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A B S T R A C T

Knowledge graphs represent factual knowledge about the world as relationships
between concepts and are critical for intelligent decision making in enterprise
applications. New knowledge is inferred from the existing facts in the knowledge
graphs by encoding the concepts and relations into low-dimensional feature vector
representations. The most effective representations for this task, called Knowledge
Graph Embeddings (KGE), are learned through neural network architectures. Due
to their impressive predictive performance, they are increasingly used in high-
impact domains like healthcare, finance and education. However, are the black-box
KGE models adversarially robust for use in domains with high stakes?

This thesis argues that state-of-the-art KGE models are vulnerable to data poi-
soning attacks, that is, their predictive performance can be degraded by system-
atically crafted perturbations to the training knowledge graph. To support this
argument, two novel data poisoning attacks are proposed that craft input dele-
tions or additions at training time to subvert the learned model’s performance
at inference time. These attacks target the task of predicting the missing facts in
knowledge graphs using Knowledge Graph Embeddings.

To degrade the model performance through adversarial deletions, the use of
model agnostic instance attribution methods is proposed. These methods are used
to identify the training instances that are most influential to the KGE model’s
predictions on target instances. The influential triples are used as adversarial dele-
tions. To poison the KGE models through adversarial additions, their inductive
abilities are exploited. The inductive abilities of KGE models are captured through
the relationship patterns like symmetry, inversion and composition in the knowl-
edge graph. Specifically, to degrade the model’s prediction confidence on target
facts, this thesis proposes to improve the model’s prediction confidence on a set of
decoy facts. Thus, adversarial additions that can improve the model’s prediction
confidence on decoy facts through different relation inference patterns are crafted.

Evaluation of the proposed adversarial attacks shows that they outperform state-
of-the-art baselines against four KGE models for two publicly available datasets.
Among the proposed methods, simpler attacks are competitive with or outperform
the computationally expensive ones. The thesis contributions not only highlight
and provide an opportunity to fix the security vulnerabilities of KGE models, but
also help to understand the black-box predictive behaviour of these models.
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1
I N T R O D U C T I O N

1.1 motivation

Consider a financial regulator that wants to detect and anticipate money launder-
ing activities, where malicious parties funnel their income from illicit activities
into legitimate bank accounts through a series of financial transactions. Given the
complex and interconnected nature of such activities, analysing the financial trans-
actions from isolated bank accounts is often insufficient to catch fraudsters in prac-
tice. Rather, the relationships between different financial entities are leveraged to
perform an integrated analysis across diverse sources of financial data. To enable
this integrated analysis, knowledge graphs have emerged as the de-facto standard
for modeling and integrating the factual knowledge about multiple financial enti-
ties from diverse sources (Hogan et al., 2021; Noy et al., 2019). Entities like bank
accounts, their owners and their assets are represented as nodes of the knowledge
graph, and the interactions and transactions between these entities as the labelled
edges of the graph. Due to the growing volume of digital financial transactions,
data-driven Machine Learning (ML) methods are used to mine the patterns in this
interconnected graph of transactions. Learning and inference on the graph data
drives intelligent decisions like predicting the suspicious transactions between dif-
ferent accounts or hidden affiliations between the account owners (Khalili et al.,
2020; Chang, 2020; Singson and Soni, 2021). However, malicious parties with illicit
income to launder would be highly motivated to escape detection from these sys-
tems. Thus, such parties might attempt to sabotage the predictions of data-driven
intelligent systems by manipulating their personal details and transactions in the
input knowledge graph. Are the predictions from Machine Learning models on knowl-
edge graphs reliable for use in such adversarial settings?

Like the anti-money laundering application in finance, knowledge graphs are a
ubiquitous representation of the factual knowledge about interconnected entities
and the relationships between them (Hogan et al., 2021). In recent years, several
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introduction

large-scale knowledge graphs have been developed to support intelligent deci-
sion making for applications ranging from search engines, e-commerce and social
networks to biomedicine and finance. Commercial enterprises like Google and Mi-
crosoft have built web-scale knowledge graphs from textual sources on the Web
to support Google Search and Bing. Similarly, Facebook and LinkedIn rely on
the graph representation of the knowledge about their users to understand user
preferences and recommend prospective connections or job opportunities. Enter-
prise knowledge graphs are also used by online vendors like Amazon and eBay
to encode shopping behaviour of their users and information of their products for
improved product recommendations. Other companies like Accenture, Deloitte
and Bloomberg have deployed knowledge graphs for financial services. These fi-
nancial graphs power applications like enterprise search, financial data analytics,
risk assessment and fraud detection (Hogan et al., 2021; Noy et al., 2019).

More generally, in the domain of Natural Language Processing (NLP), back-
ground knowledge represented as factual knowledge graphs is injected to sup-
port knowledge-aware applications, like knowledge based question answering or
explainable fact checking over knowledge bases (Ji et al., 2022; Kotonya and Toni,
2020). An emerging research direction in this domain investigates methods to com-
bine the structured knowledge representation with the language representation
learned from unstructured text. These methods seek to improve the contextual
reasoning and understanding capabilities of NLP models using factual as well as
commonsense knowledge (Malaviya et al., 2020; He et al., 2020; Zhang et al., 2022).
Similarly, in the domain of Computer Vision (CV), machine learning for tasks like
image classification, Visual Question Answering and skeleton based action recog-
nition, is enhanced by representing the relationships among the objects in a scene
or an image as knowledge graphs (see Ma and Tang, 2021, Chapter 11). On the
other hand, there are emerging applications of knowledge graphs in healthcare
and biomedical research. Here, biological networks as used to model the asso-
ciations and interactions between different protein structures, drugs and diseases.
Additionally, combining the biomedical knowledge with patients’ electronic health
records enables an integrated analysis of disease comorbidity for personalised
precision medicine (Rotmensch et al., 2017; Mohamed et al., 2020; Li et al., 2021;
Bonner et al., 2022). Thus, knowledge graphs are the backbone for learning and
inference in modern intelligent systems.

To incorporate the graph data into the standard ML pipeline, the symbolic graph
structure needs to be represented as differentiable feature vectors. Traditional al-
gorithms used heuristics and domain engineering to hand-craft the features based
on the statistics about graph or node topology, or the kernel methods (see Hamil-
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1.1 motivation

ton, 2020, Chapter 2). The lack of flexibility of feature engineering has led way to
the graph representation learning algorithms that learn to represent the graph struc-
ture as low-dimensional continuous feature vectors, also called embeddings. To
learn the embedding for an entity, these algorithms aim to preserve the structural
information about the entity’s neighbourhood in the graph domain as a similarity
measure in the embedding domain. This way, algebraic operations on the embed-
dings of entities reflect the graph structural interactions between those entities,
which in turn, allows the topological information from the graph to be used for
different ML tasks. Deep learning based neural network architectures are used
to optimize the representations of entities and relations in the knowledge graph,
such that the learned representations best support the downstream ML task to be
performed on the graph (Hamilton et al., 2017b; Hamilton, 2020, Part 1). Due to
their effectiveness for different downstream tasks, graph representation learning
algorithms have become state-of-the-art methods for learning and reasoning with
knowledge graphs (Chen et al., 2020; Nickel et al., 2016a).

The success of deep learning based methods is ascribed to their ability to ex-
tract rich statistical patterns from large volumes of input data. However, being
data-driven, the learned models are non-interpretable and the reasons for their
predictions are unknown. Due to this black-box predictive behaviour, the failure
modes of the models are also unknown. It has been shown that the predictions
from deep learning models can be manipulated by manipulating their input data
(Biggio and Roli, 2018; Joseph et al., 2019). This is especially concerning for high-
stakes domains like healthcare, finance, education or law enforcement where the
representation learning algorithms for knowledge graphs are increasingly used
(Mohamed et al., 2020; Bonner et al., 2022). In these domains, decision outcomes
impact human lives and the stakes for model failure are very high. On the other
hand, due to the high-stakes, there are likely going to be motivated adversarial
actors that want to manipulate the model predictions. Additionally, knowledge
graphs are often automatically extracted from textual sources on the Web or cu-
rated from user generated content (Nickel et al., 2016a; Ji et al., 2022). This makes
it easy for the adversaries to inject carefully crafted false data to the graph.

Thus, to deploy graph representation learning models in high-stakes user fac-
ing domains, impressive predictive performance of the models is not enough. It
is vital to ensure that the models are also safe and robust for use. Yet, building
adversarially robust models requires methods to measure the adversarial robust-
ness of a model. In other words, a necessary pre-requisite for adversarially robust
graph representation learning models are methods to identify the failure modes
or the security vulnerabilities of existing models.
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The research in this thesis is motivated by the need to identify the adversarial vulnerabil-
ities of black-box graph representation learning algorithms as a crucial step towards their
responsible integration in high-stakes user facing applications.

1.2 research problem

The research in Machine Learning (ML) aims to build intelligent computer applica-
tions that learn to perform real-world tasks from past experience instead of being
explicitly programmed by human operators (Goodfellow et al., 2016). ML systems
automatically recognize and extract patterns from the past evidence provided to
the learner in the form of sample data. The patterns and assumptions observed in
the input data are captured implicitly in a latent model that enables inferences on
the unseen data. This predictive model design has been used successfully to make
intelligent decisions from input data modalities like images, text and graphs. Be-
cause of the ability of the learner to adapt to input evidence, Machine Learning has
emerged as the most promising approach to tackle real-world problems. With the
availability of large volumes of training data, these systems now have applications
in several daily tasks (Barreno et al., 2010; Biggio and Roli, 2018).

However, the adaptability of ML systems to input data can also become a vul-
nerability in real-world settings. In these settings, there might be motivated mali-
cious actors that attempt to exploit the adaptive nature of the learning system to
manipulate its predictions. The adversary can carefully design training data sam-
ples that steer the model to learn patterns that result in manipulated predictions.
Such intentional perturbations of an ML model’s input data, that aim to manipu-
late the model predictions, constitute the security threat called adversarial attacks.
The security analysis of ML systems is the focus of the research field of Adver-
sarial Machine Learning (AML), that lies at the intersection of the wider fields
of Machine Learning and Computer Security. The latter advocates for a proactive
approach to system security, also called security by design. Instead of designing
countermeasures in response to the adversarial attacks on deployed systems, the
proactive approach anticipates these attacks during system design and evaluates
the system’s resilience (that is, its adversarial robustness) to the simulated attacks
(Biggio and Roli, 2018; Joseph et al., 2019; Barreno et al., 2010).

This design approach has been widely used to investigate the adversarial ro-
bustness of ML systems for domains like images and natural language. However,
adversarial attacks designed against ML systems for images or text are not directly
applicable to graph data. This is because of the discrete perturbation space for the
graph domain and the interconnected nature of the graph structure (Günnemann,
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2022). There have been recent efforts towards investigating the adversarial robust-
ness of machine learning for graph data, as surveyed in Günnemann (2022), Jin
et al. (2021) Xu et al. (2020) and Sun et al. (2022). However, these studies focus on
the adversarial vulnerabilities of undirected graphs and neural network architec-
tures that do not scale to large-scale knowledge graphs. Research on the adversar-
ial vulnerabilities of representation learning for knowledge graphs has received
very little attention. This is precisely the research gap addressed by this thesis.

This thesis examines the adversarial robustness of representation learning algorithms for
knowledge graphs through the design, implementation and evaluation of data poisoning
attacks against them.

Data poisoning attacks aim to degrade the predictive performance of the learned
model at inference time by making edits to the input knowledge graph at training
time. The focus of this thesis are Knowledge Graph Embedding (KGE) models
that are the state-of-the-art algorithms for representation learning on knowledge
graphs (Ali et al., 2021; Rossi et al., 2021). Since the knowledge graphs are often
curated automatically from textual sources on the Web or from user generated
content, they are incomplete in practice. Thus, an important and state-of-the-art
downstream application of KGE models is to predict the missing facts in knowl-
edge graphs (Nickel et al., 2016a). To investigate the adversarial robustness of KGE
models, the thesis focuses on this downstream task of missing link prediction in
knowledge graphs. The aim of the research is to design methods that craft facts
which can be added to or removed from the original knowledge graph, such that a
KGE model trained on the perturbed graph exhibits worse predictive performance
than a KGE model trained on the original graph.

Research Question

The research question to be addressed in the thesis is -

To what extent can the predictive performance of state-of-the-art KGE models be degraded
for missing link prediction at inference time by adding or removing systematically crafted

triples to the input knowledge graph at training time?

To address this research question, the thesis addresses three research objectives -

RO1 Designing an adversarial attack requires a hypothetical attack scenario,
which is defined by a threat model of the adversary. The attack threat
model specifies the goals, knowledge and capability of the attacker. The first
objective of the research is to define this threat model and formulate the
problem statement for the corresponding adversarial attacks. This objective
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also involves the identification of major challenges in designing these
adversarial attacks, as well as the existing adversarial attacks against KGE
models from the literature.

RO2 The second research objective for this thesis is to design and implement novel
adversarial attacks to systematically craft deletions or additions to the train-
ing dataset that aim to degrade the predictive performance of the learned
KGE models. This objective further includes two sub-objectives -

RO2.1 Propose adversarial attacks on KGE models that degrade their predic-
tive performance through adversarial deletions.

RO2.2 Propose adversarial attacks on KGE models that degrade their predic-
tive performance through adversarial additions.

RO3 The third research objective is to evaluate the effectiveness of the proposed
adversarial attacks in degrading the predictive performance of KGE models.

1.3 research contributions

Data poisoning attacks aim to degrade the predictions of the KGE model at infer-
ence time by removing or adding adversarial triples to the input knowledge graph
at training time. Designing data poisoning attacks against KGE models poses two
main challenges. First, to select an adversarial deletion or addition, the impact of a
candidate perturbation on the model predictions needs to be measured. However,
the naïve approach of re-training a new KGE model for each candidate perturba-
tion is computationally prohibitive. Second, while the search space for adversarial
deletions is limited to existing triples in the knowledge graph, it is computation-
ally intractable to enumerate through all the possible candidate additions.

Poisoning via Instance Attribution Methods

This thesis proposes to use the model-agnostic instance attribution methods from In-
terpretable Machine Learning (Molnar, 2019) to craft adversarial deletions against
KGE models. Instance attribution methods identify the training instances that are
influential to model predictions, that is, deleting these instances from the training
data would considerably change the model predictions. These methods are widely
used to generate post-hoc explanations for deep neural networks on images (Koh
and Liang, 2017; Hanawa et al., 2021) and text (Han et al., 2020; Pezeshkpour et al.,
2021). Since the KGE models have relatively shallow neural architectures and the
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instance attribution metrics are independent of the black-box models and the in-
put domain, they are a promising approach to estimate the influence of training
triples on the KGE model predictions. Yet, despite their promise, they have not
been used for KGE models so far. The instance attribution methods are used in
this research to address the challenge of measuring the impact of a candidate ad-
versarial deletion on the KGE model predictions.

The research uses three types of instance attribution methods - Instance Sim-
ilarity that compares the feature representations of target and training triples
(Hanawa et al., 2021; Charpiat et al., 2019); Gradient Similarity that compares the
gradients of model’s loss function due to target and training triples (Hanawa et al.,
2021; Charpiat et al., 2019); and Influence Function (Koh and Liang, 2017) which is
a principled approach from the robust statistics to estimate the effect of removing
a training triple on the KGE model predictions. The most influential training triple
identified by the instance attribution metrics is selected as adversarial deletion.

However, data poisoning attacks based on instance attribution methods require
a combinatorial search through the candidate perturbations, which does not scale
to adversarial additions. Thus, a heuristic method is proposed to use the instance
attribution methods for data poisoning by adversarial additions. Given the influen-
tial training triple, the triple for adversarial addition is obtained by replacing one
of the two entities of the influential triple with the most dissimilar entity in the
embedding space. The intuition behind this step is to add a triple that would re-
duce the influence of the influential triple. This solution overcomes the scalability
challenge for adversarial additions by comparing only the entity embeddings to
select the replacement. However, this is a heuristic and model-agnostic solution for
adversarial additions and might not generate the most effective edits. Further, the
method still requires combinatorial search over the neighbourhood triples. Thus,
in the next part of the thesis, model-aware adversarial additions, that do not rely
on a combinatorial search in the triple space, are proposed.

Poisoning via Relation Inference Patterns

To degrade the model performance, the inductive abilities of KGE models are ex-
ploited to craft the facts for adversarial addition. The inductive abilities of KGE
models are expressed through different connectivity patterns like symmetry, in-
version and composition between the relations in the knowledge graph (Trouillon
et al., 2019; Hamilton, 2020, Chapter 4). These connectivity patterns are referred to
as relation inference patterns. Specifically, to degrade the KGE model’s performance
for predicting a target missing fact, this thesis proposes to improve the model’s
predictive performance on a set of decoy facts.
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A collection of heuristic approaches are proposed to select the decoy facts and
craft adversarial additions that can improve the model’s predictive performance
on decoy facts through different relation inference patterns. The proposed solution
addresses the challenge of a large candidate space by breaking down the search
into smaller steps over entities and relations. These steps are - (i) determining the
adversarial relations; (ii) determining the decoy entities that most likely violate an
inference pattern; and (iii) determining the remaining adversarial entities in the
inference pattern that are most likely to improve the predictions for decoy triples.

Furthermore, the extent of effectiveness of the attack relying on an inference
pattern indicates the KGE model’s sensitivity to that pattern. This means that
the proposed data poisoning attacks for adversarial additions can also help in
understanding the predictive behaviour of KGE models.

In summary, the main contributions of this thesis are -

RC1 Instance attribution based adversarial attacks for adversarial deletions

RC2 Relation Inference pattern based adversarial attacks for adversarial additions

1.4 publications

The research contributions from this thesis have been published as the following
articles at international conferences.

1. Bhardwaj, P., Kelleher, J.∗, Costabello, L.∗, & O’Sullivan, D.∗ (2021, Novem-
ber). Adversarial Attacks on Knowledge Graph Embeddings via Instance
Attribution Methods. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (pp. 8225-8239). (Bhardwaj et al.,
2021a)

2. Bhardwaj, P., Kelleher, J.∗, Costabello, L.∗, & O’Sullivan, D.∗ (2021, August).
Poisoning Knowledge Graph Embeddings via Relation Inference Patterns.
In Proceedings of the 59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers) (pp. 1875-1888). (Bhardwaj
et al., 2021b)

3. Bhardwaj, P. (2020, April). Towards Adversarially Robust Knowledge Graph
Embeddings. In Proceedings of the AAAI Conference on Artificial Intelli-
gence (Vol. 34, No. 10, pp. 13712-13713). (Bhardwaj, 2020)

For publications with multiple authors, the thesis author proposed and
designed the research contributions, conducted the evaluation and wrote the
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1.5 thesis outline

manuscripts. Remaining authors contributed equally (indicated by ∗ next to their
names) through feedback on the research process and the manuscript drafts.

Bhardwaj et al. (2021a) is based on the first research contribution RC 1 of this
thesis, which is discussed in Chapter 4 of the thesis. The contribution was pub-
lished at EMNLP 2021 and it proposes the data poisoning attacks for adversarial
deletions using the instance attribution methods. The second research contribution
RC 2 of this thesis has been published as Bhardwaj et al. (2021b) at ACL-IJCNLP
2021. This contribution is discussed in Chapter 5 of the thesis and proposes data
poisoning attacks for adversarial additions by exploiting the inductive abilities of
the KGE models expressed as relation inference patterns. Lastly, the author’s re-
search proposal for this thesis was published at the Doctoral Consortium at AAAI
2020 as Bhardwaj (2020).

1.5 thesis outline

The next chapter provides the background details for representation learning on
knowledge graphs. The pipeline for state-of-the-art KGE models is introduced
and relevant components of this pipeline are discussed. The downstream task
of missing link prediction and the standard evaluation protocol for this task are
also discussed. Chapter 3 formulates the problem statement for designing data
poisoning attacks against the KGE models. This chapter defines the attack threat
model used for the thesis and identifies the key challenges to be addressed in the
design of data poisoning attacks. State-of-the-art poisoning attacks against KGE
models and a methodology for evaluating the proposed attacks are also discussed.
This chapter addresses the Research Objective RO1.

Chapter 4 proposes the adversarial attacks based on instance attribution meth-
ods and evaluates the proposed attacks against state-of-the-art adversarial attacks.
In Chapter 5, the adversarial attacks based on relation inference patterns are dis-
cussed and evaluated against the state-of-art adversarial attacks. Both Chapters 4

and 5 collectively address Research Objectives RO2 and RO3.
Chapter 6 highlights studies from the wider literature that are related to the

research in this thesis. Families of representation learning on graphs with other
modalities are discussed, and the literature on understanding the predictive be-
haviour of KGE models through post-hoc explanations and theoretical or empiri-
cal analysis is analyzed. Finally, Chapter 7 concludes the thesis by summarizing
the broader impact of the research contributions and discussing the open research
problems for building adversarially robust KGE models.
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2
R E P R E S E N TAT I O N L E A R N I N G F O R K N O W L E D G E
G R A P H S

Knowledge graphs represent factual knowledge about the world as relationships
between concepts and are the de-facto standard for modeling and integrating com-
plex, structured data from diverse sources (Hogan et al., 2021; Noy et al., 2019).
Learning and inference on knowledge graphs is critical for intelligent decision
making in enterprise applications that aim to utilize the factual world knowl-
edge. Such applications range from question answering systems for search en-
gines and personal assistants, to recommendation systems for social networks and
e-commerce, to drug target discovery from biological networks (Noy et al., 2019;
Nickel et al., 2016a; Ji et al., 2022).

While a knowledge graph is represented as a collection of facts, the standard
Machine Learning (ML) pipeline uses feature vectors as inputs. Thus, integrat-
ing knowledge graphs into these pipelines requires a mapping of the concepts
and relations in the knowledge graph to feature vectors. Traditionally, these fea-
ture vectors were hand-engineered to encode specific structural properties of the
graph data (Hamilton, 2020, Chapter 2). But the inflexibility and design expense
of hand-engineering has led way to the paradigm of learning these representa-
tions. Representation learning approaches use neural network architectures to learn
the mapping from the concepts and relations in the graph to a low-dimensional
vector space. This mapping preserves the topological information from the graph
as the algebraic operations in the latent feature space. The goal of representation
learning algorithms is to optimize the mapping such that the graph structural in-
formation to be preserved can be reconstructed from the learned representations
or embeddings (Ma and Tang, 2021, Chapter 4).

Based on the structural information they preserve, there are different families
of graph representation learning algorithms. Among these, methods based on
edge reconstruction are state-of-the-art for representation learning on knowledge
graphs. The learned representations of concepts and relations, called Knowledge
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2.1 knowledge graphs

Graph Embeddings (KGE) are used for different downstream tasks, like knowledge
base completion (or missing link prediction), triple classification, entity disam-
biguation, relation extraction, question answering, etc. (Wang et al., 2017; Ali et al.,
2021). The research in this thesis focuses on the task of missing link prediction in knowl-
edge graphs using KGE models. This is because the KGE techniques were originally
designed for knowledge base completion (Hamilton, 2020, Chapter 4), and because
this downstream task is state-of-the-art evaluation for KGE models (Ali et al., 2021;
Wang et al., 2017). The relevant background on Knowledge Graph Embeddings for
the thesis is covered in this chapter. The KGE models, training strategies, and eval-
uation metrics included in this research are introduced. Additionally, an overview
of the design space for KGE models is discussed in Section 2.4.1 and Section 2.4.2;
these design intuitions are relevant for the thesis contributions in Chapter 5.

While the chapter provides the necessary background for the thesis, a compre-
hensive survey of all the KGE models published and implemented in the literature
is beyond the scope of this thesis. Such surveys are available in Ali et al. (2021),
Rossi et al. (2021) and Wang et al. (2017). Of these, Ali et al. (2021) is the most recent
study that benchmarks the predictive performance of a variety of KGE models for
different training strategies and loss functions. Rossi et al. (2021) provides a taxon-
omy for KGE models and investigates the effect of structural graph properties on
the predictive performance. Wang et al. (2017) presents representative techniques
for knowledge graph embeddings, methods to incorporate additional graph in-
formation, as well as applications for different downstream tasks. Additionally,
Chapter 6 of the thesis provides a brief overview of the other families of graph
representation learning, which do not scale to multi-relational knowledge graphs.
On the other hand, it is also noteworthy that graph representation learning is not
the only method for missing link prediction in knowledge graphs. Methods based
on observable graph features, rule mining and relation path ranking are discussed
in Nickel et al. (2016a) and Chen et al. (2020), but are not the focus for this research.

2.1 knowledge graphs

A Knowledge Graph (KG) represents the factual knowledge about the world as
relationships between entities. It is a directed, labelled graph where the nodes
represent the entities of interest, the edges represent the relationships between
them, and the edge labels represent the different types of possible relationships.
Based on the domain of interest, the entities might represent various real-world
concepts like people, objects, organizations, etc. For example, Figure 1 shows a
knowledge graph about the financial details of a bank’s customer. The relation-
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Figure 1: An example Knowledge Graph (KG) of the financial details of a bank’s customer
Karl. Nodes of the graph represent entities and the edge labels represent types
of relationships. The existence of an edge between two entities indicates the
relationship between them. Knowledge graph embeddings are used to predict
the missing link between Karl and Joe, given the existing facts in the KG.

ships between the entities can then be expressed as factual statements that con-
vey the real-world knowledge about them. These factual statements of the form
(subject, relation, object) are called triples. In the example knowledge graph, the
triple (Karl, lives_in, Country_K) represents the fact that Karl lives in the country
named Country_K. A knowledge graph then is essentially a collection of facts.

Formally, for a set of entities E and a set of relations R, a knowledge graph is a
collection of triples represented as T := {t := (s, r, o) | s, o ∈ E and r ∈ R}, where
s, r, o represent the subject, relation and object in a triple.

All possible triples from the Cartesian product E ×R× E can be grouped as a
third order tensor. The existence of a triple in the knowledge graph can then be
represented through its corresponding entry in the tensor. This alternate tensor
representation of a knowledge graph is called an adjacency tensor (Nickel et al.,
2016a). Formally, Y ∈ {0, 1}NE×NR×NE is the adjacency tensor with entries

yijk =

1, if the triple (i, j, k) exists

0, otherwise.

In this adjacency tensor, yijk = 1 indicates the presence of a true triple in the
knowledge graph. However, there are different assumptions for the interpreta-
tion of yijk = 0. Under the Closed World Assumption (CWA), all non-existent
triples in the knowledge graph are considered false. In this case, the triple
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(Karl, works_with, Joe), which is not a part of the example knowledge graph,
indicates that Karl does not work with Joe. On the other hand, under the Open
World Assumption (OWA), the non-existing triples are considered as unknown
and they can either be true or false. This modelling assumption means that
the missing links in the knowledge graph are not necessarily false, and can be
inferred by using the existing facts.

2.2 knowledge graph embeddings

Knowledge Graph Embeddings (KGE) encode entities and relations as a low-
dimensional continuous vector space θ := {E, R} where E ∈ Rk is the embedding
matrix for entities, R ∈ Rk is the embedding matrix for relations and k is the em-
bedding dimension. The optimization objective to learn the embeddings aims to
reconstruct the relationships between entities as interactions between their latent
features. There are many possible ways to model these interactions, which have re-
sulted in different KGE models, characterized by their scoring functions. The KGE
scoring function f : T → R uses the entity and relation embeddings to assign a
score to each triple ft := f (es, er, eo) = f (s, r, o) where es, eo ∈ E and er ∈ R.

During model training, the embedding matrices are initialized with random val-
ues and iteratively updated such that the scores assigned to true (existing) triples
in the knowledge graph are higher than the scores for false (non-existing) triples in
the knowledge graph. Training this model requires both positive and negative ex-
amples, but the knowledge graph only contains positive examples. Thus, negative
examples are generated for training by making a Local Closed World Assumption
(LCWA), that is, assuming a closed world in the local neighbourhood of an entity.
The overall framework for the KGE model training is summarized in Figure 2, and
different components of the pipeline are discussed below.

2.3 scoring functions

Table 1 summarizes the scoring functions of state-of-the-art KGE models studied
in this research. Representative models have been selected from the three fami-
lies of KGE models, namely Tensor Factorization models, Geometric models and
Deep-learning based models (Rossi et al., 2021; Wang et al., 2017). These repre-
sentative KGE models have varying inductive abilities (Section 2.4.2) and exhibit
multiplicative or additive interactions in the scoring functions (Section 2.4.1).
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Figure 2: Overall framework for learning Knowledge Graph Embeddings (KGE)

DistMult

DistMult (Yang et al., 2015) models the interactions between entities as a bilinear
product of their embeddings. In general, the bilinear product represents the entity
embeddings as vectors, the relation embeddings as matrices and combines them
through a matrix multiplication. The DistMult model simplifies this parametriza-
tion by constraining the relation matrix to be a diagonal matrix. Thus, the scoring
function of the DistMult model is a simple Hadamard product of the subject, rela-
tion and object embeddings. The Hadamard product is also called a tri-linear dot
product and is denoted as ⟨·⟩ in the expression below.

f (s, r, o) = sTWro =
d

∑
i=1

si · diag(Wr)i · oi = ⟨s, r, o⟩ where s, r, o ∈ Rk

Reducing the relation parameters improves the efficiency of DistMult over
earlier models like RESCAL (Nickel et al., 2011) which used the bilinear product
as a scoring function. However, it reduces the expressivity of the model. For
example, for the relation owns, f (Karl, owns, Account) should not be equal to
f (Account, owns, Karl), but DistMult cannot model this relationship because of the
commutative nature of the dot product. Yet, a recent study of the reproducibility
of KGE models in Kadlec et al. (2017) has shown that despite its simplicity,
DistMult achieves state-of-the-art predictive performance after proper tuning of
the hyperparameters.
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Model Scoring Function

DistMult ⟨es, er, eo⟩
ComplEx ℜ(⟨es, er, eo⟩)
ConvE ⟨σ(vec(σ([er, es] ∗ Ω))W), eo⟩
TransE −∥es + er − eo∥

Table 1: Scoring functions fsro of the KGE models used in this research. For ComplEx,
es, er, eo ∈ Ck; for the remaining models es, er, eo ∈ Rk. Here, ⟨·⟩ denotes the
tri-linear dot product; σ denotes sigmoid activation function, ∗ denotes 2D con-
volution with filters Ω, and W denotes additional parameters for ConvE model;
· denotes conjugate for complex vectors, and 2D reshaping for real vectors in

ConvE model; ∥·∥ denotes l-p norm.

