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Abstract

Channel pruning is an effective technique to reduce the size of Convolutional Neu-

ral Networks (CNNs). A decisive part of any pruning algorithm is its saliency met-

ric. We propose different techniques to improve saliency metrics for channel prun-

ing.

Saliency metrics are encompassed in a larger pruning algorithm and are ex-

pressed in various forms. Without a standard form, it can be difficult to identify

and compare these metrics. To facilitate the comparison of saliency metrics, we

propose a taxonomy based on four independent components: base input, pointwise

metric, reduction, and scaling. We classify existing saliency metrics according to our

proposed taxonomy. We find that new channel saliency metrics can be created using

the components of existing saliency metrics. We also propose a new scaling method.

We evaluate the newly created saliency metrics (using existing components as well

as our new scaling method) and find that some of the metrics outperform existing

ones. We also provide some guidance for the construction of new saliency metrics.

Specifically, we highlight the importance of the reduction and scaling methods.

Pruning algorithms generally rely on a single saliency metric for pruning. Even

if that chosen metric performs well on average, it can make poor decisions from time

to time. Through the use of multiple saliency metrics, we can compensate the poor

decisions of the single metric. We show that the combination of saliency metrics

is possible and combine the decisions of multiple saliency metrics using a myopic

oracle. We show that the decisions of the myopic oracle can lead to better pruning

rates than the constituent metrics.

When pruning one channel from CNNs with split and join connections, more

pruning opportunities become apparent. Multiple channels can be pruned by tran-

sitively removing channel weights from other layers of the network. However,

most saliency metrics do not factor in these extra structural constraints. We pro-

pose domino saliency metrics, built on top of existing channel saliency metrics, to

factor in these constraints. We show that the use of domino saliency metrics can

significantly improve pruning rates for networks with splits and joins.

5



6



Acknowledgements

This PhD would not have been possible without the support of those who directly

or indirectly contributed to it.

Firstly, I would like to thank Science Foundation Ireland and Arm Research for

financially supporting this PhD through the grant 13/RC/2094.

I also thank my family and friends (including the cats of Finglas) for supporting

me throughout my journey into research. I greatly appreciated your help in proof-

reading my thesis, Bhuvan.

I would like to thank Andrew, my colleague from Córais/Systems Tools Group

and co-author on my first-author papers, for helping with your knowledge on sys-

tems and machine learning. I have learned a lot from you, including computer

science, scientific writing, software tools, or even great food spots in Dublin.

I would like to thank all my other colleagues from the Córais/Systems Tools

Group: Asad, Basia, Cormac, James, and Yuan. Through our numerous discussions,

I have learned a lot about research and computer science.

Finally, I would like to thank my supervisor, David, without whom this PhD

would not have been possible. You have been a great supervisor, especially during

a pandemic that changed all of our lives. You always gave great advice whether

it was in regards to finding new research topics, going through the peer review

process, writing a thesis, my teaching endeavours, or just navigating life as a PhD

student. I would like to thank you again for your guidance and multiple corrections

for this thesis.

7



8



Contents

1 Motivation 21

1.1 Challenges in Improving Saliency Metrics for Channel Pruning . . . 21

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Background & Literature Review of Pruning Convolutional Neural Net-

works 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Convolution Layer . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Fully-connected layer . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Classification of Pruning Algorithms . . . . . . . . . . . . . . . . . . . 33

2.4.1 Granularity of Pruning . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Domain of Weights . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Distribution of Pruning Rates . . . . . . . . . . . . . . . . . . . 38

2.4.4 Repair Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.5 Pruning Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.6 Hard or Soft Pruning . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.7 Saliency Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Penalty Terms and Trainable Masks . . . . . . . . . . . . . . . . . . . . 45

2.5.1 Penalty Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.2 Trainable Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 AutoML for Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9



3 Taxonomy of Saliency Metrics for Channel Pruning 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 A Taxonomy of Saliency Metrics . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Domain (Choice of 𝑋) . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Pointwise Metric (Choice of 𝐹 ) . . . . . . . . . . . . . . . . . . 53

3.3.3 Dimensionality Reduction (Choice of 𝑅) . . . . . . . . . . . . . 54

3.3.4 Scaling (Choice of 𝐾) . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.5 Minibatches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Classification of Existing Saliency Metrics . . . . . . . . . . . . . . . . 56

3.5 Weight-based Saliency Metrics . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Recursive Weight-based Metrics . . . . . . . . . . . . . . . . . 61

3.6 Weight and Input Images-based Saliency Metrics . . . . . . . . . . . . 63

3.7 Weight, Input Images, and Labels-based Saliency Metrics . . . . . . . 64

3.7.1 Connection Sensitivity . . . . . . . . . . . . . . . . . . . . . . . 65

3.7.2 Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8.1 Saliency metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8.2 Pruning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8.4 CNN models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8.5 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.9.1 Weight-based or Feature Map-based Methods (Choice of 𝑋) . 77

3.9.2 Pointwise Metric (Choice of 𝐹 ) . . . . . . . . . . . . . . . . . . 78

3.9.3 Reduction (Choice of 𝑅) . . . . . . . . . . . . . . . . . . . . . . 81

3.9.4 Scaling (Choice of 𝐾) . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9.5 Saliency Metrics and Retraining Iterations . . . . . . . . . . . 85

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Composition of Saliency Metrics 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10



4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Composing Saliency Metrics . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Our Proposed Method: Myopic Oracle . . . . . . . . . . . . . 94

4.3.2 Constituent Saliency Metrics . . . . . . . . . . . . . . . . . . . 97

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Saliency Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.3 Datasets and CNN Models . . . . . . . . . . . . . . . . . . . . 99

4.4.4 Pruning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 Behaviour of Composite Metrics . . . . . . . . . . . . . . . . . 100

4.5.2 Impact of k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.3 Quality of Pruned Networks . . . . . . . . . . . . . . . . . . . 102

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6.1 Pruning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6.2 Other Granularities . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7 Concurrent Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Domino Saliency Metrics: Improving Existing Channel Saliency Metrics

with Structural Information 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Data Flow Graph for Pruning . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Channel Pruning Networks with Splits and Joins . . . . . . . 109

5.3.2 Data Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.3 Join and Split Nodes . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.4 Group Convolution . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.5 Channel Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.6 How to Prune Biases and Activation Layers . . . . . . . . . . 113

5.4 Domino Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11



5.5.1 Pruning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5.2 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.4 Saliency Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Future Work 125

6.1 Standard Benchmarking Setups for Pruning . . . . . . . . . . . . . . . 125

6.2 Relevance of Pruning Trained Networks . . . . . . . . . . . . . . . . . 125

6.3 Investigating Stability of a Saliency Metric . . . . . . . . . . . . . . . . 126

7 Conclusion 129

Appendices 133

A Backpropagation of Layer-wise Hessian 135

A.1 Reminder of Backpropagation of Gradients . . . . . . . . . . . . . . . 135

A.1.1 Obtaining Weight Gradients . . . . . . . . . . . . . . . . . . . . 135

A.1.2 Backpropagation of Feature Map Gradients . . . . . . . . . . . 136

A.2 Backpropagation of Diagonal Hessian Using Levenberg-Marquardt

Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2.1 Weight Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2.2 Feature Map Hessian . . . . . . . . . . . . . . . . . . . . . . . . 139

A.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

12



List of Figures

2-1 Evolution of classification accuracy of DNNs for the ILSVRC challenge. 26

2-2 Layer-wise structure of AlexNet. . . . . . . . . . . . . . . . . . . . . . 27

2-3 Weights and feature map structure in a convolutional neural network. 28

2-4 Feature and weights associated with a single convolution channel. . 29

2-5 Weights and feature maps used to compute a single output point of a

convolution layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2-6 Different aspects in which pruning algorithms can vary according to

Xu et al. (2020), Menghani (2021), Liu et al. (2020a), and Blalock et al.

(2020) and how they relate to our classification. . . . . . . . . . . . . . 33

2-7 Different granularities of pruning for a fully-connected layer. The

dark squares represent pruned parameters. . . . . . . . . . . . . . . . 35

2-8 Different granularities of pruning for a convolution layer. The dark

squares represent pruned parameters. . . . . . . . . . . . . . . . . . . 36

2-9 Two common pruning schedules using iterative pruning or single-

shot pruning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2-10 The pruning at initialisation algorithm proposed by (Frankle and

Carbin 2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2-11 Structures of masks for different granularities of pruning. . . . . . . . 46

13



3-1 Saliency metrics can be grouped into three categories (weight-based,

feature map-based, and gradient-based) depending on the informa-

tion that they use. Weight-based metrics use weights of the net-

work, feature map-based metrics use weights and input images, and

gradient-based metrics use weights, input images and input labels to

compute saliency. Examples of these different categories of metrics

for channel pruning are given in Tables 3.2, 3.3, and 3.4 respectively. 48

3-2 The complete description of our notation is described in Section 2.2.1 51

3-3 Parameter/Feature map structure in a convolutional neural network. 52

3-4 Computing channel saliency using Equation 3.1 using 𝑋 = 𝑊 , 𝑓(𝑥) =
𝑑ℒ
𝑑𝑥

, 𝑅(𝑋) =
∑︀

𝑥∈𝑙𝑋𝑖

|𝑥| and 𝐾 =

⃦⃦⃦⃦
𝑙∼
𝑆

⃦⃦⃦⃦
2

. . . . . . . . . . . . . . . . . . . . . 54

3-5 Different approximations can be applied to Equation 3.20 to easily

approximate the sensitivity of a set of weights. . . . . . . . . . . . . . 68

3-6 Comparison between different reduction methods and scaling fac-

tors. The percentage of convolution weights removed (sparsity) on

average for different scaling methods across different networks and

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3-6 Comparison between different reduction methods and scaling fac-

tors. The percentage of convolution weights removed (sparsity) on

average for different scaling methods across different networks and

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3-7 Cost to prune a network (lower is better) against quality of the

saliency metric (higher is better). . . . . . . . . . . . . . . . . . . . . . 87

3-8 Relative factor (× times) cost for pruning between the most expensive

and least expensive pruning experiment that meet the sparsity and

accuracy targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3-9 Proportion of computational cost for saliency computation and re-

training for the case with smallest total cost that meets the accuracy

and sparsity requirements. . . . . . . . . . . . . . . . . . . . . . . . . . 89

4-1 Estimating the effect of pruning the 𝑖𝑡ℎ output channel of the 𝑙𝑡ℎ layer

of a network with loss function ℒ using a 2nd order Taylor develop-

ment around 𝐴, the feature maps of the network. . . . . . . . . . . . . 93

14



4-2 Combining rankings of saliency metrics A, B, and C using a myopic

oracle with 𝑘 = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4-3 Reminder of Figure 3-3. The complete description of our notation is

described in Section 2.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4-4 Graphs show top-1 test accuracy versus number of convolution

weights (%) removed by pruning using the CIFAR-10 dataset. Indi-

vidual saliency metrics are indicated with dashed lines, and the my-

opic oracle (with 𝑘 = 8) is indicated with a solid line. Error bands for

the myopic oracle are shown based on a 95% confidence interval for

8 runs of the experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5-1 Structure of a block in ResNet-20. The arrows are in the direction of

data flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5-2 Data dependencies with join and split connections in CNNs. The ar-

rows are in the direction of data flow. . . . . . . . . . . . . . . . . . . 111

5-3 Data flow with group convolutions in CNNs. The arrows are in the

direction of data flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5-4 Pattern of weights removed when removing output (left) and input

(right) channels. The dark squares represent pruned parameters. . . 113

5-5 Channel pruning where the outputs of convolution 𝑙 are fed into an

activation layer (with bias), 𝑙𝑧 before being fed to the successor 𝑙 + 1. 114

5-6 Domino saliency metrics results for AlexNet. Sparsity levels (percent-

age of convolution weights) are given on the x-axis. The results are

grouped (by groups of three) according to the base metric given on

the y-axis. The results of the base metric, 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜, and 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜

are represented by the blue, orange and green bars respectively. . . . 120

5-7 Domino saliency results for ResNet-20. Sparsity levels (percentage of

convolution weights) are given on the x-axis. The results are grouped

(by groups of three) according to the base metric given on the y-axis.

The results of the base metric, 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜, and 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 are repre-

sented by the blue, orange and green bars respectively. . . . . . . . . 121

15



5-8 Domino saliency results for NFNET-F0 and ResNet-50. Sparsity lev-

els (percentage of convolution weights) are given on the x-axis. The

results are grouped (by groups of three) according to the base metric

given on the y-axis. The results of the base metric, 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜, and

𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 are represented by the blue, orange and green bars respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5-9 The improvement of domino saliency metrics over the base channel

metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

16



List of Tables

3.1 A taxonomy of published channel saliency metrics. One component

from each column is chosen to construct a channel saliency metric. . 50

3.2 Published approaches for channel pruning using weights only. . . . . 57

3.3 Published approaches for channel pruning using weights and input

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Published approaches for channel pruning using weights, input im-

ages and labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Published approaches for fine-grain pruning. . . . . . . . . . . . . . . 60

3.6 Approximations applied to the terms in Equation 3.20 to obtain a

saliency metric for pruning. . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Summary of trained network accuracy on CIFAR-10, CIFAR-100, and

ImageNet-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 The hyperparameters used for LeNet, CIFAR10, ResNet-20, NIN, and

AlexNet with the CIFAR-10, CIFAR-100, and ImageNet-32 datasets. . 74

3.9 Effectiveness of metrics which use different information. The max-

imum sparsity achieved (%) obtained for each information category

with Algorithm 1 is shown. The shaded cells correspond to the best

results for the given network and dataset. . . . . . . . . . . . . . . . . 75

3.10 The best performing saliency metric in each scenario of network

dataset combination. The sparsity values listed correspond the

shaded results in Table 3.9. The saliency metric listed correspond to

the saliency metric that achieved this sparsity level. . . . . . . . . . . 76

17



3.11 Comparison between different pointwise saliency metrics. The max-

imum proportion of weights removed (sparsity) by Algorithm 1 (%)

using different pointwise saliency metrics with weights as the input

(𝑥 = 𝑤) and Equation 3.25 as reduction method. The shaded results

correspond to the best pruning results obtained per scenario with

𝑥 = 𝑤 and Equation 3.25 as reduction method. . . . . . . . . . . . . . 79

3.12 Comparison between different pointwise saliency metrics. The max-

imum proportion of weights removed (sparsity) by Algorithm 1 (%)

using different pointwise saliency metrics with output points as the

input (𝑥 = 𝑎) and Equation 3.25 as reduction method. The shaded

results correspond to the best pruning results obtained per scenario

with 𝑥 = 𝑎 and Equation 3.25 as reduction method. . . . . . . . . . . 80

3.13 Cost of saliency metrics using ℐ𝑣𝑎𝑙 (𝑁𝑣𝑎𝑙 batches of images). . . . . . . 86

3.14 Spearman rank correlation (with p-value) between metric quality and

computational cost of pruning including retraining. . . . . . . . . . . 87

4.1 Notable saliency metrics used for channel pruning. . . . . . . . . . . 98

4.2 Convolution weights (%) removed for a 5% accuracy drop on CIFAR-

10 (grey) and CIFAR-100. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Summary of accuracy of pretrained networks on ImageNet. . . . . . 118

5.2 Hyperparameters used to measure the base channel saliency metrics. 119

18



19



20



Chapter 1

Motivation

Convolutional Neural Networks (CNNs) that achieve high accuracy values on im-

age classification tasks are often too large to be deployed on highly memory-

constrained devices such as mobile phones. Channel pruning is an effective tech-

nique to reduce the size of these large networks. Pruning aims to remove weights

whose removal are least likely to damage the network. The pruning algorithm uses

a saliency metric to identify the weights to be pruned. The saliency metric is, thus,

an essential component of pruning algorithms. Hence, improving saliency metrics

for channel pruning can help push the boundaries of pruning further.

1.1 Challenges in Improving Saliency Metrics for

Channel Pruning

We identified that though the literature on saliency metrics for channel pruning is

extensive, there are still many open questions. We aim to investigate a number of

these avenues in the hopes of improving saliency metrics for pruning.

• Can we express saliency metrics in a standard form?

A large number of saliency metrics have been proposed. These saliency metrics

often share commonalities with other existing saliency metrics but finding these

commonalities can be difficult. These difficulties arise due to the use of different

forms to express the metric and the metric, itself, being encompassed in a larger

pruning algorithm. One of the first questions that we want to tackle is whether
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we can find a standard form to express the existing saliency metrics for channel

pruning.

• Given a standard form for saliency metrics, how do we construct good met-

rics?

If we can identify a standard form to saliency metrics, we want to further inves-

tigate the different aspects of saliency metrics. Do certain aspects of saliency metrics

lead to finding smaller networks? If so, what are they and can these choices be used

to find better metrics than the existing ones?

• Can multiple saliency metrics be used to find better decisions than a single

metric?

Saliency metrics are commonly built on some assumption about the network.

These assumptions may not be valid throughout the pruning process. Hence, even

good saliency metrics may make poor decisions from time to time. However, most

pruning algorithms rely on a single saliency metric for the entire pruning process.

By relying on a single albeit good saliency metric, we risk occasionally missing bet-

ter pruning options. Hence, an obvious question is whether the use of multiple

saliency metrics can be used to compensate the poor pruning decisions of these oth-

erwise good metrics and improve pruning.

• How can channel saliency metrics incorporate information about other

channels that may be removed?

Many high accuracy networks for image classifications contain split and join con-

nections. The presence of these split and join connections create structural depen-

dencies that are often exploited during pruning. However, most saliency metrics do

not explicitly incorporate these structural information into them. For networks with

branches, the lack of structural information in the saliency metric used for pruning

can be detrimental. We, hence, investigate how to extend existing saliency metrics

to include information about these structural dependencies.
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1.2 Contributions

In Chapter 2, we give an overview of CNNs and explain the notation that we use

for CNN description and pruning. We break down pruning algorithms according to

seven different aspects: granularity of pruning, domain of weights, distribution of

pruning rates, repair strategy, pruning schedule, hard or soft pruning, and saliency

metric. We review state-of-the-art pruning algorithms according to these seven as-

pects. We also give a literature review on the use of penalty terms, masks, and

AutoML for pruning.

In Chapter 3, we tackle the challenge of comparing saliency metrics. We propose

a taxonomy for classifying saliency metrics using four independent components:

base input, pointwise metric, reduction, and scaling. We classify existing channel

saliency metrics using our taxonomy. We also propose a new scaling method. By

combining components of previously established saliency metrics and our new scal-

ing method, we find channel saliency metrics that outperform published metrics. A

modified version of Chapter 3 has been published in IEEE Access.

Kaveena Persand, Andrew Anderson 1 and David Gregg, "Taxonomy of Saliency

Metrics for Channel Pruning," in IEEE Access, vol. 9, pp. 120110-120126, 2021, doi:

10.1109/ACCESS.2021.3108545.

In Chapter 4, we aim to combine multiple saliency metrics. We propose a my-

opic oracle to combine the decisions of multiple saliency metrics. We find that the

combined decision of the myopic oracle can be used to improve channel pruning. A

modified version of Chapter 4 has been published in 2020 IEEE Symposium Series

on Computational Intelligence.

Kaveena Persand, Andrew Anderson 1 and David Gregg, "Composition

of Saliency Metrics for Pruning with a Myopic Oracle," 2020 IEEE Sympo-

sium Series on Computational Intelligence (SSCI), 2020, pp. 753-759, doi:

10.1109/SSCI47803.2020.9308157.

In Chapter 5, we investigate how to incorporate structural information into chan-

nel saliency metrics for pruning. We propose domino saliency metrics to include

1I, Kaveena Persand, am the main author of the software, scientific discussion and writing for
the work presented in this thesis. Dr Andrew Anderson contributed to the scientific discussion and
writing of these papers. He also helped configure the software tools used for our experimental eval-
uation.
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structural information into channel saliency metrics. Our domino saliency metrics

are built using existing channel saliency metrics. Using domino saliency metrics, we

combine the saliency of channels that are found to participate in split and join con-

nections. We show that our domino saliency metrics can be used to improve channel

pruning for networks with branches. A modified version of Chapter 5 has been ac-

cepted for publication at 20th International Conference of the Italian Association for

Artificial Intelligence (AIxIA 2021) in Springer LNAI.

Finally, we discuss future work in Chapter 6 and give our final thoughts in Chap-

ter 7.
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Chapter 2

Background & Literature Review of

Pruning Convolutional Neural

Networks

2.1 Introduction

State-of-the-art Deep Neural Networks (DNNs) can achieve high accuracy on com-

plex image classification tasks (Hestness et al. 2019; He et al. 2015). Figure 2-1a

shows the state-of-the-art DNNs for the recent ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) (Deng et al. 2009) challenges. As shown by the Pareto

optimal points in Figure 2-1b, recent architectures with over 90% classification ac-

curacy on the ILSVRC classification task contain over a billion parameters (Zhai

et al. 2021; Pham et al. 2021; Riquelme et al. 2021). Figure 2-1b shows the accu-

racy for DNNs with different numbers of parameters with the most accurate model

using almost 2.5 billion parameters. While deploying a large model is not neces-

sarily a concern on data centres, embedded devices have significant memory con-

straints. According to GSMArena, the average amount of RAM for mobile phones

was slightly over 4 gigabytes in 2018 (Counterclockwise: RAM capacity through the

years n.d.). Hence, deploying models with over 2.5 billion parameters of 4 bytes

each would be impossible on the average mobile phone.

State-of-the-art models need to be adapted for deployment on embedded de-

vices. The two most common techniques for DNN model compression are pruning
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Figure 2-1: Evolution of classification accuracy of DNNs for the ILSVRC challenge.

and quantisation (Liang et al. 2021a; Menghani 2021). Pruning is the removal of

parameters (also called weights) of the network from the DNN. Pruning weights

reduces the number of parameters to be stored for the network. Pruning is a very
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Figure 2-2: Layer-wise structure of AlexNet.

versatile technique and can be used along with other network compression tech-

niques to obtain smaller networks (Han et al. 2016; Chen et al. 2018; Noy et al. 2020).

2.2 Convolutional Neural Networks

The most common type of DNN for image classification are CNNs (Convolu-

tional Neural Networks). AlexNet (Krizhevsky et al. 2017), LeNet (Lecun et al.

1998), GoogleNet (Szegedy et al. 2015), VGG (Simonyan and Zisserman 2014), and

ResNets (He et al. 2016) are examples of popular convolutional neural networks.

Convolutional neural networks are neural networks with convolution layers.

To explain what a convolution layer is, we first need to introduce the layer-wise

structure of neural networks.

Neural networks are represented by composing together many different func-

tions (Goodfellow et al. 2016). If 𝒴(𝑥) is the classification function of a simple for-

wardfeed neural network, 𝑥 its input, and 𝒴(𝑥) = 𝑦3(𝑦2(𝑦1(𝑥))), then 𝑦1, 𝑦2, and 𝑦3

are called layers of the network with 𝑦1, the input layer and 𝑦3 the final layer. Deeper

layers are further away from the input of the network.

The layer-wise structure of a CNN, AlexNet (Krizhevsky et al. 2017), is shown

in Figure 2-2. The input of the CNN is “Input Image” and its output is “Proba-

bilities”. The layers coloured in green (convolution and fully-connected layers) are

layers containing permanent parameters called weights. The layers coloured in blue

are activation layers. Activation layers are typically non-linear functions that are ap-

plied between convolution or fully-connected layers.
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2.2.1 Notation

We introduce some notation to facilitate the description of a CNN.

Weights

Let 𝑊 represent the vector of all trained parameters of a given CNN. ̃︁𝑊 represents

the pruned parameters vector. Let 𝑛(·) represent the cardinality of a tensor or vector,

then 𝑛(𝑊 ) > 𝑛(̃︁𝑊 ).

Layer-wise notation

Convolution LayerConvolution Layer 

Figure 2-3: Weights and feature map structure in a convolutional neural network.

The output of a layer, 𝑙, is denoted 𝑙𝐴. The weights of a layer are denoted 𝑙𝑊 .

Throughout this thesis we use a superscript on the left to indicate the layer targeted.

The parameters and feature maps of CNNs are represented using multi-

dimensional tensors. Feature maps are 3-dimensional tensors comprised of multiple

2-dimensional feature maps. Each 2-dimensional output feature map of the 𝑙𝑡ℎ layer,

has 𝑙ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑙𝑤𝑖𝑑𝑡ℎ individual points called pixels. The number of 2-dimensional

feature maps produced by the layer is 𝑙𝑚 and the number of 2-dimensional input

feature maps used by the layer is 𝑙𝑐. Since convolution layers are often chained, 𝑙𝑐 is

often equal to the number of output feature maps of the previous layer 𝑙−1𝑚.
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Each 2-dimensional input feature map is convolved with its corresponding 2-

dimensional kernel of shape 𝑙𝑘 × 𝑙𝑘 and summed together to create a single 2-

dimensional output feature map. Convolution weight tensors are 4-dimensional

tensors comprised of (𝑙𝑚× 𝑙𝑐) 2-dimensional kernels.

The structures of the input feature maps, output feature maps, and weight tensor

are illustrated in Figure 2-3.

Channel-wise notation

The 𝑐𝑡ℎ feature map of 𝑙𝐴 is denoted 𝑙𝐴𝑐. The weights of the 𝑐𝑡ℎ output channel are

denoted 𝑙𝑊 𝑐. In Figure 2-4, a feature map 𝑙𝐴𝑐 is highlighted in blue and the weights

of the same channel are highlighted in red.

Convolution Layer 

Figure 2-4: Feature and weights associated with a single convolution channel.

Slices of Tensors

Feature maps and weights of convolution layers are both presented as multidimen-

sional tensors. The layer-wise and channel-wise notations allow us to easily repre-

sent slices of these tensors.

To represent an individual element of the weight tensor, we use 4 independent

indices. 𝑙𝑊 [𝑚, 𝑐, 𝑢, 𝑣] is a single weight from the 4-dimensional weight tensor with

0 ≤ 𝑚 < 𝑙𝑚−1, 0 ≤ 𝑐 < 𝑙𝑐−1, 0 ≤ 𝑢 < 𝑙𝑘−1, and 0 ≤ 𝑣 < 𝑙𝑘−1. Similarly, 𝑙𝐴[𝑚,ℎ,𝑤]

represents a single pixel from a 3-dimensional feature map with 0 ≤ 𝑚 < 𝑙𝑚 − 1,

0 ≤ ℎ < 𝑙ℎ𝑒𝑖𝑔ℎ𝑡− 1, and 0 ≤ 𝑤 < 𝑙𝑤𝑖𝑑𝑡ℎ− 1.
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We also use a concise notation to describe slices of a tensor using the “:” notation.

The “:” notation is used to indicate that all the valid indices are being considered.

For example, 𝑊 [𝑚, 𝑐, 𝑘, :] ≡ 𝑊 [𝑚, 𝑐, 𝑘, 0.. 𝑙𝑘 − 1]. Hence, with our channel notation,
𝑙𝑊 𝑐 ≡ 𝑙𝑊 [:, 𝑐, :, :] and 𝑙𝐴𝑐 ≡ 𝑙𝐴𝑐[𝑐, :, :].

