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Summary 
 

The present-day, the conversion to electrical energy from renewable sources has gained the 

attention of many researchers. As the effects of climate change are evident, most countries 

in the world try to look for solutions to reduce their CO2 footprint. In the European Union, 

two of the key targets in the climate and energy framework for 2030 are to improve up to at 

least 32% of the share of renewable energies and improve up to at least 32.5% of the share 

in energy efficiency (Commission, n.d.).  

 

Hydropower is one such renewable resource that has a good balance between the energy 

output (electricity) and the energy input (needed for installation and operation of the plant 

for energy generation). Nevertheless, a hydropower system is a method of generating 

electricity from flowing water. Small-scale hydropower systems have been used as a 

dependable source of power for decades and decades. Small hydropower systems focus on 

installing turbines/pumps in rivers, streams, or in locations of existing water supply 

networks (WSN) where excess pressure exists. They can be used to exploit that excess 

pressure and in turn produce clean electricity. However, in the context of water supply 

networks, the sites where energy is otherwise dissipated, recovery potential is quite small 

(usually less than 100 kW). Therefore, it is not economically feasible to install the usual 

custom-made hydro-turbines.  

 

For the reason above, researchers have investigated the possibility of installing low-cost 

micro-turbines within WSNs and it is called Pump-As-Turbines (PAT). PATs are water 

pumps in reverse mode which operates like a turbine. The main advantage of using it in 

WSNs when compared with other turbines is its low cost because it is mass-produced and 

has a low maintenance cost. As it requires the same skillset as maintaining a pump. On the 

other hand, they have some disadvantages as well. One of which is the absence of flow 

control devices. Therefore, a control valve needs to be installed in the location where a PAT 

is present. Over the years, researchers have studied the best way to install PATs within 

WSNs but very few focus on maximizing the potential recovered by exploiting the excess 

head in the PRV sites. However, some have performed experimental analysis on maximizing 

the power generated when a large variability in flow occurs, but it is often done for one PAT 

or multiple PATs, not in a simultaneous time frame.  
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Therefore, this master's thesis focuses on addressing the gaps in the literature in maximizing 

the potential of multiple PATs at the same time and addressing how to deal with the common 

constraints that are present within WSNs. The common constraints include keeping the 

actuators (valves) operating within their range, keeping tank levels within the minimum and 

maximum levels, and taking head loss constraints into account when water flows from one 

point to another. Apart from the main objective of this thesis, is to find a method to maximize 

the power produced by PATs in water distribution networks. It is also taking the common 

constraints into account. To keep the constraints satisfied a control strategy in the framework 

of Model Predictive Control was used. MPC is a control methodology used widely in the oil 

and chemical industries. MPC solves an optimization algorithm (consisting of a cost 

function and constraints) that is used to find the best control action that will drive the 

predicted output of a system to a certain reference point. Moreover, MPC can handle multi-

input multi-output systems, it can also handle input and output constraints. Recently it is 

gaining attention in the water industry due to its advantages such as reducing pumping costs 

by operational management, reducing leakage by keeping pressure within certain limits, etc. 

Therefore, for this work, a control strategy is developed in the framework of model 

predictive control which is used to maximize the power generated by PATs and keep the 

common constraints of the network satisfied. A network in Ireland is chosen for the case 

study which has valves, tanks, a reservoir, and a critical node.  To test if there is an 

improvement in the generated power, two different controllers in the MPC framework are 

compared. One controller is called the hybrid MPC, and the other is called the linear MPC. 

The difference between the two is that for hybrid MPC the PAT operation is included in the 

form of logic constraints whereas for linear MPC the PAT operation is included outside of 

the control algorithm. This work also introduces a new methodology to capture the head loss 

constraints. This is also included in the control algorithm. Finally, the results show that in 

using hybrid MPC an improvement is seen when compared with linear MPC. Also, the 

results show apart from the head loss constraints, tank levels are satisfied, and flow in the 

valves is within their range with a smooth operation. Additionally, the pressure at the critical 

node is also satisfied.  
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1. Introduction 
 

 

1.1 Research context 
 

Water and energy are interconnected with each other. Energy is needed to supply water to a 

system and water is needed to drive turbines for power generation. This relationship is given 

a name and it is called the Water-Energy-Nexus (Aster, 2012). In a water supply network, 

energy is consumed mostly in extraction, treatment, and distribution. It is estimated that 

about 6-7% of world energy is used up for drinking water production and distribution 

systems (Yang, et al., 2010; Coelho & Andrade-Campos, 2014). In countries like the United 

States, about ~4% of the electricity generated contributes to treating and distributing water 

to the public and private bodies (Copeland & Carter, 2017) Whereas, in the east, in countries 

like China, the energy required to supply and treat water doubled from 2002 to 2012 from 

15 TWh to 34 TWh. Almost close enough to power Denmark which in 2013 consumed 34 

TWh (Tan, et al., 2015). These values will only keep increasing in the coming years with 

the increase in population, urbanization, and wealth. Therefore, water companies around the 

world have agreed to look for more carbon-free sustainable solutions to reduce energy use 

in distributing and treating water (Young, 2015). Furthermore, The European green deal 

reveals targets set out to accomplish by 2050, one of which is to promote new renewable 

energy, and the target is set at 40% by 2030 (Quinn, 2021). This target is also reiterated in 

one of the COP26 goals “Secure global net zero by mid-century and keep 1.5 degrees within 

reach” (Anon., 2021).  