ComplEx

Similar to DistMult, ComplEx (Trouillon et al., 2016) models the latent features as
a tensor factorization of the graph adjacency tensor and constraints the relation
embedding matrix to be diagonal. However, the latent features are modelled in a
complex vector space instead of the real vector space. Here, the embeddings are
composed of a real vector component and an imaginary vector component. Un-
like real-valued vectors, the bilinear product in complex space is not commutative.
This is because the bilinear product for complex numbers is defined as a Hermi-
tian product, which uses the complex conjugate of the object embedding instead
of the real-valued object embedding. This acts as a form of topological regulariza-
tion in the latent space and allows ComplEx to model asymmetric relations like
owns. Thus, the scoring function for a triple is the real valued component of the
Hadamard product between the subject embedding, relation embedding and the
complex conjugate of object embedding. Using ⟨·⟩ to denote the Hadamard prod-
uct and · for the complex conjugate of a vector, the ComplEx scoring function is
expressed as follows.

f (s, r, o) = ℜ(⟨s, r, o⟩) where s, r, o ∈ Ck

Some more recent models further improve the expressivity of tensor factorization
models. For example, QuatE (Zhang et al., 2019b) represents the latent features in
hypercomplex space; and SimplE (Kazemi and Poole, 2018) and TuckER (Balazevic
et al., 2019b) use further variations of the tensor factorization method like CP
decomposition and Tucker decomposition. However, ComplEx remains the state-
of-art model for missing link prediction in terms of the predictive performance
(Lacroix et al., 2018; Ruffinelli et al., 2020).
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TransE

Unlike DistMult and ComplEx, TransE (Bordes et al., 2013) belongs to the family of
Geometric models or Translational Distance models. These models represent the
relationships between entities as geometric transformations in the latent feature
space. Specifically, TransE models the object embedding of a triple as a translation
from the subject embedding via the relation embedding. In other words, when two
entities are related, the embedding of the object is modelled as the embedding of
the subject plus the relation embedding. Using ∥·∥ to denote the l-p norm of a
vector, the TransE scoring function for a triple is expressed as -

f (s, r, o) = −∥s + r− o∥ where s, r, o ∈ Rk

The model is inspired by word embeddings Word2vec (Mikolov et al., 2013) which
are learned from free text and coincidentally represent the 1-to-1 relationships be-
tween entities as translations in the embedding space. However, the translation
operation, explicitly used by TransE, can only model the 1-to-1 relations between
entities, which means that TransE cannot handle 1-N, N-1 or N-M relations in the
latent space. Despite this limitation, it remains popular because of its computa-
tional efficiency and is the representative model for Geometric family of models.

ConvE

DistMult, ComplEx and TransE score the triples in knowledge graphs through
simple pairwise interactions of the latent features. These shallow neural architec-
tures allow them to scale to real-world knowledge graphs with several million
triples. However, the learned features have limited expressivity and increasing the
embedding size to improve the expressivity does not scale with the number of en-
tities and relations in the knowledge graph. To overcome these challenges, ConvE
(Dettmers et al., 2018) adds a convolutional layer to the neural network architec-
ture. To compute the score of a triple, embeddings of subject and relation are
reshaped and concatenated; and the resulting matrix is input to the convolutional
layer. In this layer, convolutional filters are applied to capture the complex inter-
actions between the subject and relation features. The output feature maps from
the convolutional layer are vectorized and projected back into the k-dimensional
embedding space. Finally, these embeddings are combined with the object embed-
dings using the dot product. Using ⟨·⟩ to denote the dot product, σ to denote the
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sigmoid activation function, ∗ for the 2D convolution operation with filters Ω, and
· for 2D reshaping of real vectors, the ConvE score for a triple is given by -

f (s, r, o) = ⟨σ(vec(σ([r, s] ∗ Ω))W), o⟩ where s, r, o ∈ Rk

The convolution operation in ConvE is computationally expensive. Thus, Dettmers
et al. (2018) proposed the 1-K training strategy, which scores each (s, r) pair against
all entities simultaneously, instead of scoring the (s, r, o) triples individually. This
enables a single pass through the convolution layer for each (s, r) pair, thus scaling
the model to real-world knowledge graphs.

2.4 characteristics of scoring functions

2.4.1 Multiplicative vs Additive Interactions

The scoring functions of KGE models exhibit multiplicative or additive interac-
tions (Chandrahas et al., 2018). The multiplicative models score triples through
multiplicative interactions of subject, relation and object embeddings. The scoring
function for these models can be expressed as fsro = e⊤r F (es, eo) where the func-
tion F measures the compatibility between the subject and object embeddings and
varies across different models within this family. DistMult, ComplEx and ConvE
have such interactions. On the other hand, additive models score triples through
additive interactions of subject, relation and object embeddings. The scoring func-
tion for such models can be expressed as fsro = −

∥∥M1
r(es) + er − M2

r(eo)
∥∥ where

es, eo ∈ RkE , er ∈ RkR and Mr ∈ RkE×kR is the projection matrix from entity space
RkE to relation space RkR . TransE has additive interactions.

2.4.2 Inductive Abilities of Knowledge Graph Embeddings

Complementary to multiplicative and additive interactions, another way to char-
acterize the scoring functions of KGE models is based on their ability to repre-
sent different logical patterns on the relations (Trouillon et al., 2019; Hamilton,
2020, Chapter 4). This is because the general intuition behind the design of the
scoring functions is to capture logical properties between relations from the ob-
served facts in the knowledge graph. These logical properties can then be used
to generalize to unseen triples and make downstream inferences about the rela-
tionships between entities. For example, the relation is_owned_by is inverse of the
relation owns, and when the fact (Account, is_owned_by, Karl) is true, then the fact
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(Karl, owns, Account) is also true and vice versa. A KGE model that can capture the
inversion pattern can thus predict missing facts about owns based on the observed
facts about is_owned_by.

In this research, the representational abilities of KGE models are referred to
as relation inference patterns. The most studied relation inference patterns in the
current literature are symmetry, inversion and composition since they occur very
frequently in real-world knowledge graphs (Hamilton, 2020; Ali et al., 2021). For
a directed graph, the symmetry pattern indicates that if a relation exists in one
direction, it also exists in the opposite direction. Similarly, the inversion pattern
indicates that the existence of one relation implies the existence of another with op-
posite direction. The composition pattern indicates that a relation can be expressed
as a composition of two or more other relations. These relation inference patterns
are discussed in further detail in Chapter 5 where they are used to investigate the
adversarial vulnerability of KGE models.

It is noteworthy that the KGE models are latent factor models and the logical
patterns are not explicitly encoded in the learning algorithm. Rather, the relation
inference patterns are a means to understand the inductive abilities of the models,
and reflect the inductive biases that the model might have captured at training
time to generalize at inference time.

2.5 training knowledge graph embeddings

Since the KGs only contain positive triples; to train the KGE model, synthetic
negative samples t∗ ∈ T ∗ are generated by replacing the subject or object in the
positive triples with other entities in E . That is, for each positive triple t := (s, r, o),
the set of negative samples is t∗ := {(s∗, r, o) ∪ (s, r, o∗)}.

This approach for negative sample generation relies on the Local Closed World
Assumption (LCWA) about the knowledge graph, where the graph is considered
only locally complete (Nickel et al., 2016a). This means that if the entity-relation
pair (s, r) has an existing triple (s, r, o) in the knowledge graph, then any non-
existing triple (s, r, o∗) is treated as false.

The training objective is to learn the embeddings that score positive triples exist-
ing in the KG higher than the negative triples generated synthetically. To achieve
this, a triple-wise loss function is minimized. This loss function is expressed as

L(t, θ) := ℓ(t, θ) + ∑
t∗∈T ∗

ℓ(t∗, θ) where θ := {E, R}
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Thus, the optimal parameters θ̂ learned by the model are defined by
θ̂ := arg minθ ∑t∈T L(t, θ).

2.5.1 Training Strategies

There are different strategies for training the KGE models based on the differences
in the way negative triples are generated (Ruffinelli et al., 2020). Using all possible
entity corruptions of the training triples can be computationally expensive. Thus,
a common approach is to sample some negative triples from the set of all cor-
ruptions. Theoretically, the negative corruptions that are false negatives (that is, if
the corruption already exists in the graph) should be excluded from the training
process. However, in practice, the knowledge graphs are sparse and the likelihood
of sampling an actual triple as negative is low. Thus, the additional filter step
is omitted for efficiency (Ali et al., 2021). This training strategy is referred to as
negative sampling or NegSamp, and was proposed by Bordes et al. (2013). An al-
ternative approach for training KGE models was proposed in Lacroix et al. (2018).
Instead of sampling from the negative corruptions, the entire set of corruptions is
used for training. This approach is called 1vsAll or 1-N training strategy. Though
it is generally expensive, it is feasible for knowledge graphs where the number of
entities is not excessively large (Ruffinelli et al., 2020). Lastly, the approach pro-
posed by Dettmers et al. (2018) is called KvsAll or 1-K training strategy. Instead of
generating negative corruptions from individual triples, the approach generates
corruptions from entity-relation pairs. In this case, the possible triples from the
pair (s, r) are treated as positive if they exist in the training knowledge graph and
negative otherwise.

2.5.2 Loss Functions

Several loss functions have also been introduced for training KGE models. Given
the model parameters θ (that is, embeddings) at a training step, the score for a
triple is computed using the scoring functions discussed earlier. The loss func-
tions then compute the error in the scores assigned by the model. This error is
computed either from the independent labels for each triple; or by comparing
the scores assigned to positive and negative triples; or by comparing the positive
triple’s score with a set of negative triples. Based on this, the loss functions can
be categorized as pointwise, pairwise and setwise loss functions (Ali et al., 2021;
Mohamed et al., 2019).
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Pointwise Loss Functions

Pointwise loss functions compute an independent loss term for each triple-label
pair. The representative loss function for pointwise losses is Binary Cross Entropy
(BCE) loss. It uses the sigmoid activation function on a triple’s score to compute
the probability of that triple. The error term is then the cross entropy between
the resulting probability and the triple’s label. Let t denote a triple (positive or
negative example) and ŷt ∈ {0, 1} denote the label of the triple. Then, the BCE
loss term is expressed as -

L(t, θ) := −(ŷt · log(σ( ft)) + (1 − ŷt) · log(1 − σ( ft)))

BCE loss thus, frames the learning problem as a binary classification of the
triples, where the model outputs are treated as logits. It is suitable for multi-class
and multi-label classification and is usually used with the KvsAll training strategy.

Pairwise Loss Functions

The pairwise loss functions compare the scores for positive triples t with the scores
of negative triples t∗. This is based on the Open World Assumption (OWA) where
the negative triples are considered "less positive" instead of negative. The represen-
tative loss function for pairwise losses is the margin based ranking loss introduced
in Bordes et al. (2013). The loss is applicable to the NegSamp and the 1vsAll train-
ing strategies.

Let ∆ := ft − ft∗ denote the difference between the scores of positive and neg-
ative triples. Then, the expression for pairwise hinge loss or the pairwise max-
margin loss is given as L(t, θ) := max(0, λ + ∆) . Here, λ denotes the margin
parameter for the difference between the scores.

Setwise Loss Functions

Instead of relying on the scores of individual triples or the pairs of triples, the set-
wise loss functions compare the positive triple’s score with a set of negative triples.
The representative function for computing setwise loss is the Cross Entropy (CE)
loss. This loss computes the cross entropy between the model’s probability dis-
tribution and the data distribution of labels. The model distribution is computed
as a normalized softmax distribution over the scores assigned by the model. For
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a positive triple t ∈ {(s, r, o)} and all possible object-sided negative corruptions
t∗ ∈ {(s, r, o∗)}, the softmax normalization for predicted scores is given by -

p(o | s, r) =
exp( f (s, r, o))

∑
o∗∈E

exp( f (s, r, o∗))

The data distribution is obtained by normalizing the label values of triples to
sum to 1. Finally, the cross entropy between the model and label distribution is -

L(t, θ) := − ∑
o∗∈E

I[(s, r, o∗) ∈ T ] · log(p(o | s, r))

Here, I denotes the indicator function which indicates whether the negative
triple already exists in the knowledge graph or not. Since the loss applies a softmax
normalization, it is suitable for multi-class and single-label classification problems.
It is thus, usually used with NegSamp and 1vsAll training strategies.

2.6 missing link prediction

Large-scale knowledge graphs which serve as background knowledge for
knowledge-aware applications are extracted automatically from unstructured
textual sources on the Web. Despite advances in information extraction tech-
niques, the extracted graphs are often incomplete and noisy. Thus, predicting
the missing facts in knowledge graphs has emerged as an important ML task on
knowledge graphs (Nickel et al., 2016a; Rossi et al., 2021). Representation learning
on knowledge graphs is the state-of-the-art solution for this task. The learned
representations of concepts and relations, called Knowledge Graph Embeddings
(KGE) are used to score candidate missing facts and select the most plausible one.

The task of knowledge base completion (or missing link prediction) using KGE
models is the focus of this research. This task is formulated as an entity ranking
problem. Given the entity-relation pairs of the form (s, r) or (r, o), the task is to
predict the corresponding object or subject entity. This amounts to answering ques-
tions of the form (s, r, ?) or (?, r, o). For example, from the knowledge graph in
Figure 1, to predict whether Karl works with Joe, KGE models are used to answer
the query (Karl, works_with, ?). The evaluation protocol for missing link predic-
tion then measures the capability of the link predictor to answer these queries
correctly (Ruffinelli et al., 2020; Ali et al., 2021).
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2.6.1 Evaluation Protocol

The available triples in the knowledge graph are split into training, validation and
test subsets. Evaluation of KGE models is performed by training the embeddings
on the training subset and using the learned embeddings to correctly predict the
triples in the test subset. Similar to the training process, the test subset does not
contain negative examples either. Thus, for each test triple t = (s, r, o), subject-side
corruptions t∗s = (s∗, r, o) and object-side corruptions t∗o = (s, r, o∗) are generated
by replacing the subject/object entity with each entity from E . The KGE model’s
scoring function is used to predict scores of the original as well as negative triples.
The scores are then sorted in descending order and the rank of the correct test
entity is determined. These steps provide two ranks for the test triple - one for
subject corruptions, and one for object corruptions. A better KGE model assigns
better ranks to the actual entity relative to the corruptions. Thus, the entity ranking
task evaluates the model’s capability to differentiate between the actual test triples
and their corruptions.

While computing the ranks, it is possible that some of the corruptions are valid
answers to the query. This happens if the corruptions of the test triple already exist
as triples in the training knowledge graph. To avoid the distortion of results due to
these false negatives, the filtered evaluation setting was proposed in Bordes et al.
(2013). In this setting, negative triples that already exist in the training, validation
or test set are filtered out. That is, their scores are ignored while computing the
ranks. Depending on the domain of use, either the subject or object or both ranks
of the test triple are used to determine the KGE model’s confidence in predicting
the missing link.

2.6.2 Evaluation Metrics

Given the ranks computed for the test triples, global summary metrics are used
to benchmark the predictive performance of different KGE models. Let the set of
triples in the test set be denoted by Ttest and the rank of each triple be rank(t). Then,
following are the state-of-the-art evaluation metrics for missing link prediction
with KGE models (Ali et al., 2021).

Mean Rank (MR) is the mean of the ranks predicted by the KGE model. The
value of this metric ranges between 1 and |E |, and the smaller values indicate
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better predictive performance. Due to its sensitivity to outliers, the metric is not
used widely. It is defined as -

MR =
1

|Ttest| ∑
t∈Ttest

rank(t)

Mean Reciprocal Rank (MRR) is the mean of the reciprocal values of the predicted
ranks. The value ranges between 0 and 1 and the higher values indicate better
predictive performance. MRR is defined as -

MRR =
1

|Ttest| ∑
t∈Ttest

1
rank(t)

Hits@N counts the proportion of correct entities that have been ranked less than
or equal to N. That is, it measures the fraction of correct entities ranked in the
top-N by the KGE model. Based on the measurement granularity of interest, the
value of N can be 1, 3, 5, 10 etc. Higher values of Hits@N indicate better predictive
performance. The metric is defined as -

Hits@N =
|{t ∈ Ttest | rank(t) ≤ N}|

|Ttest|

2.6.3 Benchmark Datasets

To evaluate the performance of KGE models for missing link prediction, several
benchmark datasets have been created over the years (Rossi et al., 2021; Ali et al.,
2021). These benchmarks have been sampled from real-world knowledge graphs,
instead of being built from scratch. The research in this thesis uses the benchmark
datasets WN18RR (Dettmers et al., 2018) and FB15k-237 (Toutanova and Chen,
2015) that have been built from the Wordnet and Freebase knowledge graphs.

WordNet

Wordnet1 is a lexical database of English, designed as a structured representation
of the language thesaurus for Computational Linguistics and NLP tasks (Miller,
1995). Semantically similar words that can be used interchangeably are grouped
together as concepts called synsets. The word forms (strings of letters representing
words) and synsets are represented as nodes of the graph. The labelled edges
represent the multiple semantic and lexical relationships between the word forms
and their meanings.

1 https://wordnet.princeton.edu/
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A subset of the Wordnet knowledge base was extracted by Bordes et al. (2014) to
evaluate KGE models for missing link prediction. Triples containing a pre-selected
set of relations were selected. Of these, triples containing entities appearing in less
than 15 triples were filtered out. This subset is called WN18 and contains 18 rela-
tions between 40,943 entities. Dettmers et al. (2018) observed that some facts in the
test set of WN18 can be predicted trivially because of an existing inverse relation
between the entities in the training set. To avoid this test set leakage, WN18RR
was created by removing the facts about relations that have an inverse relation in
the knowledge graph. This dataset contains 40,943 entities and 11 relations, and is
now the benchmark Wordnet subset to evaluate KGE for missing link prediction.

Freebase

Unlike Wordnet, Freebase (Bollacker et al., 2008) is an encyclopedic knowledge
graph, initially built in the Semantic Web community as a structured represen-
tation of general human knowledge. Thus, any real-world concept like person,
place, profession or sport can be assigned an identifier and represented as a node
in the graph. Factual statements about these entities are then modelled as the
(subject, relation, object) triples. To support relations between more than two en-
tities, intermediate nodes called Compound Vale Type (CVT) nodes are used for
reification (Pellissier Tanon et al., 2016; Rossi et al., 2021). The dataset was built
collaboratively with contributions from volunteers on the Web. Though the Free-
base API2 has now been migrated to Wikidata (Pellissier Tanon et al., 2016), the
benchmark subsets extracted from the original dataset continue to be used.

Bordes et al. (2013) extracted a subset of Freebase for KGE model evaluation.
Entities with at least 100 mentions and also appearing in Wikilinks database were
selected. Facts about these entities were extracted, and the reified relations from
the original graph were converted into cliques with binary edges (Rossi et al., 2021,
Section 4.3.4). The dataset, called FB15k has 14,951 entities and 1,345 relationships.
However, Toutanova and Chen (2015) observed test set leakage for this dataset,
that is, entities in some test set triples are connected directly in the training set.
A simple model based on observable features could thus achieve state-of-the-art
performance for missing link prediction. The study created a subset of FB15k by
selecting facts with 401 most frequent relations and filtering out the facts with
equivalent or inverse relations. This dataset called FB15k-237 contains 14,541 enti-
ties and 237 relations.

It is noteworthy that some of the earliest methods for Knowledge Graph Embed-
dings were evaluated on the subsets of Wordnet and Freebase (Bordes et al., 2013,

2 https://developers.google.com/freebase
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2.7 summary

WN18RR FB15k-237

Entities 40,559 14,505

Relations 11 237

Triples
Training 86,835 272,115

Validation 2,824 17,526

Test 2,924 20,438

Table 2: Statistics for benchmark datasets WN18RR and FB15k-237 used in the thesis.

2014). Though several new benchmarks have been introduced, these remain state-
of-the-art datasets for evaluating KGE models. Additionally, the two knowledge
bases represent knowledge from two different domains and were constructed us-
ing different methodologies. While Wordnet is a lexical ontology that was curated
by NLP experts, Freebase is a collection of cross-domain general-purpose facts that
were curated by crowdsourcing on the Web. Thus, these two knowledge graphs
are suitable for evaluating the research contributions of this thesis. As discussed
later in Section 3.6, the thesis uses WN18RR and FB15k-237 for KGE training and
evaluation, as well as for the evaluation of the proposed adversarial attacks. Table
2 summarizes the statistics about these datasets.

2.7 summary

This chapter introduced the background concepts for representation learning on
knowledge graphs. The overall framework of KGE models, as well as its relevant
components were discussed. The task of missing link prediction on knowledge
graphs was also introduced. Due to the effectiveness of KGE models for this task,
they are now increasingly used in high-impact domains like healthcare and fi-
nance, where model outcomes affect people’s lives (Rotmensch et al., 2017; Mo-
hamed et al., 2020; Bonner et al., 2022). In these high-stakes domains there are
likely going to be actors that want to cause KGE model failure. However, the
security vulnerabilities of KGE models to adversarial manipulation are largely un-
known. The next chapter introduces and formulates the problem statement for
examining the adversarial vulnerabilities of KGE models.
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3
P R O B L E M F O R M U L AT I O N

Machine Learning (ML) is often contended as critical for building intelligent sys-
tems that can operate in complex realistic scenarios (Goodfellow et al., 2016). With
the availability of huge volumes of data, ML systems have indeed enabled the
automation of many real-world tasks. This is also true for reasoning with knowl-
edge graphs. As discussed in Chen et al. (2020) and Nickel et al. (2016a), latent
distributed representations (that is, KGE models) have replaced earlier methods
based on logic rules and observable graph features for knowledge graph reason-
ing. Due to their impressive predictive abilities, the learned representations are
increasingly used for user-facing applications in complex safety-critical domains
like healthcare and finance (Mohamed et al., 2020; Bonner et al., 2022). This suc-
cess is due to the ability of representation learning algorithms to encode patterns
from the raw input facts in the knowledge graph as latent feature representations
for entities and relations.

However, the adaptability of ML models to input data is also a security vul-
nerability (Barreno et al., 2010; Joseph et al., 2019). Malicious actors that want to
manipulate the predictions of KGE models can add or remove carefully and in-
tentionally crafted facts to the input knowledge graph. Since the KGE models are
non-interpretable, the impact of malicious edits on their predictions, that is, their
failure modes are unknown. This is especially concerning for user-facing applica-
tions in high-stakes domains where the cost for model failure is very high. Thus,
identifying the security vulnerabilities of KGE models is critical to deploy these
models in real-world settings that they are designed for. The security vulnerabil-
ities of ML systems have been investigated in the research field of Adversarial
Machine Learning (Biggio and Roli, 2018; Joseph et al., 2019). This chapter intro-
duces the relevant concepts from this field of research and formulates the problem
statement for examining the security vulnerabilities of KGE models.
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3.1 adversarial attacks

3.1 adversarial attacks

Machine Learning systems are vulnerable to attacks in adversarial settings, i.e. an
adversary can manipulate the results of a learning system by carefully perturb-
ing the inputs (Barreno et al., 2010). Thus, successful deployment of ML systems
requires that their security is evaluated during system design. Several studies,
Joseph et al. (2019); Biggio and Roli (2018); Liu et al. (2018); Carlini et al. (2019),
have been unanimous in their approach to evaluating the security of learning sys-
tems. The inspiration is from a well established practice in the field of Computer
Security, which is to determine the attacks that can happen on a learning system,
then evaluate the resilience of the system by simulating these attacks, and then pro-
pose defenses to strengthen the system against these attacks (Joseph et al., 2019).
This approach for ML security is based on the underlying principle of proactive
security design. According to this design approach, the system designer should
anticipate adversarial attacks on the learning system and incorporate defenses
against these attacks during system design. The approach is in contrast to a re-
active security design approach, in which the defense is proposed in response to
an actual attack by an adversary. Thus, designing adversarial attacks against ML
models is essential for a proactive and proper security evaluation of these models
(Biggio and Roli, 2018).

Adversarial attacks are empirical methods to investigate the security of Machine
Learning systems1. These methods craft systematic and intentional perturbations
to the ML model’s input data with the aim to perturb the model’s predictions. The
key design attribute of adversarial attacks is to simulate the data distribution of
real-world deployment scenarios where the training and test samples might not
belong to the same empirical distribution (Joseph et al., 2019). The stability of the
predictive performance of ML models against adversarial attacks indicates their
adversarial robustness. Therefore, designing adversarial attacks helps to anticipate
the potential security vulnerabilities of an ML model before it is deployed in a real-
world (and potentially adversarial) setting.

The aim of adversarial attacks is to perturb the predictions of an ML model
by making perturbations to the input data of the model. A taxonomy for adver-
sarial attacks was first proposed in Barreno et al. (2010) and later extended in
Huang et al. (2011). The security threats can be categorized based on three differ-
ent perspectives - the extent of their influence on the learning system, the security
violation they cause, and the specificity of the security threats.

1 In contrast to adversarial attacks, certificates of adversarial robustness provide theoretical guaran-
tees for the predictions of an ML algorithm for bounds on input perturbations.
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1. Influence – Adversarial attacks can be causative or exploratory. Causative
attacks influence the model’s training phase by manipulating the training
data. On the other hand, exploratory attacks can only influence the inference
phase by manipulating the test data. These two types of attacks are more
commonly known as data poisoning and evasion attacks.

2. Security Violation – Adversarial attacks can violate the ML system’s integrity
by generating false negatives and hence, evading detection without compro-
mising normal system operation; or they can violate availability by generat-
ing false positives and hence, compromising the system functionality avail-
able to legitimate users; or they can violate privacy by stealing private infor-
mation from the system.

3. Specificity – Adversarial attacks can be targeted to misclassify specific exam-
ples, or they can be indiscriminate and misclassify any sample.

In general, an adversarial attack can be conducted at training time or inference
time; can have restricted or full access to the learned model’s parameters; and can
make noticeable or unnoticeable perturbations to the input data. These different
settings can result in a spectrum of attacks for an ML model. However, the ad-
versarial attacks designed for one setting may not be effective for another setting.
Hence, for every adversarial attack, an attack threat model provides a specification
of the setting for which that attack is designed. This includes the attacker’s goals,
their knowledge of the ML system and their capabilities to make perturbations to
the system’s input data.

3.2 threat model for adversarial attacks

A formal threat model is used to quantify the degree of security needed for a
learning system by realistically modeling an adversary (Joseph et al., 2019; Biggio
and Roli, 2018; Carlini et al., 2019). It specifies the conditions and assumptions for
which the adversarial attack is designed against the learning system. Modeling
the threat for an ML system involves defining the adversarial attacker’s goals,
their knowledge of the system and their capabilities.

The attack threat model is an essential component of proactive security eval-
uation, as it enables the system designer to envision different attack scenarios.
Corresponding attack strategies can then be proposed and implemented for spe-
cific attack scenarios. By specifying the assumptions for adversarial attacks, the
attack threat model also determines the computational tractability of designing
the attack strategies. It is noteworthy that there is usually a trade-off between the
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3.2 threat model for adversarial attacks

feasibility of threat models for realistic scenarios and the tractability of adversarial
attacks (Joseph et al., 2019; Biggio and Roli, 2018). Specifically, the more restricted
an attacker’s knowledge and capabilities are, the more difficult is the design of
adversarial attacks for that attack threat model.

Following is the specification of the threat model for designing the adversarial
attacks in this research. While this attack threat model is applicable to the pro-
posed attacks in both Chapter 4 and 5, it is further specialized for the attacks
proposed in each chapter. Additionally, it closely follows the attack threat model
from state-of-the-art adversarial attacks against KGE models (Zhang et al., 2019a;
Pezeshkpour et al., 2019; Lawrence et al., 2021), which are discussed in Section 3.4.

3.2.1 Attacker’s Goal

The adversarial attacker’s goal is defined using the second and third dimensions of
the attack taxonomy. It specifies the security violation, attack specificity and error
specificity that an attacker desires to achieve. The attacker may only want to evade
detection (integrity attack) or compromise system functionality available to all the
users (availability attack) or steal private information from the system (privacy
attack). In terms of the attack specificity, the attacker may want to misclassify
specific samples (targeted attack) or any sample (indiscriminate attack). Similarly,
the attacker may want a sample to be misclassified as a specific class (specific) or
as any class other than the true class (generic) (Biggio and Roli, 2018).

This thesis studies the targeted integrity attacks against KGE models for the
task of knowledge base completion. The attacker aims to misclassify a specific
set of missing triples instead of compromising the overall model performance.
Additionally, the attacker aims to misclassify the facts that are predicted True
by the victim model, instead of predicting additional missing facts as True. This
attack setting is realistic for the scenarios where the KGE models are deployed. For
example, if a KGE model is used to predict insurance fraud in a financial network,
insurance fraudsters might want to misclassify specific facts that are predicted
True by the victim model.

Let the notation z := (zs, zr, zo) denote the missing target triple which is pre-
dicted highly plausible by the victim KGE model, that is, assigned a high rank.
In this case, zs, zo are the target entities and zr is the target relation. The goal of an
adversarial attacker then is to degrade the predicted ranks of this triple2.

2 This is in contrast to the setting where the attacker would aim to improve the rank of low-ranked
triples.

29



problem formulation

3.2.2 Attacker’s Knowledge

An attack threat model should define the extent of knowledge that an attacker has
about the target ML system. This includes the knowledge about system’s training
data, feature set, learning algorithm and the trained model parameters (Biggio
and Roli, 2018). Based on the attacker’s knowledge, one can model different attack
scenarios – white-box attacks where the attacker has full knowledge, or black-
box attacks where the attacker has no knowledge, or gray-box attacks where the
attacker has limited knowledge of the target system (Carlini et al., 2019; Barreno
et al., 2010).