𝑙𝑊 𝑐 is a slice of shape 𝑙𝑚×𝑙𝑘×𝑘 from 𝑙𝑊 and 𝑙𝐴𝑐 is a slice of shape 𝑙ℎ𝑒𝑖𝑔ℎ𝑡×𝑙𝑤𝑖𝑑𝑡ℎ

from 𝑙𝐴.

Loss

CNNs are trained by optimising the weights of the network according to a loss func-

tion. The most common loss function for modern CNNs is the cross-entropy loss.

The equation of the cross-entropy loss, ℒ, is given by Equation 2.1 for a network

with weights 𝑊 and input dataset ℐ𝑠𝑒𝑡. The dataset ℐ𝑠𝑒𝑡 contains 𝑁 pairs of input

images, 𝑛𝐼 , and labels (or true vector of probabilities classifying 𝑛𝐼), 𝑛𝐿. 𝑃 gives the

output of the network, i.e., the vector of probabilities classifying the input image.

𝑃 (𝑊, 𝑛𝐼) is a vector containing one probability for each possible class.

ℒ(𝑊, ℐ𝑠𝑒𝑡) =
𝑁−1∑︁
𝑛=0

𝑛ℒ(𝑊 ) =
𝑁−1∑︁
𝑛=0

−(𝑛𝐿⊙ 𝑙𝑜𝑔(𝑃 (𝑊, 𝑛𝐼))) (2.1)

2.2.2 Convolution Layer

A simple multi-channel multi-kernel 2-dimensional (Vasudevan et al. 2017) convo-

lution layer, 𝑙, is given in Equation 2.2 where 𝑙−1𝐴 is the output of the previous layer.

In image classification, convolution layers canonically have multiple 2-dimensional

input images and multiple 2-dimensional output images. In practice, the only layer

with a single input image is the input layer in the case of monochrome image clas-

sification. If a 2-dimensional image is an intermediate result in the network, it is

referred to as a feature map instead of an image. A convolution layer can be bro-

ken down into multiple 2-dimensional convolutions. Each output feature map is

the addition of the result of the convolution of each input feature map with its cor-

responding 2-dimensional filter. These 2-dimensional filters are more commonly

referred to as kernels in the context of CNNs. If a layer has 𝑙𝑐 input feature maps

and 𝑙𝑚 output feature maps then (𝑙𝑚×𝑙𝑐) 2-dimensional convolutions are conducted

for that convolution layer. In Equation 2.2, 𝑙𝐴[𝑚, :, :] represents one 2-dimensional
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output feature map and 𝑙−1𝐴[𝑐, :, :] one 2-dimensional input feature map. 𝑙𝑊 are the

parameters, i.e. weights, of the layer.

𝑙𝐴[𝑚,ℎ,𝑤] =

𝑙𝑐−1∑︁
𝑐=0

𝑙𝑘−1∑︁
𝑢=0

𝑙𝑘−1∑︁
𝑣=0

𝑙−1𝐴[𝑐, ℎ+ 𝑢,𝑤 + 𝑣] 𝑙𝑊 [𝑚, 𝑐, 𝑢, 𝑣] (2.2)

Figure 2-5 illustrates the multiplications and additions performed to compute

a single output pixel of a single output feature using Equation 2.2. To compute

one output pixel, the 2-dimensional kernels are multiplied with their corresponding

slices of the input feature maps and added together to create intermediate output

points. These intermediate output points are then added across the different chan-

nels to obtain the final output point.

x =

x =

x =

x =

+

Figure 2-5: Weights and feature maps used to compute a single output point of a convolution
layer.

2.2.3 Fully-connected layer

A simple fully-connected layer is given in Equation 2.3 where 𝑙−1𝐴 is the output of

the previous layer. Fully-connected layers have 1-dimensional vectors as input and

1-dimensional vectors as output.
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𝑙𝐴[𝑚] =

𝑙𝑐−1∑︁
𝑐=0

𝑙−1𝐴[𝑐]𝑊 𝑙[𝑚, 𝑐] (2.3)

2.3 Pruning

Pruning is the removal of weights from the network. Since its use by LeCun et al.

(1989), Mozer and Smolensky (1988), Hassibi and Stork (1992), and Karnin (1990)

for ANNs, pruning has been adapted for use in modern CNNs (Han et al. 2015).

The degree of pruning of a network is measured by its pruning rate. The prun-

ing rate is also called sparsity level. The pruning rate is the percentage of weights

removed compared to the unpruned network. The definition of pruning rate, 𝒫 ,

using ̃︁𝑊 and 𝑊 is given in Equation 2.4.

𝒫 = 1− 𝑛(̃︁𝑊 )

𝑛(𝑊 )
(2.4)

The removal of weights from the network often results in lower memory require-

ments (Han et al. 2015; Mao et al. 2017; Anwar et al. 2017; Molchanov et al. 2017).

Han et al. (2016) show that pruning can significantly reduce the memory require-

ment of a network while maintaining its classification accuracy.

Pruning can also be used to reduce the number of operations to be performed

when running the network. He et al. (2018a) and Luo et al. (2017) show that pruning

results in fewer Floating Point Operations per Second (FLOPS).

Lin et al. (2018), Turner et al. (2018), and Yao et al. (2018) show that pruning can

also be used to accelerate the network.

Pruning can also improve generalisation of networks (Mozer and Smolensky

1988; LeCun et al. 1989; Hassibi and Stork 1992; Han et al. 2015; Wen et al. 2016;

You et al. 2019; Frankle and Carbin 2019; Liu et al. 2017b).
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2.4 Classification of Pruning Algorithms

Numerous pruning algorithms have been proposed, with similarities and differ-

ences from existing pruning algorithms (Blalock et al. 2020). In this section, we

explore different ways of classifying these algorithms.

Reed (1993) categorised early pruning algorithms into two categories depend-

ing on how they identify unimportant weights: using sensitivity and using penalty

terms. Sensitivity is the change in the loss function caused by pruning (Mozer and

Smolensky 1988). We discuss sensitivity and its approximations in more details in

Section 3.7.2. Penalty terms are terms introduced in the loss function to drive unim-

portant weights to zero. We further discuss pruning algorithms using penalty terms

in Section 2.5.1. This early classification fails to encompass new pruning algorithms

which may vary in more aspects than how to identify unimportant weights. A sum-

mary of these newer classifications and how they relate to each other is given in

Figure 2-6.

Liu et al. 2020

Pruning Criteria 

Pruning Procedure

Menghani 2021

Saliency

Structured v/s Unstructured

Distribution

Scheduling

Regrowth

Blalock et al. 2020 

Structure

Scoring

Scheduling

Fine-tuning

Xu et al. 2020Ours

Pruning Method

Estimation Criterion

Training Strategy

Granularity of Pruning

Domain of Pruning 

Distribution of Pruning Rate

Pruning Schedule

Repair Strategy

Hard or Soft Pruning

Saliency Metric

Figure 2-6: Different aspects in which pruning algorithms can vary according to Xu et al.
(2020), Menghani (2021), Liu et al. (2020a), and Blalock et al. (2020) and how they relate to
our classification.

Pruning algorithms can be broken down into several components. Liu et al.

(2020a), Xu et al. (2020), Blalock et al. (2020), and Menghani (2021) identify that

pruning algorithms use an estimation criteria, scoring or saliency metric to identify

unimportant parameters.

Along with the estimation criterion Xu et al. (2020) identify a pruning method

and training strategy. Xu et al. (2020) classify pruning methods as being either non-

structured or structured. The training strategy defines how training and retraining

is used with pruning. Xu et al. (2020) classify the training strategy in three cate-

gories: hard pruning, soft pruning, and redundant learning strategy.
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Menghani (2021) identifies five aspects to the pruning algorithm: saliency metric,

structured or unstructured, distribution, scheduling, and regrowth. The saliency

metric identified by Menghani (2021) is similar to the estimation criterion identified

by Liu et al. (2020a) and Xu et al. (2020). The distribution describes how pruning

rates should be distributed in the network. Scheduling describes how pruning is

mixed with the training strategy. Regrowth defines whether pruned weights are

permanently removed or not.

Blalock et al. (2020) identify four aspects in which pruning algorithms differ:

structure, scoring, scheduling, and fine-tuning.

Following the different aspects of the pruning algorithm explored by Reed

(1993), Xu et al. (2020), Liu et al. (2020a), and Menghani (2021), we group pruning

algorithms for convolutional neural networks according to the following aspects:

• Granularity of pruning

• Domain of pruning

• Distribution of pruning rates

• Pruning schedule

• Repair Strategy

• Hard or soft pruning

• Saliency metric

In Figure 2-6, we summarise how the different aspects of the pruning algorithms

identified by Xu et al. (2020), Menghani (2021), Liu et al. (2020a), and Blalock et al.

(2020) relate to each other and to our own classification.

2.4.1 Granularity of Pruning

Pruning was a technique initially described for fully-connected layers (LeCun et al.

1989; Mozer and Smolensky 1988; Hassibi and Stork 1992) and has been extended

to convolution layers (Han et al. 2015).

Convolution layers and fully-connected layers are highly structured layers with

each input pixel contributing to more than one output pixel and each output pixel
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using the contribution of more than one input pixel. Weights of these layers are

structured to reflect this relationship. For a convolution layer with 𝑙𝑚 output feature

maps and 𝑙𝑐 input feature maps using 2-dimensional kernels of shape 𝑙𝑘 × 𝑙𝑘, the

weight tensor is of the shape 𝑙𝑚× 𝑙𝑐× 𝑙𝑘 × 𝑙𝑘.

The removal of weights from the network can be done in a structured or un-

structured way. The pruning algorithm removes multiple pruning elements from

the network. A pruning element is a pattern of weights defined by the granular-

ity of pruning. The patterns of weights removed can be categorised into different

granularities of pruning (Mao et al. 2017).

For fully-connected layers, the common granularities of pruning are either fine-

grain (LeCun et al. 1989) or neuron-wise (Mozer and Smolensky 1988). Figure 2-7

shows the 𝑙𝑚 × 𝑙𝑐 structure of a fully-connected layer’s weight tensor and pruning

granularities.

Individual weights Neuron

Figure 2-7: Different granularities of pruning for a fully-connected layer. The dark squares
represent pruned parameters.

According to Wen et al. (2016), Mao et al. (2017), and Anwar et al. (2017), the dif-

ferent granularities of pruning for convolution layers can be categorised into: fine-

grain, intra-kernel, kernel-wise, and channel-wise. Figure 2-8 shows the structure

of these four granularities of pruning. Weights of convolution layers are structured

in a tensor with shape 𝑙𝑚× 𝑙𝑐× 𝑙𝑘 × 𝑙𝑘. The weight tensor can be pruned according

to different granularities: fine-grain (also called individual weights), intra-kernel,

kernel, and coarse-grain (also called channel). These four structures of pruning are

illustrated with black squares representing pruned weights.
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Individual weights Intra-kernel Kernel Channel

Pruning elementPruning element Pruning element Pruning element

Figure 2-8: Different granularities of pruning for a convolution layer. The dark squares
represent pruned parameters.

Fine-grain Pruning

Fine-grain pruning removes individual parameters without any constraint in the

pattern of the weights removed. Fine-grain pruning is also called unstructured

pruning. The early use of fine-grain pruning was described for fully-connected lay-

ers by LeCun et al. (1989) using a second order Taylor expansion on a fully-trained

ANN (Artificial Neural Network).

Fine-grain pruning was popularised for CNNs by Han et al. (2015) and has since

been extensively used for CNN pruning (Mao et al. 2017; Han et al. 2017; He et al.

2018b; Frankle and Carbin 2019; Guo et al. 2016; Wang et al. 2020b; Ding et al. 2019;

Liu et al. 2018a; Li et al. 2017b).

Fine-grain pruning can achieve very high pruning rates (Han et al. 2015; Mao

et al. 2017; Han et al. 2017; He et al. 2018b; Frankle and Carbin 2019; Guo et al.

2016). However, the weight tensors need to be stored in a compressed format such as

Compressed Sparse Row (CSR) for these pruning rates to result in memory savings

(Mao et al. 2017).

Coarse-grain Pruning

Coarse grain pruning was first introduced for fully-connected layers as the removal

of entire units, i.e. neurons, from the network by Mozer and Smolensky (1988). In

fully-connected layers, this results in the removal of an entire row or column of the

weight matrix (Mao et al. 2017). The removal of neurons in the final layer, results
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in the removal of an output class. Hence, pruning of neurons in the final layer is

generally avoided.

In CNNs, coarse-grain pruning is the removal of entire convolution channels or

filters from the layer (Wen et al. 2016; Mao et al. 2017; Molchanov et al. 2017; Anwar

et al. 2017). It is also called feature map pruning (Anwar et al. 2017).

The rightmost illustrations in Figures 2-7 and 2-8 respectively show the pattern of

weights removed from a fully-connected layer and a convolution layer when coarse-

grain pruning is applied.

Pruning entire channels from convolution layers also has the advantage of pro-

ducing a smaller dense weight tensor (Yu et al. 2017), which allows decades of re-

search on dense linear algebra performance to continue to be applied. The smaller

weight tensor can be used to accelerate convolutional neural networks (Wen et al.

2016; Lebedev and Lempitsky 2016; You et al. 2019; He et al. 2017; Polyak and Wolf

2015; Turner et al. 2018).

Other Granularities of Pruning

Fine-grain pruning and coarse-grain pruning are the two extremes of pruning strate-

gies. Mao et al. (2017) and Anwar et al. (2017) explore the intermediate granularities

between fine-grain and coarse-grain pruning in convolution layers. Lebedev and

Lempitsky (2016) propose regular interval pruning of the weight tensor for convo-

lution layers that are implemented using im2col (Jia et al. 2014; Chetlur et al. 2014;

Donahue et al. 2014).

2.4.2 Domain of Weights

The convolution operation presented in Equation 2.2 assumes that the operands are

represented in the spatial domain, i.e. the normal image space. Fast convolution

algorithms that convert the convolution operation and its weights into another do-

main can be used to accelerate the network (Lavin and Gray 2016). Lavin and Gray

(2016) show that convolutions can be accelerated using Fast Fourier Transforms and

Winograd transforms. For these transformed convolutions, the weights also need to

be transformed. The transformed weights can also be used for pruning. Liu et al.

(2018a) and Li et al. (2017b) prune the weights in the Winograd domain. Liu et al.
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(2018b) prune weights in the frequency domain. Yu et al. (2019) prune the weights

in the spatial domain (before transformation) and in the Winograd domain (after

transformation) to boost pruning rates.

2.4.3 Distribution of Pruning Rates

The “distribution” of pruning rates describes how many pruning elements (see Sec-

tion 2-8) should be removed at each pruning iteration. It describes how the pruning

rates should be allocated throughout the network or the pruning process. While it

is common for pruning algorithms to explicitly set the number of elements to be

removed at each pruning iteration (LeCun et al. 1989; Molchanov et al. 2017; Theis

et al. 2018; Molchanov et al. 2019; Srinivas and Babu 2015), it can also be derived

to meet another constraint (Han et al. 2015; Yu et al. 2018; Guo et al. 2016; Hu et

al. 2016). Distribution of pruning rates can be classified into two distinct groups

according to how they allocate pruning rates through the network: global and layer-

wise.

Global Distribution of Pruning Rates

Algorithms that use a global distribution of pruning rates prune weights irrespec-

tive of the layer in which they appear.

Lin et al. (2018) set a global sparsity threshold and use a global saliency metric to

prune channels. LeCun et al. (1989), Molchanov et al. (2017), and Theis et al. (2018)

each remove a single pruning element from the entire network at every pruning it-

eration. LeCun et al. (1989) remove one individual weight at each pruning iteration

whereas Molchanov et al. (2017) and Theis et al. (2018) remove one entire convolu-

tion channel at each pruning iteration. Srinivas and Babu (2015) perform a sensi-

tivity analysis prior to the pruning process to determine the number of elements to

remove from the network at each pruning iteration. Molchanov et al. (2019) remove

a predefined number of neurons at each pruning iteration.

Instead of directly defining the number of pruning elements to be removed,

global pruning algorithms can use other constraints set by the user to derive the

pruning rate. Han et al. (2015) prune all weights that have a magnitude below a

global threshold. Yu et al. (2018) set a maximum degradation for the final layer of
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the networks and prune the maximum number of channels such that the estimated

damage to the network is bound by an upper limit.

Layer-wise Distribution of Pruning Rates

Algorithms with a layer-wise distribution of pruning rates consider the pruning

elements of different layers to be part of different pools for pruning. The pruning

rates are hence allocated per layer and not per network. A global pruning rate of

10% does not give any information about the layer-wise pruning rates. The weights

can be removed from the same layer or from different layers. A pruning rate of 10%

per layer ensures that all layers are pruned while removing the same number of

weights from the network as a global pruning rate of 10%.

Polyak and Wolf (2015) and Mao et al. (2017) perform a sensitivity analysis prior

to the pruning process to determine pruning rates for different layers. He et al.

(2017) use different user-defined percentage of weights to be removed depending

on the position of the layer with deeper layers being pruned less aggressively.

Layer-wise pruning algorithms can also use other user-defined constraints to

derive the layer-wise pruning rates. He et al. (2018b) use user-defined global prun-

ing rates and use reinforcement learning to determine the layer-wise pruning rates.

Guo et al. (2016) prune all weights that have an absolute value below a layer-wise

threshold. Hu et al. (2016) use a layer-wise threshold deduced from the mean aver-

age percentage of zeros from the layer to prune channels.

2.4.4 Repair Strategy

The removal of weights from a network decreases its test accuracy (Mittal et al.

2018). The removal of weights is often accompanied by a strategy to repair the

network. The most common repair strategy is the use of retraining or fine-tuning

(Han et al. 2015; Liu et al. 2017b; Jiang et al. 2018; Molchanov et al. 2017; Molchanov

et al. 2019; Theis et al. 2018; Han et al. 2017; Mao et al. 2017; Lin et al. 2018). With

retraining, the pruned network is trained for more iterations after the removal of

weights. Retraining is also referred to as fine-tuning. Le and Hua (2021) explore the

different options of retraining a pruned network.
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Is accuracy less than target?

Retrain (optional)

Remove Weights

No

Yes

Trained Network

Pruned Network

(a) A simple iterative pruning schedule with a
trained network.

Retrain (optional)

Remove Weights

Trained Network

Pruned Network

(b) A simple single-shot pruning schedule with a
trained network.

Figure 2-9: Two common pruning schedules using iterative pruning or single-shot pruning.

Alternative network repair strategies have also been proposed. Hassibi and

Stork (1992) and Hassibi et al. (1993), use the Hessian matrix to repair the network.

Dong et al. (2017a) use the layer-wise Hessian and error to repair the damaged linear

operations. Liang et al. (2021b) repairs the weights by minimising the reconstruc-

tion error of the following layer’s feature maps. He et al. (2017) find redundant

channels using a LASSO regression and reconstruct remaining channels using lin-

ear mean squares. Srinivas and Babu (2015) combine redundant neurons together

to compensate for their removal.

2.4.5 Pruning Schedule

The pruning schedule defines how pruning interacts with the training process and

repair strategy. The pruning schedule determines whether pruning is conducted

after, during, or before training the network to convergence. Pruning schedules can

be categorised as iterative (using multiple pruning iterations) or single-shot (using a

single pruning iteration). During a pruning iteration weights are removed according

to the distribution of pruning rates. The removal of weights is very often followed

by a repair of the network according to the repair strategy.

A common pruning schedule (LeCun et al. 1989; Han et al. 2015; Hassibi and

Stork 1992; Molchanov et al. 2017; Molchanov et al. 2019; Theis et al. 2018) that uses

an iterative method and a trained network is shown in Figure 2-9a.

40



Iterative or Single-shot

Iterative pruning algorithms use multiple pruning iterations until the user-specified

stop condition is met.

Iterative pruning algorithms are the most common pruning schedule (Han et al.

2015; Mao et al. 2017; Srinivas and Babu 2015; LeCun et al. 1989; Hassibi and Stork

1992; Molchanov et al. 2017; Molchanov et al. 2019; Theis et al. 2018) at every stage

of the pruning process.

In contrast to iterative pruning algorithms, single-shot pruning algorithms use a

single pruning iteration to find the final pruned network. A simple single-shot prun-

ing algorithm is shown in Figure 2-9b. Single-shot pruning has also been shown to

be effective after (He et al. 2019; Li et al. 2017a) or before (Lee et al. 2019; Wang et al.

2020a) the training process.

Interaction with the Training Process: After or Before

Traditional pruning schemes prune weights after the network has been trained (Le-

Cun et al. 1989; Hassibi and Stork 1992; Mozer and Smolensky 1988; Karnin 1990;

Molchanov et al. 2017; Han et al. 2015; Anwar et al. 2017).

Recent approaches show that pruning can be conducted at initialisation with

training applied after the pruning process (Frankle and Carbin 2019). Frankle and

Carbin (2019) and Frankle et al. (2020) iteratively prune weights at initialisation to

find networks with high sparsity. Their algorithm is illustrated in Figure 2-10. Lee

et al. (2019) and Lee et al. (2020) use a signal propagation-based approach to prune

channels at initialisation using a single shot algorithm. Wang et al. (2020a) use a

saliency metric based on gradient conservation and a single shot algorithm to prune

the network before training to convergence. Tanaka et al. (2020) show that a data-

agnostic method can be used to successfully prune at initialisation.

2.4.6 Hard or Soft Pruning

Hard pruning is the permanent removal of weights from the network. Most pruning

algorithms do not allow pruned weights to participate in the network’s classification
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Initialised Network with Weight, W

Pruning Iterations, N

Trained Pruned Network
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Reset Unpruned Weights to Their Initial Value from W

n++

n = 0

Train 

Remove Weights

Train for Few Iterations

n < N

Figure 2-10: The pruning at initialisation algorithm proposed by (Frankle and Carbin 2019).

task after removal (Theis et al. 2018; Li et al. 2017a; He et al. 2017; Luo et al. 2017;

Luo et al. 2019).

In contrast to hard pruning, soft pruning allows pruned weights to be brought

back at a later stage of the pruning process. He et al. (2018a) allow filters to be

unpruned if the weights become salient again. Yu et al. (2017) and Liu et al. (2017b)

allow pruned connections to be "unpruned" if the weights become important to the

network during the pruning or repair process.

2.4.7 Saliency Metric

As shown in Figure 2-6, saliency metrics are used by a majority of pruning algo-

rithms. The saliency metric (also called estimation criterion or scoring method) is a

heuristic used to find the weights whose removal will cause the least damage to the

classification accuracy of the network. The saliency metric is used, analogous to a

distance measure, to measure and compare the importance of parameters for prun-
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ing. To avoid confusion with a similar DNN problem of creating saliency maps,

it should be noted that while image saliency (Tomsett et al. 2020; Huang and Gao

2020) and saliency metrics for pruning may share some commonalities in estimat-

ing important pixels or parameters, they differ in their aim. Image saliency aims to

explain the outputs of image classifiers by creating a saliency map for data scien-

tists to understand the decisions of a network (Tomsett et al. 2020) and is often a

subjective task (Huang and Gao 2020). On the other hand, saliency metrics used for

pruning estimate the effect of removing parameters on the network’s performance

(measured by the accuracy or loss). Hence, saliency metrics for pruning have a

measurable ground truth provided by observing how the network’s performance

changes when removing said parameters.

Xu et al. (2020) categorise estimation criteria into different groups depending

on how they identify weights for pruning: importance-based, sparsity-based, and

reconstruction-based. Importance-based saliency metrics are the most common

type of saliency metrics. They try to gauge how important a parameter is to the

network. Examples of importance-based metrics range from metrics that assume

smaller weights have lesser importance (Han et al. 2015; Mao et al. 2017; Lebedev

and Lempitsky 2016; Wang et al. 2018; Guo et al. 2016) to metrics that approxi-

mate the sensitivity of the network (Mozer and Smolensky 1988; LeCun et al. 1989;

Hassibi and Stork 1992; Theis et al. 2018; Ding et al. 2019). Reconstruction-based

saliency metrics find and prune redundant weights by reconstructing associated

feature maps using the pruned weights (Luo et al. 2017; Luo et al. 2019; He et al.

2017; Liu et al. 2021).

Liu et al. (2020a) propose another classification for saliency metrics. They cate-

gorise saliency metrics depending on whether they use training data or not. Xu et

al. (2020) categorise saliency metrics as data-agnostic or data-driven. Data-agnostic

saliency metrics use only the permanent parameters, i.e. weights, of the network.

In addition to the use of permanent parameters, data-driven saliency metrics use

training information. The training information can either be training images only or

training images with training labels. In this section, we use the classification given

by Liu et al. (2020a) to classify saliency metrics. Our own proposed classification of

saliency metrics is discussed in Chapter 3.
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Data-agnostic Saliency Metrics

According to Liu et al. (2020a) data-agnostic, also referred to as weight-based,

saliency metrics do not use training information. Commonly used data-agnostic

saliency metrics are the L1-norm of the weights (Mao et al. 2017) and the mean

squares of the weights(Molchanov et al. 2017). The L2 and L1 norm of the weights

have been used in multiple pruning schemes (Lebedev and Lempitsky 2016; Li et

al. 2017a; He et al. 2018a) for different granularities of pruning. Most weight-based

saliency metrics assume that weights of lower magnitude have a lower contribution

to the network. Yu et al. (2018) propose a recursive weight-based saliency metric to

bound the error in the last layer of the network.

In Section 3.5, we discuss existing data-agnostic saliency metrics for channel

pruning in CNNs in more details.

Data-driven Saliency Metrics

Data-driven saliency metrics can exploit the information in the feature maps and

gradients (Liu et al. 2020a). These can respectively only be obtained by performing

a forward, and an additional backward pass of the network.

Some examples of effective data-driven saliency metrics that use the feature

maps are the average percentage of zeros (Hu et al. 2016), mean (Anwar et al. 2017),

and standard deviation of feature maps (Polyak and Wolf 2015). Feature map-based

saliency metrics exploit information only obtainable during forward passes of the

network.

In Section 3.6, we discuss data-driven saliency metrics that use information ob-

tainable from forward passes of the network.

Conversely, we can find saliency metrics that make use of only the gradients

(Karnin 1990; Lee et al. 2019) such as the use of the average of the gradients, (Liu

and Wu 2019). Saliency metrics that use the gradients exploit information availble

only during backward passes of the network.

However, the information contained in the gradients is often coupled with the

feature map points or the weights. The 2nd order Taylor expansion (Theis et al.

2018; Hassibi and Stork 1992; LeCun et al. 1989) and 1st order Taylor expansion
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(Molchanov et al. 2017; Molchanov et al. 2019) are two notable examples of saliency

metrics combining both the information of the feature maps and their gradients.

In Section 3.7, we discuss existing data-driven saliency metrics that use informa-

tion from backward passes of the network.

2.5 Penalty Terms and Trainable Masks

2.5.1 Penalty Terms

The removal of weights from the network can be done using penalty terms (Reed

1993) in a gradual way. Pruning using penalty terms can be simplified to a mod-

ification of the network’s cost function to promote networks with fewer weights.

An example of the modified loss function, ℒ𝑛𝑒𝑤, using a simple L1-regulariser as a

penalty term to favour smaller weights is given in Equation 2.5 (Reed 1993).

ℒ𝑛𝑒𝑤 = ℒ+ ‖𝑊‖1 (2.5)

Metrics used for saliency-based pruning can also be used to estimate less impor-

tant parameters and gradually penalise them (Lebedev and Lempitsky 2016; Cai et

al. 2021).