 

Water distribution networks are complex systems that are designed to deliver water within 

the boundaries of a city or a designated region. A distribution system that delivers fresh 

water from point of supply to point of consumption consists of pipes, valves, pumps, tanks, 

reservoirs, etc, and supplies water to the end users with the required pressure will only get 

more difficult as the population keeps increasing (Karve, 2020). Nevertheless, when trying 

to achieve the objective of a WDN which is to deliver water to the consumers, certain 

challenges occur such as leakages, also known as non-revenue water from pipes and joints 

(Wagner, 2019). Leakage is a constant problem in Ireland, around 43% of the treated water 

is lost in leaks within the distribution system (Aodha, 2019). The amount of leakage depends 
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on the water pressure, pipe age and quality of the fittings, etc. Apparently in water 

distribution networks leakage is mainly attributed to water pressure (Karve, 2020). The Fig 

1.1. below shows the estimated percentage of losses in water networks in Europe.  

 

 

Fig 1.1. Estimated losses from water networks in Europe adapted from (Thyssen, 2017) 

 

Additionally, high-pressure scenarios in water networks also occur due to their predefined 

topology and the requirement to deliver water with the necessary pressure. Due to this some 

parts of the network end up having excess pressure it is mainly for networks having a hilly 

topology, where there is a large difference between the source and the other parts of the 

network (McNabola, et al., 2014). The most common way to reduce the pressure in certain 

parts of the network is to install pressure-reducing valves (PRVs) or break pressure tanks 

(BPTs). However, the energy dissipated at PRVs is rather lost and not recovered. Therefore, 

researchers in the water sector have analyzed the scientific and economical potential of 

installing various hydro-turbines in the location of PRVs. Although the concept of energy 

recovery from water networks is not new, its interest for it gained attention at the beginning 

of the last few decades (McNabola, et al., 2011). 

 

As the large hydropower energy recovery using large turbines is already explored and is 

currently still in practice the focus has shifted to small hydropower generation. One of the 
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reasons for this shift is the advances in using the conventional pumps in reverse mode which 

are often called as Pump-As-Turbines (PATs) (Derakhshan & Nourbakhsh, 2008). Mainly 

due to their mass production and low cost in operation making it more feasible to be installed 

in small hydropower sites (Novara & McNabola, 2018) The definition of a small and micro-

hydropower is defined following the power output from the plant. Usually, a plant is called 

pico-hydropower if it has a power output range < 5kW and it is called micro hydropower if 

it has a range between 200kW – 5kW. But globally it is acknowledged that if a plant 

produces less than 10MW it is called a small hydro-power plant (Anon., 2018). Moreover, 

it is estimated by ESHA (European Small Hydro Association) that an annual reduction of 

29 million tonnes of CO2 has occurred because of the 13 GW installed within the Europe 

Union (Eckert, et al., 2009). Even though, some drawbacks to PATs have been discussed 

before, such as lower part load efficiency and the absence of flow regulation devices in their 

operation in water networks where there is high variability in flow and head (Mitrovic, et 

al., 2021). However not many discuss how to maximize their energy conversion once it is 

installed in one of the sites. Also, not many discuss the bigger picture, which is after the 

installation of PATs, how to control water networks to keep the constraints in WDNs 

satisfied. Model Predictive Control was seen to control water networks and is used for 

control of pumps and to reduce the operational cost by minimizing certain KPIs related to 

pumping cost, maintenance cost, etc (Wang, et al., 2017; Wang , et al., 2016). Moreover, 

not many discuss how to maximize the potential of more than one PAT in multiple sites 

simultaneously.  Therefore, this thesis aims to address the shortcomings in the literature on 

the maximization of PAT energy production during operation and show how to predict and 

determine the excess energy that can be converted in multiple locations in WDNs. 
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1.2 The Dŵr Uisce Project 
 

This research is part of the multidisciplinary Dŵr-Uisce (“Distributing our Water Resources: 

Utilizing Integrated, Smart and low – Carbon Energy”) project involving Trinity College 

Dublin and Bangor University. The main aim is to improve the long-term sustainability of 

water resources in Ireland and Wales through the development of innovative technological 

solutions, economic and environmental impact assessments and policies, and best practices. 

The main objectives involved are: 

• Benchmark assessment of water sector in Wales and Ireland 

• Developing new, innovative, energy-saving technologies for water supply systems 

focusing on micro-hydropower energy recovery and heat recovery. 