While black-box settings are more realistic, attacks in white-box settings pro-
vide a worst case security evaluation of the ML system. According to Kerckhoffs’
principle for Computer Security, the system security should not rely on expecta-
tions of secrecy (Joseph et al., 2019). Thus, to ensure reliable vulnerability analysis,
this thesis uses a white-box attack setting. It is assumed that the attacker has full
knowledge of the victim KGE model architecture as well as access to the learned
embeddings.

3.2.3 Attacker’s Capability

A threat model should define the influence that an attacker has on the input data
and any reasonable constraints that need to be imposed on the attacker (Biggio
and Roli, 2018). The two most common attacks in the attack taxonomy are based
on the attack influence - causative attacks that can manipulate both the training
and test data, and exploratory attacks that can manipulate test data only. These
are more commonly referred to as the training time attacks (or data poisoning
attacks), and the test time attacks (or evasion attacks) respectively.

To predict scores for the triples at inference time, state-of-the-art KGE models
use only the latent representations learned from the training graph. This means
that the perturbations to the graph structure at inference time would not affect
the scores predicted for the missing triples. Thus, the evasion attacks at inference
time are not realistic for KGE models. This thesis focuses on the data poisoning
attacks against KGE models. Data poisoning attacks aim to perturb the predictions
of the KGE model at inference time by perturbing the input data at training time.
The attacker cannot manipulate the model architecture or the learned embeddings
directly; but only through perturbations to the training knowledge graph.
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Figure 3: Threat model for the adversarial attacks in this research. The original KGE model
assigns a high rank to the target fact (Karl, works_with, Joe). However, deleting
the triple (Karl, deposits, Acc) from the original knowledge graph, and training
a KGE model on the perturbed graph degrades the ranks of the target fact
(Karl, works_with, Joe). The change in ranks predicted by the original KGE model
and the poisoned KGE model indicates the effectiveness of the adversarial attack.

To summarize, this thesis assumes an adversarial attacker that targets the missing
facts which have been assigned high ranks by a KGE model. The attacker aims to
design perturbations to the knowledge graph that degrade the target triples’ ranks.
This means that the target triples’ ranks predicted by a KGE model trained on the
perturbed graph should be worse than the original model’s predictions. Figure 3

illustrates this attack threat model.

3.3 design space for adversarial attacks

Given the adversarial attacker’s goal, knowledge and capability, how can we de-
sign an adversarial attack for this threat model? In general, if the victim model’s
parameters are θ and the attacker is capable of perturbing the original dataset G
to G ′ ∈ Φ, then the adversarial goal can be characterized as an objective function
A(G ′, θ). Here, Φ is the set of valid perturbations on G, and the objective func-
tion A measures the effectiveness of the attack. The optimal strategy to design an
adversarial attack then, is to identify the perturbations that would maximize this
adversarial objective A. That is, the perturbed dataset is given by the solution of
the expression arg maxG ′∈Φ A(G ′, θ) (Biggio and Roli, 2018).
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For data poisoning attacks, the perturbations are staged at the training phase.
Thus, the victim model parameters θ are not static and are constrained to be the
optimal solution of model training on the perturbed data. In this setting, the over-
all attack strategy is formally expressed as a bilevel optimization problem -

Ĝ := arg max
G ′∈Φ

A(G ′, θ̂) s.t. θ̂ := arg min
θ

Ltrain(θ,G ′)

Here, the inner optimization corresponds to learning a model θ̂ on the perturbed
dataset G ′ and the outer optimization problem corresponds to evaluating the im-
pact of these perturbations on the target data through the adversarial objective A.
When the attacker’s goal is to degrade the predictive performance on specific tar-
gets Z , the adversarial objective can be defined through a loss function over these
targets. That is, A(G ′, θ̂) := Latk(Z , θ̂) is used as a measure of the effectiveness
of the perturbations on the targets. This loss depends on the perturbed dataset G ′

indirectly through the parameters θ̂ (Biggio and Roli, 2018; Muñoz González et al.,
2017).

In the graph domain, the perturbations can manifest as discrete addition and
removal of the entities or triples, or continuous-valued perturbations of the en-
tity features (Günnemann, 2022; Zügner et al., 2018). Since the KGE models are
trained in a transductive learning setting, the missing links can only be predicted
between entities seen during the training. Thus, deletion or addition of entities is
not a realistic setting. Additionally, the knowledge graphs in practice do not have
pre-existing node features and the embeddings in a KGE model architecture are
initialized with random feature values for training (Hamilton, 2020). Thus, pertur-
bations to the entity feature space are also not applicable.

The perturbation space for adversarial attacks in this thesis is the deletion or ad-
dition of triples to the training knowledge graph. This means that the perturbed
graph G ′ can be obtained from the original knowledge graph G by removing or
adding triples to G. Additionally, the perturbations are restricted to the neighbour-
hood of the target triples. The neighbourhood of the target triple z := (zs, zr, zo)

is the set of triples that have the same subject or the same object as the target
triple, i.e. X := {x := (xs, xr, xo) | xs ∈ {zs, zo} ∨ xo ∈ {zs, zo}}. This restriction is
added to make the attack design tractable. However, it is still a realistic restriction
as during model training, the embeddings of entities and relation in a triple are
updated only due to its neighbourhood triples. Figure 4 illustrates the deletion
and addition perturbations for the example knowledge graph from Figure 1.
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Figure 4: An illustration of the perturbation space for adversarial attacks on the example
financial knowledge graph in Figure 1. To degrade the KGE model’s predictive
performance for target triple (Karl, works_with, Joe), the adversarial attacker can
delete the existing triple (Karl, deposits, Acc), or they can add the new triples
(Karl, deposits, Acc_clean) and (Acc_clean, owned_by, Alice).

33



problem formulation

3.3.1 Challenges

Solving the bilevel optimization for data poisoning attacks is challenging and often
intractable, even for the non-graph data modalities (Biggio and Roli, 2018; Muñoz
González et al., 2017; Zügner and Günnemann, 2019). The main challenge in this
optimization is estimating the impact of a candidate poisoning point on the solu-
tion of the learning algorithm. A naive approach to measure this impact would be
to generate candidate poisoned graphs, train separate models on these candidates
and evaluate the adversarial objective for each poisoned model. The candidate per-
turbation that is most effective for the adversarial objective can then be selected as
the adversarial perturbation. However, this approach of re-training a new model
for each candidate perturbation is computationally intractable.

Some early studies on data poisoning (for non-graph data modalities) replaced
the inner optimization problem with a closed-form solution (Biggio et al., 2012;
Muñoz González et al., 2017). This allowed the outer optimization to be solved
directly through gradient descent. However, the solution is applicable to very spe-
cific families of ML models only, where the equilibrium solution of the inner opti-
mization can be obtained. It is thus, not a practical solution for poisoning neural
networks, where these stationarity conditions are difficult to derive.

Another solution explored in Muñoz González et al. (2017); Zügner and Gün-
nemann (2019); Wallace et al. (2021); Franceschi et al. (2019) relies on solving the
bilevel optimization through hyperparameter optimization. In this approach, the
perturbed dataset is treated as a hyperparameter to be optimized. The hyperpa-
rameter is learned by backpropagating the hyper-gradients, that is the gradients
of attacker’s loss Latk(Z , θ̂) with respect to the hyperparameter G ′ in the inner
optimization. The hypergradients can be computed by replacing the inner opti-
mization with a set of training iterations performed by the learning algorithm.
This solution explicitly saves the parameter updates for the inner optimization,
which allows the gradients of the loss in the outer objective to be backpropagated
through these updates. However, completely unrolling the entire set of parameter
updates is computationally expensive in terms of both time and memory. To re-
solve this issue, Wallace et al. (2021) and Franceschi et al. (2019) unroll the training
process for a fixed number of steps only. Similarly, Zügner and Günnemann (2019)
estimates the inner optimization for a fixed number of steps based on a first order
approximation of hyper-gradients from the meta-learning literature. On the other
hand, Muñoz González et al. (2017) does not store the updates for inner training,
but computes the hypergradients directly during backpropagation by reversing
the optimization steps.
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3.3 design space for adversarial attacks

However, these solutions are not applicable for selecting the optimal perturba-
tions for KGE models. This is because, unlike other neural architectures, the KGE
models do not have a differentiable mapping from the graph structure to the em-
bedding domain. For example, the optimization objective for Graph Neural Net-
work (GNN) architectures (Hamilton, 2020) performs convolution operation on
the adjacency matrix representation of the graph. This means that a loss function
based on the model parameters can be differentiated w.r.t. the adjacency matrix.
On the other hand, KGE models use a lookup table to map the graph structure to
the embeddings (Chapter 2). Computing the gradients for this lookup operation
is not straightforward.

Additionally, the above solutions for data poisoning attacks do not scale to
multi-relational knowledge graphs. For images and smaller, undirected graphs,
the bilevel formulation optimizes the tensor representation of the image or the
adjacency matrix for the graph. The corresponding perturbation space for knowl-
edge graphs would be the adjacency tensor representation of the graph. However,
back-propagating the gradients w.r.t. this entire tensor is computationally expen-
sive and in practice, intractable. Thus, for poisoning KGE models in this thesis, the
impact of candidate perturbation triples on the attacker’s objective is measured for
each candidate triple individually. This in turn introduces a combinatorial search
space over the candidate triples to select the adversarial triple.

For adversarial deletions, the combinatorial search space is limited to the exist-
ing triples in the knowledge graph. However, it is computationally intractable to
enumerate through all the candidate adversarial additions. For example, for every
target triple, the possible number of adversarial additions in the neighbourhood
of each entity are E ×R. For the benchmark knowledge graphs with thousands of
nodes, this search space is of the order of millions for a single target triple.

3.3.2 Design Requirements

Based on the above discussion, identifying the optimal perturbed knowledge
graph by solving the bilevel attack formulation is not tractable. However, the
formal problem specification can be used as an intuitive guide for the design
of data poisoning attacks against KGE models. Specifically, for the research in
this thesis, the challenges highlighted above are addressed through the following
design requirements -

1. Impact Metric: The inner and outer optimization in the formal attack spec-
ification essentially aims to quantify the impact of a perturbation on the
adversarial objective A(G ′, θ). Even without optimizing the bilevel problem,
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adversarial perturbations can be identified through a heuristic estimation of
this impact. Thus, the design of data poisoning attacks requires an efficient
method to estimate the impact of a candidate perturbation on the adversarial
attack objective A(G ′, θ).

2. Combinatorial Search: Given a measure of the perturbation impact, the per-
turbation with maximum impact needs to be selected. This combinatorial
search over the candidate triples is tractable only for the adversarial dele-
tions. Thus, the design of adversarial additions requires an efficient method
for the combinatorial search over the candidate perturbations.

Along with the discussion in the previous section, these design requirements in-
dicate that attack efficiency is a pre-requisite for the design of effective adversarial
attacks against KGE models. Thus, the aim of this research is to design efficient
methods for data poisoning attacks that effectively degrade the ranks of the tar-
get triples predicted by the KGE model. While the main consideration for attack
design is attack effectiveness, designing effective data poisoning attacks requires
efficient solutions.

3.4 state-of-the-art solutions

Recently, some studies have attempted to investigate the adversarial vulnerabili-
ties of representation learning for knowledge graphs. Of these, the studies most
closely related to this thesis are Zhang et al. (2019a) that proposes Direct Attacks,
Pezeshkpour et al. (2019) that proposes CRIAGE, and Lawrence et al. (2021) that
proposes Gradient Rollback. Similar to this thesis, these studies focus on the task
of predicting missing links in knowledge graphs using KGE models. Additionally,
the attack threat model considered in these studies is similar to the threat model
for this research (Section 3.2). The attacker is assumed to have white-box knowl-
edge about the model parameters and aims to degrade the predictive performance
by making edits to the training dataset. Thus, the adversarial attacks from these
studies are used as baselines to evaluate the attacks proposed in the thesis.

Zhang et al. (2019a) proposed methods for both adversarial deletions and ad-
versarial additions, and used these to investigate the security vulnerabilities of
KGE models. Pezeshkpour et al. (2019) also proposed both adversarial deletions
and additions, but only used the adversarial additions for poisoning KGE mod-
els. The study used adversarial deletions as post-hoc explanations for KGE model
predictions. The two tasks of adversarial deletions and post-hoc explanations are
equivalent when the explanations for model predictions are counterfactual in na-
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ture and the adversarial objective is defined in terms of the model predictions.
This is because, both adversarial deletions for the adversarial objective A(G ′, θ̂) :=
Latk(Z , θ̂) and counterfactual explanations for model predictions, aim to identify
the facts in the input knowledge graph whose removal would maximally impact
the model predictions on the set of target triples Z . Thus, both adversarial dele-
tions and additions proposed in Pezeshkpour et al. (2019) are included in this
research. Similar to CRIAGE, Lawrence et al. (2021) proposed a method for post-
hoc explanations of KGE models. This explanation method is also included for
adversarial deletions in this thesis.

3.4.1 Adversarial Deletions

As discussed in the previous section, the main design requirement for adversarial
deletions is a metric for the impact of a candidate triple’s removal on the adversar-
ial objective. The three methods for adversarial deletions in Zhang et al. (2019a),
Pezeshkpour et al. (2019) and Lawrence et al. (2021) specify the adversarial objec-
tive in terms of the KGE model’s predicted scores for the target triples. That is, for
A(G ′, θ̂) := Latk(Z , θ̂), the attack loss Latk is a function of the KGE model predic-
tions fz for target triples Z . The methods differ in how the impact of perturbations
on the KGE model predictions for target triples is estimated.

Direct Attack (Zhang et al., 2019a) uses the KGE model scores to measure the
adversarial candidate’s impact. Given a target triple, Direct Attack first identifies
the perturbed embeddings that would degrade the KGE score predicted for the
target triple. The attack then ranks the candidate deletions based on the difference
in their KGE scores for original and perturbed embeddings. The intuition is to
exploit the change in the candidate’s score due to the embedding perturbation as
an estimate of the candidate’s impact on perturbing the embedding. Removing a
candidate with larger difference in its score would have more impact on perturbing
the embedding and in turn the target prediction. However, the experiments in
Chapter 4 show that Direct Attack is effective for additive KGE models only.

CRIAGE (Pezeshkpour et al., 2019) estimates the impact of candidate deletions
by specializing the Influence Functions (IF) (Koh and Liang, 2017) to KGE models.
The influence expression from Koh and Liang (2017) is derived for the specific loss
function of Binary Cross Entropy (BCE) on the training triple. The KGE specialized
IF expression is computationally more efficient than IF, but it limits the method’s
applicability to multiplicative KGE models that are trained using the BCE loss.

On the other hand, Gradient Rollback (Lawrence et al., 2021) estimates the influ-
ence of training triples on the learned parameters by keeping track of the gradient
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values during the training process. At the start of the training, the influence value
for all training triples is initialized to zero. For each training step, the change in pa-
rameter values due to a triple is accumulated to the influence value of that triple.
After training, the influence of a triple is obtained by subtracting its parameter
updates from the model parameters. In other words, the method makes separate
copies of the parameter updates due to each training example, and estimates the
impact of removing an example by subtracting its copy of parameter updates from
the final model parameters. While this method provides theoretical bounds on the
influence approximation, it requires additional storage for the separate parameter
updates for all training triples. For knowledge graphs with millions of training
triples, this overhead becomes expensive. Additionally, to track updates due to
each triple, the method can only be applied for a batch size of 1.

In this thesis, the influence of candidate adversarial deletions is estimated
through model-agnostic instance attribution methods. Unlike CRIAGE, these
methods are applicable for all KGE models. Unlike Gradient Rollback, they do
not require additional storage space. Data poisoning attacks using the instance
attribution methods are discussed in Chapter 4 of the thesis.

3.4.2 Adversarial Additions

As discussed in Section 3.3.2, while the search space for adversarial deletions is
limited to candidate triples in the training graph, it is computationally intractable
to enumerate through all the possible candidate additions. Adversarial additions
against KGE models have been proposed in Direct Attack (Zhang et al., 2019a) and
CRIAGE (Pezeshkpour et al., 2019). Both studies follow a similar two-step design
approach for adversarial additions.

In the first step, the optimal gradient direction to perturb the latent space is com-
puted. Direct Attack optimizes for the latent representation of the target entity in
the target triple. CRIAGE optimizes for a function of the latent representations of
entity-relation pair of the unknown adversarial addition. Both methods then deter-
mine discrete input perturbations from the perturbed latent space. Direct Attack
randomly samples some candidate perturbations and scores them based on the
difference of their KGE scores for original and perturbed embeddings. Thus, the
attack is similar to the adversarial deletions with Direct Attack, and reduces the
search space by random sampling. On the other hand, CRIAGE trains an auto-
encoder to decode the entity-relation pair from the perturbed latent space. How-
ever, the auto-encoder uses a vanilla neural architecture which is not effective for
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generative modelling of the knowledge graphs and supports multiplicative KGE
models only .

This thesis addresses the challenge of large candidate space for adversarial addi-
tions by breaking down the combinatorial search into three smaller steps over the
entities and relations. This is achieved by a novel reformulation of the adversarial
objective for poisoning KGE models through adversarial additions. The attacks
proposed in Chapter 5 of the thesis exploit the inductive abilities of KGE models
to select these adversarial additions.

Adversarial Attacks for Other Threat Models

The adversarial attacks discussed above consider the same or similar threat model
as the attack threat model in Section 3.2, and are thus directly comparable to
the contributions of the thesis. However, there is some research that investigates
the security vulnerabilities of Machine Learning tasks for knowledge graphs, but
focuses on a different attack setting or ML task than the one in this research.

In parallel to the research in this thesis, Banerjee et al. (2021) studies risk aware
adversarial attacks against KGE models for link prediction. The study aims to
improve the stealth of an adversarial attack by reducing the exposure risk of the
attack. It is not included in the evaluation of the proposed attacks, because the
research in this thesis focuses on improving the attack effectiveness, instead of the
attack stealth.

In another parallel work, Zhang et al. (2021) proposes adversarial attacks against
the ML task of cross-lingual knowledge graph alignment. Due to differences in
the neural architecture and the ML task, this study has not been included for the
evaluation of the proposed attacks in the thesis.

Research in Raman et al. (2021) also generates perturbations to a knowledge
graph. These graph perturbations are proposed as a method to understand the sta-
bility of KG-augmented NLP tasks like commonsense Question Answering (QA)
and item recommendation. The aim of the study is to maximally perturb the graph
structure while preserving the model’s predictive performance on the graph. This
perturbation goal is the opposite of the goal of adversarial attacks. Thus, the meth-
ods proposed in the study are not comparable to the contributions of this thesis.

Additional literature that does not focus on the adversarial robustness of KGE
models, but improves our understanding of the model predictions through differ-
ent methods is discussed in Section 6.2 of Chapter 6.
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3.5 proposed attack strategy

As discussed in Section 3.2, the goal of the adversarial attacker is to degrade the
rank of a highly plausible target triple by deleting or adding triples to the training
knowledge graph.

The main requirement for designing data poisoning attacks by adversarial dele-
tions is to estimate the impact of a candidate adversarial deletion on the adversarial
attack objective A(G ′, θ̂). Similar to state-of-the-art solutions, the adversarial objec-
tive for deletions in this research is defined in terms of an attack loss Latk(Z , θ̂)

on the target triples Z . A proxy for this loss is the score predicted for each target
triple using the KGE model’s scoring function fz where z ∈ Z . Thus, the aim of the
adversarial attacker is to craft adversarial edits that would degrade the predicted
score fz of the target triple z.

To measure a candidate perturbation’s impact on the predictions for target
triples, this thesis proposes to use the model-agnostic instance attribution meth-
ods from Interpretable Machine Learning (Molnar, 2019). These methods identify
the training instances that are influential to model predictions, and thus quantify
the impact of a candidate perturbation on the predicted score of the target triple.
This solution is used to identify the adversarial deletions directly. But it requires
a combinatorial search through the candidate perturbations, which does not scale
to adversarial additions. Thus, a heuristic method is proposed to select adversar-
ial additions by replacing one of the two entities of the influential triple with the
most dissimilar entity in the embedding space. This solution is discussed further
in Chapter 4.

It is noteworthy that the adversarial attacker’s aim is to degrade the KGE
model’s predictive performance. The predictive performance for a set of target
facts is measured using the ranks of the target facts, and the attacker aims to
degrade the ranks predicted by the KGE model. As the rank of a target triple
relies on the score predicted for the target triple, the solution for adversarial
deletions defines the adversarial objective as degrading the predicted scores fz.
For this adversarial objective, the impact of candidate perturbations on the model
predictions needs to be explicitly quantified. Since the impact for all candidates
cannot be computed together (as discussed in Section 3.3), a combinatorial search
over the candidate space becomes necessary.

The large search space is the main design challenge for adversarial additions.
The combinatorial search is made necessary by formulating the adversarial objec-
tive in terms of the model predictions fz. Thus, the search space can be reduced by
re-formulating the adversarial objective A(G ′, θ̂). The rank of a highly plausible
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target triple can be degraded by improving the rank of a less plausible decoy triple,
instead of degrading the predicted score of the target triple directly. Thus, for the
adversarial additions, this thesis specifies the adversarial objective of degrading
the ranks of the target triples as improving the ranks of the decoy triples.

For a target triple z := (zs, zr, zo), the decoy triple for degrading the rank on
the object side would be (zs, zr, z′o) and the decoy triple for degrading the rank on
subject side would be (z′s, zr, zo). The aim of the attacker then, is to select decoy
triples from the set of valid synthetic negatives and craft adversarial additions to
improve their ranks. The attacker does not add the decoy triple itself as an ad-
versarial edit, rather chooses the adversarial edits that would improve the rank
of a missing decoy triple after training. As a measure of the candidate perturba-
tions’ impact on the ranks of the decoy triples, the attacker exploits the inductive
abilities of KGE models. As discussed in Section 2.4.2, The inductive abilities of
KGE models are expressed through the relation inference patterns like symmetry,
inversion and composition.

Chapter 5 proposes a collection of heuristic approaches to select the decoy
triples and craft adversarial additions that use different inference patterns to im-
prove the model’s predictive performance on these decoy triples. To overcome the
challenge of large candidate space, the search space is broken down into smaller
steps - (i) determine the adversarial relations; (ii) determine the decoy entities that
most likely violate an inference pattern; (iii) determine the remaining adversarial
entities in the inference pattern that most likely improve the rank of decoy triples.

In summary, the contributions proposed in Chapter 4 and 5 of the thesis differ in
their specification of the adversarial attack objective for degrading the predictive
performance of KGE models.

3.6 evaluation protocol

The research contributions of the thesis are evaluated using state-of-the-art evalua-
tion protocol for data poisoning attacks (Xu et al., 2020; Biggio and Roli, 2018). The
aim of this evaluation is to measure the effectiveness of the proposed attack strate-
gies in degrading the ranks predicted by the KGE models for the target triples at
inference time. Additionally, as discussed in Section 3.3.2, the design of data poi-
soning attacks requires efficient methods to estimate the impact of candidate per-
turbations and to reduce the combinatorial search space for adversarial additions.
Thus, the runtime complexity of the proposed attacks is also analyzed. Further-
more, illustrative examples of the attacks are provided for qualitative analysis and
to help understand the predictive behaviour of KGE models.
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The predictive performance of KGE models is evaluated using state-of-the-art
evaluation protocol for missing link prediction, which was discussed in Section
2.6.1. The knowledge graph is split into training, validation and test facts; a KGE
model is trained using the training triples; and evaluated on the test triples. The
evaluation task involves an entity ranking procedure. Negative corruptions are
generated for the test triple to be predicted, invalid negatives already existing in
the training or validation set are filtered out (Bordes et al., 2013), and the test triple
is ranked against the negatives using the score predicted by the KGE model. The
evaluation metrics reported over the entire test set are MRR and Hits@N.

The experimental setup for evaluating the adversarial attacks against KGE mod-
els is as follows. First, a victim KGE model is trained on the original training
knowledge graph. This model is used to predict the ranks for the triples in the
original test set of the knowledge graph. To assess the attack effectiveness in de-
grading the predictive performance, triples for which the original KGE model has
good predictive performance are needed. Thus, a subset of the test set triples that
is ranked highly plausible by the original model is selected as target triples. Both
Hits@1 and Hits@10 are popular metrics for KGE evaluation, and thus triples with
ranks ≤ 1 or ranks ≤ 10 can be considered as highly plausible. However, the adver-
sarial attacks proposed in Chapter 4 include computationally expensive methods.
Thus, to avoid expensive attack computation for a large number of target triples,
only the subset with ranks ≤ 1 is selected as targets for adversarial deletions. On
the other hand, the contributions in Chapter 5 are designed to be efficient (because
the main design requirement for adversarial additions is efficient combinatorial
search). Thus, the proposed adversarial additions are evaluated using the subset
of test set that is ranked ≤ 10.

Given the target triples, adversarial deletions or additions are generated for
these target triples using one of the proposed or baseline attack strategies. The
original training knowledge graph is then perturbed by removing or adding the
adversarial triples to the graph. Finally, a new poisoned KGE model is trained on
the perturbed knowledge graph. The hyperparameters for training the poisoned
KGE model are the same as the original KGE model. This eliminates the effect of
hyperparameter tuning on the predictive performance of the poisoned model. The
difference between the predictive performance of the original and poisoned KGE
models indicates the effectiveness of different adversarial attacks.

The software implementation for evaluating the research contributions
from Chapter 4 is publicly available on the GitHub at https://github.com/

PeruBhardwaj/AttributionAttack. The implementation for the contributions
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from Chapter 5 is available on the GitHub at https://github.com/PeruBhardwaj/
InferenceAttack.

3.6.1 Evaluation Metrics

The effectiveness of adversarial attacks is measured as the difference between the
ranks of the target triples predicted by the original KGE model and the poisoned
KGE model. For the experiments in Chapter 4 and Chapter 5, this is reported as
the MRR and the Hits@1 for the target triples due to the original KGE model, as
well as the poisoned models obtained by different attack strategies. Lower values
of MRR and Hits@1 then indicate the higher effectiveness of an adversarial at-
tack. Additionally, the relative percentage difference between the MRR due to the
original and poisoned KGE models is reported. This is measured as

∆MRR = (MRRoriginal − MRRpoisoned)/MRRoriginal ∗ 100
The more negative the value for ∆MRR, the higher is the attack effectiveness.

As discussed in Section 3.3.2, an efficient attack strategy is a pre-requisite for the
design of effective adversarial attacks. Thus, while the primary focus of the evalu-
ation is on attack effectiveness, efficiency of the adversarial attacks is also analyzed.
The efficiency of different attack strategies is measured as the time taken to gener-
ate the adversarial perturbations for all the target triples. Thus, given a set of target
triples and the original KGE model, the absolute time taken to identify the com-
plete set of adversarial perturbations for all of these target triples is recorded. This
time (in seconds) is reported for the experiments in both Chapter 4 and Chapter 5.

3.6.2 Baselines

The proposed adversarial attacks are evaluated against several baselines. These
include the random edits to the training knowledge graph, as well as state-of-
the-art data poisoning attacks discussed in Section 3.4. The baselines for attack
evaluation are as follows.

1. Random_n : For this baseline, random edits are made in the neighbourhood
of the target triple. Based on the attack perturbations to be evaluated, the
edits are deletions and additions in Chapter 4 and Chapter 5 respectively.

2. Random_g : This baseline attack is obtained by making global random edits
to the training knowledge graph. These random edits are not restricted to
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the neighbourhood of the target triple, and refer to deletions or additions
based on the adversarial attacks to be evaluated in Chapters 4 and 5.

3. Direct Attack: The data poisoning attacks from Zhang et al. (2019a) are re-
ferred to as Direct-Del and Direct-Add for adversarial deletions and addi-
tions respectively. Since the study proposes both adversarial deletions and
additions, these attacks are used as baselines in both Chapters 4 and 5.

4. CRIAGE : The data poisoning attack from Pezeshkpour et al. (2019) is re-
ferred to as CRIAGE. Since the study proposes both adversarial deletions
and additions, it is used as a baseline in both Chapters 4 and 5.

5. Gradient Rollback (GR): The method for post-hoc explanations from Lawrence
et al. (2021) is referred to as Gradient Rollback (GR). It is used as a baseline
for adversarial deletions in Chapter 4.

The evaluation protocols used in Zhang et al. (2019a), Pezeshkpour et al. (2019)
and Lawrence et al. (2021) differ with respect to their definition of the target
triple’s neighbourhood. Direct Attack (Zhang et al., 2019a) was evaluated for ed-
its in the neighbourhood of the target subject entity only. By contrast, CRIAGE
(Pezeshkpour et al., 2019) was proposed and evaluated for edits in the neighbour-
hood of the object entity only. While both these studies use the same evaluation
metrics for attack effectiveness, GR (Lawrence et al., 2021) being a post-hoc expla-
nation method uses different evaluation metrics. Further, all three studies used
different KGE models and benchmark datasets for the attack evaluation.

Thus, to ensure a fair evaluation of the research contributions for this thesis, all
state-of-the-art methods are re-implemented with the same neighbourhood defini-
tion. As discussed in Section 3.3.2, for this thesis, the target triple’s neighbourhood
is defined as the set of triples that have the same subject or the same object as the
target triple. That is, for the target triple z := (zs, zr, zo), the neighbourhood is
computed as X := {x := (xs, xr, xo) | xs ∈ {zs, zo} ∨ xo ∈ {zs, zo}}. Additionally,
the attacks are evaluated against the same KGE models for the same benchmark
datasets. Publicly available software implementations for CRIAGE3 and Gradient
Rollback4 are used. Since an implementation of the Direct Attack is not publicly
available, this method is re-implemented from scratch. Further details on the im-
plementation of baselines are discussed in Chapters 4 and 5.

3 https://github.com/pouyapez/criage
4 https://github.com/carolinlawrence/gradient-rollback
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3.6.3 Models and Datasets

The evaluation of the adversarial attacks is conducted against four KGE models
– DistMult (Yang et al., 2015), ComplEx (Trouillon et al., 2016), ConvE (Dettmers
et al., 2018) and TransE (Bordes et al., 2013). These models are the most widely
used models for representation learning on knowledge graphs. Recent studies by
Kadlec et al. (2017), Ruffinelli et al. (2020) and Ali et al. (2021) have shown that
these models achieve state-of-the art predictive performance for missing link pre-
diction. Additionally, as discussed in Chapter 2, they have varied inductive abili-
ties and are representative of the different families of KGE models - tensor factor-
ization based models, translation based models and deep learning based models
(Rossi et al., 2021; Ali et al., 2021). Thus, these four KGE models are suitable for
the evaluation of the research contributions in this thesis.