2.5.2 Trainable Masks

Mask terms are parameters that can be used to turn on or off the participation of its

associated weight or group of weights in the network. The structure of mask terms

for individual weights and channel weights is shown in Figure 2-11.

Mask terms can be used to describe the pruning process without introducing

new parameters to the network (Mozer and Smolensky 1988; Lee et al. 2019; Frankle

and Carbin 2019). The use of masks terms in this way is merely to facilitate the

description of pruning.

Trainable masks introduce new parameters into the optimisation process. For

fine-grain pruning, each parameter has its own mask parameter (Ding et al. 2019).

Masks for fine-grain pruning are of the same shape as the weight tensor. This struc-

ture is shown in Figure 2-11a. However, when gradually pruning structured pat-
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(a) Structure of masks for fine-grain pruning.

Convolution Layer 

Weights Masks

(b) Structure of masks for channel pruning.

Figure 2-11: Structures of masks for different granularities of pruning.

terns of the weight tensor, a common mask value is used for groups of weights that

need to be pruned together (Yu et al. 2017; Liu et al. 2017b; Huang and Wang 2018).

Hence, each pruning element has its own mask value and weights of a single prun-

ing element share their mask value. This mask structure is shown in Figure 2-11b.

Binary masks only allow the mask values to be “1” or “0” to either allow the

pruning element to participate in the classification task of the network or to be

pruned (Yu et al. 2017; Liu et al. 2020b; Luo and Wu 2020).

Trainable masks that allow the mask terms to have continuous values between

“0” and “1” can also be used to gradually prune weights (Kang and Han 2020; Ra-

makrishnan et al. 2020).

2.6 AutoML for Pruning

Automated machine learning (AutoML) has been used to solve many machine

learning problems (Zoph and Le 2017; Liu et al. 2017a) including pruning (He et

al. 2018b). He et al. (2018b) use a reinforcement learning agent to automatically

subsample the pruning space and find the best layer-wise pruning rates. Liu et al.

(2019a) treat channel pruning as a Network Architecture Search (NAS) problem and

encode each layer structure with a vector. Liu et al. (2019a) use an evolutionary

search algorithm to find pruned networks. Lin et al. (2020) apply ABC (Karaboga

2005) to pruning.
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Chapter 3

Taxonomy of Saliency Metrics for

Channel Pruning

A saliency metric estimates which parameters can be safely pruned with little im-

pact on the classification accuracy of the DNN. Many saliency metrics have been

proposed, each within the context of a wider pruning algorithm. The result is that it

is difficult to separate the effectiveness of the saliency metric from the wider pruning

algorithm that surrounds it. Similar looking saliency metrics can yield very different

results because of apparently minor design choices.

In this chapter, we propose a taxonomy of saliency metrics based on four in-

dependent principal components: base input, pointwise metric, reduction method,

and scaling method. We show that a broad range of metrics from the pruning lit-

erature can be grouped according to these components. Our taxonomy serves as a

guide to prior work and allows us to construct new saliency metrics by exploring

novel combinations of our taxonomic components. We also propose a novel scaling

method based on the number of weights transitively removed.

We perform an in-depth experimental investigation of more than 300 saliency

metrics made up of existing techniques and new combinations of components.

We demonstrate the importance of reduction and scaling when pruning groups of

weights. We find that some of our constructed metrics can outperform the best exist-

ing state-of-the-art metrics for convolutional neural network channel pruning. We

also find that our novel scaling method improves existing saliency metrics.
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weights, W

input images, I

labels, L

Figure 3-1: Saliency metrics can be grouped into three categories (weight-based, feature
map-based, and gradient-based) depending on the information that they use. Weight-based
metrics use weights of the network, feature map-based metrics use weights and input im-
ages, and gradient-based metrics use weights, input images and input labels to compute
saliency. Examples of these different categories of metrics for channel pruning are given in
Tables 3.2, 3.3, and 3.4 respectively.

3.1 Introduction

There is a huge variety of pruning algorithms in the literature, the vast majority

have, at their heart, a saliency metric. A saliency metric is used to answer a funda-

mental question in pruning: which weight or set of weights, when removed, will

likely cause the least damage to the network predictions? Since the saliency metric

is typically presented within the context of a larger pruning algorithm, it is often ex-

tremely difficult to isolate the effect of the saliency metric from other design choices.

In this chapter, we evaluate a wide range of existing and novel saliency metrics

within the same pruning algorithm.

3.1.1 Contributions

In this chapter, we study the impact of the choice of saliency metric within a single

canonical channel pruning algorithm for CNNs. Although our empirical results are

for this specific context, there is a strong argument for the generality of our findings,

which we highlight in discussion. We make the following specific contributions.

• We propose a taxonomy that classifies saliency metrics based on four inde-

pendent components and classify existing saliency metrics using the proposed

taxonomy. Our taxonomy allows us to identify the common elements and dif-

ferences between saliency metrics that may be presented as very different in

the literature.
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• We present the first large-scale empirical evaluation of 308 saliency metrics,

including metrics from prior work and novel metrics derived from new com-

binations of taxonomic components.

• We experimentally confirm a widely-acknowledged rule of thumb: gradient-

based approaches as a class significantly outperform simpler weight-based

methods.

• We answer long-standing open research questions, such as whether the pop-

ular strategy of ignoring first-order terms in Taylor-expansions is safe in prac-

tice.

• We find the previously unknown result that the choice of dimensionality re-

duction and parameter scaling method has a large impact on saliency metrics.

• We propose a novel scaling method based on transitive elimination of weights

in channel pruning, which significantly outperforms the best existing scaling

methods.

• We show that good saliency metrics can be effective even without any subse-

quent retraining, or greatly reduce the number of iterations required if retrain-

ing is used.

3.2 Background

We propose a grouping of salience metrics based on the information used to com-

pute them. Figure 3-1 groups saliency metrics according to the information that

they use. Saliency metrics that use only the weights have the advantage of having

all required information readily available. Data driven approaches require training

data to make pruning decisions. Approaches that only use input images to make

pruning decisions require only forward passes of the network. Approaches that use

gradients additionally require backward passes of the network to compute the loss

with respect to input labels and hence the gradients. The main differentiating factor

between these classes of approach (Figure 3-1) is in practice the cost associated with

the use of more information.
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Saliency metrics can also be grouped according to how they identify least impor-

tant weights (Xu et al. 2020). Simple metrics like the L1-norm of weight (Han et al.

2015) or APoZ (Hu et al. 2016) assume that small weights or feature maps with high

frequencies of zeros are less important to the network. Taylor expansion-based met-

rics often approximate the change in global (LeCun et al. 1989; Hassibi and Stork

1992; Molchanov et al. 2017; Ding et al. 2019) or layer-wise (Dong et al. 2017a) loss

caused by pruning and remove weights that cause the least change in loss. Luo et al.

(2019), He et al. (2017), and Liu et al. (2021) choose weights that lead to the least fea-

ture map reconstruction error. Hur and Kang (2019) use the entropy of the weights

to determine which weights are least important.

While these saliency metrics are derived with different assumptions, if they can

be expressed in a standard form then finding the common elements and differences

becomes easier. We can also compare different metrics more easily.

3.3 A Taxonomy of Saliency Metrics

We propose a taxonomy of saliency metrics based on four principle components.

A fine-grain saliency metric is constructed from a pointwise metric 𝐹 over the pa-

rameter set 𝑋 . When we prune larger groups of weights, such as entire channels,
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Input 𝑓(𝑥) 𝑅 𝐾

𝑋 = 𝑊 𝑥
∑︀

𝑥∈𝑙𝑋𝑖

𝑥 1

𝑋 = 𝐴 𝑑ℒ
𝑑𝑥

∑︀
𝑥∈𝑙𝑋𝑖

|𝑥| 𝑛(𝑙𝑋 𝑖)

−𝑥𝑑ℒ
𝑑𝑥

⃒⃒⃒⃒
⃒ ∑︀
𝑥∈𝑙𝑋𝑖

𝑥

⃒⃒⃒⃒
⃒ ⃦⃦⃦

𝑙 ̃︀𝑆 ⃦⃦⃦
1

−𝑥𝑑ℒ
𝑑𝑥

+
∑︀
𝑦/∈�̃�

𝑥𝑦
2

𝑑2ℒ
𝑑𝑥𝑑𝑦

∑︀
𝑥∈𝑙𝑋𝑖

(𝑥)2
⃦⃦⃦
𝑙 ̃︀𝑆 ⃦⃦⃦

2

𝑥− 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥)

(︃ ∑︀
𝑥∈𝑙𝑋𝑖

𝑥

)︃2

𝑛(𝒯 𝒞(𝑙𝑊 𝑖))

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝(𝑥)
√︂ ∑︀

𝑥∈𝑙𝑋𝑖

(𝑥)2

Table 3.1: A taxonomy of published channel saliency metrics. One component from each
column is chosen to construct a channel saliency metric.
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we need to combine the saliency of individual weights into a metric for the entire

channel. We do this with a dimensionality reduction 𝑅 and normalisation 𝐾. Some

examples of choices for 𝑋 , 𝐹 , 𝑅 and 𝐾 are given in Table 3.1.

The general form of the saliency metric for an arbitrary subset of parameters 𝑋

is given by Equation 3.1.

𝑆 =
1

𝐾
· ̃︀𝑆, with ̃︀𝑆 = 𝑅 ∘ 𝐹 (𝑋) (3.1)

Convolution LayerConvolution Layer 

Figure 3-2: The complete description of our notation is described in Section 2.2.1

In our mathematical treatment, we consider the general case with 𝑊 unless stated

otherwise. However, in our experimental evaluation, we are concerned with param-

eter subsets 𝑋 corresponding to the parameters 𝑙𝑊 𝑖 of a channel of a convolutional

layer. Thus, 𝑙𝑆𝑖 denotes the saliency of the 𝑖𝑡ℎ channel of the 𝑙𝑡ℎ convolution layer of

the CNN.

To facilitate the description and comparison of different saliency metrics, we use

the notation introduced in Section 2.2.1 and summarised in Figure 3-2.

3.3.1 Domain (Choice of 𝑋)

We propose a taxonomy where saliency metrics are based upon the weights them-

selves (𝑋 = 𝑊 ), or the values of output features maps that are computed using the

weights (𝑋 = 𝐴). There is often a close relationship between the magnitude of a
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weight and the sensitivity of the DNN to pruning the weight, so many saliency met-

rics use the weight as a key input. However, in the specific case of pruning entire

output channels, there is a direct relationship with the output points corresponding

to the 𝑖𝑡ℎ channel of the 𝑙𝑡ℎ convolution layer 𝑙𝐶𝑖 (i.e. the feature map 𝑙𝐴𝑖). Removing

all parameters contributing to an output feature map in a convolutional layer results

in the feature map becoming zero. When this happens, all of the operations which

are transitively used to compute the operation can also be pruned, resulting in large

savings.

Hence, the saliency of a channel can be regarded as a function of outputs (Hu

et al. 2016; Gaikwad and El-Sharkawy 2019; Anwar et al. 2017; Polyak and Wolf

2015), rather than parameters, i.e. in Equation 3.1 𝑋 can be either the weights, 𝑙𝑊 𝑖,

or the output feature map, 𝑙𝐴𝑖. The relationship between the weights and feature

maps of a channel is illustrated in details in Figure 3-3. The removal weights of

the output channel in layer 𝑙 (highlighted in red) directly maps to the removal of

its corresponding feature map (highlighted in blue). Since output feature maps are

ultimately used by the following layer, weights from the following layer can also

be removed (highlighted in green). This relationship is further explained in Section

5.3.6.

Convolution LayerConvolution Layer 

Figure 3-3: Parameter/Feature map structure in a convolutional neural network.
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It should be noted that since channel pruning can be viewed as feature map

removal, feature selection metrics can also be used as saliency metrics for pruning

(Tang et al. 2020).

When pruning at granularities finer than entire channels, the removal of output

points cannot be directly mapped to the removal of sets of weights. Hence, it is

clear that 𝑋 = 𝑊 is the best choice. However, for channel pruning it is difficult to

choose definitively between output feature map or weights. In fact, most published

saliency metrics are presented either as functions of weights or of output points,

despite being applicable to both. Some metrics (LeCun et al. 1989; Hassibi and Stork

1992) were originally defined using weights (as they were used to prune individual

weights), but derived metrics (Molchanov et al. 2017; Theis et al. 2018) use output

feature maps instead. Thus, there is a great deal of disagreement in the existing

literature about whether 𝑋 = 𝑊 or 𝑋 = 𝐴 is the better choice. In Section 3.9, we

experimentally evaluate the two choices.

To better illustrate the effect of the four independent choices, we use an exam-

ple for channel pruning. In Figure 3-4, we show how to compute the saliency of a

convolution layer’s channels using its weights. This corresponds to the case where

𝑋 = 𝑊 .

3.3.2 Pointwise Metric (Choice of 𝐹 )

We denote 𝐹 (𝑋) the tensor of pointwise saliency of all individual weights or output

points. 𝐹 (𝑋) is of the same shape as 𝑋 , that is, either of the shape of 𝑊 or 𝐴.

When pruning, it is common to look at either the saliency of an individual element

of the saliency vector or at a group of them. To facilitate this grouping, we introduce
𝑙𝐹 (𝑋)𝑖 and 𝑓(𝑥). 𝑙𝐹 (𝑋)𝑖 is the tensor of saliency corresponding to the 𝑖𝑡ℎ channel of

the 𝑙𝑡ℎ layer. 𝑙𝐹 (𝑋)𝑖 is of the same shape as 𝑙𝑋 𝑖. Hence if 𝑋 = 𝑊 or 𝑋 = 𝐴, then
𝑙𝐹 (𝑋)𝑖 is of the shape 𝑙−1𝑚 × 𝑙𝑘 × 𝑙𝑘 or 𝑙ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑙𝑤𝑖𝑑𝑡ℎ respectively. 𝑓(𝑥), is used

to denote the saliency of a single weight or output point. If 𝑥 = 𝑙𝑊 𝑖[𝑝, 𝑞, 𝑟] is an

individual weight from 𝑙𝑊 𝑖, then 𝑓(𝑥) = 𝑙𝐹 (𝑋)𝑖[𝑝, 𝑞, 𝑟]. Similarly, when using the

output feature map instead of the weights, if 𝑥 = 𝑙𝐴𝑖[𝑝, 𝑞] is an individual output

point then 𝑓(𝑥) = 𝑙𝐹 (𝑋)𝑖[𝑝, 𝑞].
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ml-1

Saliency after reduction,

Unpruned weights,
l-1

Pointwise saliency,
l-1

Scaling factor,

Channel saliency,

Figure 3-4: Computing channel saliency using Equation 3.1 using 𝑋 = 𝑊 , 𝑓(𝑥) = 𝑑ℒ
𝑑𝑥 ,

𝑅(𝑋) =
∑︀

𝑥∈𝑙𝑋𝑖

|𝑥| and 𝐾 =

⃦⃦⃦⃦
𝑙∼
𝑆

⃦⃦⃦⃦
2

.

A common pointwise saliency function is the absolute magnitude function, i.e.

the saliency of an individual weight or output point is given directly by its absolute

value, hence 𝑓(𝑥) = |𝑥|.

In Figure 3-4, the gradient of the loss with respect to an element is used as a

saliency metric, 𝐹 (𝑋) = 𝐽 or 𝑓(𝑥) = 𝑑ℒ
𝑑𝑥

. Applying 𝐹 to 𝑊 yields a tensor containing

the saliency of the individual weights.

3.3.3 Dimensionality Reduction (Choice of 𝑅)

Once the pointwise saliency vector is obtained, a reduction is used to condense the

tensor of pointwise saliency to a single value for the pruning element. In the case of

channel pruning, 𝑅 reduces either a 𝑙−1𝑚× 𝑙𝑘× 𝑙𝑘 tensor or a 𝑙ℎ𝑒𝑖𝑔ℎ𝑡× 𝑙𝑤𝑖𝑑𝑡ℎ tensor

into a single value.

Any suitable vector norm could be used as a reduction, with the L2-norm be-

ing a popular reduction method in the literature (He et al. 2018a; Gaikwad and El-

Sharkawy 2019).

In Figure 3-4, an L1-norm is used to reduce the 𝑙𝑚 × 𝑙𝑘 × 𝑙𝑘 tensor of weight

saliency into a vector containing the layer’s channel saliency ,
𝑙 ̃︀𝑆, of dimension 𝑙𝑚.
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3.3.4 Scaling (Choice of 𝐾)

All other things being equal, the more parameters which can be pruned, the lower

the computational and memory costs of inference. Therefore, if two channels have

similar saliency, one should favour pruning the larger channel, which is the Pareto-

optimal choice considering the twin objectives of minimising accuracy loss and max-

imising the number of parameters pruned.

To better integrate this cost function, a scaling coefficient, 𝐾 is typically used.

One solution is to scale the channel saliency 𝑙𝑆𝑖 using the cardinality of the pointwise

saliency vector. In other words, one can also look at the average saliency of a group

instead of the sum of the saliency in the group. For example, instead of using the

sum of the magnitudes or L1-norm of the weights,
⃦⃦
𝑙𝑊 𝑖

⃦⃦
1
, one can use the average

of the magnitudes, 1
𝑛(𝑙𝑊 𝑖)

⃦⃦
𝑙𝑊 𝑖

⃦⃦
1
. This normalises the result of the reduction, 𝑅, so

that channels with many weights are more likely to be pruned, leading to greater

overall sparsity. Another solution is to perform a layer-wise normalisation to scale

the magnitudes of saliency across layers. Using a layer-wise L2-norm in the case of

global pruning helps when values for saliency in different layers have drastically

different magnitudes (Molchanov et al. 2017).

In Figure 3-4, we use a layer-wise L2-norm as scaling factor. We use the L2-norm

of the unscaled saliency of all the channels in the given convolution layer,
𝑙 ̃︀𝑆, to

obtain the scaling coefficient, 𝐾, of that layer.

Proposed Scaling Method, 𝒯 𝒞

We propose a novel scaling method 𝒯 𝒞 that has not been considered by previous

researchers. 𝒯 𝒞(𝑙𝑊 𝑖) is used to denote the entire set of weights transitively removed

when 𝑙𝑊 𝑖 is removed from the network. A simple example of 𝒯 𝒞(𝑙𝑊 𝑖) is shown in

Figure 3-3, where weights from the next convolution layer are also removed when

we remove an output channel from the network. Since 𝒯 𝒞(𝑙𝑊 𝑖) (highlighted in red

or green) include 𝑙𝑊 𝑖 (highlighted in red), 𝑛(𝒯 𝒞(𝑙𝑊 𝑖)) ≥ 𝑛(𝑙𝑊 𝑖). A more detailed

explanation of 𝑇𝐶 is given in Section 5.3.1. When optimising for the maximum

number of weights removed for the least loss in accuracy, 𝒯 𝒞(𝑙𝑊 𝑖) is interesting

because it takes into account all the weights removed for that channel.
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3.3.5 Minibatches

Data driven approaches which consider gradients or output points in the domain

𝑋 often rely on a set of inputs to produce these values. Since each input in the set

will result in a potentially different set of saliency values, the computation of the

saliency over a minibatch is typically done by combining the element-wise saliency

values using a simple average across the minibatch (Theis et al. 2018; Molchanov

et al. 2017; Gaikwad and El-Sharkawy 2019; Hu et al. 2016).

Hence, the full saliency equation used in practice is given by Equation 3.2 with

𝑁 , the total number of images used in the minibatch.

𝑙𝑆𝑖 =
1

𝑁

𝑁−1∑︁
𝑛=0

1

𝐾
·𝑅 ∘ 𝐹 (𝑋𝑛) (3.2)

In some cases, a square root is applied to the resulting saliency metric (Gaikwad

and El-Sharkawy 2019). This additional computation does not modify the ranking

of the channels and can thus be omitted for algorithms only concerned with channel

ranking.

3.4 Classification of Existing Saliency Metrics

In this section, we classify popular saliency metrics using our taxonomy. Tables 3.2,

3.3, and 3.4 summarise channel saliency metrics that have been used for pruning

convolution channels. We can obtain new saliency metrics by selecting different

combinations of the four components in Table 3.1. Although some of these saliency

metrics resemble each other, their efficacy can vary.

This thesis focuses on using saliency metrics specifically for channel removed

together. However, the taxonomy can also be used to classify saliency metrics used

for different granularities. For fine-grain pruning, i.e. pruning individual weights,

only the pointwise saliency is relevant. For other granularities of pruning, point-

wise metrics are computed across the relevant substructure in parameter tensors

and then dimensionally reduced (e.g. with a vector or tensor norm) to yield struc-

tural metrics. Table 3.5 shows the classification of a selection of popular pointwise

saliency metrics that have been used for fine-grain pruning.
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Method Base Input, Pointwise Measure, After Reduction, Scaling,

𝑋 𝑓(𝑥)
𝑙 ̃︀𝑆𝑖 𝐾

Using only weights

L1-norm of weights (Mao et al. 2017; Li et al.

2017a; Wang et al. 2018)

𝑊 𝑥
∑︀

𝑥∈𝑖 𝑙𝑋𝑖

|𝑓(𝑥)| 1

L2-norm of weights (Lebedev and Lempitsky

2016; He et al. 2018a)

𝑊 𝑥
∑︀

𝑥∈𝑙𝑋𝑖

𝑓(𝑥)2 1

Min-weight (Molchanov et al. 2017) 𝑊 𝑥
∑︀

𝑥∈𝑙𝑋𝑖

𝑓(𝑥)2 𝑛(𝑙𝑋 𝑖)

NISP (Yu et al. 2018) 𝑊 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝(𝑥)

with

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝(𝑥) =

𝑁𝐼𝑆𝑃 (𝑥) (Equation 3.9)

∑︀
𝑥∈𝑙𝑋𝑖

𝑓(𝑥) 1

Geometric median of weights (He et al. 2019) 𝑊 𝑥 − 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥)

with

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥) =

𝐺𝑀(𝑥) (Equation 3.5)

∑︀
𝑥∈𝑙𝑋𝑖

𝑓(𝑥)2 1

Table 3.2: Published approaches for channel pruning using weights only.
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Method Base Input, Pointwise Measure, After Reduction, Scaling,

𝑋 𝑓(𝑥)
𝑙 ̃︀𝑆𝑖 𝐾

Using weights and input images

Sum of feature map (Anwar et al. 2017) 𝐴 𝑥
∑︀

𝑥∈𝑙𝑋𝑖

𝑓(𝑥) 1

APoZ (Hu et al. 2016) 𝐴

⎧⎪⎨⎪⎩1, if 𝑥 > 0

0, else

∑︀
𝑥∈𝑙𝑋𝑖

𝑓(𝑥) 𝑛(𝑙𝑋 𝑖)

L2-norm of activations (Gaikwad and El-

Sharkawy 2019)

𝐴 𝑥
∑︀

𝑥∈𝑙𝑋𝑖

𝑓(𝑥)2 1

Table 3.3: Published approaches for channel pruning using weights and input images.
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Method Base Input, Pointwise Measure, After Reduction, Scaling,

𝑋 𝑓(𝑥)
𝑙 ̃︀𝑆𝑖 𝐾

Using weights, input images and labels

Fisher information using activations (Theis et al.

2018; Turner et al. 2018)

𝐴 𝑥𝑑ℒ
𝑑𝑥

(︃ ∑︀
𝑥∈𝑙𝑋𝑖

𝑓(𝑥)

)︃2

1
2

Fisher information using weights (Molchanov et

al. 2019)

𝑊 𝑥𝑑ℒ
𝑑𝑥

(︃ ∑︀
𝑥∈𝑙𝑋𝑖

𝑓(𝑥)

)︃2

1

1st Order Taylor (Molchanov et al. 2017) 𝐴 𝑥𝑑ℒ
𝑑𝑥

⃒⃒⃒⃒
⃒ ∑︀
𝑥∈𝑙𝑋𝑖

𝑓(𝑥)

⃒⃒⃒⃒
⃒ 𝑛(𝑙𝑋 𝑖)

1st Order Taylor, w. norm (Molchanov et al. 2017) 𝐴 𝑥𝑑ℒ
𝑑𝑥

⃒⃒⃒⃒
⃒ ∑︀
𝑥∈𝑙𝑋𝑖

𝑓(𝑥)

⃒⃒⃒⃒
⃒ ⃦⃦⃦

𝑙 ̃︀𝑆 ⃦⃦⃦
2

Average of gradient (Liu and Wu 2019) 𝐴 𝑑ℒ
𝑑𝑥

∑︀
𝑥∈𝑙𝑋𝑖

𝑓(𝑥) 𝑛(𝑙𝑋 𝑖)

Collaborative channel pruning (Peng et al. 2019) 𝑊 1
2
𝑥0𝑥1

𝑑2ℒ
𝑑𝑥0𝑑𝑥1

(Table 3.6)
∑︀

𝑥0,𝑥1:

𝑥0,𝑥1 /∈̃︂𝑙𝑋𝑖

𝑓(𝑥0, 𝑥1) 1

Connection sensitivity (Lee et al. 2019) 𝑊 (Section 3.7.1) 𝑥𝑑ℒ
𝑑𝑥

∑︀
𝑥∈𝑙𝑋𝑖

|𝑓(𝑥)|
∑︀
𝑠∈𝑙 ̃︀𝑆 𝑠

Table 3.4: Published approaches for channel pruning using weights, input images and labels.
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Method Pointwise Measure, 𝑓(𝑥)

Magnitude (Han et al. 2015; Han et al. 2017; He et al.
2018b; Frankle and Carbin 2019; Guo et al. 2016) |𝑤|

Optimal Brain Damage (LeCun et al. 1989) 𝑑2ℒ
𝑑𝑤2

Optimal Brain Surgeon (Hassibi and Stork 1992) 𝑤𝑖𝑤𝑗

2
𝑑2ℒ

𝑑𝑤𝑖𝑑𝑤𝑗

Mask gradient (Mozer and Smolensky 1988) − 𝑑ℒ
𝑑𝑚

Weight gradient (Karnin 1990) − 𝑑ℒ
𝑑𝑤

1st order Taylor expansion (Ding et al. 2019)
⃒⃒
𝑑ℒ
𝑑𝑤
𝑤
⃒⃒

Table 3.5: Published approaches for fine-grain pruning.

3.5 Weight-based Saliency Metrics

When computing weight-based metrics, all the information required to compute the

saliency is readily available. The most common saliency metric used for pruning is

the magnitude of the weights. Specifically, the L2 and L1 norms of weights have

been used in many pruning algorithms (Mao et al. 2017; Lebedev and Lempitsky

2016; Li et al. 2017a; He et al. 2018a; Wang et al. 2018; Han et al. 2015; Han et al.

2017; He et al. 2018b; Frankle and Carbin 2019; Guo et al. 2016) for different granu-

larities of pruning. Magnitude-based saliency metrics assume that weights of lower

magnitude have a lesser contribution to the network.

Another weight-based heuristic is min-weight (Molchanov et al. 2017). The sum

of squared individual weights are scaled by the number of weights in the channel

to give the channel saliency (Equation 3.3).