• Development of a cross-border smart specialization cluster for knowledge exchange 

and innovation in the water sector 

• Focusing on climate change implications in the water industry in Ireland and Wales 

The Dŵr-Uisce project can be summarised by the following diagram in Fig 1.2. 

 
 

Fig 1.2. The main disciplines and project structure of Dŵr-Uisce 
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Smart networks control is included in work package 3 of the project and where its 

deliverables include: 

• The multiscale controller in the MPC software framework for network energy and 

cost management  

• Development of a control strategy using MPC to maximize the power generated by 

Pump As Turbines in real networks in Ireland and Wales.  

 

1.3 Research Questions 
 

The fundamental research question that needs to be addressed in the context of hydropower 

energy recovery in this thesis is: How to maximize the energy generation of PATs in WDNs 

using model predictive control? After the literature review to investigate the answer to the 

question above, several gaps are identified that have been formulated as sub-questions as 

the following. 

 

1) What technology can be used to maximize the potential of PATs in WDNs 

 

2) While maximizing the potential can model predictive control to fulfill the common 

objectives in water networks such as pressure management. 

 

3) Is there an improvement in maximizing the power of all PATs simultaneously 

between the controllers called Hybrid MPC and Linear MPC 

 

4) Which controller performs better for it to be suitable for near real-time operation 

 

 

The main aim of this thesis is to address the questions presented above. 
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1.4 Research Structure 
 

▪ Chapter 1: focuses on the introduction, research question, and the funding 

information 

▪ Chapter 2: focuses on the background study done related to the research questions. 

▪ Chapter 3: shows the research approach and how the plan is set to answer the 

research questions. 

▪ Chapter 4: focuses on the methodology and the step-by-step approach that was 

developed. 

▪ Chapter 5: shows how the validation was performed. 

▪ Chapter 6: shows the results. 

▪ Chapter 7: is the conclusion and discussion 

▪ Chapters 8 and 9 are the references and the appendix 
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2. Literature review 
 

 2.1 Introduction 
 

This chapter focuses on the background study in the fields of conventional pressure 

management in water distribution networks and shows how PAT technology could be used 

as a way of coupling pressure management with hydro-power energy generation. Also, this 

chapter shows the basics of model predictive control and how it could be used in water 

networks to control hydro-turbines. The Fig 2.1. below shows how the gap in the existing 

literature was identified.  The gap essentially relates to the limitations in the literature to date 

which does not focus on using MPC to control water networks with PAT technology. In the 

first section of the literature review, some basics of water networks are given with particular 

attention to GHG emissions associated with operating water networks. The next section 

starts with how pressure management can be introduced to keep pressure within the quality 

standard and reduce pipe breaks that occur due to high-pressure scenarios. The following 

section then points out how PRVs are used in pressure management and shows what control 

techniques are used presently in controlling PRVs in water networks. Then the focus shifts 

to model predictive control (MPC) as they are also used for control PRVs. Some basics of 

MPC are then shown in the next section followed by how MPC is used in hydropower to 

control turbines. The last section is about some basics of hydropower, how micro-

hydropower is the trend these days, and points out why PATs are an attractive way to 

generate power in a micro hydropower setup. Additionally, this section also introduces PAT 

technology and shows how PATs can be installed within a water network. Water networks 

with pumps are not included in this review as this work focus on gravity networks. This 

chapter then ends with a summary of the review focusing on the research questions as an 

outline before.  

 

 

 

 

 



  

8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1. Approach to Literature review to identify the gap 

2.2  WDN and energy consumption 

      2.2.1  WDN basics  
 

Water networks have an interesting history dating back to the third millennium B.C. Soon 

after many advances occurred in the distribution system such as introducing devices to raise 

water to a height, water pumps, and methods to tackle unclean water (Mala-Jetmarova, et 

al., 2015). The history of urban water distribution networks goes before the Bronze Age 

(circa 3200 – 1100 B.C) with several staggering examples from (Angelakis, et al., 2012) 

including a well-thought-out system of hundreds of wells supplying water to domestic 

demands. Further going back in time in ancient Greece, around the second millennium B.C, 

a study done by (Crouch, 1993) reveals the first pipe layout supplying pressurized water to 

its consumers. Additionally, the Greeks constructed one of the first long-distance water 

Gap 

WDNs  Hydropower 

MPC  

Control of 

water networks 
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Control of 
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supply systems with bridges and tunnels which were called “aqueducts” (Crouch, 1993) (see 

Fig 2.2.). Since then, as years passed on, in the modern era, many advances occurred with 

the advancement in human civilization. At present, the WDNs infrastructure is one of the 

most valuable developments that all humans depend on to get clean water.  