The proposed adversarial attacks are evaluated on two publicly available5

knowledge graphs – WN18RR (Dettmers et al., 2018) and FB15k-237 (Toutanova
and Chen, 2015). These knowledge graphs are the benchmark datasets for the task
of missing link prediction using Knowledge Graph Embeddings. As discussed
in Section 2.6.3, they are both subsets of real-world knowledge graphs, namely
WordNet and Freebase. Some of the earliest methods for KGE models were
evaluated on these knowledge graphs. Despite the introduction of additional
benchmark datasets, these remain state-of-the-art datasets for KGE model evalua-
tion. Furthermore, they represent the knowledge from different domains – while
WN18RR is derived from a lexical ontology for English, FB15k-237 is a subset of a
cross-domain knowledge graph created from crowdsourcing on the Web. Hence,
both of these datasets are representative knowledge graphs for the task of missing
link prediction and are suitable for evaluating the contributions of this thesis.

3.7 summary

As Knowledge Graph Embeddings are increasingly used in high-stakes domains,
examining their security vulnerabilities has become critical. This chapter intro-
duced the problem specification for designing adversarial attacks against KGE
models. A brief background on adversarial attacks from the filed of Adversarial
Machine Learning was discussed, and a taxonomy for defining different attacks
was introduced. The threat model for adversarial attacks proposed in this thesis
was also introduced. This threat model provides a specification of the adversar-

5 https://github.com/TimDettmers/ConvE
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ial attacker’s goals, their knowledge of the victim model and their capability for
perturbing the input data.

Based on the attack threat model, the mathematical formulation of data poison-
ing attacks was introduced. The attacks are expressed as a bilevel optimization
problem, where the inner optimization represents the KGE learning process on
the poisoned data and the outer optimization evaluates the impact of the poi-
soned dataset on the adversarial attack objective. Designing methods to solve this
optimization problem is challenging. Thus, a set of heuristic design requirements
for data poisoning attacks against KGE models was introduced. State-of-the-art
poisoning attacks for addressing these requirements were discussed and the adver-
sarial attack strategy proposed in this thesis was defined. Finally, the methodology
for evaluating the research contributions of this thesis was discussed.

Building on the problem formulation in this chapter, the next chapter proposes
and evaluates the methods for designing adversarial deletions against KGE models
for missing link prediction in knowledge graphs.

46



4
P O I S O N I N G V I A I N S TA N C E AT T R I B U T I O N M E T H O D S

As discussed in Section 3.3.2, the main design requirement for adversarial dele-
tions against KGE models is a measure for the impact of adversarial candidates
on the adversarial objective for the target facts. Let the target triples be denoted as
Z := {z := (zs, zr, zo)}. The aim of the attacker is to degrade the ranks predicted
for these target triples. Since the rank of a target triple is assigned based on the
scores predicted by the KGE model, the adversarial objective can be specified in
terms of the KGE model predictions for the target triples. The attack strategy then
is to measure the impact of candidate perturbations on the KGE model predic-
tions for target facts and select the candidate perturbation with maximum impact.
This chapter investigates the instance attribution metrics from the research field of
Interpretable Machine Learning (Molnar, 2019) for designing the adversarial dele-
tions against KGE models. The majority of the contents of this chapter are taken
verbatim from the author’s publication Bhardwaj et al. (2021a).

4.1 threat model

The attack threat model used in this chapter is the same as the threat model de-
fined in Section 3.2. This is also the same threat model as the state-of-the-art data
poisoning attacks against KGE models (Pezeshkpour et al., 2019; Zhang et al.,
2019a; Lawrence et al., 2021). To ensure reliable vulnerability analysis, the attack
setting being considered is a white-box attack setting. In this setting, the attacker
has full knowledge of the victim model architecture and access to the learned
embeddings. However, they cannot perturb the architecture or the embeddings
directly. Rather, the learned model can be affected only through perturbations in
the training data. The focus of this chapter are adversarial deletions, but a heuris-
tic method to generate adversarial additions from these deletions is also proposed.
For both types of perturbations, the attacker is restricted to making only one edit
in the neighbourhood of the target triple. The neighbourhood of the target triple
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z := (zs, zr, zo) is the set of triples that have the same subject or the same object as
the target triple, i.e. X := {x := (xs, xr, xo) | xs ∈ {zs, zo} ∨ xo ∈ {zs, zo}}.

4.2 instance attribution methods

For adversarial deletions, training triples that have influenced the model’s predic-
tion on the target triple need to be identified. Deleting these influential triples from
the training set will likely degrade the prediction on the target triple. Thus, an in-
fluence score ϕ(z, x) : T × T → R is defined for the pairs of triples (z, x) ∈ T × T .
This score indicates the influence of training triple x on the prediction of tar-
get triple z. Larger values of the influence score ϕ(z, x) indicate that removing
x from the training data would cause larger reduction in the predicted score on
z. Thus, the training triple with the highest influence sore is selected as the ad-
versarial deletion. Figure 5 illustrates an example - to degrade the prediction for
(Karl, works_with, Joe), the influence scores for neighbouring training triples are
computed; (Karl, deposits, Acc) is identified as the most influential triple, and
selected as adversarial deletion.

Trivially, the influence score for a training triple x can be computed by removing
x from the training set and re-training the KGE model on the knowledge graph
without x. However, this is a prohibitively expensive step that requires re-training
a new KGE model for every candidate influential triple. The instance attribution
methods from the literature on Interpretable Machine Learning (Molnar, 2019)
provide a more efficient solution. These methods estimate the influence of train-
ing triples on the model predictions without re-training the model. They have
been used to provide post-hoc explanations for neural networks for images (Koh
and Liang, 2017; Hanawa et al., 2021; Charpiat et al., 2019) and for text (Han et al.,
2020; Han and Tsvetkov, 2020; Pezeshkpour et al., 2021). Since these methods are
post-hoc in nature, they are agnostic of the model architectures and the input data
modalities. Yet, despite their widespread use for neural network explainability,
they have not been used for KGE model architectures. Three types of instance
attribution methods have been used in the previous literature. These are – In-
stance Similarity metrics based on the feature representations of the target and the
training instances (Hanawa et al., 2021; Charpiat et al., 2019), Gradient Similarity
metrics based on the gradients of the model’s loss function for the target and the
training instances (Hanawa et al., 2021; Charpiat et al., 2019) and Influence Func-
tion (Koh and Liang, 2017) that estimates the effect of leave-one-out training. All
of these methods for instance attribution are used to the select the most influential
training triples as adversarial deletions against KGE models. Besides the Influence
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Function proposed in Koh and Liang (2017), prior literature has proposed Relative
Influence Function (Barshan et al., 2020) and Fisher Kernel (Khanna et al., 2019)
methods for estimating the leave-one-out effect. However, these methods require
very expensive computation of the full Hessian matrix or the Fisher Information
matrix, and are therefore, not included in this research. The methods used for
adversarial attacks against KGE model are discussed below.

4.2.0.1 Instance Similarity

The influence of training triple x on the prediction of target triple z is estimated
as the similarity of their feature representations. The intuition behind these met-
rics is to identify the training triples that a KGE model has learnt to be similar
to the target triple and thus (might) have influenced the model’s prediction on
the target triple. Computing this similarity between triples requires feature vector
representations for the triples. On the other hand, standard KGE models provide
representations for the entities and relations only and the standard KGE scoring
functions assign a scalar score to the triples (Section 2.3). However, it is notewor-
thy that this scalar value is obtained by reducing over the embedding dimension.
For example, in the tri-linear dot product for DistMult (Yang et al., 2015), the em-
beddings of subject, relation and object are multiplied element-wise and then the
scalar score for the triple is obtained by summing over the embedding dimension,
i.e. ft := ⟨es, er, eo⟩ := ∑k

i=1 esi eri eoi where k is the embedding dimension.
Thus, to obtain feature vector representations for the triples ft : E × R× E →

Rk, the state-of-the-art KGE scoring functions are used without reduction over
the embedding dimension. For the DistMult model, the triple feature vector is
f := es ◦ er ◦ eo where ◦ is the Hadamard (element-wise) product. Table 3 shows
the feature vector scores for different KGE models used in this research.

Given the feature vectors for target triples f (z) and the feature vectors for train-
ing triples f (x), the following instance similarity metrics are defined based on the
research in Hanawa et al. (2021).

dot metric : This metric computes the similarity between the target
and training instances as the dot product of their feature vectors. That is,
ϕdot(z, x) := ⟨ f (z), f (x)⟩

ℓ2 metric : This metric computes similarity as the negative Euclidean dis-
tance between the feature vectors of target instance and test instance. That is,
ϕℓ2(z, x) := −∥ f (z)− f (x)∥2
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Model Scoring Function Feature Vectors

DistMult ⟨es, er, eo⟩ es ◦ er ◦ eo

ComplEx ℜ(⟨es, er, eo⟩) ℜ(es ◦ er ◦ eo)

ConvE ⟨(es ∗ er), eo⟩ (es ∗ er) ◦ eo

TransE −∥es + er − eo∥p −(es + er − eo)

Table 3: Scoring functions fsro and the proposed Triple Feature Vectors fsro of the KGE
models used in this research. For ComplEx, es, er, eo ∈ Ck; for the remaining
models es, er, eo ∈ Rk. Here, ⟨·⟩ denotes the tri-linear dot product; ◦ denotes
the element-wise Hadamard product; · denotes conjugate for complex vectors;
∥·∥p denotes l-p norm; ∗ is the neural architecture in ConvE, i.e. es ∗ er :=
σ(vec(σ([er, es] ∗ Ω))W) where σ denotes sigmoid activation, ∗ denotes 2D con-
volution; · denotes 2D reshaping of real vectors, Ω and W are the additional
model parameters.

cosine metric : This metric computes similarity as the dot product between
ℓ2 normalized feature vectors of target and test instance, i.e. it ignores the
magnitude of the vectors and only relies on the angle between them. That is,
ϕcos(z, x) := cos ( f (z), f (x))

Here, the dot product for two vectors a and b is denoted as ⟨a, b⟩ := ∑
p
i=1 aibi;

the ℓ2 norm of a vector is denoted as ∥a∥2 :=
√
⟨a, a⟩; and the cos similarity

between vectors a and b is denoted as cos(a, b) := ⟨a,b⟩/∥a∥2∥b∥2.

4.2.0.2 Gradient Similarity

The gradient of the loss for triple z w.r.t. model parameters θ̂ is denoted as
g(z, θ̂) := ∇θL(z, θ̂). Gradient similarity metrics compute similarity between the
gradients due to target triple z and the gradients due to training triple x. The
intuition is to assign higher influence to training triples that have similar effect on
the model’s parameters as the target triple; and are therefore likely to impact the
prediction on target triple (Charpiat et al., 2019). Thus, using the same similarity
functions as Instance Similarity, the following three metrics for gradient similarity
are defined - Gradient Dot (GD), Gradient ℓ2 (GL) and Gradient Cosine (GC).

gd(dot): ϕGD(z, x) := ⟨ g(z, θ̂) , g(x, θ̂) ⟩

gl (ℓ2 ): ϕGL(z, x) := −
∥∥∥g(z, θ̂)− g(x, θ̂)

∥∥∥
2

gc(cos): ϕGC(z, x) := cos ( g(z, θ̂) , g(x, θ̂) )

50



4.2 instance attribution methods

4.2.0.3 Influence Function

Influence Function (IF) is a classic technique from robust statistics and was intro-
duced to explain the predictions of black-box models in Koh and Liang (2017). To
estimate the effect of a training point on a model’s predictions, it first approxi-
mates the effect of removing the training point on the learned model parameters.
To do this, it performs a first order Taylor expansion around the learned parame-
ters θ̂ at the optimality conditions.

Following the derivation in Koh and Liang (2017), the effect of removing the
training triple x on θ̂ is given by dθ̂/dϵi = H−1

θ̂
g(x, θ̂). Here, Hθ̂ denotes the

Hessian of the loss function Hθ̂
:= 1/n ∑t∈T ∇2

θL(t, θ̂). Using the chain rule then,
the influence of removing x on the model’s prediction at z is approximated as
⟨g(z, θ̂) , dθ̂/dϵi⟩. Thus, the influence score using IF is defined as -

if : ϕIF(z, x) := ⟨ g(z, θ̂) , H−1
θ̂

g(x, θ̂) ⟩

Computing the IF for deep learning based models poses two challenges - (i) storing
and inverting the Hessian matrix is computationally too expensive for a large
number of parameters; (ii) the Hessian is not guaranteed to be positive definite and
thus, invertible because deep learning models are non-convex models. Since KGE
models are learned from deep neural architectures, both of these challenges hold
for KGE models as well. The state-of-the-art solution to address these challenges
has been proposed in the original work by Koh and Liang (2017).

To address the first challenge, instead of computing the exact Hessian matrix,
a Hessian-vector product (HVP) of the model parameters with the target triple’s
gradient is estimated. That is, for every target triple z, the value H−1

θ̂
g(z, θ̂) is pre-

computed. Then, for each neighbourhood triple x in the training set, the influence
score ϕIF(z, x) is computed as the dot product between the pre-computed HVP
and the gradient due to x, that is, g(x, θ̂) . Furthermore, as suggested in Koh
and Liang (2017), the stochastic estimator LiSSA (Agarwal et al., 2017) is used to
estimate the HVP in linear time by sampling the triples from the training data.
For the second issue of non-convexity, a "damping" term is added to the Hessian
matrix so that it is positive definite and invertible. This term is a hyperparameter
that is tuned to ensure that all eigenvalues of the Hessian matrix are positive,
i.e. the Hessian matrix is positive definite. Further discussion on the validity of
Influence Functions for non-convex settings is available in Koh and Liang (2017).
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Figure 5: Illustrative examples for adversarial attacks based on instance attribution meth-
ods. To degrade the prediction for target triple (Karl, works_with, Joe), the at-
tacker can (a) delete the most influential triple (Karl, deposits, Acc), or (b) add
the triple (Karl, deposits, Acc_clean) that reduces the influence of the influential
triple by selecting the entity Acc_clean that is dissimilar to Acc.

52



4.3 adversarial additions

4.3 adversarial additions

In this attack setting, the adversarial attacker can only add triples to the neighbour-
hood of target triple. The Instance Attribution metrics from the previous section
are used to select the training triple x := (xs, xr, xo) in the neighbourhood of the
target triple z := (zs, zr, zo) that is most influential to the prediction of z. For
brevity, lets assume xs = zs, i.e. the influential and target triples have the same
subject. To generate adversarial addition using the influential triple, xo is replaced
with another entity x′o, which is most dissimilar to xo in the latent feature space.
Since the adversarial triple x′ := (xs, xr, x′o) has the same subject and relation as the
influential triple but a different object, it should reduce the influence of the influen-
tial triple on the target triple’s prediction. This in turn should degrade the model’s
prediction on the target triple. Consider the knowledge graph in Figure 5 as an ex-
ample. To degrade the prediction for (Karl, works_with, Joe), the most influential
triple identified by an instance attribution method is (Karl, deposits, Acc). The in-
fluence of this influential triple is reduced by adding (Karl, deposits, Acc_clean),
where Acc has been replaced with Acc_clean.

For multiplicative models, the dissimilar entity x′o is selected using the cosine
similarity between the embedding of xo and the embeddings of all entities E . For
additive models, the ℓ2 similarity between the embedding of xo and the embed-
dings of all entities E is used.

4.4 experimental setup

As discussed in Section 3.6, the aim of the evaluation is to measure the effec-
tiveness of the proposed attack strategies in degrading the KGE model’s predic-
tions on target triples at test time. For this, the state-of-the-art evaluation protocol
for data poisoning attacks (Xu et al., 2020) has been used. First, a victim KGE
model is trained on the original knowledge graph. Next, adversarial deletions
or additions are generated using one of the proposed attack strategies and the
original knowledge graph is perturbed. Finally, a new KGE model is trained on
the perturbed knowledge graph. The same hyperparameters are used for train-
ing the original and poisoned KGE models. The source code implementation of
all experiments conducted in this chapter is available at https://github.com/

PeruBhardwaj/AttributionAttack.
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4.4.1 Datasets

The proposed adversarial attacks are evaluated on four state-of-the-art KGE mod-
els - DistMult, ComplEx, ConvE and TransE; on two publicly available benchmark
datasets for link prediction1- WN18RR and FB15k-237. To evaluate the predictive
performance of original and poisoned KGE models, the standard KGE evaluation
protocol is used (Section 2.6.1). In addition, following Bordes et al. (2013) and as is
the standard practice, triples from the validation and test set that contain unseen
entities are filtered out.

To assess the attack effectiveness in degrading performance on triples predicted
as True, a set of triples that are predicted as True by the victim model need to be
selected. Thus, for this evaluation, a subset of the benchmark test set is selected
that has been ranked the best (i.e. ranks=1) by the victim KGE model. If this subset
has more than 100 triples, 100 triples are randomly sampled as the target triples;
otherwise all the triples are used as target triples. This pre-processing step is done
to avoid the expensive Hessian inverse computation in the Influence Functions (IF)
for a large number of target triples - for each target triple, estimating the Hessian
inverse (as an HVP) using the LissA algorithm requires one training epoch.

Table 4 shows the dataset statistics and the number of triples which are ranked
best by the different KGE models.

WN18RR FB15k-237

Entities 40,559 14,505

Relations 11 237

Training 86,835 272,115

Validation 2,824 17,526

Test 2,924 20,438

Subset
with
Best Ranks

DistMult 1,109 1,183

ComplEx 1,198 1,238

ConvE 1,106 901

TransE 15 1223

Table 4: Statistics for WN18RR and FB15k-237. Triples from the validation and test set that
contained unseen entities were removed to ensure that new entities are not added
as adversarial edits. The numbers above (including the number of entities) reflect
this filtering.

1 https://github.com/TimDettmers/ConvE
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4.4.2 Baselines

The proposed attacks are evaluated against baseline methods based on random ed-
its and the state-of-art data poisoning attacks against KGE models. Random_n is the
baseline attack based on random edits that adds or removes a random triple from
the neighbourhood of the target triple. Random_g adds or removes a random triple
globally and is not restricted to the target’s neighbourhood. Direct-Del and Direct-
Add are the adversarial deletion and addition attacks proposed in Zhang et al.
(2019a). CRIAGE is the data poisoning attack from Pezeshkpour et al. (2019) and
is a baseline for both deletions and additions. GR (Gradient Rollback) (Lawrence
et al., 2021) uses influence estimation to provide post-hoc explanations for KGE
models and can also be used to generate adversarial deletions. Thus, this method
is included as a baseline for adversarial deletions only.

The attack evaluations in Zhang et al. (2019a); Pezeshkpour et al. (2019);
Lawrence et al. (2021) differ with respect to the definition of their neighbourhood.
Thus, to ensure fair evaluation for this thesis, all the state-of-art methods are
implemented with the same neighbourhood - triples that are linked to the subject
or object of the target triple (Section 4.1). For this, the publicly available imple-
mentations for CRIAGE2 and Gradient Rollback3 were used and the Direct-Del
and Direct-Add were implemented by the author herself. Additional details on
the implementation of KGE models and baselines; and the computing resources
used are available in the Appendix A.1.

4.5 evaluation of attack effectiveness

For WN18RR and FB15k-237 respectively, Tables 5 and 6 show the degradation in
MRR and Hits@1 due to adversarial deletions; and Tables 7 and 8 due to adversar-
ial additions for state-of-the-art KGE models. Different patterns observed in these
results are discussed below.

Note - For the results reported in the publication associated with this chapter
(Bhardwaj et al., 2021a), the implementation of Gradient Rollback (GR) contained
a software error. This has been corrected in commit 62a39e7 of the software, and
updated results have been included in Tables 5 and 6 of this chapter.

2 https://github.com/pouyapez/criage
3 https://github.com/carolinlawrence/gradient-rollback
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DistMult ComplEx ConvE TransE

MRR H@1 MRR H@1 MRR H@1 MRR H@1

Original 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Baseline Attacks

Random_n 0.87 (-13%) 0.82 0.85 (-15%) 0.80 0.82 (-18%) 0.79 0.82 (-18%) 0.70

Random_g 0.97 0.95 0.96 0.93 0.99 0.98 0.93 0.87

Direct-Del 0.88 0.77 0.86 (-14%) 0.77 0.71 (-29%) 0.64 0.54 (-46%) 0.37

CRIAGE 0.73 (-27%) 0.66 - - Er Er - -
GR 0.92 0.87 0.86 0.81 0.94 0.91 0.84 0.73

Proposed Attacks

Dot Metric 0.89 0.82 0.85 0.79 0.84 (-16%) 0.80 0.77 0.60

ℓ2 Metric 0.25 (-75%) 0.16 0.29 (-71%) 0.20 0.88 0.78 0.62 0.50

Cos Metric 0.25 (-75%) 0.16 0.29 (-71%) 0.20 0.87 0.76 0.56 (-44%) 0.40

GD (dot) 0.28 (-72%) 0.19 0.29 0.21 0.25 0.21 0.71 (-29%) 0.57

GL (ℓ2) 0.30 0.20 0.28 (-72%) 0.19 0.17 (-83%) 0.12 0.72 0.60

GC (cos) 0.29 0.19 0.29 0.21 0.20 0.16 0.71 (-29%) 0.57

IF 0.28 (-72%) 0.19 0.29 (-71%) 0.20 0.22 (-78%) 0.17 0.71 (-29%) 0.57

Table 5: Reduction in MRR and Hits@1 due to adversarial deletions on target triples in
WN18RR. Lower values indicate better results; best results for each model are in
bold. First block of rows are the baseline attacks with random edits; second block
is state-of-the-art attacks; remaining are the proposed attacks. For each block, the
best reduction in percentage relative to the original MRR; computed as (poisoned−
original)/original ∗ 100 is reported.
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DistMult ComplEx ConvE TransE

MRR H@1 MRR H@1 MRR H@1 MRR H@1

Original 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Baseline Attacks

Random_n 0.66 (-34%) 0.52 0.65 (-35%) 0.51 0.62 (-38%) 0.46 0.71 (-29%) 0.56

Random_g 0.68 0.53 0.65 (-35%) 0.51 0.63 0.50 0.75 0.61

Direct-Del 0.59 (-41%) 0.42 0.62 (-38%) 0.47 0.57 (-43%) 0.41 0.62 (-38%) 0.45

CRIAGE 0.62 0.47 - - Er Er - -
GR 0.67 0.53 0.63 0.48 0.59 0.42 0.72 0.58

Proposed Attacks

Dot Metric 0.63 0.47 0.64 0.49 0.60 0.44 0.74 0.62

ℓ2 Metric 0.58 0.41 0.56 (-44%) 0.40 0.53 (-47%) 0.35 0.63 (-37%) 0.46

Cos Metric 0.56 (-44%) 0.39 0.57 0.40 0.55 0.38 0.63 (-37%) 0.45

GD (dot) 0.60 0.44 0.60 0.45 0.55 (-45%) 0.37 0.65 0.49

GL (ℓ2) 0.62 0.45 0.60 0.45 0.56 0.41 0.70 0.58

GC (cos) 0.58 (-42%) 0.42 0.57 (-43%) 0.39 0.57 0.40 0.64 (-36%) 0.48

IF 0.60 (-40%) 0.44 0.60 (-40%) 0.45 0.58 (-42%) 0.43 0.66 (-34%) 0.52

Table 6: Reduction in MRR and Hits@1 due to adversarial deletions on target triples in
FB15k-237. Lower values indicate better results; best results for each model are in
bold. First block of rows are the baseline attacks with random edits; second block
is state-of-the-art attacks; remaining are the proposed attacks. For each block, the
best reduction in percentage relative to the original MRR; computed as (poisoned−
original)/original ∗ 100 is reported.
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DistMult ComplEx ConvE TransE

MRR H@1 MRR H@1 MRR H@1 MRR H@1

Original 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Baseline Attacks

Random_n 0.99 (-1%) 0.98 0.97 (-3%) 0.94 0.99 (-1%) 0.98 0.76 (-24%) 0.57

Random_g 0.99 (-1%) 0.97 0.97 (-3%) 0.95 0.99 (-1%) 0.98 0.93 0.87

Direct-Add 0.98 (-2%) 0.96 0.95 (-5%) 0.92 0.99 (-1%) 0.98 0.81 (-19%) 0.67

CRIAGE 0.98 (-2%) 0.97 - - Er Er - -

Proposed Attacks

Dot Metric 0.97 0.93 0.95 0.90 0.95 (-5%) 0.91 0.95 0.90

ℓ2 Metric 0.89 (-11%) 0.78 0.88 0.77 0.98 0.96 0.87 (-13%) 0.83

Cos Metric 0.89 (-11%) 0.78 0.87 (-13%) 0.77 0.99 0.98 0.87 (-13%) 0.83

GD (dot) 0.90 0.79 0.89 0.79 0.92 0.85 0.80 (-20%) 0.73

GL (ℓ2) 0.89 (-11%) 0.79 0.86 (-14%) 0.73 0.88 (-12%) 0.77 0.89 0.83

GC (cos) 0.90 0.80 0.87 0.76 0.91 0.82 0.80 (-20%) 0.73

IF 0.90 (-10%) 0.79 0.89 (-11%) 0.79 0.91 (-8.9%) 0.82 0.77 (-23%) 0.67

Table 7: Reduction in MRR and Hits@1 due to adversarial additions on target triples in
WN18RR. Lower values indicate better results; best results for each model are in
bold. First block of rows are the baseline attacks with random edits; second block
is state-of-the-art attacks; remaining are the proposed attacks. For each block, the
best reduction in percentage relative to the original MRR; computed as (poisoned−
original)/original ∗ 100 is reported.
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DistMult ComplEx ConvE TransE

MRR H@1 MRR H@1 MRR H@1 MRR H@1

Original 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Baseline Attacks

Random_n 0.65 (-34%) 0.50 0.69 0.57 0.61 (-39%) 0.46 0.74 0.62

Random_g 0.66 0.52 0.66 (-34%) 0.52 0.63 0.50 0.73 (-27%) 0.61

Direct-Add 0.64 (-36%) 0.48 0.66 (-34%) 0.52 0.60 (-40%) 0.45 0.72 (-28%) 0.59

CRIAGE 0.66 0.50 - - Er Er - -

Proposed Attacks

Dot Metric 0.67 0.54 0.65 0.50 0.61 0.46 0.74 (-26%) 0.62

ℓ2 Metric 0.64 0.50 0.66 0.52 0.59 (-41%) 0.43 0.74 (-26%) 0.62

Cos Metric 0.63 (-37%) 0.49 0.63 (-37%) 0.47 0.60 0.43 0.74 (-26%) 0.61

GD (dot) 0.61 (-39%) 0.45 0.65 0.50 0.62 0.46 0.71 (-29%) 0.58

GL (ℓ2) 0.63 0.48 0.67 0.53 0.61 (-39%) 0.45 0.74 0.60

GC (cos) 0.62 0.46 0.64 (-36%) 0.49 0.61 (-39%) 0.45 0.71 (-29%) 0.56

IF 0.61 (-39%) 0.45 0.65 (-35%) 0.50 0.58 (-42%) 0.42 0.71 (-29%) 0.58

Table 8: Reduction in MRR and Hits@1 due to adversarial additions on target triples in
FB15k-237. Lower values indicate better results; best results for each model are in
bold. First block of rows are the baseline attacks with random edits; second block
is state-of-the-art attacks; remaining are the proposed attacks. For each block, the
best reduction in percentage relative to the original MRR; computed as (poisoned−
original)/original ∗ 100 is reported.
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4.5.1 Comparison with Baselines

It is observed that the proposed strategies for adversarial deletions and adversarial
additions successfully degrade the predictive performance of KGE models. On the
other hand, the state-of-the-art attacks are ineffective or only partially effective.
Adversarial deletions from Gradient Rollback perform similar to random baselines;
likely because this method estimates the influence of a training triple as the sum
of its gradients over the training process. In this way, it does not account for the
target triple in the influence estimation. The method is also likely to be effective
only for a KGE model that is trained with a batch size of 1 because it needs to
track the gradient updates for each triple.

The CRIAGE baseline is only applicable to DistMult and ConvE. However,
for the experiments here, the attack ran into numpy.linalg.LinAlgError: Singular

matrix error for ConvE; because the Hessian matrix computed from the victim
model embeddings was non-invertible4. For adversarial deletions on DistMult,
the baseline works better than random edits but not the proposed attacks 5. It is
also ineffective against adversarial additions.

On the other hand, the Direct-Del is effective on TransE, but not on multiplica-
tive models. This is likely because it estimates the influence of a candidate triple
as the difference in the triple’s score when the neighbour entity embedding is per-
turbed. The additive nature of this influence score might make it more suitable for
additive models. Furthermore, the Direct-Add works similar to random additions,
likely because it uses random down-sampling.

The proposed attacks based on instance attribution methods consistently outper-
form random baselines for adversarial additions and deletions. One exception to
this pattern are adversarial additions against TransE on WN18RR. In this case, no
influence metric performs better than random neighbourhood edits, though they
are all effective for adversarial deletions. One possible reason is that the TransE
model is designed to learn hierarchical relations like _has_part. On further in-
vestigation, it was found that the target triples ranked highest by the model have
such hierarchical relations; and the influential triple for them has the same relation.
That is, the triple (s1, _has_part, s) is the influential triple for (s, _has_part, o). Re-
moving this influential triple breaks the hierarchical link between s1 and s; and
degrades TransE predictions on the target. But adding the triple (s2, _has_part, s)

4 This issue might be resolved by changing the hyperparameters of the victim KGE model so that
the Hessian matrix from the victim embeddings is invertible. But there is no strategic way to make
such changes.