𝑙𝑆𝑖 =
1

𝑛(𝑙𝑊 𝑖)

∑︁
𝑤∈𝑙𝑊 𝑖

𝑤2 (3.3)

Most weight-based metrics consider smaller weights to be less important to the

network. For coarse granularities of pruning, one can also consider removing re-

dundant sets of weights. In the case of channel pruning, one can remove channels

that are similar to other channels. Redundant channels can be removed if they are

not contributing to the final result. (He et al. 2019) remove channels that have a Eu-

clidean distance close to that of the layer’s geometric median channel (see Equation

3.4).
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𝑙𝑊𝐺𝑀 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛(𝑔(𝑥)) with 𝑔(𝑥) =

𝑙𝑚−1∑︁
𝑗=0

⃦⃦
𝑥− 𝑙𝑊 𝑗

⃦⃦
2

(3.4)

In this case, the pointwise saliency 𝑓(𝑥) is given by 𝑥 − 𝐺𝑀(𝑥) where 𝐺𝑀(𝑥) is

given according to Equation 3.5.

Given 𝑥 = 𝑙𝑊 𝑖[𝑝, 𝑞, 𝑟], then 𝐺𝑀(𝑥) = 𝑙𝒲𝐺𝑀 [𝑝, 𝑞, 𝑟] (3.5)

By removing channels that are close to the geometric median, one can as-

sume that they are already represented by the geometric median. We de-

note 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥) any reconstruction of 𝑥 after pruning, then in this case,

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥) = 𝐺𝑀(𝑥).

3.5.1 Recursive Weight-based Metrics

Common weight-based methods only use weights from a single layer. Saliency met-

rics such as the L1-norm of weights treat channels as independent components.

To illustrate this independence, let us consider the example of using the L1-norm

of weights as a saliency metric. First, we compute the saliency metric using the

L1-norm of weights then remove the least salient channel. We then recompute the

saliency of the remaining weights. The saliency of the channels that were not pruned

remain unchanged.

Now, let us consider the case where we use the L1-norm of output points. We

compute the saliency of all the channels, prune the least salient channel and finally

recompute the saliency of the unpruned channels. Let us assume that the channel

selected for pruning is from the third layer of the network. The saliency of the

channels from the first, second, and third layers (excluding the pruned channel)

are unchanged. However, the saliency of channels from following layers may have

changed. While the saliency of the channels are computed in an independent way,

the underlying information (the output points), can be expressed recursively using

the previous layers. The recursive component is implicit. The recursive equation for

outputs points is given in Equation 3.6 with 𝑓 𝑙 being the forward pass function of

the 𝑙𝑡ℎ layer.
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𝑙𝐴 = 𝑓 𝑙(𝑙𝑊, 𝑙−1𝐴) (3.6)

Saliency metrics that use the gradients of the loss with respect to the weights or

the output points also have a component that is computed recursively using back-

propagation (see Equation 3.7). Hence, the pointwise metrics in Table 3.1 can use

information from different layers.

𝑑ℒ
𝑑 𝑙𝐴

=
𝑑ℒ

𝑑 𝑙+1𝐴

𝑑 𝑙+1𝐴

𝑑 𝑙𝐴
(3.7)

Neuron Importance Score Propagation (NISP) (Yu et al. 2018) uses an explicitly

recursive way of propagating saliency information between layers.

Equation 3.8 shows the general propagation equation used in NISP with ℎ𝑙 being

a function given by the authors. 𝑓 𝑙 depends only on the type of the layer.

𝑙𝒮 = ℎ𝑙(𝑙+1𝑊, 𝑙+1𝒮) (3.8)

In this case, the pointwise saliency 𝑓(𝑥) used by 𝑁𝐼𝑆𝑃 (𝑥) is given in Equation

3.9.

Given 𝑥 = 𝑙𝑊 𝑖[𝑝, 𝑞, 𝑟], then 𝑁𝐼𝑆𝑃 (𝑥) = 𝑙𝒮[𝑝, 𝑞, 𝑟] (3.9)

The method used by NISP can be considered as an alternative way of backprop-

agating information through the network.

Gradient backpropagation and its alternatives can be used for pruning. An

alternative to backpropagation of gradients is Layer-wise Relevance Propagation

(LRP) (Bach et al. 2015). LRP has successfully been used as a saliency metric for

pruning (Yeom et al. 2021). Similar to gradient backpropagation and NISP, LRP

propagates information recursively from the last layer (output) of the network to

its first layer (input). LRP requires weights and input images as it is a data driven

approach but can, nonetheless, be expressed in a similar form to Equation 3.8.

We denote 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝 any alternative to backpropagation of information

in neural networks. Hence, in the case of NISP, we have 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝(𝑥) =

𝑁𝐼𝑆𝑃 (𝑥).
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3.6 Weight and Input Images-based Saliency Metrics

Channel pruning is a notable granularity of pruning as pruning an entire channel of

weights leads to the removal of a feature map from the network. A given channel of

weights that operates on a given input produces an output feature map of outputs.

It may be possible to identify good candidates for pruning by selecting feature maps

with low or zero outputs.

Output values across inferences on multiple inputs can be gathered, and their

results summarised using statistical measures. Saliency metrics use the sum (Anwar

et al. 2017), mean, and variance (Polyak and Wolf 2015), or L2-norm (Gaikwad and

El-Sharkawy 2019) of feature maps to identify low saliency channels.

The feature map produced by the convolution layer is not the only feature map

that can be used. For example, the absolute percentage of zeros (APoZ) (Hu et al.

2016) counts the percentage of zero values in the output feature map for a given

channel and computes the average across multiple inputs.

𝑙𝑆𝑖 =
1

𝑛(𝑙𝐴𝑖)

∑︁
𝑎∈𝑙𝐴𝑖

𝑎 (3.10)

Quite often, convolution layers are followed by ReLU layers which only retain

positive outputs. A negative mean would indicate that on average the outputs pro-

duced by that channel were negative and likely to be driven to zero by ReLU. Hence,

APoZ considers the average of the output points after ReLU. APoZ considers chan-

nels with a higher percentage of zeros to have a lower saliency.

𝑙𝑆𝑖 =
1

𝑛(𝑙𝐴𝑖)

⎛⎝∑︁
𝑎∈𝑙𝐴𝑖

𝑓(𝑎)

⎞⎠with𝑓(𝑎) =

⎧⎪⎨⎪⎩1 if 𝑎 > 0

0 else
(3.11)

A sub-category of saliency metrics that use weights and input images are met-

rics inspired from reconstruction error. Saliency metrics that are based on recon-

struction error have a pointwise metric in the form of 𝑥 − 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥). In the

case of ThiNet (Luo et al. 2019), 𝑥 is a point sampled from the input feature map

and 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥) is its reconstruction after pruning. Metrics used by Luo et al.

(2019), He et al. (2017), and Liu et al. (2021) choose channels based on the least error
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incurred to output feature maps. Hence, the layer-wise feature maps error is used as

a saliency metric. The main difference between the approach explored by Luo et al.

(2019) and He et al. (2017) is how they estimate the damaged feature map. Liu et al.

(2021) also introduce a layer-wise loss alongside the reconstruction error.

3.7 Weight, Input Images, and Labels-based Saliency

Metrics

Using only the weights and input images to compute saliency metrics does not al-

low one to know directly how the classification performance is being affected. Cor-

responding labels are also needed to obtain this information. The loss is a measure

of how well the predictions of the network match the ground truth. Consequently,

the gradients with respect to the loss also carry this information. A network that has

reached its minimum loss has a gradient equal to zero.

The equation of the cross-entropy loss, ℒ, is given by Equation 2.1 for a network

with weights 𝑊 and input dataset ℐ𝑠𝑒𝑡. We remind the definition of the loss function

from Section 2.2.1 in Equation 3.12.

ℒ(𝑊, ℐ𝑠𝑒𝑡) =
𝑁−1∑︁
𝑛=0

𝑛ℒ(𝑊 ) =
𝑁−1∑︁
𝑛=0

−(𝑛𝐿⊙ 𝑙𝑜𝑔(𝑃 (𝑊, 𝑛𝐼))) (3.12)

𝑃 is evaluated during a forward pass of the network using only the weights and

input images. On the other hand, evaluating ℒ requires the ground truth and so

do the gradients of the loss. Hence, the use of the 𝑙𝑜𝑠𝑠 and its gradients carry more

information than using only the weights or output feature maps. To compute the

gradient of the loss, a backward pass as well as a forward pass is required.

The use of gradients in saliency metrics for pruning was introduced by Mozer

and Smolensky’s Skeletonization (Mozer and Smolensky 1988), Lecun et al.’s Op-

timal Brain Damage (LeCun et al. 1989), and Hassibi and Stork’s Optimal Brain

Surgeon (Hassibi and Stork 1992).

A simpler gradient-based saliency measure was proposed by Liu and Wu (2019)

where the average of the output feature map gradients (Equation 3.13) is used as a
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saliency measure of a channel. They put forward that pruning channels that are no

longer updated by the SGD algorithm can be pruned safely.

𝑙𝑆𝑖 =
1

𝑛(𝑙𝐴𝑖)

∑︁
𝑎∈𝑙𝐴𝑖

𝑑ℒ
𝑑𝑎

(3.13)

While Optimal Brain Damage introduced the use of Taylor expansions for deriv-

ing saliency methods, other more recent approaches have also used Taylor expan-

sions to obtain different saliency metrics. These methods are further explained in

Section 3.7.2

Saliency metrics that use a Taylor expansion estimate the error caused to the final

loss of the network. Dong et al. (2017a) introduce a layer-wise error, hence a layer-

wise sensitivity and propose a method to propagate this layer-wise sensitivity to

deduce the final impact on the network. They use the saliency measure introduced

by Optimal Brain Surgeon (Hassibi and Stork 1992) to estimate the layer-wise sensi-

tivity.

3.7.1 Connection Sensitivity

Lee et al. (2019) define a saliency measure, Connection Sensitivity, based on gradi-

ents of the loss with respect to mask terms. Each individual weight, 𝑤𝑖, have a mask

term, 𝑚𝑖 , that can be either one or zero. Their saliency measure is derived using the

mask term gradients instead of the weight gradients.

𝑆(𝑤𝑖) =
|𝑔𝑖(𝑤; ℐ𝑠𝑒𝑡)|

𝑚∑︀
𝑘=1

|𝑔𝑘(𝑤; ℐ𝑠𝑒𝑡)|
(3.14)

𝑔𝑖(𝑤; ℐ𝑠𝑒𝑡) =
𝜕ℒ(𝑀 ⊙𝑊 ; ℐ𝑠𝑒𝑡)

𝜕𝑚𝑖

⃒⃒⃒
𝑀=1

(3.15)

To facilitate the comparison of Connection Sensitivity to other saliency metrics,

we remind a few notations. We use 𝑊 to denote the vector of the weights and 𝑀 , the

vector of the mask terms. 𝑀 and 𝑊 are of similar dimensions. The vector of pruned

weights, ̃︁𝑊 with 𝑖𝑡ℎ element ̃︀𝑤𝑖, is given by applying the mask on the weights with̃︁𝑊 = 𝑀 ⊙𝑊 or ̃︀𝑤𝑖 = 𝑚𝑖 · 𝑤𝑖
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Using this substitution, in Equation 3.15, we obtain Equation 3.16. The gradient

of ℒ with respect to the ̃︁𝑊 , 𝑑ℒ
𝑑̃︁𝑊 , is given by regular backpropagation rules.

In the case of Connection Sensitivity (Lee et al. 2019), since 𝑀 = 1, i.e. all the

components of M are set to 1, we can express the mask term gradients in terms of

the known weight gradients. From Equation 3.18, we see that in this case using the

absolute value of the mask gradient, |𝑔𝑖|, is similar to using the absolute value of the

first term of a Taylor expansion,
⃒⃒⃒
𝑤𝑖

𝑑ℒ
𝑑𝑤𝑖

⃒⃒⃒
, from Equation 3.22

𝜕ℒ(𝑀 ⊙𝑊 ; ℐ𝑠𝑒𝑡)

𝜕𝑚𝑖

⃒⃒⃒
𝑀=1

= 𝜕ℒ(𝑀⊙𝑊 ;ℐ𝑠𝑒𝑡)
𝜕 ̃︀𝑤𝑖

· 𝑤𝑖

⃒⃒⃒
𝑀=1

(3.16)

= 𝜕ℒ(𝑊 ;ℐ𝑠𝑒𝑡)
𝜕 ̃︀𝑤𝑖

· ̃︀𝑤𝑖 (3.17)

= 𝑤𝑖 · 𝜕ℒ(𝑊 ;ℐ𝑠𝑒𝑡)
𝜕𝑤𝑖

(3.18)

3.7.2 Taylor Expansion

Most of the gradient-based saliency metrics discussed in this chapter can be sum-

marised as the estimation of the sensitivity of the parameters removed by remov-

ing a convolutional filter channel from a network. The sensitivity of a parame-

ter was first introduced for fully-connected layers (Mozer and Smolensky 1988)

as the change in the error of the network on the training set caused by removing

that parameter. This definition can be extended to convolution channels by using

the change in error induced by removing the set of parameters associated with that

channel. The sensitivity of pruning a network with loss, ℒ, and unpruned weights,

𝑊 , to pruned weights, ̃︁𝑊 , is given in Equation 3.19.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ℒ(̃︁𝑊 )− ℒ(𝑊 ) (3.19)

One of the first approaches to estimate the sensitivity of a weight was proposed

by Lecun et al.’s Optimal Brain Damage (LeCun et al. 1989). They use a simplified

second order Taylor expansion on the trained neural network. A Taylor expansion

is used to estimate the loss function, ℒ, at the pruned weights, ̃︁𝑊 , using the trained

weights, 𝑊 .
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ℒ(̃︁𝑊 ) ≈ ℒ(𝑊 ) + 𝐽(̃︁𝑊 −𝑊 )

+
1

2
(̃︁𝑊 −𝑊 )𝑇𝐻(̃︁𝑊 −𝑊 ) (3.20)

A second order Taylor expansion around the trained weights, 𝑊 , is given in

equation 3.20, where 𝐽 and 𝐻 are respectively the Jacobian and Hessian of the loss

function at trained parameters 𝑊 . The Jacobian matrix, 𝐽 ∈ ℛ𝑁𝑤𝑒𝑖𝑔ℎ𝑡𝑠 , is defined as

𝐽𝑖 =
𝑑ℒ
𝑑𝑤𝑖

and the Hessian matrix, 𝐻 ∈ ℛ𝑁𝑤𝑒𝑖𝑔ℎ𝑡𝑠×𝑁𝑤𝑒𝑖𝑔ℎ𝑡𝑠 , is defined as 𝐻𝑖𝑗 =
𝑑2ℒ

𝑑𝑤𝑖𝑑𝑤𝑗

To prune an individual weight, 𝑤𝑖, from the network, 𝑤𝑖 is set to zero, i.e. the

𝑖𝑡ℎ parameter of ̃︁𝑊 is set to zero. To easily understand how the saliency of a single

parameter is derived, Equation 3.20 can be rewritten for pruning a single parameter,

𝑤𝑖, in Equation 3.21.

ℒ(̃︁𝑊 )≈ℒ(𝑊 ) +
𝑑ℒ
𝑑𝑤𝑖

(0− 𝑤𝑖) +
1

2
(0− 𝑤𝑖)

𝑑2ℒ
𝑑𝑤𝑖

2
(0− 𝑤𝑖)

≈ℒ(𝑊 )− 𝑤𝑖
𝑑ℒ
𝑑𝑤𝑖

+
1

2
𝑤𝑖

2 𝑑
2ℒ

𝑑𝑤𝑖
2

(3.21)

The approximation of the sensitivity given by the second order Taylor expansion

can be used as a saliency metric (LeCun et al. 1989). Hence, the saliency of a single

weight is given by Equation 3.22. Similarly, pruning a set of parameters means

setting these parameters to zero in ̃︁𝑊 .

𝑆(𝑤𝑖) = −𝑤𝑖
𝜕ℒ
𝜕𝑤𝑖

+
1

2
𝑤𝑖

2 𝜕
2ℒ

𝜕𝑤𝑖
2

(3.22)

Computing Equation 3.20 exactly is very expensive. While the first order term

of the equation (the term involving the gradients) is computed in linear time, the

higher order terms are more difficult to obtain. The Hessian matrix scales with the

quadratic of the number of weights in the network. To better understand the dif-

ference in computation and memory cost, let us consider the number of operations

to compute each element of a feature map through backpropagation. During back-

propagation, a given layer’s, 𝑙, output feature map gradients are given by the next

layer’s, 𝑙 + 1, backpropagation. It is the layer’s input feature map gradients that are

67



computed during backpropagation of the layer 𝑙 (see Appendix A for more details).

Given a layer 𝑙, the gradients 𝑑ℒ
𝑑 𝑙𝐴

are known, and 𝑑ℒ
𝑑 𝑙−1𝐴

is computed during the 𝑙𝑡ℎ

backward pass. Computing each point of 𝑑ℒ
𝑑 𝑙−1𝐴

has a complexity 𝑂(𝑙𝑚 × (𝑙𝑘)2).

There are 𝑙−1𝑚 × 𝑙−1ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑙−1𝑤𝑖𝑑𝑡ℎ such points to be computed for the input

feature map gradient. To understand the higher complexity of computing the full

Hessian matrix, let us consider the computational cost of the layer-wise Hessian

using chain rule. If we did a full back propagation of the layer-wise Hessian, we

would instead need to compute (𝑙−1𝑚×𝑙−1ℎ𝑒𝑖𝑔ℎ𝑡×𝑙−1𝑤𝑖𝑑𝑡ℎ)2

2
points each having a com-

plexity 𝑂(𝑙𝑚× (𝑙𝑘)4).

To reduce computation and storage cost, different approximations can be ap-

plied to the different terms of Equation 3.20 (LeCun et al. 1989; Hassibi and Stork

1992; Molchanov et al. 2017; Theis et al. 2018) to obtain different saliency metrics.

Popular approximations are presented in Figure 3-5. Table 3.6 summarises various

approximations of Equation 3.20 that have been used as saliency metrics.

Figure 3-5: Different approximations can be applied to Equation 3.20 to easily approximate
the sensitivity of a set of weights.
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Saliency metric

1st order

terms
2nd order terms (Hessian)

Shape Approximation Used

Optimal Brain Damage (LeCun et

al. 1989)
Omitted Diagonal Levenberg-Marquadt

Optimal Brain Surgeon (Hassibi

and Stork 1992)
Omitted Full Fisher

First order Taylor (Molchanov et

al. 2017)
Exact Omitted -

Fisher Information (Theis et al.

2018)
Omitted Diagonal Fisher

Collaborative Channel Prun-

ing (Peng et al. 2019)
Omitted Full

Gauss-Newton with

𝐻𝜎 = 𝑑𝑖𝑎𝑔(𝐿 ⊘ (𝑃 ⊙

𝑃 ))

Table 3.6: Approximations applied to the terms in Equation 3.20 to obtain a saliency metric
for pruning.

Even though different approximations are used, the resulting saliency metrics

can be very similar. Equation 3.24 is used by Theis et al. (2018) is very similar to

Equation 3.23 used by Molchanov et al. (2017).

𝑙𝑆𝑖 =
1

𝑛(𝑙𝐴𝑖)

⃒⃒⃒⃒
⃒⃒∑︁
𝑎∈𝑙𝐴𝑖

𝑎
𝑑ℒ
𝑑𝑎

⃒⃒⃒⃒
⃒⃒ (3.23)

𝑙𝑆𝑖 =
1

2

⎛⎝∑︁
𝑎∈𝑙𝐴𝑖

𝑎
𝑑ℒ
𝑑𝑎

⎞⎠2

(3.24)

Consider Only First Order Terms

A first order expansion can also be used to approximate the change in loss. The

second order terms in the Equation 3.20 can be set to zero to get the saliency metrics

given by considering a first order Taylor expansion. The resulting equation has all

its quantities readily available during backpropagation. The Jacobian matrix (i.e.
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the matrix of gradients) is computed during backpropagation. Equation 3.23 is used

by Molchanov et al. (2017) as a saliency metric.

A first order Taylor approximation is theoretically a coarser approximation of

the real function than a second order Taylor expansion. However, it has the ad-

vantage of omitting computation of higher order derivatives. In practice, we can

see that good saliency metrics can be derived from a first order Taylor expan-

sion (Molchanov et al. 2017; Ding et al. 2019).

Consider Only Second Order Terms

On the other hand, other works choose to neglect the first order term. A common

assumption is that if a network has been trained to a local minimum, its first order

derivatives will be very close to zero. This assumption about the network’s conver-

gence, then allows the first order term (containing the gradients) to be approximated

to zero. This a common approximation when using second order Taylor expansions

(LeCun et al. 1989; Hassibi and Stork 1992; Theis et al. 2018; Peng et al. 2019; Dong

et al. 2017a).

Approximation of Second Order Terms

Computing the estimated terms using a second order Taylor expansion can be ex-

pensive due to the cost of computing the Hessian matrix of the loss function for

every parameter. To reduce computation cost of the Hessian matrix, the terms that

are not on its diagonal can be ignored (Theis et al. 2018; LeCun et al. 1989). Con-

sidering only the diagonal terms of the Hessian reduces the number of points to

be computed. The number of terms on the diagonal of the Hessian is equal to the

number of terms in the Jacobian (gradients). To further reduce the computation cost

of the remaining terms, one can use more approximations. The remaining terms

of Hessian can be estimated using a Levenberg-Marquardt approximation for each

layer of the network (LeCun et al. 1989), the Fisher information (Theis et al. 2018)

or a Gauss-Newton approximation. The Levenberg-Marquardt approximation used

by Optimal Brain Damage (LeCun et al. 1989) propagate only the diagonal Hessian

(see Appendix A). Hence, its computational cost is similar to backpropagating the

gradients. Optimal Brain Surgeon (Hassibi and Stork 1992; Hassibi et al. 1993) also
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use the Fisher matrix as an approximation for the Hessian, however they do not

neglect the non-diagonal terms. By including the non-diagonal terms of the Hes-

sian matrix, Optimal Brain Surgeon (Hassibi and Stork 1992) considers the pairwise

dependency between parameters.

3.8 Experimental Setup

3.8.1 Saliency metrics

We selected a subset of metrics that can be derived from Table 3.1, exclud-

ing 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝 (metrics based on an alternative backpropagation) and

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (metrics based on reconstruction error).

The second order Taylor expansion expressed in Table 3.1 cannot be realistically

computed exactly. The approximations seen in Figure 3-5 are used for the second

order expansion. We choose to fix the shape of the Hessian to a diagonal matrix

and use either an expensive (Levenberg-Marquardt) or a cheap (Gauss-Newton with

𝐻𝜎 = 1) algorithm to compute the remaining terms. Neglecting the first order terms

in a second order Taylor expansion being a popular approximation (LeCun et al.

1989; Hassibi and Stork 1992; Theis et al. 2018; Peng et al. 2019), we test this ap-

proximation, leading to a total of 4 different pointwise saliency metrics that use the

Hessian.

We test all the saliency metrics that can be derived from the 2 base inputs, 7

different pointwise saliency metrics, 5 different reduction methods and 5 different

scaling factors. In total we evaluate 308 different saliency metrics that are the result

of combining different components from each of the four parts of our taxonomy.

No previous evaluation in the literature has considered so many different saliency

metrics. The great majority of the metrics we measure are new combinations of

components and have not been evaluated in previous literature.

3.8.2 Pruning Algorithm

Saliency metrics are embedded into a pruning algorithm to remove weights from

the network. Pruning algorithms can range from simply removing a fixed number
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of channels every iteration (Mao et al. 2017), to the use of reinforcement learning (He

et al. 2018b), and evolutionary particle filters (Anwar et al. 2017). While state-of-

the-art pruning algorithms push the boundaries of pruning further, simple pruning

algorithms are still very efficient (Mao et al. 2017; Han et al. 2015; Frankle and Carbin

2019). Simple pruning algorithms heavily rely on how well the saliency metric can

predict the least salient entities. Since our goal is to compare saliency metrics to

each other with the least number of confounding factors, we opt for simple pruning

algorithms. We evaluate the performance of the saliency metrics using the pruning

algorithm given in Algorithm 1.

We implement channel pruning so that at every step of the pruning process, we

have a dense network with fewer weights than before pruning. Using Algorithm 1,

we select a channel to prune from some convolutional layer of the network at each

step. Where we would remove a channel which participates in a join-type operation

in directed acyclic graph (DAG) structured networks (for example, pruning a chan-

nel from one side of a skip connection in ResNet), we also remove the corresponding

DAG sibling channels, so that data dependencies are satisfied and the network re-

mains dense. The weights of the dependent channels are included in 𝒯 𝒞(𝑙𝑊 𝑖).

Algorithm 1 Algorithm for pruning with retraining. Evaluating different channel
selections for a CNN with loss function ℒ, accuracy 𝒴 , and converged weights
𝑊 with 𝑀 channels for a user-defined maximum drop in initial test accuracy,
𝑡𝑒𝑠𝑡𝐴𝑐𝑐𝐷𝑟𝑜𝑝, maximum drop in train accuracy 𝑡𝑟𝑎𝑖𝑛𝐴𝑐𝑐𝐷𝑟𝑜𝑝 and maximum num-
ber of steps to use for retraining, 𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠.

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑒𝑠𝑡𝐴𝑐𝑐 = 𝒴(𝑊, ℐ𝑡𝑒𝑠𝑡)
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑟𝑎𝑖𝑛𝐴𝑐𝑐 = 𝒴(𝑊, ℐ𝑡𝑟𝑎𝑖𝑛)
repeat

Compute 𝑙𝑆𝑖, ∀𝑙 ∈ {0..𝑙𝑚𝑎𝑥 − 1},∀𝑖 ∈ {0.. 𝑙𝑚− 1} using ℐ𝑣𝑎𝑙

Get 𝑖 and 𝑙, such that 𝑙𝑆𝑖 = 𝑚𝑖𝑛(𝑝𝑆𝑞), ∀𝑝 ∈ {0..𝑙𝑚𝑎𝑥 − 1},∀𝑞 ∈ {0.. 𝑙𝑚 − 1} and
𝑙𝑊 𝑗 is a non-zero tensor.
𝑊 = 𝑊 − 𝒯 𝒞(𝑙𝑊 𝑗)
𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑡𝑒𝑝𝑠 = 0
repeat

Retrain with 1 batch of images from ℐ𝑟𝑒𝑡𝑟𝑎𝑖𝑛

𝑡𝑟𝑎𝑖𝑛𝐴𝑐𝑐 = 𝒴(𝑊, ℐ𝑟𝑒𝑡𝑟𝑎𝑖𝑛)
𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑡𝑒𝑝𝑠 = 𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑡𝑒𝑝𝑠+ 1

until (𝑡𝑟𝑎𝑖𝑛𝐴𝑐𝑐 > 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑟𝑎𝑖𝑛𝐴𝑐𝑐− 𝑡𝑟𝑎𝑖𝑛𝐴𝑐𝑐𝐷𝑟𝑜𝑝)
or (𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑡𝑒𝑝𝑠 ≥ 𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠)

𝑡𝑒𝑠𝑡𝐴𝑐𝑐 = 𝒴(𝑊, ℐ𝑡𝑒𝑠𝑡)
until 𝑡𝑒𝑠𝑡𝐴𝑐𝑐 < 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑒𝑠𝑡𝐴𝑐𝑐− 𝑡𝑒𝑠𝑡𝐴𝑐𝑐𝐷𝑟𝑜𝑝
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3.8.3 Datasets

We run our experiments using three different datasets: CIFAR-10 (Krizhevsky

2009), CIFAR-100 (Krizhevsky 2009), and a downsampled ImageNet (Chrabaszcz

et al. 2017).