 

  

(a)                                                              (b) 

Fig 2.2. Aqueducts: Clay pipes (a) and Terracotta pipes (b) 

adopted from (Crouch, 1993) 

 

Even though the infrastructure looks complex and new, the purpose of modern water 

networks is the same as the ancient ones, which is to deliver water from the source to the 

consumer. The source could be a lake, man-made reservoir, etc, the water from it is taken to 

a treatment plant known as Water Treatment Plants (WTPs) and their quality is assessed 

before the distribution process commence. The Fig 2.3. shows the basic distribution system 

from its source to different consumers adapted from an article in Canada. Usually, the treated 

water is pumped and stored in a water tank whose main purpose is to absorb the hourly 

variations in the demand, maintain pressure in the distribution mains, and supply water 

during emergencies.  
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Fig 2.3. Drinking water distribution system adopted from (Newmarket, 2019) 

 

There are four different layouts of distribution that are generally laid below the road. The 

layouts are called Dead end or Tree System, Grid Iron System, Ring System, and Radial 

System. The Fig 2.4. below shows the layouts in the order mentioned above.  

 

 

(a) (b) 

         

(c)  (d) 

 

Fig 2.4. Layouts of water networks, (a) Dead end or Tree system, (b) Grid Iron 

system, (c) Ring system, (d) Radial system adopted from (Tiwari , 2019) 

 

Additionally, for each layout there exist some benefits and disadvantages, table 2.1 mentions 

some of the most common advantages and disadvantages of each layout.  
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Layout Advantages Disadvantages 

Dead end or Tree system Cheaper to install, less 

complex 

Stagnation of water can occur 

due to dead ends 

Grid Iron system Water is in good 

circulation 

Need valve installation in all 

branches for pressure 

management 

Ring system Water may be supplied 

from two directions 

Larger pipes and long lengths 

of pipes required 

Radial system Water can be distributed 

faster with high pressures 

Costly, as need installation of 

individual reservoirs 

Table 2.1.  Advantages and disadvantages of different layouts of WDNs 

 

Among the four, the most convenient layout to install is the tree or dead-end system, but if 

there is damage in one branch, it is not possible to supply water until the issue is resolved, 

whereas in the other three layouts (looped configuration) water may be supplied to 

consumers by more than one path. Moreover, the looped configuration is common in heavily 

populated areas and tree or dead-end systems (branched) are common in rural areas due to 

financial reasons (Nikhil & Damani, 2017).  However looped configurations are more 

complex than branched networks due to their interconnectivity. Therefore, they can be costly 

to install and maintain. The complexity of a network can be determined by the beta-index 

of the network (Ducruet & Rodrigue, n.d.).  A water network can be modeled using graph 

theory, using the number of pipes as edges (E) and the number of nodes (junctions) as 

vertices (V), and the connectivity among the edges and vertices is called the beta-index 
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                                                                   𝛽 =  
𝐸

𝑉
                                                           (2.1), 

If the calculated beta-index is < 1 that network is recognized to be a simple network and 

usually dead-end/tree-based networks are of that configuration, while more complex 

networks such as looped networks have a value >= 1. Nevertheless, a well-designed water 

network requires that it should be able to keep the water quality at the right standards, supply 

water to all parts with sufficient pressure, keep the extra volume in case of an emergency, 

and the network should be at least one meter away from the sewer lines, keep leakages at 

minimum (Adeosun, 2014).  

 

Furthermore, pressurized water flowing in pipes possesses two main kinds of energy called 

potential and kinetic energy. Potential energy is the energy stored in the water and it is 

mainly due to the difference in the elevation and the pressure. Kinetic energy is that which 

is used in the execution of processes such as the movement of water (Miller, n.d.). In 

hydraulic engineering, the energy in a fluid is usually known as the hydraulic. It is the 

mechanical energy per unit of fluid, and it is often represented as the equation below (Evans, 

2012). 

                                                  𝐸 =
𝑣2

2𝑔
+

𝑝

𝜌𝑔
+ 𝑍 =  

𝑣2

2𝑔
+  Π                                        (2.2), 

 

Where 𝐸[m] represents the total energy of the fluid; 𝑣 [m s-1] is the average velocity at a 

cross-section of a pipe conduit; 𝜌 [kg m-3] is the density of water; 𝑔 [m s-2] is the 

gravitational acceleration; 𝑝 [Pa] is the water pressure. Π [m] is known as the potential 

energy denoted as the piezometric head which is the sum of the pressure term and the 

elevation term in the equation.  

 

When water flows in a pipe two main types of energy losses occur, the first one is called 

friction loss or major head loss. Friction losses are caused by the effects of the viscosity of 

the fluid, and they can be calculated using different formulas in hydraulic engineering. Two 

of which is called the Darcy-Weisbach and Hazen Williams formulas (see equation 2.3 and 

2.4). 