5 Since the influence estimation in CRIAGE uses BCE loss, the attack performance was also com-
pared for DistMult trained with BCE in Appendix A.2, but the results are similar.
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Target Relation Influential Relation
has_part has_part
synset_domain_topic_of synset_domain_topic_of
has_part has_part
synset_domain_topic_of synset_domain_topic_of
synset_domain_topic_of synset_domain_topic_of
synset_domain_topic_of synset_domain_topic_of
instance_hypernym instance_hypernym
synset_domain_topic_of synset_domain_topic_of
instance_hypernym synset_domain_topic_of
synset_domain_topic_of synset_domain_topic_of
member_meronym derivationally_related_form
synset_domain_topic_of synset_domain_topic_of
has_part has_part
member_meronym member_meronym
synset_domain_topic_of synset_domain_topic_of

Table 9: Relations from the target triples and influential triples (adversarial deletions) for
the cos metric on WN18RR-TransE. This combination has 15 target triples and the
table shows the relations for all of them.

still preserves the hierarchical structure which TransE can use to score the target
triple correctly.

The Instance Similarity method cos metric was selected for further analysis. It
performs the best of all instance attribution methods for adversarial deletions,
but performs worse than random neighbourhood edits for adversarial additions.
Table 9 shows the relations in the target triples and the influential triples (i.e.
adversarial deletions) selected by cos metric. It is seen that the target triples contain
mostly hierarchical relations like _synset_domain_topic_of and _has_part. Also,
the cos metric identifies influential triples with same relations. Since the proposed
adversarial additions are only based on modifying the entity in the influential
triple, these edits improve the hierarchy structure of the graph instead of breaking
it. Thus, these edits perform well for adversarial deletions, but not for additions.

4.5.2 Comparison across Instance Attribution Metrics

Among the different metrics for instance attribution, the IF and Gradient Simi-
larity metrics show similar degradation in predictive performance. This indicates
that the computationally expensive Hessian inverse in the IF can be avoided and
simpler metrics can identify influential triples with comparable effectiveness. Fur-
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thermore, cos and ℓ2 based Instance Similarity metrics outperform all other meth-
ods for adversarial deletions on DistMult, ComplEx and TransE. This effectiveness
of naive metrics indicates the high vulnerability of shallow KGE architectures to
data poisoning attacks in practice. In contrast to this, the Input Similarity metrics
are less effective in poisoning ConvE, especially significantly on WN18RR. This is
likely because the triple feature vectors for ConvE are based on the output from a
deeper neural architecture than the Embedding layer alone. Within Instance Sim-
ilarity metrics, it is observed that the dot metric is not as effective as others. This
could be because the dot product does not normalize the triple feature vectors.
Thus, training triples with large norms are prioritized over relevant influential
triples (Hanawa et al., 2021).

4.5.3 Comparison of Datasets

Among the different datasets, it is noteworthy that the degradation in predictive
performance is more significant on WN18RR than on FB15k-237. This is likely
due to the sparser graph structure of WN18RR, i.e. there are fewer neighbours
per target triple in WN18RR than in FB15k-237. The graph in Figure 6 shows
the median number of neighbours of the target triples for WN18RR and FB15k-
237. The median value is reported instead of mean because of a large standard
deviation in the number of target triple neighbours for FB15k-237.

Based on this graph, the target triple’s neighbourhood for WN18RR is signifi-
cantly sparser than the neighbourhood for FB15k-237. Since the KGE model pre-
dictions are learned from fewer triples for WN18RR, it is also easier to perturb
these results with fewer adversarial edits. Thus, removing only 1 neighbour in
WN18RR significantly degrades the model’s predictions on the target triple.

On the other hand, because of more neighbours in FB15k-237, the model predic-
tions are likely influenced by a group of training triples. Such group effect of train-
ing instances on the model parameters has been studied in Koh et al. (2019) and
Basu et al. (2020). These methods will be investigated for KGE models on FB15k-237

as part of the future work.

4.6 additional evaluation

4.6.1 Analysis of Runtime Efficiency

In addition to the effectiveness in the degradation of KGE model performance,
the runtime efficiency of baseline and proposed attack methods for adversarial
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Figure 6: Comparison of the median number of neighbouring triples of target triples from
WN18RR and FB15k-237 for DistMult, ComplEx, ConvE and TransE.

deletions is also analyzed. For all the target triples in the test set, the triples in
their neighbourhood are pre-computed. Given the original KGE model, the target
triples and their neighbourhood, the absolute time taken to select the influential
triples for all the target triples is recorded. Table 10 shows the time taken in sec-
onds to select the complete set of adversarial deletions for DistMult model on
WN18RR and FB15k-237. For brevity, only the attacks on DistMult model are re-
ported, but the results on other models show similar time scales.

The time scales show that the Instance Similarity metrics (dot metric, ℓ2 metric,
cos metric) are more efficient than the state-of-the-art attacks (Direct-Del, CRIAGE
and GR). Furthermore, the ℓ2 metric is almost as quick as random triple selection.
The efficiency of the Gradient Similarity metrics is also better than or equivalent
to CRIAGE and GR. Only the attack method based on IF is much slower than
any other method. This is because estimating the Hessian inverse in IF requires
one training epoch for every target triple. That is, for the reported experiments,
100 training epochs are done to get the influential triples for 100 target triples.
However, based on the results in Section 4.5.2, this expensive computation does
not provide improved adversarial deletions, and thus, might be unnecessary to
select the influential triples for KGE models.

Comparing the efficiency of attribution attacks for different datasets, the pro-
posed methods are more efficient for the WN18RR dataset than FB15k-237. Since
the same number of target triples were used for both datasets (i.e. 100), the dif-
ference in efficiency is explained by the difference in neighbourhood sizes of
WN18RR and FB15k-237. As Figure 6 from the previous section shows, the neigh-
bourhood of a target triple in FB15k-237 contains more triples than in WN18RR.
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WN18RR FB15k-237

Baseline
Attacks

Random_n 0.024 0.057

Random_g 0.002 0.002

Direct-Del 0.407 0.272

CRIAGE 2.235 75.117

GR 29.919 174.191

Proposed
Attacks

Dot Metric 0.288 0.342

ℓ2 Metric 0.057 0.067

Cos Metric 0.067 0.148

GD (dot) 7.354 109.015

GL (ℓ2) 8.100 120.659

GC (cos) 9.478 141.276

IF 4751.987 4750.404

Table 10: Runtime efficiency of the baseline and proposed adversarial attacks for DistMult
on WN18RR and FB15k-237. The absolute time taken in seconds to generate the
complete set of influential triples for all target triples is reported. The neighbour-
hood triples of the target triples were pre-computed. The runtime for GR does
not include the time taken to compute the influence map during model training.

Thus, enumerating the neighbours to select the adversarial deletions in WN18RR is
more efficient than FB15k-237. The difference in efficiency is more evident for the
gradient similarity based attribution methods than the instance similarity based
methods. This is because the software implementation for instance similarity meth-
ods processes the entire neighbourhood of each triple as a single batch. On the
other hand, gradient based methods require enumerating the neighbours to com-
pute the gradient vector for each neighbour individually. Thus, the effect of num-
ber of neighbours is more evident for gradient similarity methods than for instance
similarity. The reason for similar runtime performance of IF for both datasets is
not immediately evident and might be attributed to the hyperparameter setting
for computing the IF values. However, for models other than DistMult, there is an
observable difference between the IF efficiency for WN18RR and FB15k-237, with
better runtime for WN18RR. These values in seconds are – (1305.315 , 5894.426) for
ComplEx, (12513.344 , 17433.215) for ConvE and (2613.325 , 7384.060) for TransE.

4.6.2 Qualitative Analysis

This section provides a qualitative analysis of the influential triples selected us-
ing the different instance attribution methods for the ComplEx model trained on
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Attack Target and Influential Triples

Dot
Metric

dynamical_JJ_1 , similar_to , hold-down_NN_1
hold-down_NN_1 , similar_to , dynamical_JJ_1

ℓ2
Metric

departed_NN_1 , derivationally_related_form , snuff_it_VB_1
snuff_it_VB_1 , derivationally_related_form , departed_NN_1

Cos
Metric

level_NN_6 , derivationally_related_form , tear_down_VB_1
tear_down_VB_1 , derivationally_related_form , level_NN_6

GD
(dot)

personal_identity_NN_1 , derivationally_related_form , place_VB_8
place_VB_8 , derivationally_related_form , personal_identity_NN_1

GL
(ℓ2)

dynamitist_NN_1 , derivationally_related_form , dynamite_NN_1
dynamite_NN_1 , derivationally_related_form , dynamitist_NN_1

GC
(cos)

departed_NN_1 , derivationally_related_form , snuff_it_VB_1
snuff_it_VB_1 , derivationally_related_form , departed_NN_1

IF departed_NN_1 , derivationally_related_form , snuff_it_VB_1
snuff_it_VB_1 , derivationally_related_form , departed_NN_1

Table 11: Examples of target triples from WN18RR ComplEx with maximum change in
rank due to adversarial deletions, and their corresponding influential triples.

WN18RR and FB15k-237. Tables 11 and 12 show these examples for target triples
that exhibit the maximum and minimum change in the ranks respectively due to
the adversarial deletions for WN18RR. Since the entities in the benchmark splits
are represented as numerical IDs, their string representation are obtained using
the definitions.txt file. This file is available for download from the original web-
site of WN18RR - https://everest.hds.utc.fr/doku.php?id=en:smemlj12. The
values for maximum change in ranks due to different attacks for WN18RR are –
(35962.5, 6653.5, 39971.5) due to instance similarity metrics, (28011, 37084.5, 36741)
due to gradient similarity metrics and 39978.5 due to Influence Function. Tables 13

and 14 focus on the target triples with maximum and minimum change in ranks
respectively for FB15k-237. The IDs in the benchmark split are converted into
string representations using the browser at https://freebase.toolforge.org/.
The maximum change in ranks is – (38.5, 31, 80) due to instance similarity metrics,
(61.5, 114.5, 149.5) due to gradient similarity metrics and 114.5 due to Influence
Function. The minimum change in ranks for both datasets is 0.

Among the target triples with maximum change for WN18RR (Table 11),
ℓ2 metric and GC (cos) behave similar to Influence Function. These methods
identify the same influential triple (snuff_it_VB_1 , derivationally_related_form , de-
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poisoning via instance attribution methods

parted_NN_1) for the same target triple (departed_NN_1 , derivationally_related_form
, snuff_it_VB_1). The entity departed_NN_1 is the noun form to refer to a person
who is no longer alive, while the entity snuff_it_VB_1 refers to the act of passing
away from physical life. The two words have similar semantic meaning but
different parts-of-speech. Thus, it makes sense for them to be linked by the
relation derivationally_related_form. This indicates that Instance and Gradient
Similarity metrics are effective approximations of Influence Function as they are
able to identify an influential triple correctly.

Among the triples with no change in ranks for WN18RR (Table 12), GL (ℓ2) iden-
tifies (the_netherlands_NN_1 , derivationally_related_form , netherlander_NN_1) as the
influential triple for (north_atlantic_treaty_organization_NN_1 , member_meronym ,
the_netherlands_NN_1). The target triple indicates that the country Netherlands
is a member of NATO. However, the identified influential triple does not pro-
vide meaningful attribution for this target prediction, and is thus, ineffective.
Some other training triples like (north_atlantic_treaty_organization_NN_1 , mem-
ber_meronym , italy_NN_1) or (europe_NN_1 , has_part , the_netherlands_NN_1)
or (europe_NN_1 , has_part , italy_NN_1) would be more meaningful influential
triples for this target. On the other hand, some influential triples identified by
the attribution methods are meaningful, but still ineffective in degrading the
target prediction. Consider the GC (cos) attribution method with target triple
(love_VB_3 , derivationally_related_form , passion_NN_6). While the influential triple
(passion_NN_6 , derivationally_related_form , love_VB_3) is meaningful, it is not
effective. This is because the words ’love’ and ’passion’ have multiple meanings
which are represented as different entities in the knowledge graph. For example,
there are 3 entities love_VB_1, love_VB_2, love_VB_3 for love, and 2 entities
passion_NN_4, passion_NN_6 for passion. Furthermore, these entities are linked
to each other via derivationally_related_form. Thus, the target triple’s prediction
is influenced by multiple training triples, and deleting one influential triple is
insufficient to perturb its prediction.

For FB15k-237 dataset, it can be observed that some of the target triples them-
selves are unintuitive. For example, from Table 13, the target triple (University of
Louisiana at Monroe , /common/ topic/ webpage./ common/ webpage/ category , Official
Website) indicates that the University of Louisiana (a topic) has a webpage which
is the official website for this topic. Similarly, the triple (The Reader , /film/ film/
other_crew./ film/ film_crew_gig/ film_crew_role , Sound Mixer) indicates that the film
The Reader has some crewmembers whose job is sound mixing. However, instead
of linking the crew member’s role to an entity for the member, the role is linked
directly to the movie. Such unintuitive relation links exist in FB15k-237 because
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4.6 additional evaluation

Attack Target and Influential Triples

Dot
Metric

tug_VB_2 , derivationally_related_form , undertaking_NN_1
toil_NN_1 , derivationally_related_form , tug_VB_2

ℓ2
Metric

genus_alnus_NN_1 , member_meronym , red_alder_NN_1
red_alder_NN_1 , hypernym , alder_tree_NN_1

Cos
Metric

suddenness_NN_1 , derivationally_related_form , sudden_JJ_1
sudden_JJ_1 , derivationally_related_form , suddenness_NN_1

GD
(dot)

stock_VB_2 , derivationally_related_form , stock_NN_3
stock_NN_3 , hypernym , hold_NN_8

GL
(ℓ2)

north_atlantic_treaty_organization_NN_1 , member_meronym ,
the_netherlands_NN_1
the_netherlands_NN_1 , derivationally_related_form ,
netherlander_NN_1

GC
(cos)

love_VB_3 , derivationally_related_form , passion_NN_6
passion_NN_6 , derivationally_related_form , love_VB_3

IF suddenness_NN_1 , derivationally_related_form , sudden_JJ_1
fast_JJ_1 , also_see , sudden_JJ_1

Table 12: Examples of target triples from WN18RR ComplEx with no change in rank due
to adversarial deletions, and their corresponding influential triples.

the original schema of Freebase has Compound Value Type (CVT) entities (Pel-
lissier Tanon et al., 2016) which represent n-ary relations between normal entities.
These CVT nodes were removed while preparing the flat graph structure for FB15k
and FB15k-237 (Bordes et al., 2013). Thus, the entities linked to CVT nodes in orig-
inal Freebase data are linked directly in FB15k-237. Further, the multiple hop links
between these entities are concatenated into single relations. This leads to seman-
tically incoherent triples, whose predictions are difficult to explain. In addition to
the impact of number of neighbours on attack performance (Section 4.5.3), the in-
coherence of triples in FB15k-237 is also likely responsible for lower efffectiveness
of the instance attribution methods for this dataset.

On the other hand, looking at target triples without CVT based relations, some
influential triples being identified are meaningful, but ineffective in degrading the
target triple’s rank. Consider the attacks Cos metric and GL (ℓ2) from Table 14.
For the target triple (Harry Potter and the Half Blood Prince , /film/ film/ story_by ,
JK Rowling), the influential triples being selected are (Harry Potter and the Order
of the Phoenix , /film/ film/ story_by , JK Rowling) and (Harry Potter and the Half
Blood Prince , /film/ film/ prequel , Harry Potter and the Order of the Phoenix). Both
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of these are meaningful influential triples for the target triple, but do not lead to
a degradation of rank. This is explained by the training graph for movies Harry
Potter and the Half Blood Prince and Harry Potter and the Order of the Phoenix - both of
them share the same acting cast, have the same genres and have been nominated
for similar awards. Thus, the prediction for the target triple is not influenced by
a single training triple, but multiple ones. This observation motivates the need
to define and investigate methods to determine the influence of multiple triples
collectively instead of individual triples separately.

4.7 summary

This chapter proposed the use of instance attribution methods to select adversar-
ial deletions against the KGE models. Additionally, using the influential triples
identified from the instance attribution methods, a heuristic approach was pro-
posed to select adversarial additions. The evaluation of the effectiveness of the
proposed attacks showed that they outperform the baseline attacks on two bench-
mark datasets against four KGE models. It was also observed that the attacks are
particularly effective when the KGE model relies on fewer training instances to
make predictions, i.e. when the input graph is sparse. For the sparse graphs, the
proposed attacks are also more efficient than highly connected graphs because
they need to enumerate through a smaller set of training triples to select the in-
fluential triple. Additionally, shallow neural architectures like DistMult, ComplEx
and TransE are vulnerable to simpler attacks based on Instance Similarity than the
computationally expensive Influence Function.

While in this chapter, the instance attribution methods were used to select both
adversarial deletions and additions, the proposed method for adversarial addi-
tions is heuristic in nature. This is because it overcomes the challenge of enumer-
ating through all possible adversarial additions, but still relies on enumerating the
neighbourhood triples to select the influential triple. The next chapter proposes an
attack strategy for adversarial additions that breaks down the large combinatorial
search space of adversarial additions into smaller search steps over the entities and
relations in the knowledge graph. To achieve this objective, instead of specifying
the adversarial attack objective in terms of the model predictions for the target
triples, a reformulation of the attack objective is proposed. This allows the search
space to be reduced to three smaller steps.
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4.7 summary

Attack Target and Influential Triples

Dot
Metric

The Reader /film/ film/ other_crew./ film/ film_crew_gig/
film_crew_role

Sound Mixer

The Devil’s
Double

/film/ film/ other_crew./ film/ film_crew_gig/
film_crew_role

Sound Mixer

ℓ2
Metric

United States
of America

/location/ country/ second_level_divisions Pasco County

Pasco County /location/ statistical_region/ rent50_2./
measurement_unit/ dated_money_value/
currency

United States
Dollar

Cos
Metric

Piper Laurie /people/ person/ profession Actor
Patty Duke /people/ person/ profession Actor

GD
(dot)

University of
Louisiana at
Monroe

/common/ topic/ webpage./ common/ webpage/
category

Official
Website

United States
of America

/location/ location/ contains University of
Louisiana at
Monroe

GL
(ℓ2)

University of
Louisiana at
Monroe

/common/ topic/ webpage./ common/ webpage/
category

Official
Website

University of
Louisiana at
Monroe

/education/ university/ local_tuition./
measurement_unit/ dated_money_value/
currency

United States
Dollar

GC
(cos)

Piper Laurie /people/ person/ profession Actor
Piper Laurie /people/ person/ spouse_s./ people/ marriage/

type_of_union
Marriage

IF University of
Louisiana at
Monroe

/common/ topic/ webpage./ common/ webpage/
category

Official
Website

United States
of America

/location/ location/ contains University of
Louisiana at
Monroe

Table 13: Examples of target triples from FB15k-237 ComplEx with maximum change in
rank due to adversarial deletions, and their corresponding influential triples.
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Attack Target and Influential Triples

Dot
Metric

Pompano Beach /location/ hud_county_place/ place Pompano Beach
Pompano Beach /location/hud_foreclosure_area/

estimated_number_of_mortgages./
measurement_unit/ dated_integer/
source

United States
Department of
Housing and
Urban
Development

ℓ2
Metric

Indian Idol /tv/ tv_program/ country_of_origin India
Shatrughan Sinha /people/ person/ nationality India

Cos
Metric

Harry Potter and
the Half Blood
Prince

/film/ film/ story_by JK Rowling

Harry Potter and
the Order of the
Phoenix

/film/ film/ story_by JK Rowling

GD
(dot)

Indian Idol /tv/ tv_program/ country_of_origin India
Malayali /people/ ethnicity/

geographic_distribution
India

GL
(ℓ2)

Harry Potter and
the Half Blood
Prince

/film/ film/ story_by JK Rowling

Harry Potter and
the Half Blood
Prince

/film/ film/ prequel Harry Potter and
the Order of the
Phoenix

GC
(cos)

Reed College /education/
educational_institution_campus/
educational_institution

Reed College

Reed College /organization/ organization/
headquarters./ location/
mailing_address/ citytown

Portland

IF Indian Idol /tv/ tv_program/ country_of_origin India
Malayali /people/ ethnicity/

geographic_distribution
India

Table 14: Examples of target triples from FB15k-237 ComplEx with no change in rank due
to adversarial deletions, and their corresponding influential triples.
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5
P O I S O N I N G V I A R E L AT I O N I N F E R E N C E PAT T E R N S

This chapter proposes methods to select adversarial additions against the KGE
models. As discussed in Section 3.3.2, in addition to the design requirement for
the impact of candidate perturbations, adversarial additions need to account for
the large combinatorial search space. This search space is unavoidable when the
adversarial attack objective is defined in terms of the KGE model’s predictions for
the target facts. This objective formulation requires the impact of a perturbation
to be quantified explicitly. However, the impact of a perturbation on the ranks
predicted for target facts can also be defined implicitly through the impact on
synthetic negative triples against which the target fact is ranked. This chapter
formulates the adversarial attack objective of degrading the predicted ranks of
target facts as the task of improving the predicted ranks of decoy triples.

The notation (s, r, o) is used for the target triple; in this case, s, o are the target
entities and r is the target relation. The rank of a highly plausible target triple can be
degraded by improving the rank of less plausible decoy triples. For a target triple
(s, r, o), the decoy triple for degrading the rank on object side would be (s, r, o′)
and the decoy triple for degrading the rank on subject side would be (s′, r, o).
Thus, the aim of the adversarial attacker in this chapter, is to select decoy triples
from the set of valid synthetic negatives and craft adversarial additions to improve
their ranks. The attacker does not add the decoy triple itself as an adversarial
edit, rather chooses the adversarial edits that would improve the rank of a missing
decoy triple through an inference pattern. The majority of contents in this chapter
are taken verbatim from the author’s publication Bhardwaj et al. (2021b).

5.1 threat model

The threat model for this chapter is the same as the threat model defined in Sec-
tion 3.2 and the prior state-of-the-art attacks against KGE models (Pezeshkpour
et al., 2019; Zhang et al., 2019a). The attacks are designed for a white-box attack
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setting. In this attack setting, the attacker has full knowledge of the target KGE
model and the training dataset (Joseph et al., 2019). However, they cannot manip-
ulate the model architecture or the learned embeddings directly; but only through
addition of triples to the training knowledge graph. Additionally, the attacker is
restricted to making edits only in the neighbourhood of target entities. They are
also restricted to 1 decoy triple for each entity of the target triple. Furthermore,
because of the use of filtered settings for KGE evaluation (Bordes et al., 2013), the
attacker cannot add the decoy triple itself to the training data (which intuitively
would be a way to improve the decoy triple’s rank).

5.2 relation inference patterns

As discussed in Section 2.4.2, the general intuition behind the design of the scor-
ing functions of KGE models is to capture logical properties between relations
from the observed facts in the knowledge graph. These logical properties or re-
lation inference patterns can then be used to make downstream inferences about
entities and relations. For example, the relation is_owned_by is inverse of the re-
lation owns, and when the fact (Account, is_owned_by, Karl) is true, then the fact
(Karl, owns, Account) is also true and vice versa. A model that can capture inver-
sion pattern can thus predict missing facts about owns based on observed facts
about is_owned_by. The most studied inference patterns in the current literature
are symmetry, inversion and composition since they occur very frequently in real-
world knowledge graphs (Abboud et al., 2020; Ali et al., 2021). In this chapter, the
relation inference patterns are used to improve the ranks of the decoy triples and
in turn, degrade the ranks of the target triples.

Since the inference patterns on the knowledge graph specify a logic property
between the relations, they can be expressed as Horn Clauses which is a subset of
the First Order Logic (FOL) formulae. For example, a property represented in the
form ∀x, y : (x, owns, y) ⇒ (y, is_owned_by, x) means that two entities linked by
the relation owns are also likely to be linked by the inverse relation is_owned_by.
In this expression, the right hand side of the implication ⇒ is referred to as the
head and the left hand side as the body of the clause. Using such expressions, the
three inference patterns used in this research are defined as follows.

Definition 5.2.1. The symmetry pattern Ps is expressed as ∀x, y : (x, r, y) ⇒
(y, r, x). Here, the relation r is symmetric relation.

Definition 5.2.2. The inversion pattern Pi is expressed as ∀x, y : (x, ri, y) ⇒
(y, r, x). Here, the relations ri and r are inverse of each other.
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5.3 steps for adversarial attack

Definition 5.2.3. The composition pattern Pc is expressed as ∀x, y, z : (x, r1, z) ∧
(z, r2, y) ⇒ (x, r, y). Here, the relation r is a composition of r1 and r2 ; and the ∧
is the conjunction operator from relational logic.

The mapping G : V → E of variables V in the above expressions to entities E
is called a grounding. For example, the logic expression ∀x, y : (x, owns, y) ⇒
(y, is_owned_by, x) can be mapped to the grounding (Karl, owns, Account) ⇒
(Account, is_owned_by, Karl). Thus, a KGE model that captures the inversion
pattern will assign a high prediction confidence to the head atom when the body
of the clause exists in the knowledge graph.

5.3 steps for adversarial attack

The predictive performance of KGE models is determined by ranking a given fact
against the synthetic corruptions of its subject and object entities (Section 2.6.1).
Thus, the model’s prediction for a target fact can be degraded by carefully select-
ing a decoy triple from the possible corruptions and adding adversarial triples that
improve the rank assigned to the decoy triple. Consider the example of financial
knowledge graph from Figure 1 in Chapter 2. Adversarial additions based on the
relation inference patterns for this knowledge graph are shown in Figure 7. The
target triple whose rank the attacker wants to degrade is (Karl, works_with, Joe).
To degrade the rank for object-side corruptions, the attacker aims to improve
the rank of decoy triple (Karl, works_with, Alice). The decoy triple’s rank can
be improved through the symmetry pattern by adding (Alice, works_with, Karl).
Similarly, the inversion pattern can be exploited to improve the rank by adding
(Alice, has_employee, Karl). Furthermore, the rank of (Karl, works_with, Alice)
can also be improved by exploiting the composition pattern to add the triples
(Karl, deposits, Acc_clean) and (Acc_clean, owned_by, Alice).

Given this strategy, how should the adversarial attacker select the decoy triple
and the corresponding adversarial triples to exploit a specific relation inference
pattern? For the logic expressions in the previous section, the decoy triple becomes
the head atom and adversarial edits are the triples in the body of the expression.
Since the decoy triple is an object or subject side negative of the target triple, the
attacker already knows the relation in the head atom. They now want to determine
(i) the adversarial relations in the body of the expression; (ii) the decoy entities
which will most likely violate the inference pattern for the chosen relations and;
(iii) the remaining entities in the body of the expression which will improve the
prediction on the chosen decoy triple. Notice that the attacker needs all three
steps for composition pattern only; for inversion pattern, only the first two steps
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works_with

lives_in

involved_in

involved_in
owned_by

Acc

Karl Joe

Country_J

Illegal_Drugs

Poaching

works_with

Predicted Link

Alice

deposits

(a) Symmetry Attack

has_employee

lives_in

involved_in

involved_in
owned_by

Acc

Karl Joe

Country_J

Illegal_Drugs

Poaching

works_with

Predicted Link

Alice

deposits

(b) Inversion Attack

deposits
lives_in

involved_in

involved_in
owned_by

Acc_clean
Acc

Karl Joe

Country_J

Illegal_Drugs

Poaching

works_with

Predicted Link

owned_by

Alice

deposits

(c) Composition Attack

Figure 7: Illustrative examples for adversarial additions based on relation infer-
ence patterns. The target triple for attack is (Karl, works_with, Joe), and
the decoy triple is (Karl, works_with, Alice). The adversarial addition
based on symmetry pattern is (Alice, works_with, Karl), based on inver-
sion pattern (Alice, has_employee, Karl), and based on composition pattern
(Karl, deposits, Acc_clean) ∧ (Acc_clean, owned_by, Alice).

74



5.3 steps for adversarial attack

are needed; and for symmetry pattern, only the second step is needed. Each of
these steps is described in detail below.

5.3.1 Step1: Determine Adversarial Relations

Expressing the relation patterns as logic expressions is based on relational logic
and assumes that the relations are constants. Thus, an algebraic approach is used
to determine the relations in the head and body of a clause. Given the target
relation r, the adversarial relations are determined using an algebraic model of
inference (Yang et al., 2015). The model is intuitively similar to the prior literature
on knowledge graph traversal in latent vector space, used to extract rules from
knowledge graphs in Yang et al. (2015), and to answer path queries in knowledge
graphs in Guu et al. (2015), Sun et al. (2020a) and Arakelyan et al. (2021).

inversion : If an atom (x, r, y) holds true, then for the learned embeddings
in multiplicative models, it can be assumed that ex ◦ er ≈ ey; where ◦ denotes
the Hadamard (element-wise) product. If the atom (y, ri, x) holds true as well,
then it can also be assumed that ey ◦ eri ≈ ex. Thus, er ◦ eri ≈ 1 for inverse
relations r and ri when the embeddings are learned from multiplicative models.
A similar expression is obtained er + eri ≈ 0 when the embeddings are learned
from additive models.

Thus, to determine adversarial relations for inversion pattern, the pre-trained
embeddings are used to select ri that minimizes | erieT

r − 1 | for the multiplicative
models; and ri that minimizes | eri + er | for the additive models.

composition : If two atoms (x, r1, y) and (y, r2, z) hold true, then for multi-
plicative models, ex ◦ er1 ≈ ey and ey ◦ er2 ≈ ez. Therefore, ex ◦ (er1 ◦ er2) ≈ ez.
Hence, relation r is a composition of r1 and r2 if er1 ◦ er2 ≈ er. Similarly, for
embeddings from the additive models, the composition pattern is modeled as
er1 + er2 ≈ er.