These datasets were chosen as they are commonly used standard image classi-

fication datasets with different carateristics. The three datasets used in this chapter

all contain 32× 32 RGB images. They differ in the number of classes, the number of

images per classes, and type of classes. CIFAR-10 contains 50000 train images and

10000 test images classified into 10 different classes of animals and vehicles. CIFAR-

100 is a general dataset that contains 50000 train images and 10000 test images classi-

fied into 100 different classes. For ImageNet-32, the images from ImageNet (ILSVRC

2012 challenge) (Deng et al. 2009) are downsampled to 32 × 32 pixels (Chrabaszcz

et al. 2017). ImageNet is a general dataset that contains 1.28 million train images

and 50000 test images classified into 1000 different classes. ImageNet-32 contains

the same number of images and classes as original ImageNet but have each image

resized to 32 by 32 pixels.

These three datasets each have their own disjoint training set, ℐ𝑡𝑟𝑎𝑖𝑛, and testing

set ℐ𝑡𝑒𝑠𝑡. We train the CNNs on the whole training set, ℐ𝑡𝑟𝑎𝑖𝑛, and measure their test

accuracy using ℐ𝑡𝑒𝑠𝑡.

We split ℐ𝑡𝑟𝑎𝑖𝑛 into two disjoint sets ℐ𝑣𝑎𝑙 and ℐ𝑟𝑒𝑡𝑟𝑎𝑖𝑛. ℐ𝑣𝑎𝑙 is used for computing

the saliency metrics for channel pruning. ℐ𝑟𝑒𝑡𝑟𝑎𝑖𝑛 is used only during the retraining

phase.

3.8.4 CNN models

We conduct a wide range of experiments using different networks and different

datasets.

We use the CIFAR-10 dataset on LeNet, CIFAR10 network, ResNet-20, NIN, and

AlexNet. We use ResNet-20 (He et al. 2016), and NIN (Lin et al. 2013) as originally

described for the CIFAR-10 dataset. We modify the first layer of LeNet-5 (Lecun et

al. 1998) and AlexNet (Krizhevsky et al. 2017) to process 32×32 RGB images instead

of their original input.
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We use the CIFAR-100 dataset on ResNet-20, NIN, and AlexNet. We use

ImageNet-32 on AlexNet.

We maintain the same input size for all our networks to 32 by 32 pixels. If a

network is used for different datasets, the only structural change we apply to that

network is modifying its last layer to classify either 10, 100, or 1000 classes.

These nine networks are trained from scratch and the test accuracy of these net-

works are given in Table 3.7.

LeNet-5 CIFAR10 ResNet-20 NIN AlexNet

CIFAR-10 69.4% 72.8% 88.4% 88.3% 84.2%

CIFAR-100 - - 59.2% 65.7% 54.2%

ImageNet-32 - - - - 39.7%

Table 3.7: Summary of trained network accuracy on CIFAR-10, CIFAR-100, and ImageNet-
32.

3.8.5 Hyperparameters

A batch size of 128 is used for measuring the saliency metric and for retraining. It

should be noted that we use the same batch size for measuring the saliency metric

and for retraining. This is done to easily compare the cost of measuring saliency

metrics and retraining. These costs are explained in Section 3.9.5.

The hyperparameters used in this Chapter is given in Table 3.8.

Each pruning experiment is run 8 times. The maximum drop in accuracy,

𝑚𝑎𝑥𝑇𝑒𝑠𝑡𝐴𝑐𝑐𝐷𝑟𝑜𝑝, is set to 5%.
Network 𝑁𝑣𝑎𝑙 𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠
LeNet 2 256
CIFAR10 2 256
ResNet-20 2 50
NIN 2 25
AlexNet 2 10

Table 3.8: The hyperparameters used for LeNet, CIFAR10, ResNet-20, NIN, and AlexNet
with the CIFAR-10, CIFAR-100, and ImageNet-32 datasets.
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3.9 Results

We begin by considering the three broad categories of saliency metrics proposed

in Figure 3-1. A naturally occurring question is to identify the absolute best-

performing method in each of our experimental scenarios, and to determine the

best pruning we can obtain of each network on each dataset in experiments.

In Table 3.9, we show the results for the best performing saliency metric in each

information category for each network. In this evaluation, we compare the num-

ber of weights pruned allowing a drop in top-1 accuracy of at most 5%. When this

threshold is exceeded, we stop the experiment and take the last snapshot of the

model which was above the threshold as the candidate pruned model. We repeat

this experiment for 8 runs, obtain the mean percentage of weights removed and a

95% confidence interval for the mean. This approach is used for all of the experi-

mentation presented.

Network Weight-based Feature map-based gradient-based
CIFAR-10 dataset
LeNet-5 80.4 ± 2 78.5 ± 2 84.9 ± 4
CIFAR-10 63.0 ± 12 63.5 ± 4 67.5 ± 5
ResNet-20 17.6 ± 7 20.6 ± 24 25.4 ± 9
NIN 63.6 ± 2 59.1 ± 3 72.8 ± 3
AlexNet 68.0 ± 0.3 69.6 ± 2 70.1 ± 2
CIFAR-100 dataset
ResNet-20 5.8 ± 0.4 6.6 ± 1 12.5 ± 3
NIN 59.2 ± 1 54.4 ± 2 52.6 ± 1
AlexNet 60.2 ± 0.1 60.2 ± 11 64.0 ± 3
ImageNet-32 dataset
AlexNet 55.4 ± 7 51.6 ± 2 51.7 ± 5

Table 3.9: Effectiveness of metrics which use different information. The maximum sparsity
achieved (%) obtained for each information category with Algorithm 1 is shown. The shaded
cells correspond to the best results for the given network and dataset.

We can see that gradient-based methods are typically the best-performing in ex-

periments. However, there is no one standout method in our experiments, but rather

we see that different saliency metrics obtain the best results on different networks

or with different datasets. Table 3.10 shows the saliency metrics corresponding to

highlighted results in Table 3.9.

75



Taking AlexNet as an example, we see that on each of the three classification

tasks, a different saliency metric produced the best results. On the CIFAR-10 and

CIFAR-100 tasks, a gradient-based metric was ultimately most effective, while on

the ImageNet task, a pure weight-based metric won out. The choice of which gradi-

ents to consider also had an effect. For CIFAR-10, a weight-oriented metric (𝑋 = 𝑊 )

was most effective, while on CIFAR-100 a feature map-oriented metric (𝑋 = 𝐴) was

most effective.

Network Sparsity % Saliency Metric

CIFAR-10 dataset

LeNet-5 84.9 ± 4
∑︀

𝑥∈𝑙𝐴𝑖

(︀
𝑑ℒ
𝑑𝑥

)︀2
CIFAR-10 67.5 ± 5

∑︀
𝑥∈𝑙𝐴𝑖

⃒⃒⃒
−𝑥𝑑ℒ

𝑑𝑥
+ 𝑥2

2
𝑑2ℒ
𝑑𝑥2 𝐺𝑁

⃒⃒⃒
ResNet-20 25.4 ± 9 1

𝑛(𝑙𝑊 𝑖)

(︃ ∑︀
𝑥∈𝑙𝐴𝑖

𝑑ℒ
𝑑𝑥

)︃2

NIN 72.8 ± 3 1
𝑛(𝑙𝑊 𝑖)

(︃ ∑︀
𝑥∈𝑙𝐴𝑖

−𝑥𝑑ℒ
𝑑𝑥

+ 𝑥2

2
𝑑2ℒ
𝑑𝑥2 𝐺𝑁

)︃2

AlexNet 70.1 ± 2 1
𝑛(𝑙𝑊 𝑖)

∑︀
𝑥∈𝑙𝑊 𝑖

⃒⃒
−𝑥𝑑ℒ

𝑑𝑥

⃒⃒
CIFAR-100 dataset

ResNet-20 12.5 ± 3

(︃ ∑︀
𝑥∈𝑙𝐴𝑖

𝑑ℒ
𝑑𝑥

)︃2

NIN 59.2 ± 1 1

‖𝑙𝑆‖
1

∑︀
𝑥∈𝑙𝑊 𝑖

|𝑥|

AlexNet 64.0 ± 3 1

‖𝑙𝐴𝑖‖
0

∑︀
𝑥∈𝑙𝐴𝑖

⃒⃒
𝑑ℒ
𝑑𝑥

⃒⃒
ImageNet-32 dataset

AlexNet 55.4 ± 7 1
𝑛(𝑙𝑊 𝑖)

∑︀
𝑥∈𝑙𝑊 𝑖

|𝑥|

Table 3.10: The best performing saliency metric in each scenario of network dataset combi-
nation. The sparsity values listed correspond the shaded results in Table 3.9. The saliency
metric listed correspond to the saliency metric that achieved this sparsity level.

While these selected results show the best-performing metrics in our experi-

ments, we performed the same evaluation for all 308 candidate saliency metrics.

We cannot present data for all 308 experiments, but we summarise the trends from

the data in the remainder of this section as Findings, which highlight key trends with
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examples as appropriate. Only a small fraction of these 308 saliency metrics have

been explored in previous literature. The data in Tables 3.9 and 3.10 lead us to:

Finding 1 Gradient-based metrics typically perform better than metrics which con-

sider only weights or feature maps.

Metrics which use gradients require a full forward and backward pass of the

network to compute those gradients, as opposed to feature map-based methods,

which require only a forward pass to compute feature map values, or weight-based

metrics which require no computation beyond the application of the saliency metric

function to the weight values stored in the model. In our experiments, gradient-

based metrics yielded the best pruning or tied for the best pruning in 7 of 9 scenarios

with different networks and datasets (Table 3.9).

3.9.1 Weight-based or Feature Map-based Methods (Choice of 𝑋)

In Tables 3.11 and 3.12, we present the saliency achieved by each pointwise metric

when 𝑋 = 𝑊 and 𝑋 = 𝐴 respectively. This is an important result because although

metrics based on 𝑋 = 𝑊 and 𝑋 = 𝐴 have been proposed in existing literature,

there has been no systematic evaluation of which is better in practice. From Tables

3.11 and 3.12, we see that when using pure weight-based metrics or feature map-

based metrics there is not a clear-cut winner. However, when the weight gradients

or the feature map gradients, it is almost always preferable to use the feature map

gradients.

Finding 2 Pruning using the gradient with respect to the output points more often

than not outperforms pruning using the gradient with respect to the weights.

With channel pruning, there is a one-to-one correspondence between groups of

weights and groups of output points. However, at finer granularities there is no one-

to-one correspondence, but rather a one-to-many correspondence. With this mixing

of information at finer granularities, we expect the gradient with respect to output

points to be a less reliable signal for non-channel-oriented pruning.
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3.9.2 Pointwise Metric (Choice of 𝐹 )

In order to compare pointwise saliency metrics, we need to fix the reduction 𝑅 and

scaling 𝐾 to reasonable choices which can be expected to give good results on aver-

age. Equation 3.25 shows a common choice in the literature (Mao et al. 2017; Li et al.

2017a; Wang et al. 2018; Han et al. 2015; He et al. 2018b; Guo et al. 2016; Ding et al.

2019). Here the reduction 𝑅 is the L1-norm, and the scaling factor 𝐾 = 1.

𝑙𝑆𝑖 =
∑︁
𝑥∈𝑙𝑋𝑖

|𝑓(𝑥)| (3.25)

For constructing pointwise metrics, the use of a Taylor expansion around the

loss function is very common in the literature. We provide the first experimental

evaluation of five Taylor expansions which use different approximations. From the

results in Tables 3.11 and 3.12, we observe that some approximations are often poor.

In particular, neglecting the first order terms (the gradient) when using a second

order Taylor expansion around the loss function is a poor approximation in most

cases. The degree to which the training process has converged before pruning affects

the magnitudes of gradients, meaning they may still be quite large in many cases, so

assuming that they are universally close to zero can be a very coarse approximation.

Finding 3 First order terms are often not negligible in second order Taylor expan-

sions.
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Metric 𝑤 𝑑ℒ
𝑑𝑤

−𝑤 𝑑ℒ
𝑑𝑤

−𝑤 𝑑ℒ
𝑑𝑤

+ 𝑤2

2
𝑑2ℒ
𝑑𝑤2𝐺𝑁

𝑤2

2
𝑑2ℒ
𝑑𝑤2𝐺𝑁

−𝑤 𝑑ℒ
𝑑𝑤

+ 𝑤2

2
𝑑2ℒ
𝑑𝑤2𝐿𝑀

𝑤2

2
𝑑2ℒ
𝑑𝑤2𝐿𝑀

Network
Weights

only

Weights, input images and labels

Gradients

only

Taylor expansions

1st order
2nd order with diagonal Hessian

Gauss-Newton approximation Levenberg-Marquardt approximation

CIFAR-10 dataset

LeNet-5 78.7 ± 9.8 64.3 ± 13.9 80.6 ± 3.0 80.3 ± 3.8 79.0 ± 8.0 80.8 ± 2.8 78.5 ± 5.2

CIFAR10 16.7 ± 62.9 19.3 ± 19.7 53.0 ± 24.5 50.7 ± 24.2 61.7 ± 17.6 50.4 ± 28.7 22.3 ± 5.6

ResNet-20 1.7 ± 0.0 6.7 ± 8.7 4.6 ± 3.7 4.6 ± 2.8 4.0 ± 2.3 4.4 ± 4.2 1.2 ± 0.1

NIN 34.5 ± 0.5 5.6 ± 1.8 61.1 ± 2.8 20.1 ± 59.1 13.7 ± 71.5 60.3 ± 2.3 42.8 ± 1.7

AlexNet 64.0 ± 9.6 40.1 ± 4.8 51.7 ± 9.9 52.0 ± 9.8 49.7 ± 8.6 55.1 ± 6.1 20.0 ± 24.8

CIFAR-100 dataset

ResNet-20 3.4 ± 0.2 3.2 ± 3.8 2.8 ± 6.1 4.1 ± 5.0 1.9 ± 14.0 4.1 ± 3.4 1.1 ± 0.1

NIN 42.2 ± 1.0 35.2 ± 0.2 36.2 ± 0.1 36.4 ± 1.0 37.1 ± 0.1 36.2 ± 0.9 52.4 ± 2.7

AlexNet 58.6 ± 21.4 26.4 ± 14.5 56.1 ± 14.8 52.0 ± 19.3 50.2 ± 11.2 52.1 ± 5.7 27.0 ± 7.3

ImageNet-32 dataset

AlexNet 28.2 ± 2.1 31.0 ± 3.3 31.1 ± 0.8 31.2 ± 2.2 35.2 ± 1.0 31.2 ± 0.8 1.1 ± 0.1

Table 3.11: Comparison between different pointwise saliency metrics. The maximum proportion of weights removed (sparsity) by Algorithm 1
(%) using different pointwise saliency metrics with weights as the input (𝑥 = 𝑤) and Equation 3.25 as reduction method. The shaded results
correspond to the best pruning results obtained per scenario with 𝑥 = 𝑤 and Equation 3.25 as reduction method.
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Metric 𝑎 𝑑ℒ
𝑑𝑎

−𝑎𝑑ℒ
𝑑𝑎

−𝑎𝑑ℒ
𝑑𝑎

+ 𝑎2

2
𝑑2ℒ
𝑑𝑎2 𝐺𝑁

𝑎2

2
𝑑2ℒ
𝑑𝑎2 𝐺𝑁

−𝑎𝑑ℒ
𝑑𝑎

+ 𝑎2

2
𝑑2ℒ
𝑑𝑎2 𝐿𝑀

𝑎2

2
𝑑2ℒ
𝑑𝑎2 𝐿𝑀

Network

Weights

and

input

images

Weights, input images and labels

Gradients

only

Taylor expansions

1st order
2nd order with diagonal Hessian

Gauss-Newton approximation Levenberg-Marquardt approximation

CIFAR-10 dataset

LeNet-5 77.1 ± 2.5 82.0 ± 2.1 82.5 ± 2.2 82.6 ± 2.7 74.6 ± 2.3 82.1 ± 1.8 69.7 ± 5.6

CIFAR10 56.0 ± 14.5 56.7 ± 19.6 65.4 ± 15.0 66.8 ± 16.0 57.3 ± 21.6 65.3 ± 15.9 22.3 ± 17.2

ResNet-20 5.5 ± 3.2 4.2 ± 3.5 11.5 ± 14.6 12.8 ± 17.3 9.5 ± 14.1 13.2 ± 13.4 2.4 ± 0.3

NIN 32.9 ± 25.4 5.4 ± 61.8 58.3 ± 4.3 56.9 ± 4.1 62.7 ± 14.2 59.7 ± 12.6 38.7 ± 24.6

AlexNet 69.2 ± 4.4 63.9 ± 5.6 65.0 ± 3.0 63.3 ± 2.4 57.0 ± 5.4 63.8 ± 4.3 35.3 ± 5.1

CIFAR-100 dataset

ResNet-20 3.8 ± 1.7 2.4 ± 1.0 4.6 ± 2.4 4.7 ± 2.8 5.2 ± 2.3 4.6 ± 1.7 6.4 ± 4.3

NIN 42.6 ± 2.2 35.2 ± 0.0 36.2 ± 0.1 36.2 ± 0.0 37.0 ± 0.8 36.1 ± 0.1 45.6 ± 2.0

AlexNet 57.6 ± 6.7 62.9 ± 2.2 62.7 ± 3.3 62.9 ± 2.7 52.5 ± 5.8 62.4 ± 3.7 33.1 ± 23.6

ImageNet-32 dataset

AlexNet 19.4 ± 4.1 40.4 ± 1.9 30.3 ± 1.2 30.2 ± 1.5 25.6 ± 0.9 30.4 ± 1.7 2.9 ± 1.4

Table 3.12: Comparison between different pointwise saliency metrics. The maximum proportion of weights removed (sparsity) by Algorithm 1
(%) using different pointwise saliency metrics with output points as the input (𝑥 = 𝑎) and Equation 3.25 as reduction method. The shaded results
correspond to the best pruning results obtained per scenario with 𝑥 = 𝑎 and Equation 3.25 as reduction method.
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The second order term in the Taylor expansion −𝑥𝑑ℒ
𝑑𝑥

+ 𝑥2

2
𝑑2ℒ
𝑑𝑥2 corresponds to

the Hessian of the loss function, which is very expensive to compute. Several ap-

proximations of the Hessian have been used in the literature. Using a Levenberg-

Marquardt approximation requires a very expensive backward propagation of the

second order derivatives. This is not commonly implemented in popular deep learn-

ing frameworks, because only the first derivative (i.e. the gradient) is required

for training. We found that, in the majority of cases in our experiments, a Gauss-

Newton approximation of the Hessian is sufficient for pruning. In Tables 3.11 and

3.12, we see that the Levenberg-Marquadt approximation is only clearly advanta-

geous in one case, when pruning NIN on CIFAR-100.

Finding 4 The Gauss-Newton approximation of the Hessian is sufficiently accurate

for pruning.

3.9.3 Reduction (Choice of 𝑅)

When pruning blocks of weights, the pointwise metrics are combined into a single

value using some reduction function. Existing research on pruning often places

little focus on reduction and scaling methods, and it can sometimes be difficult to

identify the approach used in any given method. Nonetheless, the method by which

the pointwise metric is reduced and scaled can greatly influence the quality of a

saliency metric.

Finding 5 Strictly positive saliency metrics offer better pruning results.

Figure 3-6 presents the results of our experimentation grouped so that only the

reduction and scaling methods vary. Figure 3-6a presents a summary for all choices

of input and all pointwise metrics. We then examine the three families of metrics

outlined in Figure 3-1 in more detail: metrics which consider static information (i.e.

weights) only (𝑋 = 𝑊 , Figure 3-6b), metrics which consider information available

with only a forward pass, i.e. weights and output feature maps, (𝑋 = 𝐴, Figure 3-

6c) and finally metrics which consider all information available from a forward and

backward pass (𝑋 = 𝐴 and 𝑓(𝑥) involves a gradient, Figure 3-6d).

As a general trend, we see that using the same pointwise saliency metric but

varying the reduction or scaling methods can produce very different results. For
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(b) 𝑋 = 𝑊 and 𝑓(𝑥) = 𝑥.

Figure 3-6: Comparison between different reduction methods and scaling factors. The per-
centage of convolution weights removed (sparsity) on average for different scaling methods
across different networks and datasets.

.
example, we see that using the raw sum of the gradients (first bar set in each graph)

typically results in poorly performing metrics versus other reduction methods. In
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(d) 𝑋 = 𝐴 and 𝑓(𝑥) = −𝑥𝑑ℒ
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Figure 3-6: Comparison between different reduction methods and scaling factors. The per-
centage of convolution weights removed (sparsity) on average for different scaling methods
across different networks and datasets.

.
each scenario, reducing by the sum of the absolute values of the gradients produces

significantly better results (second bar set in each graph).
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We observe that the gap between the simple summation and the other

guaranteed-positive reduction methods is smaller in Figure 3-6c where we use

𝑋 = 𝐴, i.e. the gradient with respect to output features. In our experiments, net-

works containing ReLU layers are optimised such that ReLU is fused with the con-

volution layer, meaning the resulting output features are non-negative. This means

the simple summation is also guaranteed non-negative, which improves the quality

of pruning decisions significantly.

3.9.4 Scaling (Choice of 𝐾)

In Figures 3-6b and 3-6c, we see that two scaling methods stand out when we ignore

the typically poorly-performing first bar group which corresponds to the simple-

summation reduction method. Across all four remaining guaranteed-positive re-

duction methods, two scaling factors trade blows for first and second place in terms

of the quality of pruning decisions:
⃦⃦⃦
𝑙 ̃︀𝑆 ⃦⃦⃦

1
and 𝑛(𝒯 𝒞(𝑙𝑊 𝑖)).

Recall from Section 3.3.4 that
⃦⃦⃦
𝑙 ̃︀𝑆 ⃦⃦⃦

1
is the layer-wise L1 norm of saliency val-

ues, and 𝒯 𝒞(𝑙𝑊 𝑖) denotes the entire set of weights transitively removed when 𝑙𝑊 𝑖

is removed from the network. Both of these scaling factors incorporate structural

information, as opposed to strictly local information about the parameters being

pruned.

Finding 6 Incorporating structural information of the network in the scaling factor

offers better pruning results.

In Figure 3-6b, we can directly compare scaling by the local (𝑛(𝑙𝑊 𝑖)) and tran-

sitive (𝑛(𝒯 𝒞(𝑙𝑊 𝑖))) number of weights removed. These are the second-to-last and

last bars in each bar set, respectively. While the improvement of using 𝑛(𝒯 𝒞(𝑙𝑊 𝑖))

is sometimes small, it is strictly better than using only the local information in each

case when considering guaranteed-positive reduction methods.

In Figure 3-6d, we look at how a good gradient-based pointwise metric can be

affected by reduction and scaling. Similarly to non-gradient-based metrics in Fig-

ures 3-6b and 3-6c, we see that the use of a reduction method that is guaranteed

positive led to significantly better results. The gradient-based metric results further

highlight the benefit of using non-local information. The best overall pruning result
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is achieved using 𝑛(𝒯 𝒞(𝑙𝑊 𝑖)) as the scaling factor (fourth bar set in the figure), but

using the local scaling factor 𝑛(𝑙𝑊 𝑖) while keeping everything else fixed makes the

quality of the metric plummet – in this case, by nearly 20 percentage points average

sparsity achieved across all networks and datasets in our experiments.

Finding 7 The number of weights transitively removed is a better scaling factor

than the number of weights locally removed.

3.9.5 Saliency Metrics and Retraining Iterations

Retraining is a crucial step in many pruning algorithms because it allows the net-

work to adjust remaining parameters to compensate for the damage done by the

removal of pruned parameters. However, when evaluating saliency metrics, retrain-

ing is a confounding factor because it can arbitrarily change weight values. In fact,

the effect of retraining is so great that we can often compensate for the suboptimal

choices made by poor saliency metrics with enough retraining.

Confounding factors notwithstanding, it seems intuitive that a better saliency

metric, should greatly reduce the effort spent on retraining to achieve a given target

accuracy and sparsity. Better saliency metrics do less damage to the network to at-

tain a given minimum sparsity, and conversely also result in higher achievable spar-

sity ratios for a given minimum accuracy. Thus, we expect the total computational

cost of pruning (retraining included) to be reduced by choosing a higher-quality

saliency metric.

Algorithm 2 Algorithm for pruning without retraining. Evaluating different chan-
nel selections for a CNN with loss function ℒ, accuracy 𝒴 , and converged weights
𝑊 with 𝑀 channels for a user-defined maximum drop in initial test accuracy,
𝑚𝑎𝑥𝑇𝑒𝑠𝑡𝐴𝑐𝑐𝐷𝑟𝑜𝑝.

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑒𝑠𝑡𝐴𝑐𝑐 = 𝒴(𝑊, ℐ𝑡𝑒𝑠𝑡)
repeat

Compute 𝑙𝑆𝑖, ∀𝑙 ∈ {0..𝑙𝑚𝑎𝑥 − 1},∀𝑖 ∈ {0.. 𝑙𝑚− 1} using ℐ𝑣𝑎𝑙

Get 𝑖 and 𝑙, such that 𝑙𝑆𝑖 = 𝑚𝑖𝑛(𝑝𝑆𝑞), ∀𝑝 ∈ {0..𝑙𝑚𝑎𝑥 − 1}, ∀𝑞 ∈ {0.. 𝑙𝑚 − 1} and
𝑙𝑊 𝑗 is a non-zero tensor.
𝑊 = 𝑊 − 𝒯 𝒞(𝑙𝑊 𝑗)
𝑡𝑒𝑠𝑡𝐴𝑐𝑐 = 𝒴(𝑊, ℐ𝑡𝑒𝑠𝑡)

until 𝑡𝑒𝑠𝑡𝐴𝑐𝑐 < 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑒𝑠𝑡𝐴𝑐𝑐− 𝑡𝑒𝑠𝑡𝐴𝑐𝑐𝐷𝑟𝑜𝑝
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We examine the relationship between the quality of a saliency metric and the

total computational cost of pruning. As a proxy for the quality of a saliency metric

we use the maximum sparsity achieved using that metric without any retraining, i.e.

using Algorithm 2. The pruning algorithm outlined in Algorithm 2 is similar to our

previous pruning algorithm, except for the omission of retraining steps.

We refer to the total cost of pruning as the total computational cost to reach a

certain sparsity while maintaining a fixed accuracy target. Hence, in addition to the

accuracy threshold in Algorithm 1, we add a stopping condition related to the spar-

sity. When this target is met, we stop the experiment and record the total number

of steps that were required to prune and retrain the network. The target sparsity

ratio chosen for each network on each dataset was the best achievable sparsity from

Table 3.9 minus 5%. This additional target allows us to filter out very poor saliency

metrics and to compare pruned networks of similar size and accuracy.

The total cost of pruning is given by the sum of the cost of computing the saliency

metric and the cost of retraining. The cost of a single retraining step is the cost of

one backward and one forward pass of the network. To easily compare cost, we

assume that the cost of a backward pass is twice that of a forward pass. The cost of

computing a saliency metric is given in Table 3.13. The cost of backpropagating the

second order derivatives is similar to the cost of propagating the gradients (LeCun

et al. 1989) (see Appendix A).