 

                                                ℎ𝑙𝑜𝑠𝑠 = 𝑓 ∗
𝑙

𝑑
∗

𝑣2

2𝑔
                                                           (2.3), 
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                                               ℎ𝑙𝑜𝑠𝑠 = 
𝑘𝑙

𝑑1.16 ∗ (
𝑣

𝑐
)1.85                                                     (2.4), 

 

Equation 2.3 represents the Darcy-Weisbach formula, where, 𝑓 [unitless] is the friction 

factor and it can be calculated from the Reynolds number depending on the state of the fluid 

(smooth, rough, turbulent, or transition flow) and relative roughness; 𝑙 [m] is the length of 

the pipe; 𝑑[m] is the wetted diameter of the pipe; 𝑣 [m s-1] is the velocity of the fluid; 𝑔 [m 

s-2] is the gravitational acceleration of the fluid. Equation 2.4 represents the Hazen-Williams 

formula, where 𝑐 is the c-factor that ranges between 0 – 150 depending on the material and 

the age of the pipe; and k=6.79 for velocity 𝑣 in [m s-1] of the fluid. Another energy loss that 

occurs in pipes is called minor head loss. It is the energy loss due to a fitting per unit weight 

of the fluid. This happens mainly at fittings, bends, and tees in a pipe network. Minor loss 

is calculated using the formula represented by equation 2.5 below. 

                                                  ℎ𝑙𝑜𝑠𝑠 = 𝐾 
𝑣2

2𝑔
                                                                (2.5), 

 

where 𝐾[unit less] represents a minor loss coefficient for valves, bends, and tees (Kudela, 

n.d.). 

 

 

2.2.2 Energy consumption in WDNs 

 

Presently water companies aim to operate WDNs for (1) providing clean water for their 

customers by maintaining the quality standards (2) finding methods to lower the operational 

cost by improving the energy efficiency of the network (3) minimizing the GHG emission 

throughout the process of operating the network ( Sharif, et al., 2017; Haider, et al., 2014; 

Haider , et al., 2015; Bolognesi, et al., 2014). Energy savings for water networks mostly 

depend on improvements in the process, achieving efficiency targets, and lowering costs 

related to pumping (Cabrera, et al., 2010). Moreover, as energy prices continue to increase 

in the world and so do the GHG emissions associated with it, there is an increase in demand 

to minimize the energy requirements and develop more sustainable strategies for water use 

(Lopez & Jeter, 2006).  

 

Energy use in water networks depends mainly on the energy source, the water quality, the 

pumping system (fixed speed or variable speed pumps), the size of the network, the age, and 
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material of the network, and the topography of the area (Plappally & Lienhard, 2012; Lee, 

et al., 2017). For example, in the state of Virginia (USA) a small town called Louden, which 

has a hilly topography with a population of nearly 40,000 people used about 2.28 kWh/m3 

of energy for the distribution. whereas, in the same state a town called Alexandria which has 

a relatively flat landscape with a population of ~ 155,000 (in 2016) used 0.55 kWh/m3 of 

energy (Alanis, 2009). This variation in the energy use which is three times less in the second 

town is mainly due to the topographic difference of the network. Moreover, water systems 

that use ground water as the source are more energy consuming than surface water systems. 

Even though ground water requires less treatment than surface water, pumping attributes to 

the main energy consumption due to the need of pumping raw water from aquifers. In total, 

only pumping, either surface or ground water systems, accounts for ~90% of the energy 

consumed in a water supply system (EPA, 2013). Fig 2.5. shows some information on the 

relative energy intensity for water systems using various water sources and it is obvious that 

groundwater requires more energy than surface water.  

 

 

 

Fig 2.5. Energy intensity by water source (kWh/MG) adopted from (ISAWWA, 2012) 

 

Additionally, for water networks, energy is consumed at each stage from extraction to 

distribution to consumer use. Therefore, Fig 2.6. shows the breakdown of energy consumed 

at each stage in a typical American water supply system adapted from (EPA, 2013). 

 

 

 

Fig 2.6. Average energy consumption at each stage in a drinking water system adopted 

from (EPA, 2013) 
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It is therefore important to make water networks energy efficient. It will not only save money 

for utility companies but also reduce GHG emissions. Water distribution is considered the 

main source of emissions in the supply process, typically if pumping is involved (Smith, et 

al., 2017).  In Beijing (China), a study done by (Smith, et al., 2017) states that water 

distribution accounts for 63% of total emissions of centralized water supply mainly due to 

pumping to high-rise buildings. Additionally, in a case study done by (Cheng-Li, 2002) in 

Taipei, water networks contribute to 44% of emissions of GHG. Whereas, in the United 

Kingdom, the water industry alone accounts for 0.8% of the annual GHG emissions 

(Reffold, et al., 2008). Moreover, Fig 2.7. below shows opportunities to reduce carbon 

emissions at each stage in water/wastewater distribution networks. 

 

Fig 2.7. Opportunities to reduce GHG emissions at each stage in water networks 

 

2.3 Pressure management in Water networks 
 

2.3.1 Importance of pressure management 

 

A water distribution network is designed to deliver sufficient water to customers with the 

desired pressure throughout the operation, particularly during peak hours. During off-peak 

hours, mainly at night-time when the demand is low in the network, the nodal pressure can 
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be higher than the acceptable pressure contributing to leakage (Monsef, et al., 2018). 