Thus, to determine adversarial relations for composition pattern, the pre-trained
embeddings are used to obtain all possible compositions of (r1, r2). For the multi-
plicative models, these compositions are obtained using er1 ◦ er2 and for additive
models, using er1 + er2 . From these compositions, that relation pair is chosen for
which the Euclidean distance between the composed relation embeddings and the
target relation embedding er is minimum.
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5.3.2 Step2: Determine Decoy Entities

To select the decoy entity, three different heuristic approaches are considered -
soft truth score which is inspired by the research in Guo et al. (2016) and Guo
et al. (2018), ranks predicted by the KGE model and cosine distance. The choice of
these three approaches is based on the author’s intuition for the most promising
ways to select the decoy entities that will violate the relation inference patterns.
While other advanced methods might be possible, these simple methods can be
implemented readily and efficiently, and serve as good starting points.

soft logical modelling of inference patterns : Once the adversarial
relations are determined, it is possible to express the grounding for symmetry,
inversion and composition patterns for the decoy triples. Only the object side
decoy triple is discussed below for brevity -

Gs : (o′, r, s) ⇒ (s, r, o′)

Gi : (o′, ri, s) ⇒ (s, r, o′)

Gc : (s, r1, o′′) ∧ (o′′, r2, o′) ⇒ (s, r, o′)

If the model captures the patterns Ps, Pi or Pc to assign high rank to the target
triple, then the head atom (s, r, o′) of a grounding that violates this pattern is a
suitable decoy triple. Adding the body of this grounding to the knowledge graph
would improve the model performance on decoy triple through Ps, Pi or Pc.

To determine the decoy triple this way, there is need for a measure of the degree
to which a grounding satisfies an inference pattern. This measure is called the
soft truth score ϕ : G → [0, 1] - it provides the truth value of a logic expression
indicating the degree to which the expression is true (Guo et al., 2016, 2018). The
soft truth score of grounded patterns is modeled using the t-norm based fuzzy
logics (Hájek, 1998).

The score fsro of an individual atom (i.e. triple) is computed using the KGE
model’s scoring function. The sigmoid function σ(x) = 1/(1 + exp(−x)) is used
to map this score to a continuous truth value in the range (0, 1). Hence, the soft
truth score for an individual atom is ϕ(s, r, o) = σ( fsro). The soft truth score for
the grounding of a pattern can then be expressed through logical composition
(e.g. ∧ and ⇒) of the scores of individual atoms in the grounding. Following the
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research in Guo et al. (2016, 2018), the following compositions are defined for
logical conjunction (∧), disjunction (∨), and negation (¬):

ϕ(a ∧ b) = ϕ(a) · ϕ(b),

ϕ(a ∨ b) = ϕ(a) + ϕ(b)− ϕ(a) · ϕ(b),

ϕ(¬a) = 1 − ϕ(a).

Here, a and b are two logical expressions, which can either be single triples or
be constructed by combining triples with logical connectives. If a is a single triple
(s, r, o), we have ϕ(a) = ϕ(s, r, o). Given these compositions, the truth value of any
logical expression can be calculated recursively (Guo et al., 2016, 2018).

Thus, the following soft truth scores are obtained for the groundings of symme-
try, inversion and composition patterns Gs, Gi and Gc -

ϕ(Gs) = ϕ(o′, r, s) · ϕ(s, r, o′)− ϕ(o′, r, s) + 1

ϕ(Gi) = ϕ(o′, ri, s) · ϕ(s, r, o′)− ϕ(o′, ri, s) + 1.

ϕ(Gc) = ϕ(s, r1, o′′) · ϕ(o′′, r2, o′) · ϕ(s, r, o′)− ϕ(s, r1, o′′) · ϕ(o′′, r2, o′) + 1

To select the decoy triple (s, r, o′) for symmetry and inversion, all possible
groundings are scored using ϕ(Gs) and ϕ(Gi). The head atom of the grounding
with minimum score is chosen as the decoy triple.

For the composition pattern, the soft truth score ϕ(Gc) for candidate decoy
triples (s, r, o′) contains two entities (o′, o′′) to be identified. Thus, a greedy ap-
proach is used to select the decoy entity o′. In this approach, the pre-trained em-
beddings are used to group the entities o′′ into k clusters using K-means clustering
and a decoy entity with minimum soft truth score is determined for each cluster.
Then, the decoy entity o′ with minimum score across the k clusters is selected.

kge ranks : For this attack heuristic, the ranking protocol from KGE evalu-
ation is used to rank the target triple against the valid subject and object side
negatives (s′, r, o) and (s, r, o′). For each side, that negative triple is selected which
is ranked just worse than the target triple (that is, negative_rank = target_rank+ 1).
These are suitable as decoy because their predicted scores are likely not very differ-
ent from the target triple’s score. Thus, the model’s prediction confidence for these
triples might be effectively manipulated through adversarial additions. This is in
contrast to very low ranked triples as decoy; where the model has likely learnt a
low score with high confidence.
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Adversarial Attack Step Sym Inv Com

Determine Adversarial Relations n/a Alg Alg

Determine Decoy Entities
Sft Sft Sft

Rnk Rnk Rnk
Cos Cos Cos

Determine Adversarial Entities n/a n/a Sft

Table 15: A summary of the heuristic approaches used for different steps of the adversarial
attack with symmetry (Sym), inversion (Inv) and composition (Com) pattern.
Alg denotes the algebraic model for inference patterns; Sft denotes the soft truth
score; Rnk denotes the KGE ranks; and Cos denotes the cosine distance.

cosine distance : A high rank for the target triple (s, r, o) against queries
(s, r, ?) and (?, r, o) indicates that es, eo are similar to the embeddings of other
subjects and objects related by r in the training data. Thus, a suitable heuristic
for selecting decoy entities s′ and o′ is to choose ones whose embeddings are
dissimilar to es, eo. Since these entities are not likely to occur in the neighbourhood
of o and s, they will act adversarially to reduce the rank of target triple. Thus, for
this attack heuristic, decoy entities s′ and o′ that have maximum cosine distance
from target entities s and o respectively are selected.

5.3.3 Step3: Determine Adversarial Entities

This step is only needed for the composition pattern because the body for this
pattern has two adversarial triples. Given the decoy triple in the head of the com-
position expression, the body of the expression that would maximize the rank
of the decoy triple needs to be selected. For this step, the soft-logical model de-
fined in Step 2 for selecting the decoy triples is used again. The soft truth score
for composition grounding of the decoy triple is given by ϕ(Gt) = ϕ(s, r1, o′′) ·
ϕ(o′′, r2, o′) · ϕ(s, r, o′)− ϕ(s, r1, o′′) · ϕ(o′′, r2, o′) + 1. The entity o′′ with maximum
score is selected as the adversarial entity. This is because this entity satisfies the
composition pattern for the decoy triple and is thus likely to improve the decoy
triple’s ranks on addition to the knowledge graph.

5.4 computational complexity analysis

The main challenge in designing adversarial additions against KGE models is the
large combinatorial search space of the candidate triples. To overcome this chal-

78



5.4 computational complexity analysis

lenge, the attacks based on relation inference patterns break down the search space
into three smaller steps. The computational complexity of the proposed attacks is
discussed below. Lets say E is the set of entities and R is the set of relations. The
number of target triples to attack is t and the specific target triple is (s, r, o).

determine adversarial relations : This step determines the inverse re-
lation or the composition relation of a target triple. To select the inverse relation, R
computations are needed for every target triple. On the other hand, selecting com-
position relation requires the composition operation R2 times per target triple. To
avoid the repetition of these computations for every target triple, the inverse and
composition relations are pre-computed for all relations in the knowledge graph.
This gives the complexity O(R2) for the inverse relation. For the composition re-
lation, compositions of all relation pairs are computed and the adversarial pair is
selected by comparison with the target relation. This gives O(R2 +R) complexity
for composition. The computational complexity for this step is independent of the
number of target triples t.

determine decoy entity : For a given target triple, the three heuristics to
select the decoy entity are soft-truth score, KGE ranks and cosine distance. The
expression for computing the soft-truth scores requires the scores for individual
atoms in the expression for all possible entity substitutions. Using a pre-trained
KGE model, one atomic score value for all possible entity substitutions can be
computed by one forward call to the model. This way, for symmetry and inver-
sion, computing the soft truth score values requires 2 forward calls to the KGE
model because these expressions contain 2 different atomic expressions. For the
composition pattern, the expression for soft truth scores contains three different
atomic expressions. Furthermore, since the expression contains an entity o′′ in ad-
dition to the decoy entity, the score needs to be computed for k different clusters
into which the entities are grouped. Thus, computing the soft truth values of the
composition pattern for one target triple requires 3k forward calls to the model.

Selection of the decoy entity based on KGE ranks requires the computation
of one atomic expression for all possible entity substitutions. This requires one
forward call to the pre-trained KGE model. The atomic scores further need to be
ranked using Pytorch’s torch.sort function. In general, the sorting operation has
a time complexity of O(E log(E)). Thus, the expected computational complexity
for selecting the decoy entity for one target triple using the ranks from the KGE
model is O(E log(E)).
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For cosine distance, the similarity of s and o to all entities is computed via two
calls to Pytorch’s F.cosine_similarity. Once the heuristic scores are computed,
there is an additional complexity of O(E) to select the entity with minimum score.
These computations need to be repeated for all target triples t. Thus, the complex-
ity for decoy selection is O(tE) for all heuristics except two cases - soft truth score
on composition where it is O(ktE) and scores based on KGE ranks where it is
O(t(E log(E) + E)), which can be simplified to O(tE log(E)).

determine adversarial entity : This step requires the computation of
ground truth scores for the composition pattern which contain three different
atomic expressions. Thus, the step requires three forward calls to the KGE model.
The computational complexity of this step for all target triples is O(tE).

Based on the above discussion, the computational complexity for different at-
tacks is as follows -

1. For symmetry attacks based on soft-truth scores and cosine similarity, the
complexity is O(tE); and for the symmetry attacks based on KGE ranks, the
complexity is O(tE log(E))

2. For inversion attacks based on soft-truth scores and cosine similarity, the
complexity is O(R2 + tE); and for the inversion attacks based on KGE ranks,
the complexity is O(R2 + tE log(E))

3. For composition attacks, the complexity is O(R2 +R + ktE) for soft truth
score. On simplification, this complexity expression becomes O(R2 + ktE).
The complexity for KGE ranks is O(R2 +R+ tE log(E)), which on simplifi-
cation becomes O(R2 + tE log(E)). For composition attacks based on cosine
distance, the time complexity is O(R2 +R+ tE), which can be simplified to
O(R2 + tE).

It is noteworthy that the above expressions for computational complexity in-
dicate that all the proposed attack strategies are more efficient than the naive
method of searching through the combinatorial space of all possible adversarial
additions. For t target triples, the computational complexity for the enumerative
search would be O(tRE). This expression does not account for the complexity of
computing the metric for the impact of a candidate on the target triple. Despite
this, the computational complexity of the complete attack strategies discussed
above is more efficient than the naive methods. By breaking down the search space
into smaller steps, the proposed attack strategies reduce the multiplicative compo-
nents of the search space complexity into additive components.
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5.5 experimental setup

As discussed in Section 3.6, the aim of the evaluation is to assess the effectiveness
of proposed attacks in degrading the predictive performance of KGE models on
missing triples that are predicted true. For this, the state-of-the-art evaluation pro-
tocol for data poisoning attacks (Xu et al., 2020) has been used. First, a clean model
is trained on the original data; then the adversarial edits are generated and added
to the training knowledge graph; and finally a new model is re-trained on this
poisoned graph. All the hyperparameters for training the KGE model on original
and poisoned datasets remain the same.

5.5.1 Datasets

The proposed attack strategies are evaluated on four models with varying induc-
tive abilities - DistMult, ComplEx, ConvE and TransE; on two publicly available
benchmark datasets for link prediction1- WN18RR and FB15k-237. To evaluate the
predictive performance of the KGE models, standard KGE evaluation protocol is
used (Section 2.6.1). In addition, following Bordes et al. (2013) and as is the ac-
cepted state-of-the-art practice, triples from the validation and test set that contain
unseen entities are filtered out for the KGE model evaluation.

To assess the attack effectiveness in degrading performance on triples predicted
as True, a set of triples that are predicted as True by the model are needed. Thus, a
subset of the original test set is selected as target triples, where each triple is ranked
≤ 10 by the original model. That is, the subset of test set that is ranked the best by
the original model is selected as target triples for the evaluation. Table 16 provides
an overview of dataset statistics and the number of target triples selected.

5.5.2 Baselines

The proposed attack strategies are compared against the following baselines based
on random edits as well as state-of-art data poisoning attacks.

Random_n: Random edits in the neighbourhood of each entity of the target triple.
Random_g1: Global random edits in the knowledge graph which are not re-

stricted to the neighbourhood of entities in the target triple and have 1 edit per
decoy triple (like symmetry and inversion).

1 https://github.com/TimDettmers/ConvE

81



poisoning via relation inference patterns

WN18RR FB15k-237

Entities 40,559 14,505

Relations 11 237

Training 86,835 272,115

Validation 2,824 17,526

Test 2,924 20,438

Target

DistMult 1,315 3,342

ComplEx 1,369 3,930

ConvE 1,247 4,711

TransE 1,195 5,359

Table 16: Statistics for the datasets WN18RR and FB15k-237. Triples from the validation
and test set that contained unseen entities were removed to ensure that new
entities are not added as adversarial edits to the training graph. The numbers
above (including the number of entities) reflect this filtering.

Random_g2: Global random edits in the knowledge graph which are not re-
stricted to the neighbourhood of entities in the target triple and have 2 edits per
decoy triple (like composition).

Direct-Add: Poisoning attack from Zhang et al. (2019a) for edits in the neighbour-
hood of subject of the target triple. The method is extended to both subject and
object side neighbours to match the evaluation protocol in this chapter. Further
implementation details of this attack are available in Appendix B.1.2.

CRIAGE: Poisoning attack from Pezeshkpour et al. (2019). The publicly available
implementation of the attack and the default attack settings2 are used for this
research. The method was proposed for edits in the neighbourhood of object of the
target triple. It is extended to the neighbourhood of both subject and object entities
to match the evaluation protocol in this research and to ensure fair evaluation.

5.5.3 Implementation

For every attack, the adversarial edit candidates that already exist in the graph are
filtered out. This post-processing step is done to ensure that the poisoned training
graph does not contain duplicate triples. Similarly, duplicate adversarial edits for
different targets are also removed before adding them to the original knowledge
graph. For Step 2 of the composition attack with ground truth, the elbow method
is used to determine the number of clusters for each model-data combination. The

2 https://github.com/pouyapez/criage
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DistMult ComplEx ConvE TransE

MRR H@1 MRR H@1 MRR H@1 MRR H@1

Original 0.90 0.85 0.89 0.84 0.92 0.89 0.36 0.03

Baseline Attacks

Random_n 0.86 (-4%) 0.83 0.84 (-6%) 0.80 0.90 (-2%) 0.88 0.28 (-20%) 0.01

Random_g1 0.88 0.83 0.88 0.83 0.92 0.89 0.35 0.02

Random_g2 0.88 0.83 0.88 0.83 0.91 0.89 0.34 0.02

Direct-Add 0.82 (-8%) 0.81 0.76 (-14%) 0.74 0.90 (-2%) 0.87 0.24 (-33%) 0.01
CRIAGE 0.87 0.84 - - 0.90 0.88 - -

Proposed Attacks

Sym_truth 0.66 0.40 0.56 (-37%) 0.24 0.61 (-34%) 0.28 0.57 0.36

Sym_rank 0.61 0.32 0.56 (-37%) 0.24 0.62 0.31 0.25 0.02

Sym_cos 0.57 (-36%) 0.32 0.62 0.43 0.67 0.44 0.24 (-33%) 0.01

Inv_truth 0.87 0.83 0.86 0.80 0.90 0.87 0.34 0.03

Inv_rank 0.86 0.83 0.85 0.80 0.89 (-4%) 0.85 0.25 0.02

Inv_cos 0.83 (-8%) 0.82 0.80 (-10%) 0.79 0.90 0.88 0.25 (-30%) 0.01

Com_truth 0.86 0.83 0.86 0.81 0.89 0.86 0.53 (+49%) 0.27

Com_rank 0.85 (-5%) 0.80 0.83 0.77 0.89 0.84 0.57 0.32

Com_cos 0.86 0.77 0.82 (-8%) 0.70 0.88(-4%) 0.83 0.53 (+49%) 0.27

Table 17: Reduction in MRR and Hits@1 due to different attacks on the target split
of WN18RR. For each block of rows, the best relative percentage difference
from original MRR; computed as (original − poisoned)/original ∗ 100 is reported.
Lower values indicate better results; best results for each model are in bold. Statis-
tics on the target split are in Table 16.

elbow method is a heuristic approach to select the optimal number of clusters in
the k-means clustering, that is, the value of k.

Further details on KGE model training, computing resources and number of
clusters used are available in Appendix B.1. The source code to reproduce the
experimental results reported in this Chapter is available on GitHub at https:

//github.com/PeruBhardwaj/InferenceAttack.

5.6 evaluation of attack effectiveness

Table 17 and 18 show the reduction in MRR and Hits@1 due to different attacks on
the WN18RR and FB15k-237 datasets. These results show that the proposed adver-
sarial attacks outperform the random baselines and the state-of-art data poisoning
attacks against all KGE models on both datasets.
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DistMult ComplEx ConvE TransE

MRR H@1 MRR H@1 MRR H@1 MRR H@1

Original 0.61 0.38 0.61 0.45 0.61 0.45 0.63 0.48

Baseline Attacks

Random_n 0.54 (-11%) 0.40 0.54 (-12%) 0.40 0.56 (-8%) 0.41 0.60 (-4%) 0.45

Random_g1 0.54 0.40 0.55 0.41 0.57 0.43 0.62 0.46

Random_g2 0.55 0.41 0.55 0.40 0.57 0.42 0.61 0.46

Direct-Add 0.53 (-13%) 0.39 0.51 (-16%) 0.38 0.54 (-11%) 0.39 0.57 (-10%) 0.42

CRIAGE 0.54 0.41 - - 0.56 0.41 - -

Proposed Attacks

Sym_truth 0.51 0.36 0.56 0.41 0.51 (-17%) 0.34 0.62 0.48

Sym_rank 0.53 0.39 0.53 0.38 0.55 0.38 0.53 (-16%) 0.36
Sym_cos 0.46 (-25%) 0.31 0.51 (-17%) 0.38 0.52 0.37 0.55 0.40

Inv_truth 0.55 0.41 0.54 0.40 0.56 0.41 0.62 0.46

Inv_rank 0.56 0.43 0.55 0.40 0.55 (-9%) 0.40 0.58 (-8%) 0.42

Inv_cos 0.54 (-11%) 0.40 0.53 (-14%) 0.39 0.56 0.42 0.59 0.44

Com_truth 0.56 0.42 0.55 0.41 0.57 0.43 0.65 0.51

Com_rank 0.56 (-8%) 0.42 0.55 (-11%) 0.40 0.56 (-8%) 0.41 0.69 0.48

Com_cos 0.56 (-8%) 0.43 0.56 0.42 0.56 0.42 0.63 (0%) 0.49

Table 18: Reduction in MRR and Hits@1 due to different attacks on the target split
of FB15k-237. For each block of rows, the best relative percentage difference
from original MRR; computed as (original − poisoned)/original ∗ 100 is reported.
Lower values indicate better results; best results for each model are in bold. Statis-
tics on the target split are in Table 16.
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5.6.1 Comparison across Relation Inference Patterns

It is observed that the attacks based on symmetry inference pattern perform the
best across all model-dataset combinations. This indicates the sensitivity of KGE
models to symmetry pattern. For DistMult, ComplEx and ConvE, this sensitivity
can be explained by the symmetric nature of the scoring functions of these models.
That is, the models assign either equal or similar scores to triples that are symmet-
ric opposite of each other. In the case of TransE, the model’s sensitivity to symme-
try pattern is explained by the translation operation in scoring function. The score
of target (s, r, o) is a translation from subject to object embedding through the re-
lation embedding. Symmetry attack adds the adversarial triple (o′, r, s) where the
relation is same as the target relation, but target subject is the object of adversarial
triple. Now, the model learns the embedding of s as a translation from o′ through
relation r. This adversarially modifies the embedding of s and in turn, the score
of (s, r, o).

Furthermore, the inversion and composition based attacks perform better than
the baselines in most cases, but not as good as symmetry. For the composition
pattern, it is likely that the model has stronger bias for shorter and simpler patterns
like symmetry and inversion than for composition. This makes it harder to deceive
the model through composition than through symmetry or inverse.

5.6.2 Comparison of Datasets

The above observation for the inversion and composition pattern is particularly
true for FB15k-237 where the performance for these patterns is similar to random
baselines. One possible reason for the low effectiveness on FB15k-237 dataset could
be the high connectivity of this dataset (Dettmers et al., 2018). This means that the
KGE model relies on a high number of triples to learn the target triples’ ranks.
Thus, effectively poisoning the KGE models for FB15k-237 will likely require more
adversarial triples per target triple than that considered in this research.

The inversion pattern is likely ineffective on the benchmark datasets because
these datasets do not have any inverse relations (Dettmers et al., 2018; Toutanova
and Chen, 2015). This implies that the attacks cannot identify the inverse of the
target triple’s relation in Step 1 and a KGE model trained on these clean datasets
would not be vulnerable to inversion attacks. To investigate this hypothesis further,
the attacks are evaluated on WN18 dataset where the inverse relations have not
been filtered out. This means that the KGE model can learn the inversion pattern
and the inversion attacks can identify the inverse of the target relation.
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DistMult ComplEx ConvE TransE

MRR H@1 MRR H@1 MRR H@1 MRR H@1

Original 0.82 0.67 0.99 0.99 0.80 0.63 0.65 0.45

Baseline Attacks

Random_n 0.80 (-2%) 0.63 0.99 (0%) 0.98 0.79 (-2%) 0.61 0.46 (-29%) 0.18

Random_g1 0.82 0.66 0.99 0.98 0.80 0.62 0.57 0.33

Random_g2 0.81 0.65 0.99 0.98 0.79 0.62 0.50 0.22

Direct-Add 0.77 (-6%) 0.59 0.97 (-3%) 0.95 0.77 (-3%) 0.61 0.43 (-33%) 0.16

CRIAGE 0.78 0.61 - - 0.78 0.63 - -

Proposed Attacks

Sym_truth 0.62 0.30 0.90 0.82 0.58 (-17%) 0.27 0.74 0.60

Sym_rank 0.59 0.27 0.89 (-10%) 0.79 0.62 0.33 0.52 0.34

Sym_cos 0.50 (-38%) 0.17 0.92 0.85 0.60 0.35 0.41 (-37%) 0.13

Inv_truth 0.81 0.66 0.86 0.74 0.78 (-3%) 0.61 0.59 0.34

Inv_rank 0.82 0.66 0.84 (-16%) 0.68 0.79 0.61 0.55 0.34

Inv_cos 0.79 (-3%) 0.64 0.87 0.75 0.80 0.63 0.51 (-22%) 0.25

Com_truth 0.79 0.62 0.98 0.97 0.77 0.62 0.53 (-18%) 0.25

Com_rank 0.80 0.64 0.98 0.96 0.75 (-6%) 0.58 0.67 0.47

Com_cos 0.78 (-5%) 0.61 0.97 (-2%) 0.95 0.77 0.62 0.58 0.32

Table 19: Reduction in MRR and Hits@1 due to different attacks on the target split of
WN18. For each block of rows, the best relative percentage difference from origi-
nal MRR; computed as (original − poisoned)/original ∗ 100 are reported. Lower
values indicate better results; best results for each model are in bold.

Table 19 shows the results for different adversarial attacks on WN18. In this
setting, it is observed that the inversion attacks outperform other attacks against
ComplEx on WN18, indicating the sensitivity of ComplEx to the inversion pattern
when the dataset contains inverse relations. It is also observed that the symmetry
based attack is the most effective for DistMult, ConvE and TransE. This indicates
the sensitivity of these models to the symmetry pattern even when the inverse
relations are present in the knowledge graph. For DistMult and ConvE, this is
likely due to the symmetric nature of their scoring functions; and for TransE, this
is likely because of the translation operation as discussed earlier.

5.6.3 Analysis on Decoy Triples

An exception in the results is the composition pattern on TransE where the model
performance improves instead of degrading on the target triples. This is likely due
to the model’s sensitivity to composition pattern such that adding this pattern
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improves the performance on all triples, including target triples. To verify this, the
change in ranks of the decoy triples was investigated.

The proposed attacks are designed to generate adversarial triples that improve
the KGE model performance on decoy triples (s, r, o′) and (s′, r, o). Thus, an anal-
ysis was done to determine whether the performance of KGE models improves or
degrades over decoy triples after poisoning. For the decoy triples on object side
(s, r, o′), the change in object side MRR was computed relative to the original object
side MRR of these triples. Similarly, for the decoy triples on subject side (s′, r, o),
the change in subject side MRR was computed relative to the original subject side
MRR of these decoy triples. Figure 8 shows the plots for the mean change in MRR
of object and subject side decoy triples.

It can be noticed that the composition attacks against TransE are effective in
improving the ranks of decoy triples on both WN18RR and FB15k-237. Thus, it is
likely that the composition attack does not work against TransE for WN18RR be-
cause the original dataset does not contain any composition relations; thus adding
this pattern improves model’s performance on all triples instead of just the target
triples because of the sensitivity of TransE to composition pattern.

It also explains why the increase is more significant for WN18RR than FB15k-
237. WN18RR does not have any composition relations but FB15k-237 does; thus,
adding these to WN18RR shows significant improvement in performance. This be-
haviour for the composition pattern also indicates that the selection of adversarial
entities in Step 3 of the composition attacks can be improved.

Further investigation of these and additional hypotheses about the proposed
adversarial attacks are interesting directions for future work.

5.7 additional evaluation

5.7.1 Analysis of Runtime Efficiency

In this section, the runtime efficiency of the baseline and proposed attacks is com-
pared. Given the original KGE model and the set of target triples, the absolute time
taken to generate the complete set of adversarial additions for all target triples is
recorded. Table 20 shows the time taken (in seconds) to select the adversarial
triples using different attack strategies for all models on WN18 dataset. Similar
patterns were observed for attack execution on other datasets.

For CRIAGE, the reported time does not include the time taken to train the
auto-encoder model for that attack. Similarly, for soft-truth based composition
attacks, the reported time does not include the time taken to pre-compute the
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Figure 8: Mean of the relative increase in MRR of object and subject side decoy triples
due to proposed attacks on WN18RR and FB15k-237. The increase is computed
relative to the original MRR of decoy triples as (poisoned − original)/original.
The scale on the y-axis is a symmetric log scale. Higher values are better; as they
show the effectiveness of attack in improving decoy triples’ ranks relative to their
original ranks.
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DistMult ComplEx ConvE TransE

Baseline
Attacks

Random_n 10.08 10.69 8.76 7.83

Random_g1 8.28 8.16 7.64 6.49
Random_g2 16.01 15.82 18.72 13.33

Direct-Add 94.48 255.53 666.85 81.96
CRIAGE 21.77 - 21.96 -

Proposed
Attacks

Sym_truth 19.63 35.40 22.76 31.59

Sym_rank 23.47 27.25 25.82 25.03

Sym_cos 22.52 28.62 25.69 23.13
Inv_truth 11.43 15.69 24.13 31.89

Inv_rank 15.27 18.14 30.99 21.82

Inv_cos 14.96 20.47 23.02 20.63
Com_truth 2749.60 1574.44 6069.79 470.34

Com_rank 22.04 31.53 37.81 20.88

Com_cos 34.78 68.06 32.37 19.86

Table 20: Runtime efficiency of the baseline and proposed adversarial adversarial against
different KGE models for WN18 dataset. The absolute time taken in seconds
to generate the complete set of adversarial additions for all the target triples is
reported.

clusters of entities. It is observed that the proposed attacks are more efficient than
the baseline Direct-Add attack which requires a combinatorial search over the
candidate adversarial triples. In addition, the proposed attacks have comparable
efficiency to CRIAGE. Among the different proposed attacks, composition attacks
based on soft-truth score take more time than others because they select the decoy
entity by computing the soft-truth score for multiple clusters.

5.7.2 Qualitative Analysis

Since adversarial attacks cause model failure for specific predictions, these failure
points can be used to understand the predictive performance of KGE models. This
section provides examples of the adversarial additions generated using the Infer-
ence Attacks. Tables 21 and 22 show the adversarial additions for target triples
which undergo the maximum change in ranks due to poisoning. While symmetry
and inversion patterns have two adversarial additions, the composition pattern
has four. Table 21 provides examples for WN18RR ComplEx and Table 22 provides
examples for FB15k-237 ComplEx. The entities in the benchmark data splits are
represented as numeric IDs not string expressions. The string representations
of entities for Wordnet (WN18RR) are obtained using the definitions.txt file from
the original split at https://everest.hds.utc.fr/doku.php?id=en:smemlj12. For
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Freebase (FB15k-237), the entity representations are obtained using a community
build browser at https://freebase.toolforge.org/. The values for maximum
change in ranks for WN18RR are – (13385.5, 34866, 40554) for Symmetry at-
tacks, (22212.5, 40292.5, 40549.5) for Inversion attacks, and (17150.5, 40460, 35417)
for Composition attacks. On the other hand, these values for FB15k-237

are – (1292, 596, 4400.5) for Symmetry, (832, 1119, 1903) for Inversion, and
(675, 614, 2180.5) for Composition.

As indicated by the results in Tables 17 and 18, the maximum change in ranks
due to poisoning of WN18RR is significantly more than FB15k-237. This obser-
vation was explained above in terms of the graph connectivity - since FB15k-237

has more neighbours for the target triple, the KGE model prediction relies on a
larger number of triples and is thus, more difficult to perturb than WN18RR. Con-
sider the examples for the Sym_truth attacks. For WN18RR, the target (date_NN_6
, hypernym , month_NN_1) has 11 neighbouring triples, whereas for FB15k-237, the
triple (Oprah Winfrey , award/ ranking/ list , Time 100) has 76 neighbours. Fur-
thermore, the triple with minimum change in ranks for the Sym_truth attack on
WN18RR is (family_bruchidae_NN_1, hypernym, arthropod_family_NN_1). Though
this triple has the same target relation hypernym, the number of neighbouring
triples are 146. These values provide further support that the KGE model’s predic-
tions for triples with fewer neighbours are more vulnerable to adversarial attacks
than those for triples with more neighbours.

