structed as:

Erigid =
∑
j

((aTj1aj2)
2 + (aTj2aj3)

2 + (aTj3aj1)
2+

(1− aTj1aj1)
2 + (1− aTj2aj2)

2 + (1− aTj3aj3)
2)

(B.5)

Where aj1, aj2, aj3 are the column vectors of Rj . The final term, Esmooth pe-
nalises abrupt variance between adjacent nodes and is given by:

Esmooth =
∑
nj

∑
niϵN(nj)

w(ni, nj) ‖Ri(ni − nj) + nj + tj − (ni + ti)‖22 (B.6)

This is formulated in our Gauss-Newton solver which is built using the
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Eigen1 libraries and CHOLMOD2 for Supernodal Sparse Cholesky Factor-
izationandconverges in less than5 iterationsunder the criteria that∆Etotal <

1e − 6 between successive iterations. We use ≈ 2.5K nodes and ≈ 3K con-
straints on each deformation. We use αrigid = 500, αsmooth = 500, αpoint = 0.1

and αplane = 1.0 similar to those values as recommended by Guo et al.
[44].

B.2.3 Detail Synthesis

We extended the description of detail synthesis in the text with figure B.3
which provides a more visual guide to the process.

1http://eigen.tuxfamily.org/
2https://developer.nvidia.com/cholmod
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Figure B.3: Detail synthesis. Given two regions pictured top where T is a
global frame index. We have keyframes at T = 2 and T = 10, from which
tracking is performed to 5 and 6 respectively. For resolving details from
2 −→ 5we track 5 towards 6 as a normal framewise alignment giving 6′. We
then track 6′ to 6which greatly relaxed rigidity parameters in order to syn-
thesis surface details. This detail layer is then linearly interpolated (LERP)
for n intervals between 0% and 100%where n is the number of frames be-
tween the keyframe and the boundary. We finally use the cached trans-
formations from the original tracking to propagate the LERP intervals to
their respective frames i.e. in the above example 5(100%), 4(60%) etc... We
apply the same process for detail synthesis from 6 −→ 10.
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