Pressure Management (PM) in water distribution networks plays an important role to reduce 

leakage and energy losses, this also helps to reduce GHG emissions associated with energy 

use in water networks. 

 

In water networks, most pipe bursts occur at night not only due to high pressure but also 

because of the pressure fluctuations forcing the pipes to expand and contract frequently. 

Therefore, water utility companies try to keep a constant inlet pressure in zone/districts to 

ensure the consumers always have sufficient pressure (Borsting, n.d.) The pressure at the 

consumer's end depends on the friction in the supply line. To compensate for the friction, 

the inlet pressure is usually higher than the required minimum pressure. Nevertheless, 

friction depends on flow, and flow varies according to consumption. A constant inlet 

pressure means that the pressure varies during the day. That means the consumers will have 

high pressure when they use the water the least e.g., during late night or early mornings. The 

Fig 2.8. shows the variation of consumption and pressure at different times of the day 

adapted from (Borsting, n.d.).  

 

 

Fig 2.8. Variation of consumption and pressure on the consumer adopted from (Borsting, 

n.d.) 

 

A study done by (Thornton & Lambert, 2006) has shown positive news on the 

implementation of pressure management by water utility companies. In the study, it can be 
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seen the difference between the PM and after implementing PM from data in Gracanica 

(Bosnia and Herzegovina). It is shown in Fig 2.9. below. 

 

Fig 2.9. Pipe breaks each month before and after implementing PM adopted from 

(Thornton & Lambert, 2006) 

 

 

After October 2006 after the introduction of pressure management, the breaks in service and 

main lines have drastically reduced.  

 

2.3.2 Pressure management methods 

 

2.3.2.1 Pressure Reducing Valves 

 

Many different tools are currently in use for effective pressure management in WDNs. They 

include the implementation of valves such as Pressure Reducing Valves. PRVs are typically 

installed at parts in the network where there is excessive downstream pressure and these are 

often installed in pipes for leakage reduction (Araujo, et al., 2006). Pressure-reducing valves 

prevent the downstream head from exceeding a certain value by dissipating that excess head 

(Giugni, et al., 2014), as the excess head is reduced to the desired setpoint thus the water 

losses are indirectly minimized. Although there is no distinctive relationship between 

pressure and leakage frequency, the design of proper pressure control can attribute to a 

reduction in the recurrence of new leaks and bursts in pressurized pipes (Lambert, 2002). 

Nevertheless, PRVs lack the reliability to regulate pressure at various times of the day. 
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Therefore, researchers try to find methods for optimal control of PRVs and make sure their 

operation is sufficient in WDNs. The Fig 2.10. below shows an image of a PRV from the 

company Bermad.  

 

 

Fig 2.10.  BERMAD 700 Sigma en/es series PRV adopted from (BERMAD, n.d.) 

 

2.3.2.2   Control techniques of existing PRVs in WDNs 

 

There are different control techniques for controlling PRVs in water distribution networks, 

the first technique is called classical control which is mainly used in small networks and the 

next is called advanced control which can be used in a large network with high complexity. 

The third is using optimal control algorithms and they are mainly used in finding the optimal 

PRVs in a water network as such. The fourth one is called real-time control which uses 

SCADA for real-time measurements and taking appropriate actions based on it. The last is 

called model-free control, they use large data sets using simulators to get an accurate model. 

This often becomes very difficult as managing large datasets can become complex. The 

below section explains each technique in detail. 
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Fig 2.11.  Various control techniques adapted from (Mosetlhe, et al., 2020)  

 

Classical control such as a Proportional-Integral-Derivative (PID) uses a closed-loop 

feedback mechanism to control and drive a system to a setpoint/target. It can only be used 

in small-scale networks without considering any constraints. This is not suitable for WDNs 

as pressure and flow constraints are vital for an accurate representation of the network (Page, 

et al., 2016; Lei, et al., 2007). Whereas optimal control uses the principles of calculus to 

obtain the best operating parameters for reduction of leakage through optimal settings of 

PRVs (De Paola & Portolano, 2017) using various convex and non-convex algorithms. 

(Hindi & Haman, 2007) used a non-linear nonconvex optimization algorithm to address the 

pressure regulation problem by proposing a method to approximate non-linear pressure 

functions to linear representation, however, the computational burden to solve this is 

immense. 

 

Another (Eck & Mevissen, 2012) suggests solving the problem by quadratic approximation 

of the pipe friction using Hazen-Williams and Darcy Weisbach equations (two methods that 

are used to calculate pipe head loss) using a linearisation technique. Nevertheless, 

linearisation would reduce the accuracy of the solution. Some researchers have opted to use 

meta-heuristics like genetic algorithms to solve pressure control problems. These derivative-

free algorithms can be used for example in finding the optimal number of PRVs while 

ensuring optimal operation. Another example would be using a multi-objective function to 

maximize the energy recovered and address the pressure reduction problem (Nicolini, 

August 2011; Saldarriaga & Salcedo, 2015). However, since these are heuristic-based 

approaches, global optimality is not guaranteed. Another technique in PM in water networks 

is model-free control-based concepts by the utilization of simulators to mimic the model 
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using control optimization techniques. The drawback of this approach is that it requires a 

large data set to realize an accurate model (Haman & Hindi, 1992; Rao & Alvarruiz, 2007).   