For both datasets, it can be observed that different attack methods cause maxi-
mum change to the ranks of different target triples, though the same set of target
triples is used for all attacks. This is likely because the predictions for different
target triples are sensitive to different inference patterns or attack strategies. How-
ever, the relation hypernym is common among the target triples for WN18RR.

Furthermore, the adversarial relations for symmetry pattern are not necessarily
symmetric. For example, for the symmetry attack on WN18RR, the relations hy-
pernym and derivationally_related_form are most sensitive. However, only derivation-
ally_related_form is an actual symmetric relation because it relates similar words
with different syntactic categories or parts-of-speech. The relation hypernym de-
notes supertype or generalization, and is not symmetric. Similarly, for FB15k-237,
/people/ person/ religion is not a symmetric relation. These adversarial relations are,
however, still effective likely due to the training graph structure, which makes
the model prediction sensitive to this inference pattern. Consider the target triple
(date_NN_6 , hypernym , month_NN_1) from WN18RR. The entity date_NN_6 is re-
lated to date_VB_3 for 2 triples, and has the relation hypernym for a third triple. Sim-
ilarly, the entity month_NN_1 is related via hypernym to 7 entities, and via has_part

90

https://freebase.toolforge.org/


5.7 additional evaluation

to week_NN_3. However, there is no direct or 2-hop link between the target entities.
Thus, connecting (date_VB_3 , date_NN_6) and (month_NN_1 , week_NN_3) via the
hypernym relation improves the ranks of decoy triples and reduces the likelihood
of assigning a high rank to the target triple.

Among the target triples for inversion pattern, for FB15k-237, the model identi-
fies /location/ hud_county_place/ place as the inverse of /people/ ethnicity/ people. While
the two relations are not exact inverses of each other, their domain and range
would loosely be inverse. Among the target triples for composition pattern, the
model identifies film/ performance/ film and location/ mailing_address/ citytown as the
composition for /people/ person/ gender.

5.7.3 Comparison with Attribution Attacks

In Chapter 4, the instance attribution methods were used to select adversarial
additions by identifying the most influential triple for a target triple, and replacing
one of the entities of the target triple with a dissimilar entity in the latent space.
While this heuristic method overcomes the search space for adversarial additions,
it still requires a search over the neighbourhood of the target triple. This section
compares the effectiveness and efficiency of the attribution attacks from Chapter
4 with the inference attacks proposed in this Chapter. The experimental setup is
the same as the remaining experiments in this chapter - that is, two adversarial
additions are crafted per target triple. To select two adversarial additions from
attribution attacks, instead of the most influential triple, the top-2 most influential
triples are selected and their entities are replaced with dissimilar entities.

Table 23 shows the predictive performance of ComplEx for WN18RR and FB15k-
237 due to the attribution attacks and inference attacks. It is observed that the
symmetry pattern based attacks outperform the other methods for both datasets.
Furthermore, the instance attribution attacks perform similar to the inversion and
composition patterns. As discussed in previous sections, this indicates the sensi-
tivity of ComplEx to the symmetry pattern. However, another explanation for the
better performance of inference attacks is that they exploit the KGE ranking pro-
tocol for evaluation. According to the KGE evaluation protocol (Section 2.6.1), the
existence of a missing target fact is decided by its rank against the possible entity
corruptions. While attribution attacks target the score predicted for the target facts,
inference attacks target their predicted rank. Thus, the inference attack strategy is
likely more effective than attribution attacks. This also indicates the possibility of
designing stronger adversarial attacks against KGE models by jointly targeting the
predicted score as well as the rank of the target fact.
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Attack Target and Adversarial Triples

Sym
Truth

date_NN_6 , hypernym , month_NN_1
date_VB_3 , hypernym , date_NN_6
month_NN_1 , hypernym , week_NN_3

Sym
Rank

roman_deity_NN_1 , hypernym , immortal_NN_2
greco-roman_deity_NN_1 , hypernym , roman_deity_NN_1
immortal_NN_2 , hypernym , mythology_NN_2

Sym
Cos

scratch_VB_3 , derivationally_related_form , scabies_NN_1
itch_VB_2 , derivationally_related_form , scratch_VB_3
scabies_NN_1 , derivationally_related_form , itching_NN_1

Inv
Truth

pyrrhocoridae_NN_1 , hypernym , arthropod_family_NN_1
suborder_heteroptera_NN_1 , derivationally_related_form , pyrrhocoridae_NN_1
arthropod_family_NN_1 , derivationally_related_form , kingdom_animalia_NN_1

Inv
Rank

roman_deity_NN_1 , hypernym , immortal_NN_2
greco-roman_deity_NN_1 , derivationally_related_form , roman_deity_NN_1
immortal_NN_2 , derivationally_related_form , mythology_NN_2

Inv
Cos

flying_lizard_NN_1 , hypernym , agamid_lizard_NN_1
family_agamidae_NN_1 , derivationally_related_form , flying_lizard_NN_1
agamid_lizard_NN_1 , derivationally_related_form , genus_draco_NN_1

Com
Truth

republic_of_guinea_NN_1 , instance_hypernym , african_nation_NN_1

republic_of_guinea_NN_1 , hypernym , konakri_NN_1
konakri_NN_1 , member_of_domain_usage , wetback_NN_1

terminate_VB_1 , hypernym , republic_of_cameroon_NN_1
republic_of_cameroon_NN_1 , member_of_domain_usage , african_nation_NN_1

Com
Rank

zaglossus_NN_1 , member_meronym , spiny_anteater_NN_1

zaglossus_NN_1 , derivationally_related_form , tachyglossidae_NN_1
tachyglossidae_NN_1 , hypernym , pipistrellus_pipistrellus_NN_1

zaglossus_NN_1 , derivationally_related_form , tachyglossidae_NN_1
tachyglossidae_NN_1 , hypernym , spiny_anteater_NN_1

Com
Cos

garnish_NN_2 , hypernym , ornamentation_NN_2

garnish_NN_2 , derivationally_related_form , interior_decoration_NN_1
interior_decoration_NN_1 , member_meronym , dress_VB_9

trim_VB_6 , derivationally_related_form , grace_VB_2
grace_VB_2 , member_meronym , ornamentation_NN_2

Table 21: Examples of target triples from WN18RR ComplEx with maximum change in
rank due to adversarial attacks. For each target triple, the adversarial additions
are shown for degrading ranks on the object-side (s,r,?) and the subject-side (?,r,o)
queries. Symmetry and inversion attacks have two additions per target triple,
whereas composition attacks have four additions per target triple.
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Attack Target and Adversarial Triples

Sym
Truth

Oprah Winfrey /award/ ranked_item/ appears_in_ranked_lists./
award/ ranking/ list

Time 100

The Women of
Brewster Place

/award/ ranked_item/ appears_in_ranked_lists./
award/ ranking/ list

Oprah Winfrey

Time 100 /award/ ranked_item/ appears_in_ranked_lists./
award/ ranking/ list

Sarah Palin

Sym
Rank

Stanley
Kubrick

/people/ person/ religion Judaism

Agnosticism /people/ person/ religion Stanley
Kubrick

Judaism /people/ person/ religion Sam Mendes

Sym
Cos

Lieutenant /business/ job_title/ people_with_this_title./
business/ employment_tenure/ company

United States
Navy

United States
of America

/business/ job_title/ people_with_this_title./
business/ employment_tenure/ company

Lieutenant

United States
Navy

/business/ job_title/ people_with_this_title./
business/ employment_tenure/ company

United States
Army

Inv
Truth

Italian
American

/people/ ethnicity/ people John Travolta

American
English

/location/ hud_county_place/ place Italian
American

John Travolta /location/ hud_county_place/ place United States
of America

Inv
Rank

Coldplay /common/ topic/ webpage./ common/ webpage/
category

Official
Website

Lead vocalist /tv/ tv_program/ languages Coldplay

Official
Website

/tv/ tv_program/ languages Jay-Z

Inv
Cos

The Royal
Conservatoire
of Scotland

/education/ educational_institution/
students_graduates./ education/ education/
student

Alan Cumming

Tony Award
for Best Actor
in a Musical

/film/ film/ featured_film_locations The Royal
Conservatoire
of Scotland

Alan Cumming /film/ film/ featured_film_locations United States
of America

(a) Symmetry and Inversion Attacks

Table 22: Examples of target triples from FB15k-237 ComplEx with maximum change in
rank due to adversarial attacks.For each target triple, the adversarial additions
are shown for degrading ranks on the object-side (s,r,?) and the subject-side (?,r,o)
queries. Symmetry and inversion attacks have two additions per target triple,
whereas composition attacks have four additions per target triple.
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Attack Target and Adversarial Triples

Com
Truth

Bryan Adams /people/ person/ gender Male

Bryan Adams /film/ actor/ film./ film/ performance/ film St. John’s
University

St. John’s
University

/organization/ organization/ headquarters./
location/ mailing_address/ citytown

New York City

Jane Lynch /film/ actor/ film./ film/ performance/ film Autism
Autism /organization/ organization/ headquarters./

location/ mailing_address/ citytown
Male

Com
Rank

Mila Kunis /people/ person/ gender Female

Mila Kunis /film/ actor/ film./ film/ performance/ film Autism
Autism /organization/ organization/ headquarters./

location/ mailing_address/ citytown
Male

Lily Tomlin /film/ actor/ film./ film/ performance/ film Into the Wild
Into the Wild /organization/ organization/ headquarters./

location/ mailing_address/ citytown
Female

Com
Cos

Pink Floyd /common/ topic/ webpage./ common/ webpage/
category

Official
Website

Pink Floyd /award/ award_winning_work/ awards_won./
award/ award_honor/ award_winner

Zooey
Deschanel

Zooey
Deschanel

/people/ person/ spouse_s./ people/ marriage/
location_of_ceremony

Los Angeles

Grammy
Award for Best
Rock Vocal
Performance by
a Duo or
Group

/award/ award_winning_work/ awards_won./
award/ award_honor/ award_winner

Eagles

Eagles /people/ person/ spouse_s./ people/ marriage/
location_of_ceremony

Official
Website

(b) Composition Attacks

Table 22: Examples of target triples from FB15k-237 ComplEx (continued).
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WN18RR FB15k-237

MRR H@1 MRR H@1

Original 0.89 0.84 0.61 0.45

Attribution
Attacks

Dot Metric 0.85(-5%) 0.80 0.55(-10%) 0.42

ℓ2 Metric 0.80(-10%) 0.75 0.54(-12%) 0.40

Cos Metric 0.80(-10%) 0.74 0.54(-12%) 0.41

GD (dot) 0.76(-15%) 0.65 0.54(-12%) 0.40

GL (ℓ2) 0.75(-16%) 0.65 0.54(-13%) 0.40

GC (cos) 0.75(-16%) 0.65 0.54(-11%) 0.41

Inference
Attacks

Sym 0.56(-37%) 0.24 0.51(-17%) 0.38
Inv 0.80(-10%) 0.79 0.53(-14%) 0.39

Com 0.82(-8%) 0.70 0.55(-11%) 0.40

Table 23: Comparison of the effectiveness of adversarial additions based on Attribution
Attacks and Inference Attacks for the ComplEx model on WN18RR and FB15k-
237. For Inference Attacks, the best results for each relation inference pattern
from Tables 17 and 18 is reported here. Percentage values were computed before
rounding off to two decimals.

Table 24 provides a comparison of the runtime efficiency of different attack
methods against DistMult model for WN18RR and FB15k-237. It is observed that
the symmetry attacks are most efficient for both datasets - performing similar
to the random baselines for WN18RR and better than the random baselines for
FB15k-237. Additionally, as observed for adversarial deletions in Section 4.6.1, the
attribution attacks (especially gradient similarity based attribution) are more ef-
ficient for WN18RR than for FB15k-237. This is because of their reliance on the
number of triples in the neighbourhood of the target triple. On the other hand,
the difference in the efficiency of inference attacks for WN18RR and FB15k-237 is
similar to the difference in the efficiency of random baselines. This is because the
efficiency of inference attacks depends on the number of relations, entities and tar-
get triples instead of neighbourhood triples. This observation provides empirical
evidence to support the computational complexity analysis of inference patterns
based attacks from Section 5.4 of this Chapter.
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WN18RR FB15k-237

Baseline
Attacks

Random_n 2.57 25.35
Random_g1 2.13 25.38

Random_g2 2.46 31.25

Direct-Add 19.30 257.68

CRIAGE 4.91 6.03

Attribution
Attacks

Dot Metric 7.57 13.34

ℓ2 Metric 7.43 9.94
Cos Metric 7.56 11.47

GD (dot) 39.53 1810.68
GL (ℓ2) 44.09 1885.22

GC (cos) 52.47 2130.87

Inference
Attacks

Sym_truth 3.02 10.53

Sym_rank 3.08 10.33

Sym_cos 3.06 9.72

Inv_truth 5.84 10.66

Inv_rank 5.77 10.48

Inv_cos 5.65 10.05

Com_truth 988.02 915.64

Com_rank 8.73 23.37

Com_cos 8.02 22.05

Table 24: Runtime efficiency of the baseline and proposed adversarial additions for Dist-
Mult on WN18RR and FB15k-237. The absolute time taken in seconds to generate
the complete set of adversarial triples for all target triples is reported. For adver-
sarial additions based on Attribution attacks, neighbourhood triples for each
target triple were pre-computed.
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5.8 summary

5.8 summary

This chapter proposed data poisoning attacks against KGE models based on rela-
tion inference patterns like symmetry, inversion and composition. The evaluation
of these attacks showed that the proposed attacks outperform state-of-the-art ad-
versarial attacks. Since the proposed attacks rely on relation inference patterns,
they can also be used to understand the predictive behaviour of KGE models. This
is because if a KGE model is sensitive to a relation inference pattern, then that
pattern should be an effective adversarial attack. It was observed that the attacks
based on symmetry pattern generalize across all KGE models. This indicates the
sensitivity of different KGE models to this inference pattern.

Further investigation of the hypotheses about the effect of input graph connec-
tivity and the existence of specific inference patterns in the datasets are interesting
directions for future work. It is noteworthy that such investigation of attacks will
likely be influenced by the choice of datasets. In this thesis, the benchmark datasets
for link prediction (Section 2.6.3) have been used for evaluation. While there are
intuitive assumptions about the inference patterns on these datasets, there is no
study that formally measures and characterizes the existence of these inference
patterns. This makes it challenging to verify the claims made about the inductive
abilities of the KGE models, not only by the attacks proposed in this chapter but
also by new KGE models proposed in the literature.

Thus, a promising step in understanding knowledge graph embeddings is to
propose datasets and evaluation tasks that test varying degrees of specific induc-
tive abilities (Section 6.2.3). These will help evaluate new models and serve as a
testbed for poisoning attacks. Furthermore, specifications of model performance
on datasets with different inference patterns will improve the usability of KGE
models in high-stakes domains like healthcare and finance.
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6
R E L AT E D W O R K

The research in this thesis focuses on the adversarial vulnerabilities of representa-
tion learning for knowledge graphs. The aim of this chapter is to relate this focus
to the wider literature on graph representation learning and on understanding the
predictive behaviour of latent knowledge graph representations. The discussion in
this chapter is not necessary to understand the main contributions of the thesis.
However, these studies might serve as useful pointers for an interested reader.

6.1 graph representation learning

Traditional methods for Machine Learning on graphs relied on hand engineered
features which are extracted from the structure of the graph (Hamilton et al., 2017b;
Hamilton, 2020). More recent approaches instead learn these features through rep-
resentation learning approaches. A graph representation learning algorithm en-
codes the structural information in a graph by learning a mapping from the nodes
(or sub-graphs) into low dimensional feature vectors. The objective is to optimize
the mapping such that embedding interactions in lower dimensional vector space
reflect the structure of the original graph. A large number of approaches have been
proposed for representation learning on graphs. Hamilton et al. (2017b); Hamilton
(2020) proposed a unifying framework for the different representation learning
approaches on graphs. Broadly, there are three families of algorithms based on
the graph structural information they aim to preserve – edges between entities,
neighbourhood nodes of an entity, relational paths between entities.

6.1.1 Based on Edge Reconstruction

Representation learning algorithms which have an objective function based on
edge reconstruction, as proposed in Cai et al. (2018), are designed particularly for
relational graphs or knowledge graphs where the edges in the graph represent re-
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lations between entities. The entire relational graph can be considered a set of facts
about the entities, represented as subject-relation-object triples. The most common
ML task on such directed, labelled graphs is that of knowledge base completion by
predicting the missing facts (also called link prediction) (Nickel et al., 2011; Bordes
et al., 2013; Yang et al., 2015). The learned embeddings, popularly called Knowl-
edge Graph Embeddings (KGE), and the task of knowledge base completion are
the focus of the research in this thesis, and are discussed in Chapter 2.

The embedding algorithms rely on local and global patterns of relationships to
generalize them. Node embeddings are learned by low-rank tensor factorization
of the tensor representing the graph. Tensor factorization is an extension of matrix
factorization where two matrices are used to represent the set of subjects and ob-
jects. However, since the same entity can occur as subject and object, Nickel et al.
(2011) proposed RESCAL to learn joint embeddings for subjects and objects. A
matrix of scores for the occurrence of a fact (or triple) can be obtained by a multi-
linear product between the embeddings of subject, relation and object. This notion
of dot product has been generalized to a ranking based scoring function which
combines embedding vectors in such a way that the actual triples in the graph
are ranked higher than those which are not in the graph (Cai et al., 2018; Trouil-
lon et al., 2016). Representation learning techniques based on ranking score based
edge reconstruction differ mostly in the way they define this embedding combina-
tion or scoring function. As proposed in Chandrahas et al. (2018), TransE (Bordes
et al., 2013) and TransR (Lin et al., 2015) use additive scoring functions while Dist-
Mult (Yang et al., 2015), HolE (Nickel et al., 2016b) and ComplEx (Trouillon et al.,
2016) use multiplicative scoring functions. In TransE (Bordes et al., 2013), relations
are interpreted as translations on low-dimensional entity embeddings and the ob-
ject entity embedding is approximated as embedding of subject entity plus relation
embedding. On the other hand, DistMult (Yang et al., 2015) computes the score
matrix as a dot product of the subject embedding, object embedding and relation
matrix. This is extended in ComplEx (Trouillon et al., 2016) by replacing the dot
product with a Hermitian product for complex values. Further discussion on the
design of KGE models used for the research in this thesis, as well as the training
and evaluation protocols for this family of models is available in Chapter 2.

The KGE methods discussed above focus on simple knowledge graphs where
the entities belong to a fixed, discrete set, and the graph is represented as RDF
(Resource Description Framework) triples. However, KG representation can also
include multimodal entities, relation attributes or a graph schema definition in
Web Ontology Language (OWL). Pezeshkpour et al. (2018); García-Durán and
Niepert (2018); Kristiadi et al. (2019); Pai and Costabello (2021) propose differ-
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ent approaches to encode the multimodal information like images, text, numerical
values and logical rules, and combine this encoding with latent vectors from sim-
ple KGE models. Lacroix et al. (2020); Messner et al. (2022) extend the ComplEx
and BoxE models to temporal KGs with timestamped relations. Chen et al. (2021)
proposes embeddings for OWL ontologies that represent the domain semantics
through logic constructors and lexical information. The research in this thesis fo-
cuses on the KGE models for simple graph structures expressed as RDF triples.

6.1.2 Based on Neighbourhood Aggregation

Neighbourhood aggregation based representation learning relies on a node’s local
neighbourhood to learn its embedding. This is unlike edge reconstruction based
techniques that utilize the local and global relation patterns in the graph. In neigh-
bourhood aggregation, node attributes are used to initialize node embeddings.
This initial embedding is iteratively updated using an aggregation function on the
vectors representing neighbourhood nodes. Over the iterations, information from
further nodes is aggregated into this node embedding (Hamilton et al., 2017b).

A neural network based approach for such neighbourhood aggregation, called
Graph Neural Network (GNN) was first proposed in Scarselli et al. (2009). In-
spired by traditional Recurrent Neural Network (RNN), this algorithm relied on
repeated application of contraction maps as propagation (or aggregation) function
until stable node embeddings were achieved. The GNN architecture was extended
further in Li et al. (2016) by using Gated Recurrent Unit (GRU). Instead of this
RNN based aggregation, neighbourhood aggregation based on convolution op-
erations was proposed in Bruna et al. (2014) and extended in Defferrard et al.
(2016). The traditional Convolutional Neural Network (CNN) has been successful
on Euclidean data which can be represented by a grid-like structure or vectors.
These studies extend the convolution operation to graphs (non-Euclidean data) by
using Graph Laplacian in the spectral domain. The spectral graph convolution op-
eration is further simplified in Kipf and Welling (2017) via a localized first order
approximation which is equivalent to an element wise weighted mean aggregation
function (spatial convolution). The use of convolution operations for aggregation
is generalized to trainable aggregation functions in Hamilton et al. (2017a). Bron-
stein et al. (2017) provides an overview of additional similar methods.

Most graph representation learning algorithms based on neighbourhood aggre-
gation are designed for undirected, unlabelled graphs. But, some of these have
been generalized to relational (directed, labelled) graphs for link prediction. For
example, R-GCN (Schlichtkrull et al., 2018) is a generalization of Graph Convo-
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lutional Network (GCN) (Kipf and Welling, 2017) for relational graphs. However,
the architecture does not scale to practical-scale knowledge graphs. This is because
GNNs aggregate the neighbourhood information for each node, implying that the
same neighbours need to be sampled multiple times. This quickly becomes a bot-
tleneck for GNN implementation. For smaller graphs, the bottleneck is resolved
by performing the convolution operation on the complete graph adjacency ma-
trix at once (Hamilton, 2020). However, this solution cannot be applied for large
adjacency tensors for practical knowledge graphs. Therefore, neighbourhood ag-
gregation based representation learning algorithms are not included in this thesis.

6.1.3 Based on Random Walks

Random walks based representation learning on graphs attempts to preserve the
first order proximity or the second order proximity of a node in low dimensional
vectors. First proximity refers to local pairwise proximity between nodes, while
second order proximity refers to the proximity between the neighbourhood struc-
tures of nodes (Tang et al., 2015). Node embeddings are generated by sampling a
set of paths from the graph and maximizing the probability of observing a node’s
neighbourhood (Cai et al., 2018). Hence, nodes with similar neighbourhood have
similar embeddings. The techniques differ in their sampling strategy and the node
proximity to be preserved.

DeepWalk (Perozzi et al., 2014) uses truncated random walks to sample the
paths in graph. These paths are treated like sequences of words where the nodes
correspond to words. A SkipGram model is used to learn the embeddings by op-
timizing a hierarchical softmax function. LINE (Tang et al., 2015) uses a Breadth-
first sampling (BFS) strategy to expand a node’s context while sampling. The BFS
approach captures homophily, where nodes belonging to same clusters are em-
bedded closely. On the other hand, a Depth-first Sampling (DFS) strategy captures
structural equivalence, where nodes with similar structural roles in the graph are
embedded closely. Both BFS and DFS are used for expansion of a node’s context
in node2vec (Grover and Leskovec, 2016) via hyperparameters to bias the random
walks. Both LINE and node2vec use negative sampling for optimizing the objec-
tive function. While DeepWalk preserves a node’s second order proximity, LINE
preserves both the first and second order proximity. node2vec preserves the first
order proximity for homophilic and structurally equivalent nodes.

Since these methods encode the neighbourhood structural information to latent
representations through random walks, they do not scale to knowledge graphs
(Hamilton, 2020). Hence, these methods are not included for research in this thesis.
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6.2 understanding knowledge graph representations

The latent distributed representations of knowledge graphs have achieved impres-
sive predictive performance on a variety of knowledge-driven downstream tasks
like question answering, fact checking, relation extraction, entity disambiguation
and so on (Nickel et al., 2016a; Ji et al., 2022; Chen et al., 2020). This has made rep-
resentation learning algorithms the most promising methods for reasoning with
knowledge graphs in real-world scenarios. The graph representation learning al-
gorithms are indeed increasingly used in high-stakes domains like healthcare and
finance (Rotmensch et al., 2017; Mohamed et al., 2020; Bonner et al., 2022).

However, deploying ML systems in real-world scenarios brings new challenges
about the reliability and trustworthiness of these systems. The learned models are
difficult to interpret and thus require novel methods to explain their predictions.
Being black-box, the failure modes of the models are also unknown, which mo-
tivates research for designing adversarial attacks and investigating the security
vulnerabilities of the models. Additionally, the reasons for impressive predictive
performance of the black-box models are unknown. This performance is often
achieved by extensive tuning of the model hyperparameters, which motivates re-
search for dissecting and understanding the impact of these hyperparameters on
the model predictions.

While the research in this thesis focuses on the adversarial vulnerabilities of
Knowledge Graph Embeddings, complementary research on understanding the
embeddings includes methods for post-hoc explanations, improved evaluation
protocols, theoretical and empirical analyses, etc. This section highlights some lit-
erature on these related topics. A brief recap of state-of-the-art methods for adver-
sarial attacks is included for completeness, but a deeper analysis relevant for the
thesis contributions is available in Section 3.4.

6.2.1 Via Robustness of Model Predictions

Zhang et al. (2019a) and Pezeshkpour et al. (2019) propose data poisoning attacks
against KGE models and are the most closely related to this research. These attacks
are used as baselines to evaluate the thesis contributions. Additionally, Lawrence
et al. (2021) estimates the influence of training triples on the KGE model predic-
tions to provide post-hoc explanations. The proposed method can also be used for
adversarial deletions and is thus, included as a baseline in this research.

In parallel work, Banerjee et al. (2021) studies risk aware adversarial attacks
against KGE models with the aim of reducing the exposure risk of an adversarial
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attack instead of improving the attack effectiveness. This study is not included in
the evaluation protocol for the thesis as the research here focuses on improving
the attack effectiveness. Zhang et al. (2021) investigates the adversarial vulnerabil-
ities of cross-lingual knowledge alignment through perturbations of knowledge
graphs. Another recent study Raman et al. (2021) designs deceptive perturbations
to the knowledge graph that maximally modify the graph structure while pre-
serving the performance of downstream tasks on the graph. The study aims to
investigate the role of knowledge graphs in knowledge-driven applications. Most
recently, Betz et al. (2022) proposes adversarial attacks against KGE models for
gray-box settings. Similar to the adversarial attacks in Chapter 5 of the thesis, rela-
tion inference patterns are exploited to select adversarial edits. However, instead
of extracting the inferred patterns from the learned embedding, the study mines
logical rules directly from the knowledge graph. This enables the selection of ad-
versarial deletions and additions without knowledge of the victim KGE model.

Pujara et al. (2017) also investigates the failure modes of the KGE models.
However, instead of designing adversarial perturbations to the input knowledge
graph, the study generates systematic variations of the datasets. Using this suite of
datasets, the sensitivity of KGE models to sparse and unreliable data is examined.

Besides data poisoning attacks, Minervini et al. (2017) uses adversarial regular-
ization in the latent space to inject the background knowledge expressed as First
Order Logic (FOL) clauses into KGE models. Embedding perturbations that do not
comply with the logical constraints are penalized through an inconsistency loss.
Given useful prior constraints, the regularization approach improves the predic-
tive performance of KGE models for link prediction. However, these adversarial
samples are not in the input domain and aim to improve instead of degrade the
model performance. Similarly, Cai and Wang (2018) uses adversarial learning to
improve the negative sampling process during the KGE model training.

In addition to the risk of adversarial manipulation of training data, trustworthy
deployment of KGE models also needs to address unintentional changes in the
data distribution. In particular, Fisher et al. (2020) shows that KGE models can
encode social biases represented in the training data, and result in unfair predic-
tions for certain populations. The study further proposes a debiasing method to
train KGE models that are neutral towards sensitive attributes. This research is
extended in Keidar et al. (2021) by identifying the sensitive relations to be debi-
ased automatically. On the other hand, Du et al. (2022) proposes novel measures to
quantify the gender bias in KG embeddings and attributes the origin of this bias
to training instances using Influence Function (Koh and Liang, 2017).
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6.2.2 Via Explainability of Model Predictions

Given a trained KGE model, a post-hoc explanation method explains the model
predictions on specific target facts. The post-hoc explanations can constitute triples,
relation paths, or sub-graphs from the input knowledge graph. Lawrence et al.
(2021) proposes Gradient Rollback to estimate the influence of training triples on
model predictions and provides a set of top-k most influential triples as post-hoc
explanation. Zhang et al. (2019c) provides explanations for KGE model predictions
as meaningful paths between the subject and object of the triple to be explained.
The study uses the embeddings of entities and relations to search for reliable ex-
planation paths. In addition to closed paths between the subject and object, similar
explanation structures from the remaining graph are also generated as support for
the main explanation. Nandwani et al. (2020) also provides relation paths as expla-
nations but focuses on tensor factorization based KGE models. Similarity between
the entity embeddings is used to augment the knowledge graph with weighted
edges and similar explanation paths are aggregated into second-order templates.
A separate neural module is trained to select the best template as the explanation.

Evaluating the methods for post-hoc KGE model explanations can be challeng-
ing because of the lack of ground-truth explanations. Thus, Halliwell et al. (2021)
created a benchmark dataset of explanations for missing link prediction on knowl-
edge graphs. This dataset is built using a semantic reasoner on a fixed set of rules.

Unlike the non-interpretable nature of latent representations, rule-based sym-
bolic reasoning on knowledge graphs is inherently interpretable (Chen et al., 2020).
This has led to research efforts for combining rule-based reasoning with black-box
latent representations to improve the latter’s explainability. One research direc-
tion here constraints the knowledge graph embedding space by using background
logical facts. Guo et al. (2016) and Guo et al. (2018) enforce soft logical rules by
modelling the triples and rules in a unified framework and jointly learning em-
beddings from them. Additional studies that inject logical rules into knowledge
graph embeddings include Rocktäschel et al. (2015), Demeester et al. (2016) and
Minervini et al. (2017). Further, García-Durán and Niepert (2018) combines the
logical rules with latent and numerical features in an end-to-end framework us-
ing the product of experts approach. The soft-logical model of relation inference
patterns, proposed for adversarial attacks in Chapter 5 of this thesis is inspired by
the literature on joint modelling of facts and rules (Guo et al., 2016, 2018).