Pointwise Metric Cost Pointwise Metric Cost

𝑥

{︂
𝑥 = 𝑤 0 −𝑥𝑑ℒ

𝑑𝑥
+ 𝑥2

2
𝑑2ℒ
𝑑𝑥2 𝐺𝑁

3×𝑁𝑣𝑎𝑙

𝑥 = 𝑎 1×𝑁𝑣𝑎𝑙
𝑥2

2
𝑑2ℒ
𝑑𝑥2 𝐺𝑁

3×𝑁𝑣𝑎𝑙

𝑑ℒ
𝑑𝑥

3×𝑁𝑣𝑎𝑙 −𝑥𝑑ℒ
𝑑𝑥

+ 𝑥2

2
𝑑2ℒ
𝑑𝑥2 𝐿𝑀

5×𝑁𝑣𝑎𝑙

−𝑥𝑑ℒ
𝑑𝑥

3×𝑁𝑣𝑎𝑙
𝑥2

2
𝑑2ℒ
𝑑𝑥2 𝐿𝑀

5×𝑁𝑣𝑎𝑙

Table 3.13: Cost of saliency metrics using ℐ𝑣𝑎𝑙 (𝑁𝑣𝑎𝑙 batches of images).

In Figure 3-7, we see the result of this experiment for AlexNet on the CIFAR-10

dataset. Each point on the graph is one saliency metric. We see that many saliency

metrics are able to be used in Algorithm 2 to meet both the sparsity and accuracy tar-

gets. However, as predicted, poorer saliency metrics result in much more retraining
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being required to reach a network of the given quality than good saliency metrics.

To quantify our results in terms of the correlation of metric quality and pruning cost,

we use the Spearman rank correlation. The correlation for AlexNet on CIFAR-10 (as

presented in Figure 3-7 is −0.9. A similar trend is observed (negative correlation in

Table 3.14) for the other networks except for ResNet-20 on CIFAR-10 where we had

only 3 metrics meeting the targets. This leads us to another novel finding of our

work.

CIFAR-10
LeNet-5 CIFAR10 ResNet-20 NIN AlexNet
-0.10 (3𝑒−1) -0.5 (8𝑒−4) 1 (0) -0.7 (6𝑒−2) -0.9 (2𝑒−19)
CIFAR-100
- - -0.6 (1𝑒−1) -0.6 (4𝑒−1) -0.8 (4𝑒−18)
ImageNet-32
- - - - -0.9 (3𝑒−3)

Table 3.14: Spearman rank correlation (with p-value) between metric quality and computa-
tional cost of pruning including retraining.

Finding 8 Better saliency metrics greatly reduce retraining requirements in prun-

ing.
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Figure 3-7: Cost to prune a network (lower is better) against quality of the saliency metric
(higher is better).

87



Using a good saliency metric can greatly reduce the total cost for pruning a net-

work. In the case of AlexNet trained on CIFAR-10 Figure 3-8 , with a fixed sparsity

and accuracy target and starting from the same initial trained network, the most cost

efficient experiment was about 75× less computationally expensive than the exper-

iment with the highest computational cost. The smallest improvement is observed

for NIN on CIFAR-10 with the most best metric being 1.4× less computationally

expensive that the worst case.

Le
Ne

t-5
 o

n 
CI

FA
R-

10

CI
FA

R1
0 

on
 C

IFA
R-

10

Re
sN

et
-2

0 
on

 C
IFA

R-
10

Re
sN

et
-2

0 
on

 C
IFA

R-
10

0

NI
N 

on
 C

IFA
R-

10

NI
N 

on
 C

IFA
R-

10
0

Al
ex

Ne
t o

n 
CI

FA
R-

10

Al
ex

Ne
t o

n 
CI

FA
R-

10
0

Al
ex

Ne
t o

n 
Im

ag
eN

et
-3

2

Network

0

10

20

30

40

50

60

70

Co
st

 S
av

in
gs

1.6 2.4 2.4

22

1.4 1.5

76

18

9.3

Figure 3-8: Relative factor (× times) cost for pruning between the most expensive and least
expensive pruning experiment that meet the sparsity and accuracy targets.

We observe that for some networks the least computationally expensive pruning

experiment needed only a few retraining steps to meet the accuracy and sparsity re-

quirements. In Figure 3-9 , we see that for AlexNet on CIFAR-10 and on ImageNet-

32 as well as ResNet-20 on CIFAR-20, the most cost efficient cases require almost no

retraining steps to meet the sparsity and accuracy targets.

With good saliency metrics, pruning algorithms can reduce their computational

cost while meeting their accuracy and sparsity targets.
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Figure 3-9: Proportion of computational cost for saliency computation and retraining for the
case with smallest total cost that meets the accuracy and sparsity requirements.

3.10 Conclusion

Although many pruning strategies have been proposed, we have identified that a

common element is the saliency metric that seeks to identify unimportant param-

eters. We propose a novel taxonomy that characterises saliency metrics, by com-

bining elements from four independent components: (1) base input, (2) pointwise

metric, (3) reduction, and (4) scaling. This taxonomy allows us to identify common

components among saliency metrics in the many existing pruning strategies, and

to derive novel metrics by combining elements from four independent components.

We experimentally evaluate 308 such metrics.

We confirm some well-known results, like that gradient-based methods are sig-

nificantly better than simpler methods based purely on the weights or output fea-

ture maps. But we also find new insights that were previously unknown despite

a large existing literature on pruning. For example, metrics that use the gradient

with respect to outputs tend to outperform those using the gradient with respect to
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weights. The most successful gradient-based methods use a second-order Taylor ex-

pansion. Within this expansion, the first order term contains important information

that should not be omitted as is the practice in metrics such as Optimal Brain Dam-

age (LeCun et al. 1989), but the Gauss-Newton approximation is sufficient for the

second order term. Another important new insight is that good metrics can be eas-

ily undermined by a poor reduction, such as simply adding pointwise terms. On the

other hand, there is scope for significant improvements in scaling factors containing

structural information, such as our novel scaling method based on the number of

transitively-pruned parameters that arise when pruning channels.

The saliency metric is just one component of pruning algorithms but it has a

critical impact on the success of pruning. We anticipate that our taxonomy and

evaluation will guide practitioners to the best existing saliency metrics, and direct

researchers to open new frontiers in the design space. In particular, methods of

reduction and scaling are perhaps the least developed aspect of saliency metrics,

and are likely offer the greatest opportunities for improvement.
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Chapter 4

Composition of Saliency Metrics

Traditionally, a single heuristic saliency metric is used for the entire pruning process.

In this chapter, we show how to compose a set of these saliency metrics to form a

much more robust (albeit still heuristic) saliency. The key idea proposed in this

chapter is to exploit the cases where the different base metrics do well, and avoid

the cases where they do poorly by switching to a different metric. Since the values

of saliency metrics cannot be compared directly, we use a simple oracle to combine

the decisions of the saliency metrics. Using the same experimental setup as Section

3.9.5 on the CIFAR-10 and CIFAR-100 datasets, we show that the composite saliency

metrics derived by our method consistently match or outperform all the individual

constituent metrics.

4.1 Introduction

A wide variety of heuristic saliency metrics have been proposed over decades of re-

search in artificial intelligence(Han et al. 2015; LeCun et al. 1989; Hassibi and Stork

1992; Mozer and Smolensky 1988; Molchanov et al. 2017). As seen in Chapter 3, each

of these heuristic saliency metrics may perform better or worse in context, with no

one metric being clearly superior. When pruning a neural network, one must often

resort to simple rules of thumb or guesswork to select an appropriate heuristic to

guide the pruning process. The use of a single saliency metric for the entire prun-

ing process also assumes that a single saliency metric accurately approximates the

importance of weights for the entire pruning process. However, the underlying
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assumptions of the chosen saliency metric may be invalidated at some point of the

pruning process and another saliency metric may be able to estimate the importance

of the weights more accurately.

4.1.1 Contributions

In this chapter, we propose a method to derive a composite saliency metric which can

avoid poor choices made by otherwise effective constituent saliency metrics. Our

approach uses a myopic oracle to decide which of a fixed set of constituent metrics

should be active at every step of the pruning process. As the predictive power of the

constituent metrics waxes and wanes, our approach dynamically switches between

metrics so that the most appropriate metric is guiding the process at all points.

We make the following principal contributions:

• We propose a composite saliency metric that uses existing saliency metrics.

• We use the constituent saliency metrics to narrow the search space of pruning.

• We show how to compose different saliency metrics automatically using the

myopic oracle.

• We experimentally investigate fusion of state-of-the-art saliency metrics using

the CIFAR-10 and CIFAR-100 datasets on 5 different network architectures.

4.2 Background

Most saliency metrics rely on some assumptions. For example, when using the

L1-norm of weights, the assumption is that smaller weights contribute less to the

network. Their underlying assumptions can sometimes be conflicting. The 2nd or-

der Taylor expansion using Fisher information and 1st order Taylor expansion are

both derived using the Taylor expansion presented in Figure 4-1. However, they

are constructed under different assumptions. The construction of the 2nd order Tay-

lor expansion using Fisher information (Theis et al. 2018) assumes that the weight

gradients and feature map gradients are insignificant. Hence, the 1𝑠𝑡 order terms in

Figure 4-1 are ignored and the second order terms are approximated to the Fisher
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information to derive Equation 4.6. On the other hand, when using a first order

Taylor expansion, the higher order terms are considered insignificant, meaning we

ignore the 2𝑛𝑑 order terms in Figure 4-1 to derive Equation 4.5.

2nd order term s1st  order term s

Figure 4-1: Estimating the effect of pruning the 𝑖𝑡ℎ output channel of the 𝑙𝑡ℎ layer of a net-
work with loss function ℒ using a 2nd order Taylor development around 𝐴, the feature maps
of the network.

This is a crucial distinction, because these built-in assumptions in the construc-

tion of the metrics are typically not simultaneously true for any given network.

Moreover, as the pruning process continues, the degree of significance of different

components can, and does, change. When most of the remaining information is in

higher order components, metrics using only first order components are effectively

making random decisions, and vice versa.

For example, in the case of pruning a partially converged network, the gradients

of the weights and feature maps are very unlikely to be negligible. When pruning a

fully converged network, the gradients are much more likely to be negligible. When

pruning a fully trained network, we start with converged weights. However, as the

pruning process proceeds, we may end up pruning partially converged weights,

since the pruning process degrades the network.

4.3 Composing Saliency Metrics

When using any one saliency metric for the entire pruning process, we run the risk

of the metric assumptions being invalidated, leading to poor decisions being made

by the metric. Ideally we could combine the best aspects of different saliency met-

rics. The chief difficulty lies in combining the numerical output of different pruning

metrics, which are not directly comparable.

Consider the application of two saliency metrics 𝐴 and 𝐵 to neural network

𝒩 with a total of four weights [𝑎, 𝑏, 𝑐, 𝑑]. Let us suppose that ranking the weights

with each metric yields the rankings 𝐴(𝒩 ) = [0.5, 0.4, 0.9, 0.1] and 𝐵(𝒩 ) =

93



[0.01, 0.05, 0.04, 0.06]. Metric 𝐴 indicates removing weight 𝑑 will have the least ef-

fect, while metric 𝐵 indicates removing weight 𝑎 will have least effect.

If the metrics agree on the weights to be removed, there is no issue. However,

if they disagree, there are two alternatives to consider. If either choice results in

the same amount of damage to the network, we can call the disagreement trivial.

However, if one causes more damage than the other, the disagreement is non-trivial.

If we continue to use the suboptimal metric to guide the process, we will introduce

more and more relative error.

Inspection of the numerical saliency values assigned to each weight or set of

weights by metrics 𝐴 and 𝐵 exposes the difficulty of combining these metrics nu-

merically. Although each metric ranks the weights or set of weights in the network,

in principle, these saliency values can have arbitrary scales. If we were to combine

the metrics with a simple linear combination, such as a weighted average, one met-

ric would be disproportionately selected. As we add more and more metrics to the

set, the difficulty increases. However, by performing a forward pass of the network,

we may determine at any point the true effect on the loss function of making a par-

ticular pruning decision. This is the key to our proposed approach.

4.3.1 Our Proposed Method: Myopic Oracle

When different saliency metrics yield different rankings for the same sets of weights,

we can evaluate which ranking is the most correct by performing a direct measure-

ment of the sensitivity of the network to the removal of the proposed subsets of

parameters.

For brevity of presentation, in the following treatment we choose subsets of pa-

rameters corresponding to whole output feature maps (i.e. channel pruning). How-

ever, the approach is no different for other subsets of weights (filters, individual

weights or any other granularity of pruning).

For a CNN characterised by the loss function ℒ and permanent weights 𝑊 , the

sensitivity of the 𝑖𝑡ℎ channel of the 𝑙𝑡ℎ layer the network, using forward passes on the

validation set 𝐼𝑣𝑎𝑙, is given by the change in the loss caused by pruning that channel,

as shown in Equation 4.1.
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(a) Channel selection (𝑘 = 3) and oracle evaluation. This
figure also illustrates how the myopic oracle selects the best
channels out of the remaining ones in a round-robin manner.
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previously chosen for evaluation by the oracle.
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(b) Sensitivity evaluation by the oracle for a channel, 𝑐, according to Equation 4.1.

Figure 4-2: Combining rankings of saliency metrics A, B, and C using a myopic oracle with
𝑘 = 3.

We remind some relevant notation to facilitate the description of the sensitivity

measure used. Figure 4-3 provides a summary of the notation used. 𝒯 𝒞(𝑙𝑊 𝑖) de-

notes all the parameters that need to be removed when the 𝑐𝑡ℎ channel of the 𝑙𝑡ℎ layer

is removed. Removing 𝒯 𝒞(𝑙𝑊 𝑖) from the network results in a dense network with

fewer weights. Hence, 𝒯 𝒞(𝑙𝑊 𝑖) contains 𝑙𝑊 𝑖 but also includes parameters from

other layers that interact with the selected channel. The case of a simple forward

feed network is shown in Figure 4-3, where 𝒯 𝒞(𝑙𝑊 𝑖) is highlighted in red or green,

and 𝑙𝑊 𝑐 is highlighted in red. An in-depth explanation of how we obtain 𝒯 𝒞(𝑙𝑊 𝑖)

is given in Section 5.3.1.
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Convolution LayerConvolution Layer 

Figure 4-3: Reminder of Figure 3-3. The complete description of our notation is described in
Section 2.2.1.

𝑙𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖 = ℒ(𝑊 − 𝒯 𝒞(𝑙𝑊 𝑖), 𝐼𝑣𝑎𝑙)− ℒ(𝑊, 𝐼𝑣𝑎𝑙) (4.1)

At every pruning step, the myopic oracle measures the sensitivity of only 𝑘 dif-

ferent channels using the validation set. Notionally, 𝑘 is the number of channels

that the myopic oracle can “see”. The choice of the value of 𝑘 depends on the prun-

ing algorithm used, but must be at least the number of channels that the pruning

algorithm considers pruning simultaneously. Hence, 𝑘 can vary depending on the

pruning algorithm.

It should be noted that the different constituent saliency metrics and the sensitiv-

ity computed by the myopic oracle use the same dataset, 𝐼𝑣𝑎𝑙, containing 𝑁𝑣𝑎𝑙 batches

of images. The cost of running the myopic oracle for one channel is similar to the

cost of computing the feature map-based heuristics that use forward passes only.

Hence, if 𝑁𝑣𝑎𝑙 batches are used to measure the sensitivity for each channel the cost

of running the oracle (excluding the cost of computing the individual saliency met-

rics) is 𝑘×𝑁𝑣𝑎𝑙× 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑝𝑎𝑠𝑠. Assuming that the cost of a backward pass is

roughly equal to twice the cost of a forward pass, the cost of computing a gradient-

based saliency metric also using 𝑁𝑣𝑎𝑙 batches is 3 × 𝑁𝑣𝑎𝑙 × 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑝𝑎𝑠𝑠.

The cost of the myopic oracle is hence not prohibitive but needs to be factored when

choosing 𝑘. A wider view may yield better results but at an increased computational

cost.
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The myopic oracle visits each of the constituent saliency metrics in a round-robin

fashion, and selects the lowest ranked channel to add to the set of channels whose

sensitivity should be measured. If the lowest ranked channel has already been se-

lected by another constituent, the second lowest is used instead, and so on. This

process continues until 𝑘 unique channels have been selected. The sensitivity of

each channel is then tested, yielding the true ranking of these 𝑘 channels.

Note that the actual saliency values output by each saliency metric are never

consumed by the oracle, only the implied ordering of the channels is used. In this

way, the oracle is agnostic to the scales of the individual pruning metrics.

Figure 4-2a the illustrates selection of channels to be evaluated by the oracle in

the case of a pruning algorithm with 𝑘 = 3. The selected channels then have their

sensitivities measured by the oracle according to Equation 4.1 and Figure 4-2b.

4.3.2 Constituent Saliency Metrics

Our composite approach can be used with any saliency metric which can be ex-

pressed as a function of weights and feature maps (including all gradients, which

are derivatives of one with respect to the other). However, composing all published

saliency metrics following this schema would be unrealistic. Instead we choose a

sample of prominent saliency metrics from the literature that perform well in prac-

tice. These metrics rely on different kinds of information. We consider weight-

based, feature map-based, and gradient-based saliency metrics.

We selected the constituent saliency metrics shown in Table 4.1 to be combined

using the myopic oracle. Prior work has shown each of these saliency metrics are

very effective.

Even though they are known to perform well, the chosen saliency metrics are

constructed under different assumptions and use a diverse selection of parameters

from the network.
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Saliency Metric Equation

Mean squares of weights (Molchanov et al. 2017)
𝑙𝑆𝑖 =

1

‖𝑙𝑊 𝑖‖0

∑︁
𝑤∈𝑊𝑐

𝑤2

(4.2)

Mean of activations (Anwar et al. 2017)
𝑙𝑆𝑖 =

1⃦⃦
𝑙𝐴𝑖

⃦⃦
0

∑︁
𝑎∈𝑙𝐴𝑖

𝑎

(4.3)

Average of gradients (Liu and Wu 2019) 𝑙𝑆𝑖 =
1⃦⃦

𝑙𝐴𝑖

⃦⃦
0

⃒⃒⃒⃒
⃒⃒∑︁
𝑎∈𝑙𝐴𝑖

𝑑ℒ
𝑑𝑎

⃒⃒⃒⃒
⃒⃒

(4.4)

1st order Taylor expansion (Molchanov et al. 2017) 𝑙𝑆𝑖 =
1⃦⃦

𝑙𝐴𝑖

⃦⃦
0

⃒⃒⃒⃒
⃒⃒∑︁
𝑎∈𝑙𝐴𝑖

𝑎
𝑑ℒ
𝑑𝑎

⃒⃒⃒⃒
⃒⃒

(4.5)

2nd order Taylor expansion using Fisher information
(Theis et al. 2018)

𝑙𝑆𝑖 =
1

2

⎛⎝∑︁
𝑎∈𝑙𝐴𝑖

𝑎
𝑑ℒ
𝑑𝑎

⎞⎠2

(4.6)

Table 4.1: Notable saliency metrics used for channel pruning.

4.4 Experimental Setup

4.4.1 Saliency Metrics

For our experimental setup, we choose a set of constituent saliency metrics in Ta-

ble 4.1 to compose via the myopic oracle, and also a general pruning algorithm to

follow.

4.4.2 Hyperparameters

The myopic oracle is evaluated with 𝑘 = 5, 8, 12, 16.

𝑁𝑣𝑎𝑙 is set to 2 for networks using the CIFAR-10 dataset and to 4 for networks

using the CIFAR-100 dataset. The batch size used is 128. Hence, the total number

of images, used for measuring the constituent saliency metrics and the oracle, is

256 for CIFAR-10 and 512 for CIFAR-100. It should be noted that even though the
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images for evaluating the saliency metrics and the oracle are randomly sampled at

each iteration, within the same iteration the same images are used for computing the

constituent saliency metrics and myopic oracle. This is done to avoid introducing

more information available to the constituent metrics and oracle if more constituent

metrics are used or for higher values of 𝑘.

The experiments are run 8 times and the average pruning rates over these 8 runs

are presented in the results section along with their associated error bars.

4.4.3 Datasets and CNN Models

We run the experiments using the CIFAR-10 and CIFAR-100 datasets. The datasets

are used as described in Section 3.8.3.

For the CIFAR-10 dataset, we use the following architectures: LeNet, CIFAR10,

ResNet-20, NIN, and ResNet. For the CIFAR-100 dataset, we use the following ar-

chitectures: ResNet-20, NIN, and AlexNet. The CNN models used are described in

Section 3.8.4.

4.4.4 Pruning Algorithm

Since our objective is specifically to study the differences in pruning metrics, we

choose to eliminate confounding factors by using a simple, iterative pruning algo-

rithm without fine-tuning or retraining. The only change we make to the network

weights is to set pruned weights to zero. Using a pruning retraining with retraining

is needed to find the absolute best network, however introducing retraining intro-

duces more stochasticity in the results and can compensate the poor choices of the

saliency metric. Since our aim is not to find the best network but the best saliency

metric, retraining can obfuscate the results. As seen in Section 3.9.5, even when re-

training is in use, saliency metrics which cause less deviation from the initial test

accuracy can lead to less time being spent on retraining, and also to large groups of

channels being simultaneously removed, in the case of pruning algorithms that al-

low for simultaneous pruning of multiple channels. Hence, a better saliency metric

will reduce the total amount of effort used to produce pruned networks. Algorithm

2 outlines the simple pruning algorithm used to evaluate the myopic oracle.
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We use Algorithm 2 with 𝑡𝑒𝑠𝑡𝐴𝑐𝑐𝐷𝑟𝑜𝑝 = 5%.

4.5 Results

Saliency Metric LeNet-5 CIFAR10 ResNet-20 NIN AlexNet

Mean of
activations

24±0.1 29±2 6±1 14±1 37±6
- - 2.6±0.5 38.1±0.2 22 ± 0.2

1st order Taylor
expansion

33±6 16±0.1 2±0.1 14±1 49±6
- - 2.3±0.3 38.2±0.1 47 ± 0.4

2nd order Taylor
expansion

22±5 39±2 6±3 21±2 43±6
- - 1.1±0.1 38.5±0.4 52 ± 6

Average of
gradients

25±6 24±4 3±0.3 24±1 46±9
- - 2.1±0.3 36.7±0.3 50 ± 7

Mean squares
of weights

17 23 5 28 49
- - 1.7 40.7 45

Myopic
Oracle

𝑘 = 5
29±5 37±4 9±4 31±2 52±0.3
- - 3.2±0.3 39.5±0.4 55 ± 7

𝑘 = 8
26±3 40±3 10±4 31±2 53±5
- - 3.4±0.3 39.8±0.4 57 ± 7

𝑘 = 12
27±4 41±2 11±4 32±2 58±3
- - 3.7±0.4 39.9±0.4 60 ± 0.8

𝑘 = 16
26±7 43±3 11±3 33±2 61±4
- - 3.7±0.3 40.0±0.6 60 ± 1

Table 4.2: Convolution weights (%) removed for a 5% accuracy drop on CIFAR-10 (grey)
and CIFAR-100.

Figure 4-4 presents the result of our experimental evaluation on the five chosen

convolutional neural networks. For all five networks, we see that the composite

saliency metric matches or exceeds the predictive quality of any of the individual

constituent metrics until the test accuracy of the network drops far below useful

levels.

4.5.1 Behaviour of Composite Metrics

We would like to draw attention to the ResNet-20 (Figure 4-4a) and NIN (Figure 4-

4b) networks in particular. For ResNet-20 (Figure 4-4a), our experiment shows

clearly that some saliency metrics are very badly suited for guiding pruning on this
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(b) NIN
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(c) LeNet-5
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(d) CIFAR10
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(e) AlexNet
Mean squares of weights (Equation 4.2)
Mean of activations (Equation 4.3)

Average of gradients (Equation 4.4)
1st order Taylor (Equation 4.5)

Fisher information (Equation 4.6)
Myopic oracle (our method)

Figure 4-4: Graphs show top-1 test accuracy versus number of convolution weights (%)
removed by pruning using the CIFAR-10 dataset. Individual saliency metrics are indicated
with dashed lines, and the myopic oracle (with 𝑘 = 8) is indicated with a solid line. Error
bands for the myopic oracle are shown based on a 95% confidence interval for 8 runs of the
experiment.

network. It is not that these are bad metrics; on the contrary, they perform well on

other networks.
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However, the assumptions baked into these metrics are at odds with the reality of

the relationships of the weights, feature maps, and gradients in ResNet-20, causing

them to severely mispredict the effect on the loss function of pruning any individual

channel. Using the myopic oracle allows these metrics to be excluded until their

assumptions become more in line with the reality of the network structure, instead

of causing pathological behaviour if used indiscriminately.

For NIN (Figure 4-4b), our experiment shows that the composition of metrics

via the oracle exhibits smooth, predictable behaviour, where the individual metrics

differ dramatically.

Even though the individual metrics have such large differences, the composition

of the metrics with the oracle is well-behaved, leading to a much less damaging

pruning that with any of the metrics individually.

The remainder of the networks exhibit similar behaviour. For AlexNet (Figure 4-

4e), we see again that the composition of the saliency metrics via the oracle yields

a smooth, well-behaved metric, even though the constituent metrics have large dif-

ferences.

4.5.2 Impact of k

From Table 4.2, we can see that using a myopic oracle can lead to a significant in-

crease in the maximum number of weights but only to a marginal increase when

increasing k. This trend would suggest that the channel rankings given by the indi-

vidual saliency metrics are often accurate. Considering more channels only offers a

marginal improvement as the least salient channels are often also ranked lowly by at

least one of the constituent metrics, we only need to determine which saliency met-

ric is accurate for that pruning iteration. Hence, choosing k to be equal to the num-

ber of constituent metrics allows us to choose between the saliency metrics without

inhibitively increasing cost of computation.

4.5.3 Quality of Pruned Networks

Table 4.2 summarises the level of pruning achieved in our experiments for a maxi-

mum reduction of 5% points in top-1 test accuracy.
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Using the myopic oracle to compose existing saliency metrics yields a compos-

ite metric which makes better pruning decisions than any of the individual metrics

which were composed. The myopic oracle consistently selects channels to prune

that result in a smaller loss in test accuracy. We also present the proportion of

weights removed for the constituent saliency metrics, if used exclusively, as in prior

work.

On every network, our approach meets or exceeds the performance of all the

state-of-the-art saliency metrics used individually. The best results are seen on

ResNet-20, where almost twice as many weights can be removed using our ap-

proach versus the next-best individual saliency metric.

4.6 Discussion

4.6.1 Pruning Algorithm

Combining saliency metrics with a myopic oracle within a simple pruning algorithm

yields promising results. However, more sophisticated saliency-based pruning al-

gorithms can also take advantage of using multiple saliency metrics to remove the

maximum number of weights. Our future work will cover testing the use of multi-

ple saliency metrics using a myopic oracle in other pruning algorithms.

4.6.2 Other Granularities

The use of multiple saliency metrics is not limited to channel pruning, it can apply to

other granularities of pruning. For example, with unstructured pruning (fine-grain

pruning) each saliency metric proposes a different set of weights to be removed. The

myopic oracle can then choose which proposed set is most accurate.