 

The final two control techniques are Real-time control and Advanced control. Both require 

a model-based representation of the system, and both can be used on large-scale water 

networks. The former use Supervisory Control and Data Acquisition Systems (SCADA) to 

obtain measurements in real-time and take necessary adjustments (Page, et al., 2017). The 

latter is using Model Predictive Control (MPC) which is an advanced control strategy used 

mainly in the chemical industries. It uses an explicit process model to predict and optimize 

the future behavior of the system (see Fig 2.13.). MPC can also be a part of real-time control 

when combined with SCADA systems. It can be placed as the global control law in 

determining the desired set-points for the local controllers to act on. The diagram adapted 

from (Wang, et al., 2017) gives an understanding of the hierarchical structure in Real Time 

control.  

 

 
Fig 2.12. Structure of RTC adapted from (Wang, et al., 2017) 

 

The data coming from sensors in SCADA systems provide information to determine the 

operational objectives to be included in the control design of MPC. Moreover, setpoints are 

determined after evaluating the objectives at the global control level. This will be sent to the 

local control layer where controllers such as PIDs will be placed to achieve the set point. 

For example, in the control of PRVs. The setpoints determined from MPC such as the 

optimal opening degrees to ensure the demand downstream could be sent to PIDs as 

reference points. These set-points help act as the reference value when minimizing the error 

between the actual opening degree value and the desired opening degree value. 
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2.4 Model Predictive Control in WDNs 
 

Model predictive control is not a particular control strategy but rather a range of many 

control methods developed around three familiar ideas (Camacho, et al., 2003) : (i) the 

explicit use of a model to predict the process response at future time intervals (ii) the 

calculation of a control order by minimizing a particular cost function (iii) the use of a 

receding horizon strategy. Fig 2.13. shows the typical structure of Model Predictive Control.  

 

Fig 2.13. Structure of MPC adopted from (Rana & Pota, 2012) 

 

Model predictive control uses the model of a system to predict its output based on the current 

and future values of its input. Using this information, the controller calculated the optimal 

value for the future control inputs concerning the predetermined cost function while taking 

constraints into account. (Rana & Pota, 2012). 

 

In water distribution systems, model predictive is often used as a global control strategy. 

i.e., it is usually the control layer below the management layer from Fig 2.12 to derive 

setpoints for actuators to act on. As discussed before unlike other control techniques, MPC 

has the advantage of being able to add constraints to the control design. It can be imposed 

on either both manipulated or controlled variables (Hovd, 2004). MPC can also use a multi-

objective function to handle more than one objective (Wojsznis, et al., 2007). 

 

Multi-objective optimization can simultaneously satisfy hard and soft constraints while 

ensuring all the objectives are met. For the control of water networks, objectives can be 

formulated in a multi-objective context as the common goals are: 

1) Pressure management – maintaining the pressure within an acceptable range. 
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2) Tank level management – keeping storage tanks from overflowing or falling below 

a minimum level. 

3) Operational cost reduction – reducing pumping costs by introducing new methods 

such as pump scheduling algorithms (Wang, et al., 2017). 

 

Moreover, hard constraints are the constraints that cannot be violated (for example: in water 

networks, tank levels can be a hard constraint). Soft constraints are constraints that can be 

relaxed within a small limit to allow the feasibility of the solution (for example: in water 

networks, the minimum and maximum flow value in a valve can be altered accordingly to 

guarantee feasibility in the objective function). Fig 2.13. below shows the structure of MPC. 

The control algorithm is fed with the cost function and constraints, while simultaneously 

using the prediction model. This prediction model is used to anticipate future outputs based 

on the past outputs from the system plant. The disturbances (see Fig 2.13.), for example; in 

a water network, demand is the most common disturbance. If the demand is not known 

forecasting algorithms such as Autoregressive (AR), Moving Average (MA) and 

Autoregressive Integrated Moving Average (ARIMA) can be used. The forecasting 

algorithms can predict both long-term and short-term demand depending on the data (Chen 

& Boccelli, 2014).  

 

 

 

 
 

Fig 2.13. MPC control components adapted from (Wang, et al., 2016) 
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2.4.1 Control of Hydro Turbines using MPC 

 

The operation of turbine governors is mainly done using classical control methods such as 

PIDs (Proportional-Integral-Derivative) (Culberg, et al., 2006). Even though they have 

advantages such as easy implementation, they have a slow response to system changes (not 

robust) as they are not designed to react to sudden system disturbances and uncertainties. 