While rule-based reasoning is interpretable, logical rules are often not readily
available. The methods described above rely on state-of-the-art rule mining sys-
tems like AMIE+ (Galárraga et al., 2015) and AnyBURL (Meilicke et al., 2019) to
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obtain the background logical facts. However, mining arbitrary rules from knowl-
edge bases can be computationally expensive and constraining the type of rules
to be extracted requires a manual specification prior to rule extraction (Chen et al.,
2020). Further, injecting the logical rules to neural networks requires groundings
of the rules, the size of which can be very large (Cohen et al., 2020). Thus, another
research direction in combining symbolic rules with black-box neural embeddings
focuses on the joint learning of logical rules and latent features from knowledge
graphs. Neural Theorem Provers (NTPs) (Rocktäschel and Riedel, 2017) replace
symbols in the logical rules with differentiable vector representations, which al-
lows the rules to be learned from the knowledge graphs through backward chain-
ing. However, the search space for NTPs is exponentially large. This issue is ad-
dressed in Minervini et al. (2020a,b) by selecting the rules greedily or condition-
ally. In Arakelyan et al. (2021), the NTPs are further extended to answer complex
path queries on knowledge graphs in an efficient and explainable manner. On the
other hand, Qu et al. (2021) uses a probabilistic approach for rule learning that
treats logic rules as latent variables. The use of a rule generator and reasoning
predictor effectively reduces the search space. Another system for learning rules
from knowledge graphs is MINERVA (Das et al., 2018), which uses a reinforce-
ment learning agent to learn a policy for graph traversal as an optimal sequence
of decisions. Further, Das et al. (2020) proposes a non-parametric approach based
on case-based reasoning that does not rely on latent embeddings for reasoning.
Similarly, end-to-end differentiable systems like NeuraLP (Yang et al., 2017) and
DRUM (Sadeghian et al., 2019) learn logical rules without latent features.

Despite these advances in interpretable methods for knowledge base reasoning,
the rule injection methods remain difficult to scale and the rule learning methods
only perform well in simple settings (de Jong and Sha, 2019). Thus, black-box KGE
models remain the most popular method for reasoning on knowledge graphs.

6.2.3 Via Miscellaneous Methods

Over the years, a large number of KGE models have been proposed, and have
achieved impressive predictive performance. However, due to multiple compo-
nents in the KGE training pipeline, there is wide variation in the implementation,
training and evaluation of the proposed models (Ali et al., 2021). Thus, dissecting
and investigating the impact of different training components has become impor-
tant for understanding the KGE model behaviour. One of the earlier studies in this
direction was Kadlec et al. (2017) which showed that simple KGE architectures can
outperform newer and more sophisticated ones by proper hyperparameter tuning.
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Following this, Mohamed et al. (2019) discovered that the KGE model’s predic-
tive performance is not only impacted by its scoring function, but also by the loss
function used to train the model. Furthermore, Lacroix et al. (2018) showed that
the model performance can be improved for the same scoring function by adding
reciprocal triples to the training dataset.

In response to these findings, studies on re-evaluating and benchmarking the
predictive performance of KGE models have emerged. Ruffinelli et al. (2020) eval-
uated five KGE models with different loss functions and training strategies. The
study found that early scoring functions like RESCAL (Nickel et al., 2011) show
comparable performance to more recent and advanced architectures when trained
with state-of-the-art techniques. More recently, this study has been extended in Ali
et al. (2021) to perform a comprehensive benchmarking of the KGE model perfor-
mance. Another recent survey Rossi et al. (2021) investigates the effect of different
graph structural properties on the predictive performance of KGE models.

Besides understanding the training phase of KGE models, some studies have fo-
cused on identifying inconsistencies in the evaluation protocol. Sun et al. (2020b)
highlighted that the strong predictive performance of KGE models can be at-
tributed to an incorrect evaluation implementation. The study further proposed an
evaluation protocol for assigning the ranks when multiple triples have the same
score. In the same direction, Pezeshkpour et al. (2020) highlighted the unreliability
of the standard evaluation metrics and Rim et al. (2021) proposed to evaluate KGE
models using checklists (Ribeiro et al., 2020).

In the literature besides benchmarking and reproducibility, Trouillon et al. (2019)
studies the inductive abilities of KGE models as binary relation properties for con-
trolled inference tasks with synthetic datasets. On the theoretical side, Wang et al.
(2018) studies the expressiveness of various bilinear KGE models and Gutiérrez-
Basulto and Schockaert (2018) studies the ability of KGE models to learn hard rules
expressed as ontological knowledge. More recently, Allen et al. (2021) provides a
theoretical connection between the word embeddings and knowledge graph rep-
resentations. The study proposes a model for encoding the semantic graph rela-
tionships as geometric interactions between the latent representations.

6.3 summary

This chapter provided a discussion of the related work for this thesis. The first part
discussed families of graph representation learning algorithms including those
that do not scale to knowledge graphs. The second part highlighted complemen-
tary literature on understanding the predictive behaviour of KGE models.
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7
C O N C L U S I O N

7.1 contributions

This thesis presents the research undertaken towards the adversarial robustness
of representation learning on knowledge graphs through the design, implementa-
tion and evaluation of data poisoning attacks against them. Representation learn-
ing on knowledge graphs is increasingly used in high-stakes domains where the
decisions based on the learned representations impact human lives. However, by
virtue of being data driven, the representation learning algorithms are black-box
and thus, have unknown failure modes. Responsible deployment of representation
learning algorithms for knowledge graphs in user-facing applications requires an
investigation of their security vulnerabilities and robustness against adversarial at-
tacks. Towards this investigation, the thesis contributes two data poisoning attacks
that effectively degrade the predictive performance of the Knowledge Graph Em-
beddings at inference time by removing or adding triples to the knowledge graph
at training time.

1. The first contribution of the thesis is poisoning attacks based on instance
attribution methods (Chapter 4). The instance attribution methods from In-
terpretable Machine Learning identify the input data points that are most
influential to a model’s prediction. These methods are used to select the in-
fluential triples as adversarial deletions, that is triples in the training graph
that on removal degrade the learned model’s predictive performance. Fur-
thermore, a heuristic approach is proposed to select adversarial additions
based on the influential triples.

2. The second contribution of the thesis is poisoning attacks based on the rela-
tion inference patterns (Chapter 5). These attacks exploit the inductive abil-
ities of KGE models which are expressed as connectivity patterns among
the relationships in the knowledge graph, for example, symmetry, inversion
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and composition. To degrade the KGE model’s predicted ranks on target
triples, different relation inference patterns are exploited to improve the per-
formance on decoy triples. This problem formulation breaks down the orig-
inal combinatorial search space for adversarial additions into three smaller
steps for determining the adversarial relations, the decoy entities that most
likely violate an inference pattern and the remaining adversarial entities in
the inference pattern that are most likely to improve the rank of decoy triples.
Unlike the adversarial additions based on instance attribution methods, ex-
ecuting these attacks does not require an enumeration over the neighbour-
hood triples of the target triple. Instead, the computational complexity is an
additive function of the number of entities and relations.

The proposed attacks are evaluated by comparing the predictive performance
of the original and the poisoned KGE models on the target triples that are ranked
best by the original model. The experiments for four KGE models DistMult, Com-
plEx, ConvE and TransE on two benchmark datasets WN18RR and FB15k-237

indicate that the proposed attacks are more effective than the baselines based on
random edits and state-of-the-art adversarial attacks against KGE models. It was
found that the attacks based on simpler instance attribution methods and simpler
relation patterns are more or as effective as the more complex attacks. Thus, in a
hypothetical white-box attack scenario, an attacker might efficiently execute highly
effective adversarial attacks against Knowledge Graph Embeddings. Additionally,
models from all the different representative families are observed to be vulnerable
to degradation in their predictive performance. The proposed attacks were also
found to be more effective for the sparser WN18RR dataset than the FB15k-237.
This indicates that the embeddings learned from fewer training triples are more
vulnerable to adversarial manipulation of the training knowledge graph.

The KGE models evaluated in this research have shown competitive predictive
performance in recent literature (Kadlec et al., 2017; Ruffinelli et al., 2020) through
proper hyperparameter tuning. This makes them promising candidates for use in
production pipelines. However, the research in this thesis highlights the brittleness
of these performance gains and thus, calls for improved KGE model evaluation
that accounts for adversarial robustness in addition to the predictive performance.

7.2 limitations

While this thesis clearly highlights the adversarial vulnerabilities of KGE models,
there are some constraints and limitations of the research presented in the thesis.
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7.2.1 Evaluation Design

The conclusions drawn from this research are based on evaluation of the proposed
attacks against four KGE models on two benchmark datasets. The choices made
towards KGE model selection, dataset selection and implementation design have
likely influenced the outcomes of the evaluation. For example, a large number of
KGE models have been proposed in the literature, but this research focuses on
four representative models from the three families of KGE models (tensor decom-
position, geometric and deep learning models as discussed in Rossi et al. (2021)).
While the KGE models are differentiated through their scoring function design,
each KGE model can be trained through multiple loss functions like pointwise,
pairwise or setwise loss functions (Ali et al., 2021). Additionally, there are multi-
ple training strategies like negative sampling, 1vsAll and KvsAll (Ruffinelli et al.,
2020). It is very likely that the effectiveness of the proposed adversarial attacks
would vary for different scoring functions, loss functions and training design.

In the recent literature, multiple studies (Ali et al., 2021; Rossi et al., 2021; Kadlec
et al., 2017; Ruffinelli et al., 2020) on benchmarking the predictive performance of
KGE models have been conducted. While these studies focus on the reproducibil-
ity of the predictive performance, their design and implementation suggests that
a similar study for evaluating the adversarial robustness of KGE models is be-
yond the scope of this thesis. Nevertheless, a detailed comparative study of the
adversarial vulnerabilities of KGE models is a useful direction for future work.

In addition to above design choices, the conclusions rely on characteristics of
the datasets chosen in this research. The datasets used here are the benchmark
datasets for link prediction using KGE models. It was observed that the instance
attribution attacks are more effective on the sparser dataset WN18RR. Similarly,
the addition of inversion inference pattern to WN18RR affected the effectiveness of
relation inference patterns attacks against ComplEx. However, the characteristics
of these benchmark datasets need not necessarily be representative of the real-
world knowledge graphs in safety-critical domains. For example, the qualitative
analysis in Section 4.6.2 showed that identifying the correct influential triples for
FB15k-237 is challenging because of the semantically incoherent triples in the test
set. Additionally, there are limited, though only recent, studies (Cao et al., 2021;
Ali et al., 2021) that formally measure and characterize the connectivity patterns or
relation inference patterns in benchmark datasets for link prediction. This makes
it challenging to generalize the claims made about the effectiveness of adversarial
attacks in this research. Analyzing the impact of dataset characteristics on the
effectiveness of adversarial attacks is an interesting direction for future work.
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7.2.2 Design of Adversarial Attacks

The relation inference patterns based attacks in this thesis use three steps, of which,
the first step is to determine the adversarial relations (Table 15). This step utilizes
the relation embeddings from KGE models to select the inverse or the composi-
tion relations for the given target triple. The algebraic model of inference patterns
used for this selection assumes that the scoring function of KGE model is either
additive or multiplicative in nature (Chandrahas et al., 2018). However, some re-
cent KGE models, like RotatE (Sun et al., 2019) and MuRE (Balazevic et al., 2019a),
have both or neither additive and multiplicative components in their scoring func-
tions. Hence, the proposed attacks based on relation inference patterns are only
applicable for KGE models with additive or multiplicative scoring functions.

7.3 broader impact

This thesis studies the problem of generating data poisoning attacks against KGE
models. Data poisoning attacks identify the vulnerabilities in learning algorithms
that could be exploited by an adversary to manipulate the model’s behaviour
(Joseph et al., 2019; Biggio and Roli, 2018). Such manipulation can lead to un-
intended model behaviour and failure. Identifying these vulnerabilities for KGE
models is critical because of their increasing use in domains that need high stakes
decision making like heathcare (Rotmensch et al., 2017; Mohamed et al., 2020) and
finance (Hogan et al., 2021; Noy et al., 2019). In this way, the research presented
here aims to safeguard the KGE models against potential harm from adversaries
and thus, minimize the negative consequences of deploying these models in user
facing applications that require trustworthy predictions.

Arguably, because the vulnerabilities are studied by attacking the KGE models,
the proposed attacks can be used by an actual adversary to manipulate the pre-
dictive behaviour of models in deployed systems. This paradox of an arms race
is universal across security research (Biggio and Roli, 2018). For this thesis, the
principle of proactive security design, as recommended by Joseph et al. (2019) and
Biggio and Roli (2018) has been followed. As opposed to reactive security mea-
sures where the learning system designers develop countermeasures after the sys-
tem is attacked, a proactive approach anticipates such attacks, simulates them and
designs countermeasures before the systems are deployed. Therefore, by revealing
the vulnerabilities of KGE, this thesis provides an opportunity to fix them.

Besides the use case of security evaluation, the research can be helpful in under-
standing the predictive behaviour of KGE models. To propose adversarial attacks
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based on adversarial deletions, the research uses Instance Attribution methods
from Interpretable Machine Learning. These methods identify the most influential
triples in the training knowledge graph which can also be used as post-hoc ex-
planations for the learned KGE models (Section 4.6.2). In addition to explaining
model predictions, instance based attribution methods can help guide the design
decisions during KGE model training. As discussed earlier, there are a vast num-
ber of KGE model architectures, loss functions and training strategies. Empirically
quantifying the impact of different design choices on the predictive performance
of KGE models is often challenging and requires extensive experimental resources
(Ruffinelli et al., 2020; Ali et al., 2021; Rossi et al., 2021). Thus, it would be very
promising to explore the use of instance attribution methods to understand the
impact of these choices on the KGE model predictions. By tracing back the model
predictions to the input knowledge graph, one can gain a better understanding of
the success or failure of different design choices.

The proposed attacks based on relation inference patterns can also be used to
understand the inductive abilities of KGE models. These attacks rely on the in-
ductive assumptions of a model, which are expressed as the different relation
inference patterns, to be able to deceive that model. Thus, theoretically, the ef-
fectiveness of attacks based on one inference pattern over another indicates the
model’s reliance on one inference pattern over another. However, as discussed in
the previous section, it is challenging to generalize the conclusions drawn from
this research about the inductive abilities of KGE models. This is because the in-
ference patterns for benchmark datasets are not well defined, and these datasets
may not be representative of the high-stakes domains.

Thus, there is scope for further research to evaluate the adversarial attacks pro-
posed in this thesis. A promising direction here is to design benchmark tasks and
datasets that measure the specific inductive abilities of models. This will not only
be useful for evaluating the proposed attacks, but also for understanding the in-
ductive abilities of existing KGE models. This in turn, can guide the community
to design better algorithms for representation learning on knowledge graphs. In
this direction, research on novel architectures for knowledge graph embeddings
should evaluate not only the predictive performance on benchmark datasets, but
also the claims made on inductive abilities of these models and their robustness
to violations of these implicit assumptions.

In summary, through methods that lead to KGE models’ failure (that is, adver-
sarial attacks), the research presented here aims to provide an understanding of
the predictive behaviour of these models, as well as improve the utility of KGE
models in user applications that require trustworthy predictions.
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7.4 future directions

As is the nature of research, the investigation in this thesis brings to light several
open research questions for future research.

7.4.1 Additional Evaluation

As discussed in the limitations of the current research, the conclusions drawn
from the research are difficult to generalize because of the evaluation constraints.
Thus, an immediate direction for follow-up research is to investigate hypotheses
about the effect of dataset characteristics like graph connectivity and existence of
specific relation inference patterns. Such investigation would likely require novel
datasets and evaluation tasks that test varying degrees of dataset characteristics.
These tasks will not only serve as a testbed for the proposed poisoning attacks, but
also help evaluate new KGE models. Furthermore, fine-grained comprehensive
evaluation under the adversarial perturbations can improve our understanding of
the KGE model behaviour. This way, the specifications of model performance and
failure on datasets with different characteristics will improve the usability of KGE
models in high-stakes domains like healthcare and finance.

7.4.2 Additional Threat Models

The second direction for future work is to evaluate the security vulnerabilities
of KGE models in more realistic settings, through investigating the adversarial
robustness of KGE models for additional threat models. For example, in this re-
search, only triples in the neighbourhood of the target triple are selected as can-
didates for adversarial perturbations. However, in a realistic attack setting, the
attacker might have limited or no access to the neighbourhood of the target triple.
Thus, for KGE models deployed in actual ML pipelines, can the predictive perfor-
mance be degraded through perturbations beyond the neighbourhood of the target
triple? Similarly, the perturbations that are adversarial for one target triple may be
non-adversarial for another target triple. Thus, another realistic attack setting is to
craft the adversarial perturbations for multiple target triples jointly.

Additionally, the adversarial attacks designed in this research are integrity at-
tacks. Here, the attacker aims to make discreet edits to the training samples; and
target the model’s predictive performance on specific target samples without af-
fecting the performance on the remaining samples. The notion of discreet or unno-
ticeable perturbations in this research is defined by the attacker’s budget for the
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number of adversarial perturbations. However, there is scope for further research
on encoding the attack unnoticeability in the design of adversarial attacks itself.

Lastly, the attacks in this thesis assume a white-box threat model. This means
that the attacker has access to the learned embeddings from the KGE model as
well as the complete training dataset. However, in more realistic scenarios where
the KGE models are deployed, the attacker may not have access to either or both of
these. Designing adversarial attacks that are constrained to black-box settings will
provide a more realistic evaluation of the security vulnerabilities of KGE models.

7.4.3 Adversarially Robust Knowledge Graph Embeddings

The contributions of this thesis indicate that the sensitivity of state-of-the-art
KGE models to adversarial perturbations can introduce security vulnerabilities
in pipelines that use knowledge graph embeddings. Thus, a promising direction
for future work is towards mitigating the security vulnerabilities of KGE models.
Some preliminary ideas to improve the adversarial robustness of KGE models are
to use adversarial training techniques; or train an ensemble of different KGE scor-
ing functions; or train an ensemble from different subsets of the training dataset.
Since the evaluation of relation inference attacks shows that state-of-the-art KGE
models are sensitive to symmetry pattern, it is important to investigate neural
architectures that generalize beyond symmetry even though their predictive
performance on the benchmark datasets might not be the best.

However, it is noteworthy that building defences against specific adversarial at-
tacks can lead to an arms race where the defences can be sabotaged by stronger
adversarial attacks. This is because adversarial attacks are empirical methods to
evaluate the adversarial robustness of Machine Learning systems and do not pro-
vide any formal guarantees for the learned model’s robustness. Thus, to improve
their usability in safety-critical domains, it is crucial to build novel KGE models
that are certifiably robust and provide provable guarantees for their predictions.

7.5 concluding statement

To conclude, given the increasing effectiveness of graph ML systems, this the-
sis contributes towards their responsible integration in daily lives. The proposed
methods for adversarial attacks improve our understanding of the adversarial vul-
nerabilities and the predictive performance of representation learning algorithms
for knowledge graphs, providing a foundation for further research towards adver-
sarially robust and trustworthy graph Machine Learning.
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A
A D D I T I O N A L D E TA I L S F O R I N S TA N C E AT T R I B U T I O N
AT TA C K S

a.1 training details

a.1.1 Training KGE models

In this research, four KGE models are implemented - DistMult, ComplEx, ConvE
and TransE. The 1-N training strategy proposed in Lacroix et al. (2018) is used but
the reciprocal relations are not added to the training dataset. Thus, for each triple,
scores are generated for (s, r) → o and (o, r) → s.

For TransE scoring function, the L2 norm is used. The loss function used for
all models is Pytorch’s CrossEntropyLoss. For regularization, N3 regularization
and input dropout are used on DistMult and ComplEx; input dropout, hidden
dropout and feature dropout on ConvE; and L2 regularization (Bordes et al., 2013)
and input dropout for TransE.

To ensure same hyperparameters for original and poisoned KGE models, early
stopping is not used. An embedding size of 200 is used for all models on both
datasets. An exception to this is the TransE model for WN18RR, where embed-
ding dim = 100 was used due to the expensive time and space complexity of
1-N training for TransE. The hyperparameters for KGE model training were tuned

WN18RR FB15k-237

MRR Hits@1 MRR Hits@1

DistMult 0.48 0.44 0.34 0.24

ComplEx 0.51 0.47 0.34 0.25

ConvE 0.44 0.41 0.32 0.23

TransE 0.21 0.02 0.33 0.24

Table 25: MRR and Hits@1 results for original KGE models on WN18RR and FB15k-237
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manually based on suggestions from state-of-art implementations (Ruffinelli et al.,
2020; Dettmers et al., 2018; Lacroix et al., 2018; Costabello et al., 2019).

Table 25 shows the MRR and Hits@1 for the original KGE models on WN18RR
and FB15k-237. To re-train the KGE model on poisoned dataset, same hyperpa-
rameters as the original model were used. All experiments for model training,
adversarial attacks and evaluation were run on a shared HPC cluster with Nvidia
RTX 2080ti, Tesla K40 and V100 GPUs.

To ensure reproducibility, the source code of the experiments in this re-
search is publicly available on GitHub at https://github.com/PeruBhardwaj/

AttributionAttack. Results of experiments for evaluating the contributions
in Chapter 4 were obtained from the commit 0d5ca33 (https://github.com/
PeruBhardwaj/AttributionAttack/tree/0d5ca33).

These results can be reproduced by passing the argument reproduce− results

to the attack scripts. Example commands for this are available in the bash scripts
in the codebase. The hyperparameter used to generate the results can be inspected
in the set_hyperparams() function in the file utils.py or in the log files.

For the LissA algorithm used to estimate the Hessian inverse in Influence Func-
tions, the hyperparameter values are selected using suggestions from the original
study by Koh and Liang (2017). The values are selected to ensure that the Taylor ex-
pansion in the estimator converges. These hyperparameter values for the reported
experiments are available in the function set_if_params() in the file utils.py of
the accompanying codebase.

a.1.2 Baseline Implementation Details

One of the baselines in Section 4.4 is the Direct-Del and Direct-Add attack from
Zhang et al. (2019a). The original study evaluated the method for the neighbour-
hood of subject of the target triple. This setting is extended to both subject and
object to ensure fair comparison with other attacks. Since no public implementa-
tion of the attacks is available, the author implement the attacks herself.

The Direct-Add attack is based on computing a perturbation score for all pos-
sible candidate additions. Since the search space for candidate additions is of the
order E ×R (where E and R are the set of entities and relations), it uses random
down sampling to filter out the candidates. The percent of triples down sampled
are not reported in the original paper and a public implementation is not available.
So, in this research, a high value and a low value are picked for the percentage
of triples to be down-sampled and adversarial additions are generated for both
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WN18RR

Original High Low

DistMult 1.00 0.98 0.98

ComplEx 1.00 0.96 0.95

ConvE 1.00 0.99 0.99

TransE 1.00 0.81 0.86

FB15k-237

Original High Low

DistMult 1.00 0.64 0.64

ComplEx 1.00 0.67 0.66

ConvE 1.00 0.62 0.60

TransE 1.00 0.72 0.73

Table 26: MRR of KGE models trained on original datasets and poisoned datasets from the
Direct-Add baseline attack in Zhang et al. (2019a). High, Low indicate the high
(20%) and low percentage (5%) of candidates from random down-sampling.

fractions. 20% of all candidate additions are arbitrarily chosen for high; and 5% of
all candidate additions as low.

Thus, two poisoned datasets are generated from the attack - one that used a high
number of candidates and another that used a low number of candidates. Two sep-
arate KGE models are trained on these datasets to assess the baseline performance.
Table 26 shows the MRR of the original model; and poisoned KGE models from
attack with high and low down-sampling percents. The results reported for Direct-
Add in Section 4.4 of the thesis are the better of the two results (which show more
degradation in performance) for each combination.
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a.2 additional comparison with criage

The baseline attack method CRIAGE estimates the influence of a training triple
using the BCE loss and is thus likely to be effective only for KGE models that are
trained with BCE loss. In Section 4.5.1, it was found that the proposed attacks are
more effective than the baseline attack. However, since the original models in this
research are trained with cross-entropy loss, an additional analysis of the Instance
Similarity attacks against CRIAGE for the DistMult model trained with BCE loss
is performed. Table 27 shows the reduction in MRR and Hits@1 due to adversarial
deletions in this training setting. It is observed that the Instance Similarity attacks
outperform the baseline for this setting as well.

WN18RR FB15k-237

MRR Hits@1 MRR Hits@1

Original 1.00 1.00 1.00 1.00

CRIAGE 0.67 0.63 0.63 0.46

Dot Metric 0.86 0.81 0.61 0.44

ℓ2 Metric 0.12 0.06 0.60 0.43

Cos Metric 0.12 0.06 0.58 0.38

Table 27: Reduction MRR and Hits@1 due to adversarial deletions for DistMult (trained
with BCE loss) on WN18RR and FB15k-237
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A D D I T I O N A L D E TA I L S F O R I N F E R E N C E PAT T E R N
AT TA C K S

b.1 implementation details

b.1.1 Training KGE models

The codebase1 for KGE model training is based on the codebase from Dettmers
et al. (2018)2. The 1-K training protocol is used but without adding the reciprocal
relations to the training dataset. Each training step alternates through batches
of (s,r) and (o,r) pairs and their labels. The model implementation uses an if-
statement for the forward pass conditioned on the input batch mode.

For the TransE scoring function, an L2 norm and a margin value of 9.0 are
used. The loss function used for all models is Pytorch’s BCELosswithLogits. For
regularization, label smoothing and L2 regularization are used for TransE; and
input dropout with label smoothing for remaining models. For ConvE, hidden
dropout and feature dropout are also used.

To ensure same hyperparameters for original and poisoned KGE models, early
stopping is not used. An embedding size of 200 is used for all models on both
datasets. For ComplEx, this becomes an embedding size of 400 because of the real
and imaginary parts of the embeddings. All hyperparameters are tuned manually
based on suggestions from state-of-art implementations of KGE models (Ruffinelli
et al., 2020; Dettmers et al., 2018). The hyperparameter values for all model dataset
combinations are available in the codebase. Table 28 shows the MRR and Hits@1

for the original KGE models on WN18RR and FB15k-237.
For re-training the model on poisoned dataset, same hyperparameters as the

original KGE model training are used. All experiments for model training, adver-

1 https://github.com/PeruBhardwaj/InferenceAttack
2 https://github.com/TimDettmers/ConvE
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WN18RR FB15k-237

MRR Hits@1 MRR Hits@1

DistMult 0.42 0.39 0.27 0.19

ComplEx 0.43 0.40 0.24 0.20

ConvE 0.43 0.40 0.32 0.23

TransE 0.19 0.02 0.34 0.25

Table 28: MRR and Hits@1 results for original KGE models on WN18RR and FB15k-237

sarial attacks and evaluation are run on a shared HPC cluster with Nvidia RTX
2080ti, Tesla K40 and V100 GPUs.

Experimental results reported in Section 5.6 of the thesis were obtained from the
codebase version at commit a f b8202, which is available at https://github.com/
PeruBhardwaj/InferenceAttack/tree/afb8202.

b.1.2 Baseline Implementation Details

One of the baselines in this evaluation is the Direct Attack from Zhang et al.
(2019a). It proposed edits in the neighbourhood of subject of the target triple. This
attack is extended to both subject and object to match the evaluation protocol in
the thesis. Since no public implementation of the attack is available, the author
implemented the attack herself.

The attack is based on computing a perturbation score for all possible candidate
additions. Since the search space for candidate additions is of the order E × R,
the attack uses random down sampling to filter out the candidates. The percent
of triples down sampled are not reported in the original paper and the implemen-
tation is not available. So, in this research, a high value and a low value of the
percentage of triples down sampled are picked and adversarial edits are gener-
ated for both fractions. The high and low percent values that were used to select
candidate adversarial additions for WN18RR are DistMult: (20.0, 5.0); ComplEx:
(20.0, 5.0); ConvE: (2.0, 0.1); TransE: (20.0, 5.0). For FB15k-237, these values are
DistMult: (20.0, 5.0); ComplEx: (15.0, 5.0); ConvE: (0.3, 0.1); TransE: (20.0, 5.0)

Thus, two poisoned datasets are generated from the attack - one that used a
high number of candidates and another that used a low number of candidates.
Two separate KGE models are trained on these datasets to assess the attack perfor-
mance. Table 29 shows the MRR of the original model; and poisoned KGE models
from attack with high and low downsampling percents. The results reported for
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B.1 implementation details

WN18RR

Original High Low

DistMult 0.90 0.82 0.83

ComplEx 0.89 0.76 0.79

ConvE 0.92 0.90 0.90

TransE 0.36 0.25 0.24

FB15k-237

Original High Low

DistMult 0.61 0.55 0.53

ComplEx 0.61 0.51 0.52

ConvE 0.61 0.54 0.54

TransE 0.63 0.57 0.57

Table 29: MRR of KGE models trained on original datasets and poisoned datasets from the
attack in Zhang et al. (2019a). High, Low indicate the high and low percentage
of candidates used for attack.

this attack’s performance in Section 5.6 are the better of the two results (which
show more degradation in performance) for each combination.

b.1.3 Attack Implementation Details

The relation inference pattern based attacks proposed in this research involve
three steps to generate the adversarial additions for all target triples. For step1

of selection of adversarial relations, the inversion and composition relations are
pre-computed for all target triples. Step2 and Step3 are computed for each target
triple in a for loop. These steps involve forward calls to KGE models to score adver-
sarial candidates. For this, a vectorized implementation similar to KGE evaluation
protocol is used. The adversarial candidates that already exist in the training set
are also filtered out. Any duplicates from the set of adversarial triples generated
for all target triples are further filtered out.

For the composition attacks with soft-truth score, the KMeans clustering imple-
mentation from scikit− learn is used. The elbow method is used on the grid [5,
20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500] to select the number of clusters.
The number of clusters selected for WN18RR are DistMult: 300, ComplEx: 100,
ConvE: 300, TransE: 50. For FB15k-237, the numbers are DistMult: 200, ComplEx:
300, ConvE: 300, TransE: 100.
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