4.7 Concurrent Related Work

The use of multiple saliency metrics by a single pruning algorithm is a new tech-

nique.
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Concurrently to our work on composition of saliency metrics, He et al. (2020)

also proposed a method using multiple saliency metrics within a single pruning

algorithm. He et al. (2020) propose a one-shot pruning algorithm that automatically

selects a different saliency metric (referred to as pruning criteria) for each layer of the

network. Prior to the pruning process, they learn the probabilities of pruning a given

layer by a given saliency metric. The total number of probabilities that they learn is

given by the number of layers times the number of saliency metrics in their search

space. They learn these probabilities by minimising the loss of the network using

the sum of the pruned feature maps (i.e. feature maps pruned according to each

metric) instead of the unpruned feature maps. Finally, they select the criteria with

the highest probability per layer and proceed with a standard pruning-retraining

phase.

In contrast, our method uses multiple saliency metrics (chosen by us) to create

a smaller search space for the myopic oracle. The myopic oracle then evaluates the

sensitivity of the chosen candidates to provide a composite metric. The composite

metric can be used to substitute any saliency metric in a saliency-based pruning

algorithm.

Another method using saliency metrics to create a smaller search space, is the

recently published work by Zhang et al. (2021). Instead of using a genetic algorithm

on the entire channel pruning search space, they restrict the search space using a

chosen number of saliency metrics. They then use a genetic algorithm to explore the

possible pruning configurations.

4.8 Conclusion

Our method of composing multiple saliency metrics yields a composite metric

that significantly outperforms the individual constituent metrics. By dynamically

switching between different metrics based on the actual measured sensitivity of the

network, we avoid the occasional poor pruning decision made by even the most ad-

vanced saliency metrics. Using our approach, data scientists are freed from having

to choose from a dizzying array of potential saliency metrics to guide the pruning

process.
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By developing a method to dynamically switch between an arbitrary collection

of state-of-the-art saliency metrics based on their actual measured performance, we

can derive a composite metric with significantly improved performance, pruning

up to twice as many weights for the same drop in accuracy in our experiments. Our

approach advances the state-of-the-art in identifying unnecessary or redundant sets

of neural network parameters.
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Chapter 5

Domino Saliency Metrics: Improving

Existing Channel Saliency Metrics

with Structural Information

Channel pruning removes slices of the weight tensor so that the convolution layer

remains dense. The removal of these weight slices from a single layer causes mis-

matching number of feature maps between layers of the network. A simple solution

is to force the number of feature map between layers to match through the removal

of weight slices from subsequent layers. This additional constraint becomes more

apparent in CNNs with branches where multiple channels need to be pruned to-

gether to keep the network dense. Popular pruning saliency metrics seen in Chapter

3 do not factor in the structural dependencies that arise in CNNs with branches.

In this chapter, we propose domino metrics (built on existing channel saliency

metrics) to reflect these structural constraints. We test domino saliency metrics

against the baseline channel saliency metrics on multiple networks with branches.

Domino saliency metrics improved pruning rates in most tested networks and up

to 25% in AlexNet on CIFAR-10.

5.1 Introduction

Channel pruning removes weights corresponding to an entire channel in the output

of a layer. When the weights of the entire channel are set to zero, the corresponding
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Figure 5-1: Structure of a block in ResNet-20. The arrows are in the direction of data flow.

output feature map of the channel becomes zero. This zero output feature map feeds

into subsequent layers which may allow the corresponding channel to be removed

from these subsequent layers in a domino effect.

In a network architecture where each layer has exactly one output and one input

layer, the removal of an output feature map leads to the following layer’s input

feature map no longer contributing to the network. This scenario is illustrated in

Figure 5-5 where the consumer layer is a either convolution or fully-connected layer,

the resulting zero input feature map allows the corresponding weights from the

consumer layer to be pruned.

In networks with splits (commonly called branches in the context of CNNs), the

output feature map from one layer may feed into multiple layers. With joins, feature

maps from different layers feed into a single layer. A common occurrence of split

and join connections in CNNs is due to skip connections, which were pioneered

in ResNet architectures (He et al. 2016). The common structure of a ResNet block

containing split and join connections is shown in Figure 5-1. The presence of these

splits and joins allows multiple output feature maps to be removed together when

one feature map is considered for removal. Networks that offer state-of-the-art accu-

racy for image classification often contain skip connections (Brock et al. 2021; Zhang

et al. 2020; Xie et al. 2016; Mahajan et al. 2018; Touvron et al. 2019). ResNet architec-

tures are also more difficult to prune for their lower redundancy (Luo et al. 2017;

Dong et al. 2017b; He et al. 2017). Hence, improving pruning rates for networks

containing skip connections can be very advantageous.

Another common occurrence of joins is group convolution. Group convolution

was originally used in the AlexNet architecture (Krizhevsky et al. 2017) to paral-
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lelise convolution on multiple GPUs. Since, it has also been used in state-of-the-art

architectures (Xie et al. 2016; Brock et al. 2021).

5.2 Contribution

Most approaches do not factor in the removal of different feature maps when com-

puting the saliency metric used for pruning. In this chapter, we propose using

domino saliency metrics to factor in the saliency of feature maps and weights that

need to removed together. We make the following contributions:

• We propose domino saliency metrics, where existing saliency metrics are com-

bined together depending on the set of channels that need to be removed to-

gether.

• Combining channel saliency metrics to obtain domino saliency metrics, has

a negligible computational cost to computing channel saliency metrics and

requires very little modification to existing pruning strategies.

• We experimentally evaluate two variants of domino saliency metrics:

𝐷𝑜𝑚𝑖𝑛𝑜-𝑜 and 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜, and find that they significantly improve pruning.

5.3 Data Flow Graph for Pruning

5.3.1 Channel Pruning Networks with Splits and Joins

Channel pruning removes entire channels from convolution layers of the network.

By removing entire channels, the weight tensor remains dense, so existing DNN

dense libraries can be used. The removal of an entire channel of convolution weights

leads to the removal of its subsequent feature map. Removing a feature map may

allow corresponding weights from subsequent layers to be removed. In a network

where each layer has at most one input layer and one output layer, this relationship

is obvious.

While simpler neural networks are often linear and acyclic (Lecun et al. 1998;

Krizhevsky 2009), modern networks often contain join nodes and split nodes

(Krizhevsky et al. 2017; He et al. 2016).
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It is obvious which weights need to be removed when applying channel pruning

to a network where each layer is fed to only one successor. However in networks

with branches, feature maps are used by more than one layer. A layer can have

multiple successors due to skip connections. Skip connections are element-wise ad-

ditions between output feature maps of different convolutions to produce the input

feature map of the following layer.

In networks with branches, we can perform a reachability analysis, such as is

performed by a compiler on a more traditional computational structure, the control-

flow graph, to uncover the weights that need to be pruned together to keep the

network dense. The basic intuition here is that if the definition of some feature

map reaches a layer, the pruning of that feature map may also imply the removal of

more feature maps which are computed from it. While this seems trivial for linear

networks, the introduction of splits and joins in the graph mean that extra care must

be taken in order to exploit the dependence relationship to achieve better pruning

results.

5.3.2 Data Flow Graph

Neural networks form a directed graph structure where simple input-output de-

pendence exists between producer and consumer layers in the network (i.e. the

network forms a data flow graph). When representing the data flow graph, we can

make abstraction of activation layers. This abstraction is discussed in details in Sec-

tion 5.3.6. Hence, we only need to represent the data flow between a convolution or

fully-connected layer to other convolution or fully-connected layers.

We introduce additional notation to facilitate the description of the data flow

graph.

A layer 𝑙 has a set of 3-dimensional input feature maps 𝐼(𝑙), a set of 3-dimensional

output feature maps 𝑂(𝑙) and weights 𝑙𝑊 . 𝑂𝑖(𝑙) and 𝐼𝑖(𝑙) refer to the 𝑖𝑡ℎ 2-

dimensional feature map of 𝑂(𝑙) and 𝐼(𝑙) respectively. In our previous notation

we had 𝑂(𝑙) = 𝑙𝐴. For simple forward feed networks with no branches, we had

𝐼(𝑙) = 𝑙−1𝐴.
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(a) Join connection in CNN. (b) Split connection in CNN.

Figure 5-2: Data dependencies with join and split connections in CNNs. The arrows are in
the direction of data flow.

We can describe the flow of information between layers with a successor relation

𝑂(𝑙) = 𝐼(𝑠𝑢𝑐𝑐(𝑙)). Intuitively, the data flow successors, 𝑠𝑢𝑐𝑐(𝑙) of a layer 𝑙 are those

layers whose input is the output of layer 𝑙.

When a layer in a neural network joins the output of multiple producer channels,

we write 𝑂(𝑙) ⊂ 𝐼(𝑠𝑢𝑐𝑐(𝑙)) i.e. the successor relation extends to any channel which

consumes the output of 𝑙. If 𝐼(𝑙 + 1) is the input feature map of the following, then

it is the direct successor of 𝑂(𝑙).

5.3.3 Join and Split Nodes

𝐼(𝑙+ 1) is not necessarily the only successor of 𝑂(𝑙). For example, in Figure 5-2a the

element-wise sum of two layers 𝑙 and 𝑙′ is fed to layer 𝑙 + 1. The layer 𝑙 + 1 satisfies

𝑂(𝑙) ⊂ 𝐼(𝑙+1)∧𝑂(𝑙′) ⊂ 𝐼(𝑙+1). We can also consider data dependencies for a single

channel, 𝑙𝐶𝑖, instead of an entire layer, 𝑙, with 𝑂(𝑙𝐶𝑖) = 𝑂𝑖(𝑙). So we would say that

both 𝑠𝑢𝑐𝑐(𝑙𝐶𝑖) = {𝑙+1𝐶𝑖} and 𝑠𝑢𝑐𝑐(𝑙
′
𝐶𝑖) = {𝑙+1𝐶𝑖}. Split, or broadcast relationships

also exist, where the output of a layer is used by multiple consumers. An example of

split in the data flow graph is seen in Figure 5-2b where 𝑠𝑢𝑐𝑐(𝑙𝐶𝑖) = {𝑙+1𝐶𝑖,
𝑙+2𝐶𝑖}.

5.3.4 Group Convolution

Data dependencies at the entrance of group convolutions can be modelled using a

simple convolution layer that has 𝑔 sets of input feature maps that result in 𝑔 sets

of partial output feature maps. These partial output feature maps are then added

together to create the final output feature map of the layer. We have 𝑙+1𝑚𝑖𝑛 =
𝑙𝑚𝑜𝑢𝑡

𝑙𝑔

with the group size, 𝑙𝑔 > 1. Figure 5-3 illustrates a group convolution with a group

size of 2.
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(a) Group convolution with 𝑙𝑔 = 2, 𝑙𝑚𝑖𝑛 = 2, 𝑙−1𝑚𝑜𝑢𝑡 = 4. (b) Group convolution
data dependency.

Figure 5-3: Data flow with group convolutions in CNNs. The arrows are in the direction of
data flow.

For group convolutions, 𝑂(𝑙−1𝐶𝑖+𝑗×𝑙𝑚𝑖𝑛
) ⊂ 𝐼(𝑙𝐶𝑖), for 𝑗 ∈ 0... 𝑙𝑔 − 1. In Figure

5-3b, 𝑠𝑢𝑐𝑐(𝑙−1𝐶𝑖) = {𝑙𝐶𝑖,
𝑙𝐶𝑖+2}.

5.3.5 Channel Pruning

Considering a neural network graph with 𝐺 channels, we can define the successor

relation as:

∀𝑐 ∈ 𝐺,∃𝑥 ∈ 𝐺 : 𝑂(𝑐) ⊂ 𝐼(𝑥) ⇒ 𝑥 ∈ 𝑠𝑢𝑐𝑐(𝑐) (SUCCESSOR)

Let the predicate 𝑃 (𝑐) be true where a feature map 𝑐 is being pruned, and false

otherwise. The truth of 𝑃 (𝑐) is determined locally for the input or output feature

maps of a specific layer by the pruning process.

We are interested in how the truth of 𝑃 (𝑐) locally in any single layer may influ-

ence the truth of 𝑃 (𝑐) for connected layers in the network, or more informally, how

removing some feature maps may imply the removal of other feature maps.
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Figure 5-4: Pattern of weights removed when removing output (left) and input (right) chan-
nels. The dark squares represent pruned parameters.

∀𝑐 ∈ 𝐺,∀𝑥 ∈ 𝑠𝑢𝑐𝑐(𝑐) : 𝑃 (𝑂(𝑐)) ⇔ 𝑃 (𝐼(𝑥)) (CHANNEL PRUNING)

Equation CHANNEL PRUNING states that the pruning an output feature map

𝑂(𝑐) is materially equivalent to pruning the input feature map 𝐼(𝑥), with 𝑥 a succes-

sor of 𝑐. This predicate is valid for all the channels in the network. Hence, in a typical

ResNet style block this leads to the simultaneous pruning of multiple channels. In

Figure 5-1, feature maps A to I need to be removed simultaneously.

Equation CHANNEL PRUNING is used to propagate pruning of feature maps.

However, for channel pruning, we need to remove weights from the network. To

prune an output channel, 𝑐 = 𝑙𝐶𝑖, from the network, weights 𝑙𝑊 [𝑖, :, :, :] are removed

from network with “:” representing all valid indices. Hence, when an output feature

map 𝑂(𝑙𝐶𝑖) is pruned, an output channel 𝑙𝑊 [𝑖, :, :, :] is pruned and when an input

feature map 𝐼(𝑙𝐶𝑖) is pruned, an input channel 𝑙𝑊 [:, 𝑖, :, :] is pruned. The structures

of the weights removed are illustrated in Figure 5-4.

The set of weights from the network removed when a channel 𝑙𝐶𝑖 is called

𝒯 𝒞(𝑙𝑊 𝑖).

5.3.6 How to Prune Biases and Activation Layers

The output of a convolution is not often fed directly to the next convolution or fully-

connected layer. Instead, at least one activation function is applied to the feature

map before being fed to the next layer. Hence, the output feature map produced by

a layer is not directly equivalent to the input feature map of the following layer.
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Figure 5-5: Channel pruning where the outputs of convolution 𝑙 are fed into an activation
layer (with bias), 𝑙𝑧 before being fed to the successor 𝑙 + 1.

For most activation functions, applying them to a zero feature map results in

a zero feature map. ReLU, GELU, and max/average pooling layers, are examples

of activation functions that output zero for a zero input. When these activation

functions are used, a pruned output feature map results in pruned input feature

maps of the subsequent layers. However, in the case of activation functions with

biases such as Batch Norm or bias layers, a zero input does not always result into

a zero output unless the biases are also set to zero. Hence, the pruned feature map

and the pruned weights cannot be removed from the network. However, if the

corresponding biases are set to zero, the weights can then be removed from the

network.

A simple channel pruning case is shown in Figure 5-5. For the convolu-

tion layer 𝑙, to produce a single 𝑂𝑖(𝑙) each 𝑗𝑡ℎ input feature map is convolved

with its corresponding 2D filter 𝑙𝑊 [𝑖, 𝑗, :, :] and summed together. In Figure 5-5,

𝑂0(𝑙) = 𝑙−1𝑧(𝑂0(𝑙 − 1)) * 𝑙𝑊 [0, 0, :, :] + 𝑙−1𝑧(𝑂1(𝑙 − 1)) * 𝑙𝑊 [0, 1, :, :] and 𝑂1(𝑙) =

𝑙−1𝑧(𝑂0(𝑙− 1)) * 𝑙𝑊 [1, 0, :, :] + 𝑙−1𝑧(𝑂1(𝑙− 1)) * 𝑙𝑊 [1, 1, :, :]. To prune the output chan-

nel 𝑙𝐶0, 𝑙𝑊 [0, 0, :, :] and 𝑙𝑊 [0, 1, :, :] are set to zero. If the corresponding bias in the

activation layer 𝑙𝑧 (𝑙𝐵0), is set to zero, then the input feature map 𝑙𝑧(𝑂0(𝑙)) is also

zero. Since convolution with a zero feature map results into a zero feature map, the

values of 𝑙+1𝑊 [0, 0, :, :] and 𝑙+1𝑊 [1, 0, :, :] no longer influence feature maps 𝑂0(𝑙 + 1)

and 𝑂1(𝑙 + 1). Hence, 𝑙𝑊 [0, 0, :, :], 𝑙𝑊 [0, 1, :, :], 𝑙𝐵0, 𝑙+1𝑊 [0, 0, :, :], and 𝑙+1𝑊 [1, 0, :, :],

can be set to zero and removed.

If the biases are not set to zero, then feature maps filled with zeros still need to

be stored to keep the network dense. In practice, output feature maps filled with

zeros are removed from the network to increase memory savings. Hence, biases of
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activation functions are also set to zero and the obsolete parameters are removed to

keep the network dense. To simplify the data flow graph, we can make abstraction

of activation functions even if they contain biases. We can also assume that when

a channel is pruned, weights, feature maps, and activation layer parameters of that

channel are set to zero.

5.4 Domino Pruning

When pruning neural networks with skip or group connections, most approaches

use the same saliency metrics as for simple forward feed neural networks without

any modification. The construction of these saliency metrics do not take into ac-

count the structural dependencies that may to be satisfied between layers to keep

the network dense.

We argue that a more straightforward inspection of the data dependence struc-

ture may be more prudent. Using a reachability analysis such as may be performed

by a compiler, we show how the removal of one set of parameter may be used to

heuristically perform a cascade of removals of other reachable parameters. We re-

fer to this technique as “domino” saliency metrics. Any saliency metric that has

been formulated to give each channel a saliency measure can be used with domino

saliency metrics.

∀𝑥 ∈ 𝑠𝑢𝑐𝑐(𝑐),∃𝑦 : 𝑥 ∈ 𝑠𝑢𝑐𝑐(𝑦) ⇒ 𝑦 ∈ 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡(𝑐) (COPARENT)

∀𝑥 ∈ 𝑠𝑢𝑐𝑐(𝑐),∃𝑦 : 𝑦 ∈ 𝑠𝑢𝑐𝑐(𝑐) ⇒ 𝑦 ∈ 𝑠𝑖𝑏𝑙𝑖𝑛𝑔(𝑥) (SIBLING)

With domino pruning, the output channels that are considered coparents are

considered as a single pruning choice. Hence, they cannot be removed without

the other coparent output channels. Output channels are considered coparents if

they share a common successor as shown in Equation COPARENT. Similarly Equa-

tion SIBLING is used to find siblings of direct successors. We consider the 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡

and 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 relationships to be birectional and transitive, i.e., if 𝐴 ∈ 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡(𝐵)

then 𝐵 ∈ 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡(𝐴), and if 𝐶 ∈ 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡(𝐵) then 𝐶 ∈ 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡(𝐴). The transi-
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tive closure of 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡 and 𝑠𝑖𝑏𝑙𝑖𝑛𝑔 are respectively called 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠+ and 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠+.

The feature maps and weights removed when one output channel is removed is

given by Equation CHANNEL PRUNING. When a channel 𝑐 is pruned, output fea-

ture maps from the set 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠+(𝑐) and their associated output channel weights

are pruned. Input feature maps from the set 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠+(𝑐) and their associated input

channel weights are also pruned when channel 𝑐 is removed. When 𝑐 is an output

channel, then 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠+(𝑐) represents the transitive closure of any of 𝑐’s successors

and when 𝑐 is an input channel, 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠+(𝑐) represents the transitive closure of

any output channel that is used to produce 𝑐.

The set of feature maps pruned is 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠+(𝑐) ∪ 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠+(𝑐). In the case of

a network with no joins and no splits, 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠+(𝑐) = {𝑐} and 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠+(𝑐) =

𝑠𝑢𝑐𝑐(𝑐). In the ResNet block shown in Figure 5-1, 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠+(𝐴) = {𝐴,𝐶,𝐸,𝐺}

and 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠+(𝐴) = {𝐵,𝐷, 𝐹,𝐻, 𝐼}.

Saliency metrics are traditionally computed for a single output channel. This is

also true for networks with skip connections (ResNets). With domino metrics, we

combine the channel saliency of channels that are removed together.

We propose two variants of domino saliency: 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜 and 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜.

𝐷𝑜𝑚𝑖𝑛𝑜-𝑜 adds the saliency of all output channels that are removed together.

Since most channel pruning algorithms use the channel saliency of output chan-

nels, 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜 has negligible cost and require minimal change to the pruning

frameworks. Equation 5.1 decribes how to compute 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜 for a channel using

𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠+ and their channel saliency, 𝑆. As seen in Chapter 3, the channel saliency

can be obtained using the feature or its channel weights.

𝐷𝑜𝑚𝑖𝑛𝑜-𝑜(𝑐) =
∑︁

𝑥∈𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠+(𝑐)

𝑆(𝑥) (5.1)

As illustrated in Figure 5-5, the output feature produced by a convolution chan-

nel ultimately becomes the input feature map for the following layer. Few ap-

proaches, apart from feature reconstruction-based metrics, exploit this relationship

for saliency computation. With 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜, we add the saliency of all the weights

or feature maps that are removed when a channel is removed to get the saliency of

the channel to be pruned. Equation 5.2 shows how to compute 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 using
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the channel saliency of 𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠+ (output feature maps or weights) and 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠+

(input feature maps or weights) using a channel saliency 𝑆.

𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜(𝑐) =
∑︁

𝑥∈𝑐𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠+(𝑐)

𝑆(𝑥) +
∑︁

𝑥∈𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠+(𝑐)

𝑆(𝑥) (5.2)

5.5 Experimental Evaluation

Channel saliency is the use of the saliency metric of a single output channel to prune

all the dependent weights and feature maps. This is the common strategy when

pruning networks. In practice, this leads to the lowest saliency of the output chan-

nels that are pruned together to be used as saliency metric of the set of weights or

feature maps to be pruned. This baseline is denoted 𝑆.

We compare domino saliency metrics constructed using a channel saliency

against the use of the base channel saliency.

A domino saliency metric is built using a baseline channel saliency metric. If the

saliency of all channels are roughly of the same order and positive, their addition

is of greater order than channels that are not part of split or join nodes. We use

an average of the number of weights or output points to avoid favouring isolated

channels for pruning. Saliency metrics that use feature maps are scaled using the

number of pixels in the feature maps. For example, if two saliency values, 𝑆(𝑐)

and 𝑆(𝑧), are computed using 𝑁𝑐 and 𝑁𝑧 weights then, the scaled domino metric is
𝑆(𝑐)+𝑆(𝑧)
𝑁𝑐+𝑁𝑧

instead of 𝑆(𝑐) + 𝑆(𝑧). The scaled channel metrics are 𝑆(𝑐)
𝑁𝑐

and 𝑆(𝑧)
𝑁𝑧

. Metric

with this average is suffixed with -avg.

5.5.1 Pruning Algorithm

The saliency metric is one component of the pruning algorithm. We choose a prun-

ing algorithm that heavily relies on the choices of the saliency metric to determine

the improvement brought by changing the saliency metric. Since our aim is to find

better saliency metrics, we avoid obfuscating the contribution of the saliency metric

by not retraining after each pruning step. As seen in Chapter 3, if a saliency metric

is able to achieve higher pruning rates without retraining, then it can also be used

to reduce the cost of retraining.
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For each pruning iteration, we compute the saliency (either the channel/baseline

saliency or the domino saliency metric) of every output channel. The lowest saliency

channel is then pruned according to Equation CHANNEL PRUNING. This process is

repeated until the test accuracy falls under 5% of its initial value. We use Algorithm

2 with 𝑡𝑒𝑠𝑡𝐴𝑐𝑐𝐷𝑟𝑜𝑝 = 5%

5.5.2 Networks

We evaluate domino saliency metrics on popular architectures with split and join

nodes. We evaluate the original ResNet architecture (He et al. 2016) and a state-of-

the-art ResNet-inspired architecture, NFNET-F0 (Brock et al. 2021). We also evaluate

domino saliency metrics on AlexNet (Krizhevsky et al. 2017). The join and split con-

nections in ResNet arise due to skip connections. The join connections in AlexNet

arise due to group convolutions. NFNET-F0 contains both skip connections and

group convolutions.

We use the CIFAR-10 (Krizhevsky 2009), CIFAR-100 (Krizhevsky 2009),

ImageNet-32 (Chrabaszcz et al. 2017) (a downsized ImageNet variant), and Ima-

geNet (Deng et al. 2009) datasets. ResNet-20 1 on ImageNet, ResNet-50 (Simon et al.

2016) on ImageNet and NFNET-F0 (Brock et al. 2021) on ImageNet are pretrained

networks. The accuracy of the pretrained networks are given in Table 5.1.

ResNet-20 ResNet-50 NFNET-F0
ImageNet 68.0% 75.0% 75.0%

Table 5.1: Summary of accuracy of pretrained networks on ImageNet.

The remaining networks are trained from scratch and presented in Section 3.8.4.

5.5.3 Hyperparameters

The number of images in a batch, 𝐵𝑣𝑎𝑙, and number of batches, 𝑁𝑣𝑎𝑙, used to evaluate

the saliency metrics are given in Table 5.2.

1https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-ImageNet
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Network 𝐵𝑣𝑎𝑙 𝑁𝑣𝑎𝑙

CIFAR-10 dataset
ResNet-20 128 2
AlexNet 128 2
CIFAR-100 dataset
ResNet-20 128 2
AlexNet 128 2
ImageNet dataset
ResNet-20 32 8
ResNet-50 32 8
NFNET-F0 32 8
ImageNet-32 dataset
AlexNet 128 8

Table 5.2: Hyperparameters used to measure the base channel saliency metrics.

5.5.4 Saliency Metrics

The most popular pruning saliency metrics are either a derivative of the L1 or L2

norm of weights (Han et al. 2015; Han et al. 2017; He et al. 2018b; Frankle and

Carbin 2019; Guo et al. 2016; Mao et al. 2017; Li et al. 2017a; Wang et al. 2018; Lebe-

dev and Lempitsky 2016; He et al. 2018a) or Taylor expansions (LeCun et al. 1989;

Hassibi and Stork 1992; Molchanov et al. 2017; Molchanov et al. 2019; Peng et al.

2019; Ding et al. 2019). With channel pruning, Taylor expansions can be applied to

either weights or feature maps.

The channel saliency metrics that we evaluate are: Taylor expansion using

weights, Taylor expansion using feature maps, and L1 norm of weights.

5.6 Results

We measure the improvement of domino saliency metrics by comparing the percent-

age of convolution weights removed for a drop of 5% in test accuracy. The results

are an average from 4 runs.

Figures 5-6, 5-7, and 5-8 show the percentage of convolution weights removed.

In most cases, we observe an improvement by using the domino saliency met-

rics. 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 significantly improves the pruning rates for AlexNet on CIFAR-

10, AlexNet on ImageNet-32, and ResNet-20 on CIFAR-10. 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 includes the

saliency of input feature maps or input channel weights in addition to 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜.
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The larger improvement brought by 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 suggests that the saliency of input

channels weights contain relevant information for pruning.
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Figure 5-6: Domino saliency metrics results for AlexNet. Sparsity levels (percentage of con-
volution weights) are given on the x-axis. The results are grouped (by groups of three)
according to the base metric given on the y-axis. The results of the base metric, 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜,
and 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 are represented by the blue, orange and green bars respectively.

From Figure 5-6, we see that using 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 on AlexNet for CIFAR-10 and

ImageNet greatly improves the base saliency metric. A notable result is the L1 norm

of weights (with averaging) which can match the pruning rates of Taylor expansion-

based methods with 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜. The L1 norm of weights is a very popular metric

for pruning for its low computational cost and good pruning rates. 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 has

a negligible cost overhead while greatly improving the L1 norm of weights (with

averaging).

From Figure 5-7, we observe a similar trend where the L1 norm of weights

(with averaging) can be improved to match and exceed the pruning rates of Tay-

lor expansion-based method on ResNet-20 on ImageNet.

Figure 5-8 shows that the improvement of domino saliency metrics are marginal

on NFNET-F0. However, since the pruning rates are also extremely low, the re-

sults are inconclusive for this network. On the other hand, ResNet-50 benefits from

the additional structural information used by domino saliency metrics. The prun-

ing rates on ResNet-50 can be improved by a few percentage points with either

𝐷𝑜𝑚𝑖𝑛𝑜-𝑜 or 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜.
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Figure 5-7: Domino saliency results for ResNet-20. Sparsity levels (percentage of convolu-
tion weights) are given on the x-axis. The results are grouped (by groups of three) accord-
ing to the base metric given on the y-axis. The results of the base metric, 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜, and
𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 are represented by the blue, orange and green bars respectively.
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Figure 5-8: Domino saliency results for NFNET-F0 and ResNet-50. Sparsity levels (percent-
age of convolution weights) are given on the x-axis. The results are grouped (by groups
of three) according to the base metric given on the y-axis. The results of the base metric,
𝐷𝑜𝑚𝑖𝑛𝑜-𝑜, and 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 are represented by the blue, orange and green bars respectively.

The average improvement of using domino metrics over channel metrics for each

network, is shown in Figure 5-9a. On all the networks, except AlexNet on CIFAR-

100, 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 on average improves the baseline channel metric. 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 can be

used to push the pruning rate of a network further. The improvement shown in Fig-

ure 5-9b corresponds to the difference between the maximum percentage of weights

removed between the best domino metric and the best channel metric for a given

network. With 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜, up to 25% and 15% more weights can be respectively

removed from AlexNet on the CIFAR-10 dataset and the ImageNet-32 dataset.
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Figure 5-9: The improvement of domino saliency metrics over the base channel metric.

5.7 Related Work

When pruning networks with branch connections, multiple channels are removed

to keep the network dense. However, most channel pruning approaches use the

same saliency metric (Molchanov et al. 2019; Mao et al. 2017) as for simple forward

feed networks. These saliency metrics do not factor in the other output or input

channels that need to be removed when one channel is removed. Some pruning

approaches that are based on feature-map reconstruction (He et al. 2017; Luo et al.

2019) explicitly describe how branches are taken in account. He et al. (2017) and

Luo et al. (2019) remove output channels by considering their effect on the next

layer’s input feature map. For the ResNet architecture, He et al. (2017) consider the

input feature map after the skip connection. Luo et al. (2019) avoid pruning layers

that could result in mismatching number of feature maps in the network. Feature

maps reconstruction-based approaches are computationally expensive. They are

poor candidates for elaborate pruning algorithms (He et al. 2018b; He et al. 2018a;

Wang et al. 2020b) that rely on computationally cost effective saliency metrics.

5.8 Conclusion

Most popular channel saliency metrics do not take into account structural con-

straints that can arise when pruning join and split connections. We propose two

domino saliency metrics to add structural information to the saliency measure by
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combining channel saliency of multiple channels. 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜 adds information about

the other output channels that are removed together and 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 adds informa-

tion about output and input channels that are removed together. We observe a small

improvement when using 𝐷𝑜𝑚𝑖𝑛𝑜-𝑜 over the baseline channel saliency metric and a

significant improvement when using 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜. 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜 can be use to improve

the pruning rates by 25% and 15% for AlexNet on CIFAR-10 and ImageNet-32. In

conclusion, we find that the inclusion of the input channel saliency in 𝐷𝑜𝑚𝑖𝑛𝑜-𝑖𝑜

significantly improves pruning rates in networks with splits and joins.
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Chapter 6

Future Work

6.1 Standard Benchmarking Setups for Pruning

Comparing pruning algorithms is difficult due to differing networks, points of con-

vergence of these networks, datasets, goals, or even different ways of quantifying

the pruned network (Blalock et al. 2020). Comparing saliency metrics is even more

difficult as the saliency metric is one of the multiple aspects of pruning algorithms

(Menghani 2021; Xu et al. 2020; Liu et al. 2020a; Blalock et al. 2020). In our experi-

ments, we fix these aspects to isolate the effect of the saliency metric.

The lack of a standard benchmarking setup makes it impossible to directly com-

pare reported pruning rates from different research papers. Even though pruning

algorithms are often tailored to solve a specific problem, the existence of standard

benchmarking setups would allow for easier comparison between pruning algo-

rithms. Standard benchmarking setups would be a valuable contribution to the ma-

chine learning community.

6.2 Relevance of Pruning Trained Networks

In Chapters 3, 4, and 5, we evaluate saliency metrics using a classic pruning algo-

rithm that starts with a trained network, iteratively prunes, and retrains the pruned

network. Recent work has shown that pruning can be done before training (Frankle

and Carbin 2019; Lee et al. 2019). Liu et al. (2019b) show that training the pruned

structures from scratch can achieve similar accuracy levels to a pruned network ob-
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tained from the classic iterative pruning-retraining algorithm. With pruning not

requiring trained weights, one may wonder if pruning of trained networks is still

relevant.

In fact, pruning trained networks is still the most cost efficient solution when a

large trained network is already available. Published CNNs that achieve 90% clas-

sification accuracy use billions of parameters (Zhai et al. 2021; Pham et al. 2021;

Riquelme et al. 2021). Pruning trained networks is still a valid choice to find effi-

cient high accuracy networks. Networks can be trained without a specific memory

constraint and pruned to meet the memory constraints if they are to be deployed

on devices with different memory resources. The cost of training is then a one-time

expense with each pruned network requiring only the additional cost of weight re-

moval and retraining. However, since channel pruning can be conducted at initial-

isation (Lee et al. 2019), a possible extension to our work would be investigating if

our improvements also apply to pruning at initialisation.

6.3 Investigating Stability of a Saliency Metric

Even with a common pruning algorithm and a common goal, the results for pruning

may vary from experiment run to experiment run. Most pruning algorithms include

a stochastic element, it is impossible to find the exact same pruning rate when re-

running a pruning algorithm. However, in the pruning literature that we reviewed,

pruning results are rarely presented with their variation.

In Chapters 3, 4, and 5, we quantified the variation in our experiments. We run

each pruning experiment multiple times, and present error bars with 95% confi-

dence intervals. We find that these errors bars were sometimes not negligible and

they were not constant for all the saliency metrics. We can see these differences in

Tables 3.11 and 3.12, where some saliency metrics have large error bars associated

with them while others do not.

Reporting only the average result or the best result is not enough to decide

whether a metric should be chosen or not. If stable results are required then the

variation of the pruning algorithm should be considered. The degree of reliabil-

ity to which pruning algorithms produce good results could be another metric by
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which pruning algorithms are ranked. Reliable pruning algorithms do not need to

be run multiple times to approach their reported results thus reducing the overall

cost of pruning.

127



128



Chapter 7

Conclusion

Channel pruning is an effective technique to reduce the size of CNNs. However,

despite the extensive literature on channel pruning, there are a lot of questions to

be answered to demystify pruning. In this thesis, we tried to provide answers to

some of these questions. We propose different methods to improve the performance

of existing metrics. Our research builds on top on existing research, and will most

likely be compatible with any channel saliency metric.

• Can we express saliency metrics in a standard form?

In Chapter 3, we propose expressing saliency metrics, 𝑆, in a standard form,

𝑆 = 1
𝐿
𝑅 ∘ 𝐹 (𝑋) where 𝑋 is the base input, 𝐹 provides the pointwise metric, 𝑅, the

reduction method, and 𝐿 the scaling factor. By expressing saliency metrics in this

standard form, not only are we facilitating their comparison with existing metrics,

but we also bring to light some often forgotten aspects of the saliency metric, namely

the reduction and scaling methods. The extensive saliency-based pruning literature

reviewed for this thesis, contained a saliency metric that could be expressed in this

standard form.

There is no standard way to empirically evaluate the performance of saliency

metrics between research papers. Expressing saliency metrics into our proposed

standard form facilitates finding commonalities and differences (if any) between

them. For example, we found that metrics proposed as mask gradients (Lee et al.

2019), could also be expressed as Taylor expansions.
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• Given a standard form for saliency metrics, how do we construct good met-

rics?

Using the summary of the evaluation of over 300 different saliency metrics in

Chapter 3, we are able to provide guidance on the construction of saliency metrics

for channel pruning. We found that there is no single saliency metric that provides

the best results on all networks and all datasets. However, we did find common-

alities between generally good metrics. We find that gradient-based metrics, like

Taylor expansion-based metrics, are more likely to be provide good pruning rates.

Furthermore, we find that using the feature map gradients gave slightly better re-

sults than using the weight gradients. We also find that Taylor expansion-based

metrics that include both the first and second order terms lead to generally good

results even with a cheap approximation for the latter. We find that scaling and

reduction are important but are rarely discussed aspects of saliency metrics. Re-

duction methods that guarantee positive channel metrics lead to significantly better

results. Our proposed scaling based on the number of weights transitively removed

also improved pruning.

Our experiments were conducted using a subset of existing metrics. However,

by expressing new saliency metrics into our standard form, they can also benefit

from our findings about the different components of good saliency metrics.

• Can multiple saliency metrics be used to find better decisions than a single

metric?

In Chapter 4, we propose one of the first solutions to use multiple saliency met-

rics within a single pruning algorithm. With our myopic oracle, we show how to

combine the decisions of multiple metrics for each pruning iteration. We allow the

pruning algorithm to choose pruning candidates from a pool of candidates voted

by the different constituent metrics. At each iteration, the pruning algorithm may

choose to use a different metric from the previous iteration or the same one. We

combine the decisions of five popular saliency metrics that were initially built using

different assumptions and different sets of information from the network. We show

that the combined decisions of these multiple saliency metrics match or outperform
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the decisions of single metrics. Hence, the combination of saliency metrics can be

used to find better decisions than a single metric.

Concurrently to our work, He et al. (2020) also proposed a method to use mul-

tiple saliency metrics within a pruning algorithm. However, apart from our work

and the work from He et al. (2020) and Zhang et al. (2021), we are not aware of any

other work exploiting the use of multiple saliency metrics for pruning. The use of

multiple saliency metrics is a promising new technique that could be used to push

the boundaries of pruning further.

• How can channel saliency metrics incorporate information about other

channels that may be removed?

Channels that may be transitively removed as a consequence of pruning another

channel are rarely explicitly discussed. This most commonly occurs in networks

with splits and joins. However, the scarcity of explicit instructions on how to prune

split and join connections hinders the reproduction of pruning experiments for these

networks. Hence, before trying to improve channel saliency metrics for these net-

works, we had to explicitly describe how to prune channels that are part of split and

join connections.

In Chapter 5, we propose domino saliency metrics to include structural informa-

tion into the saliency metrics. We combine the saliency of channels that participate

in common join and split nodes. The domino saliency metrics “see” the saliency of

the other channels that can be removed. We find that the domino metric can sig-

nificantly improve the base channel metric for networks with splits and joins. In

particular, we find that the domino metrics making use of input channel saliency

metrics lead to better pruning rates. The saliency of input channels provides valu-

able information for pruning split and join connections.

Final thoughts

The initial goal of this PhD was to improve saliency metrics for channel pruning.

While we achieved what we set out to do, we also realised that our contributions

were not limited to improving pruning rates. The findings of Chapters 3, 4, and
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5 provide additional explainability to channel pruning. The standard form for

saliency metrics proposed in Chapter 3 allows for easier reproducibility of saliency

metrics. Our description of channel pruning in Chapter 5 also contributes to better

reproducibility of pruning experiments as, without clear instructions, one is often

left wondering how to handle split and join connections. Hence, the contributions

of this PhD are also about demystifying channel pruning. We believe that pruning

in general can be further improved by make pruning more reproducible and more

explainable.
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Appendix A

Backpropagation of Layer-wise

Hessian

A.1 Reminder of Backpropagation of Gradients

The weight gradients, 𝑑ℒ
𝑑𝑊

, are found by backpropagating the feature map gradients,
𝑑ℒ
𝑑𝐴

, through the network and obtained using the chain rule (Rumelhart et al. 1986).

For a given layer, 𝑙, the output feature map gradients 𝑑ℒ
𝑑 𝑙𝐴

are known from the

backpropagation of the 𝑙 + 1𝑡ℎ layer. The output feature map, 𝑙𝐴, the input feature

map 𝑙−1𝐴, and the weights 𝑙𝑊 are also known. During the backpropagation of the

𝑙𝑡ℎ layer, the aim is to find the weight gradients, 𝑑ℒ
𝑑 𝑙𝑊

, and the input feature map

gradients, 𝑑ℒ
𝑑 𝑙−1𝐴

.

To simplify the written equations, we use 𝑥 = 𝑙−1𝐴[𝑐, ℎ, 𝑤], 𝑎 = 𝑙𝐴[𝑚, 𝑖, 𝑗], and

𝑤 = 𝑙𝑊 [𝑚, 𝑐, 𝑢, 𝑣]

A.1.1 Obtaining Weight Gradients

The multivariate chain rule for obtaining the weight gradients at the 𝑙𝑡ℎ layer is:

𝑑ℒ
𝑑𝑤

=
∑︁

𝑎∈𝑙𝐴[𝑚,𝑖,𝑗]

𝑑ℒ
𝑑𝑎

𝑑𝑎

𝑑𝑤
(A.1)
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Using the chain rule in Equation A.1 and the equation of the convolution layer

given in Equation 2.2, we can write down the equation to obtain the weight gradi-

ents of the 𝑙𝑡ℎ layer as:

𝑑ℒ
𝑑 𝑙𝑊 [𝑚, 𝑐, 𝑢, 𝑣]

=

𝑙ℎ𝑒𝑖𝑔ℎ𝑡−1∑︁
𝑖=0

𝑙𝑤𝑖𝑑𝑡ℎ−1∑︁
𝑗=0

𝑑ℒ
𝑑 𝑙𝐴[𝑚, 𝑖, 𝑗]

𝑑 𝑙𝐴[𝑚, 𝑖, 𝑗]

𝑑 𝑙𝑊 [𝑚, 𝑐, 𝑢, 𝑣]
(A.2)

The term 𝑑 𝑙𝐴[𝑚,𝑖,𝑗]

𝑑 𝑙𝑊 [𝑚,𝑐,𝑢,𝑣]
can be simplified into:

𝑑 𝑙𝐴[𝑚, 𝑖, 𝑗]

𝑑 𝑙𝑊 [𝑚, 𝑐, 𝑢, 𝑣]
= 𝑙−1𝐴[𝑐, 𝑖+ 𝑢, 𝑗 + 𝑣] (A.3)

Using Equation A.2 and Equation A.3, we can rewrite the equation to obtain the

weight gradients as gradients as:

𝑑ℒ
𝑑 𝑙𝑊 [𝑚, 𝑐, 𝑢, 𝑣]

=

𝑙ℎ𝑒𝑖𝑔ℎ𝑡−1∑︁
𝑖=0

𝑙𝑤𝑖𝑑𝑡ℎ−1∑︁
𝑗=0

𝑑ℒ
𝑑 𝑙𝐴[𝑚,ℎ,𝑤]

𝑙−1𝐴[𝑐, 𝑖+ 𝑢, 𝑗 + 𝑣] (A.4)

Hence, for a convolution layer, a 2-dimensional convolution is required to obtain

the gradient with respect to each individual weight.

A.1.2 Backpropagation of Feature Map Gradients

The multivariate chain rule for backpropagating the feature map gradients at the 𝑙𝑡ℎ

layer is:
𝑑ℒ
𝑑𝑥

=
∑︁
𝑎∈𝑙𝐴

𝑑ℒ
𝑑𝑎

𝑑𝑎

𝑑𝑥
(A.5)

Using the chain rule in Equation A.5 and the equation of the convolution layer

given in Equation 2.2, we can write down the backpropagation of the 𝑙𝑡ℎ layer as:

𝑑ℒ
𝑑 𝑙−1𝐴[𝑐, ℎ, 𝑤]

=

𝑙𝑚−1∑︁
𝑚=0

𝑙ℎ𝑒𝑖𝑔ℎ𝑡−1∑︁
𝑖=0

𝑙𝑤𝑖𝑑𝑡ℎ−1∑︁
𝑗=0

𝑑ℒ
𝑑 𝑙𝐴[𝑚, 𝑖, 𝑗]

𝑑 𝑙𝐴[𝑚, 𝑖, 𝑗]

𝑑 𝑙−1𝐴[𝑐, ℎ, 𝑤]
(A.6)

The term 𝑑 𝑙𝐴[𝑚,𝑖,𝑗]

𝑑 𝑙−1𝐴[𝑐,ℎ,𝑤]
can be simplified into:

𝑑 𝑙𝐴[𝑚, 𝑖, 𝑗]

𝑑 𝑙−1𝐴[𝑐, ℎ, 𝑤]
= 𝑙𝑊 [𝑚, 𝑐, ℎ−𝑖, 𝑤−𝑗], if 0 < ℎ−𝑖 < 𝑙𝑘−1 and 0 < 𝑤−𝑗 < 𝑙𝑘−1 (A.7)
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Using Equation A.6 and Equation A.7, we can simplify the backpropagation of

feature map gradients through a convolution layer as:

𝑑ℒ
𝑑 𝑙−1𝐴[𝑐, ℎ, 𝑤]

=

𝑙𝑚−1∑︁
𝑚=0

ℎ−𝑙𝑘−1∑︁
𝑖=ℎ

𝑤−𝑙𝑘−1∑︁
𝑗=𝑤

𝑑ℒ
𝑑 𝑙𝐴[𝑚, 𝑖, 𝑗]

𝑙𝑊 [𝑚, 𝑐, ℎ− 𝑖, 𝑤 − 𝑗], (A.8)

if ℎ− 𝑖 > 0, and

𝑤 − 𝑗 > 0,

else 0

If 𝑊 * is the weight matrix such that the 2-dimensional kernels of 𝑊 are rotated

by 180 degrees as given in Equation A.9, then Equation A.8 can be rewritten as

Equation A.10.

𝑊 *[𝑚, 𝑐, 𝑢, 𝑣] = 𝑊 [𝑚, 𝑐, 𝑙𝑘 − 1− 𝑢, 𝑙𝑘 − 1− 𝑣], with 0 ≤ 𝑚 < 𝑙𝑚− 1, (A.9)

0 ≤ 𝑐 < 𝑙𝑐− 1,

0 ≤ 𝑢 < 𝑙𝑘 − 1,

and 0 ≤ 𝑣 < 𝑙𝑘 − 1

𝑑ℒ
𝑑 𝑙−1𝐴[𝑐, ℎ, 𝑤]

=

𝑙𝑚−1∑︁
𝑚=0

𝑙𝑘−1∑︁
𝑢=0

𝑙𝑘−1∑︁
𝑣=0

𝑑ℒ
𝑑 𝑙𝐴[𝑚,ℎ− 𝑙𝑘 − 1 + 𝑢,𝑤 − 𝑙𝑘 − 1 + 𝑣]

𝑙𝑊 *[𝑚, 𝑐, 𝑢, 𝑣],

(A.10)

if ℎ− 𝑙𝑘 − 1 + 𝑢 > 0

and 𝑤 − 𝑙𝑘 − 1 + 𝑣 > 0,

else 0

Equation A.10 shows that the backpropagation of feature map gradients through

a convolution layer requires a convolution with the rotated weights.
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A.2 Backpropagation of Diagonal Hessian Using

Levenberg-Marquardt Approximation

LeCun et al. (1989) suggested a backpropagation of the diagonal Hessian using the

Levenberg-Marquardt approximation to approximate the diagonal terms of the Hes-

sian. In this section, we show how this backpropagation is implemented for convo-

lution layers.

For the backpropagation of the second order derivatives, we assume that we

have the same information available as the backpropagation of the gradients (fea-

ture maps, weights and their gradients) and the layer-wise Hessian of the 𝑙 + 1𝑡ℎ

layer, 𝑑2ℒ
𝑑𝑙+1𝐴

2 . The aim is to find 𝑑2ℒ
𝑑𝑙−1𝐴

2 and 𝑑2ℒ
𝑑𝑙𝑊

2

We use the Faà di Bruno’s formula for second order derivation to obtain the

weight second order derivatives and propagate the feature map second order

derivatives.

To simplify the written equations, we use 𝑥 = 𝑙−1𝐴[𝑐, ℎ, 𝑤], 𝑎 = 𝑙𝐴[𝑚, 𝑖, 𝑗], and

𝑤 = 𝑙𝑊 [𝑚, 𝑐, 𝑢, 𝑣]

A.2.1 Weight Hessian

We assume that the Hessian is diagonal. Hence, only the terms on the diagonal of

the Hessian, 𝑑2ℒ
𝑑𝑤2 , are required.

The Faà di Bruno formula generalises the chain rule for higher order derivatives.

Faà di Bruno’s formula for obtaining the second order weight derivatives in the

multivariate case is given in Equation A.11.

𝑑2ℒ
𝑑𝑤2

=
∑︁
𝑎∈𝑙𝐴

(︃
𝑑2ℒ
𝑑𝑎2

(︂
𝑑𝑎

𝑑𝑤

)︂2

+
𝑑ℒ
𝑑𝑤

𝑑2𝑎

𝑑𝑤2

)︃
(A.11)

Using the Levenberg-Marquardt approximation 𝑑ℒ
𝑑𝑤

𝑑2𝑎
𝑑𝑤2 is neglected. For convo-

lution layers, 𝑑2𝑎
𝑑𝑤2 is indeed equal to zero. The resulting approximation is shown in

Equation A.12.

𝑑2ℒ
𝑑𝑤2

=
∑︁
𝑎∈𝑙𝐴

(︃
𝑑2ℒ
𝑑𝑎2

(︂
𝑑𝑎

𝑑𝑤

)︂2
)︃

(A.12)
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Using Equation A.12 and Equation 2.2, we obtain:

𝑑2ℒ
𝑑𝑙𝑊 [𝑚, 𝑐, 𝑢, 𝑣]

2 =

𝑙ℎ𝑒𝑖𝑔ℎ𝑡−1∑︁
𝑖=0

𝑙𝑤𝑖𝑑𝑡ℎ−1∑︁
𝑗=0

𝑑2ℒ
𝑑𝑙𝐴[𝑚, 𝑖, 𝑗]

2

(︂
𝑑 𝑙𝐴[𝑚, 𝑖, 𝑗]

𝑑 𝑙𝑊 [𝑚, 𝑐, 𝑢, 𝑣]

)︂2

(A.13)

=

𝑙ℎ𝑒𝑖𝑔ℎ𝑡−1∑︁
𝑖=0

𝑙𝑤𝑖𝑑𝑡ℎ−1∑︁
𝑗=0

𝑑2ℒ
𝑑𝑙𝐴[𝑚,ℎ,𝑤]

2
𝑙−1𝐴[𝑐, 𝑖+ 𝑢, 𝑗 + 𝑣]2 (A.14)

Hence, to obtain the Hessian with respect to the weights, 2-dimensional convo-

lutions are required similar to the convolutions for obtaining the weight gradients.

A.2.2 Feature Map Hessian

The Hessian with respect to the feature maps is also assumed to be diagonal and

the Levenberg-Marquardt approximation is used. The Faà di Bruno formula for

second order derivatives is used to backpropagate the diagonal terms of the feature

map Hessian. The backpropagation of the feature map Hessian is given in Equation

A.15. After applying the Levenberg-Marquardt approximation, we obtain Equation

A.16.

𝑑2ℒ
𝑑𝑥2

=
∑︁
𝑎∈𝑙𝐴

(︃
𝑑2ℒ
𝑑𝑎2

(︂
𝑑𝑎

𝑑𝑥

)︂2

+
𝑑ℒ
𝑑𝑥

𝑑2𝑎

𝑑𝑥2

)︃
(A.15)

𝑑2ℒ
𝑑𝑥2

=
∑︁
𝑎∈𝑙𝐴

(︃
𝑑2ℒ
𝑑𝑎2

(︂
𝑑𝑎

𝑑𝑥

)︂2
)︃

(A.16)

Using Equation A.16, Equation 2.2 and Equation A.9, we obtain:

𝑑2ℒ
𝑑𝑙−1𝐴[𝑐, ℎ, 𝑤]

2 =

𝑙𝑚−1∑︁
𝑚=0

𝑙ℎ𝑒𝑖𝑔ℎ𝑡−1∑︁
𝑖=0

𝑙𝑤𝑖𝑑𝑡ℎ−1∑︁
𝑗=0

𝑑2ℒ
𝑑𝑙𝐴[𝑚, 𝑖, 𝑗]

2

(︂
𝑑 𝑙𝐴[𝑚, 𝑖, 𝑗]

𝑑 𝑙−1𝐴[𝑐, ℎ, 𝑤]

)︂2

(A.17)

=

𝑙𝑚−1∑︁
𝑚=0

𝑙𝑘−1∑︁
𝑢=0

𝑙𝑘−1∑︁
𝑣=0

𝑑2ℒ
𝑑𝑙𝐴[𝑚,ℎ− 𝑙𝑘 − 1 + 𝑢,𝑤 − 𝑙𝑘 − 1 + 𝑣]

2

(︁
𝑙𝑊 *[𝑚, 𝑐, 𝑢, 𝑣]

)︁2
,

(A.18)

if ℎ− 𝑙𝑘 − 1 + 𝑢 > 0 and 𝑤 − 𝑙𝑘 − 1 + 𝑣 > 0,

else 0
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Hence, the backpropagation of the feature map Hessian using the method pro-

posed by LeCun et al. (1989) can be implemented as a convolution with the rotated

kernels squared.

We demonstrate that the backpropagation of second order derivatives used in

LeCun et al. (1989), can be implemented as a convolution of similar structure as the

backpropagation of gradients using the convolution layer given in Equation 2.2. The

equation given does not include dilation, groups, and different padding strategies.

However, even with convolution layers that include these, the backpropagation of

second order derivatives results in a convolution of similar structure to the back-

propagation of gradients.

A.3 Implementation

To implement the presented backpropagation of second order derivatives in Caffe

(Jia et al. 2014), we extend the “blobs” in Caffe to store second order derivatives.

The second order backpropagation of feature maps is implemented for all activation

layers (in their test form). Since their second order derivation is trivial, we do not

show them here. The second order backpropagation of the fully-connected layer can

also easily be derived and is not presented here.

To implement the second order backpropagation for a convolution layer, we call

a convolution with similar structure to the backpropagation of gradients but with

different operands. To backpropagate the feature map gradient, instead of convolv-

ing the gradients of the previous layer with the weight tensor of rotated kernels,

we convolve the second order derivatives with the weight tensor of rotated kernels

squared. To obtain the weight second order derivatives, we use the same approach,

i.e., we call a convolution with same structure as the one used to obtain the weight

gradient and change the operands.
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