Therefore, researchers have investigated studying model predictive control for controlling 

large hydro turbine governors. Even though model predictive control is new to hydropower, 

it has been extensively used in wind power generation and thermal power plants ( Beus & 

Pandžić, 2018 ). The turbine governor is a system that regulates the inlet of water into the 

turbine, which then rotates to generate electricity. As per the guidelines provided by IEEE-

75, a governor system consists of the following (Thapar, n.d.): 

(i) Speed-sensing elements 

(ii) Governor control actuators 

(iii) Hydraulic pressure supply system 

(iv) Turbine control servomotors 

 

A turbine governor has two automatic controllers, (1) a speed controller and (2) a 

frequency/load controller (ABB, 2016). At the start-up sequence, the speed controller is used 

while the breaker is open. Once the generator is in synchronization with the power grid, the 

frequency/load controller is used. MPC is to be applied to the latter. Moreover,  (Reigstad 

& Uhlen, 2021) used MPC for controlling a variable speed hydropower plant and the results 

suggest using MPC has improved the system performance and reduced water hammer 

effects in the penstock. This is primarily due to the accurate representation of the turbine 

model. The Fig 2.14. shows a hydraulic turbine governor for Francis and Kaplan turbines. 
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(a)                                                            (b) 

Fig 2.14. Hydraulic turbine governor for a Francis turbine (a) and Kaplan turbine (b) 

adopted from (Kochendörfer, n.d.) 

 

One of the reasons why MPC is not widely used for the control of Hydropower turbines is 

because hydropower plants have faster dynamic behavior ( Beus & Pandžić, 2018 ). 

Although literature in the field of applying MPC for hydropower plants is limited, using 

MPC has a positive impact on plant performance and thus enhances power generation. 

However accurate representation of the system is critical as MPC relies heavily on an 

accurate model with many constraints.  

 

2.4.2 Water Networks Modelling theory for using MPC 

 

 

2.4.2.1 Modelling equations 

 

To apply model predictive control in water networks, each element in the network needs to 

be modeled using its fundamental equations. Many modeling techniques have been 

identified in WDNs and this literature will elaborate on the techniques in a much more 

detailed manner (see, e.g.: - (Ocampo-Martinez, et al., 2009; Eker & Kara, 2001). A water 

network compromises tanks, pressurized pipes, pumping stations, and valves to manage 

flows and pressure to consumers.  

 

1. Tanks  
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The head related to an nth tank with a volume of water stored, vn, can be shown as (Sun, et 

al., 2016):  

 

                                         ℎ𝑛(𝑘) =  
𝑉𝑛(𝑘)

𝑆𝑛
 +  𝐸𝑛                                                (2.6), 

Where the volume 𝑉𝑛 is the volume of the nth tank and 𝑆𝑛 is the cross-sectional area of the 

nth tank and 𝐸𝑛  relating to the nth tank elevation and 𝑘 is the time step. The mass balance 

expression of the tank relates to the stored volume 𝑉𝑛 can be written as 

 

       𝑉𝑛(𝑘 + 1) =  𝑉𝑛(𝑘) + ∆𝑡 (∑ 𝑞𝑖𝑛,𝑖(𝑘) − ∑ 𝑞𝑜𝑢𝑡,𝑗(𝑘) 𝑗𝑖 )                      (2.7), 

 

Where, 𝑞𝑖𝑛,𝑖(𝑘) and 𝑞𝑜𝑢𝑡,𝑗(𝑘) corresponds to the ith inflow and jth outflow, respectively in 

(m3s-1). If 𝑉𝑛(𝑘) from (2.7) is substituted in (2.6), the equation re-arranges to. 

 

 

      ℎ𝑛(𝑘 + 1) =  ℎ𝑛(𝑘) + ∆𝑡 (
∑ 𝑞𝑖𝑛,𝑖(𝑘)− ∑ 𝑞𝑜𝑢𝑡,𝑗(𝑘) 𝑗𝑖

𝑆𝑛
)                                (2.8), 

 

The ∆𝑡 is the sampling time 

 

2. Pipes 

 

Pipes transport water from one node to another node. During the transfer, the water pressure 

decreases because of friction, and there are many methods to calculate the friction loss in 

pipes. The most common one used is the Hazen-Williams since its friction coefficient is not 

a function of the flow or pipe diameter. However, Darcy-Weisbach is another method, and 

it is considered much more accurate than the latter as it considers a range of flow from 

laminar to turbulent (Ormsbee & Walski, 2016).  

 

 

The Darcy-Weisbach equation has a variable called the friction factor, and this 

dimensionless value is used for calculating the friction loss in a pipe system. The friction 

factor relates to the pipe diameter, roughness, and Reynolds number. 

 

                                      𝐻𝑢 − 𝐻𝑑 = 
𝑓𝑝 ∙ 𝑙𝑝

𝐷𝐴𝑝
22𝑔 

𝑄𝑢𝑑
2                                                      (2.9),   
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Where 𝐻𝑢 and 𝐻𝑑 is the heads upstream and downstream of a node; 𝑓𝑝 is the friction factor; 

𝑙𝑝 is the pipe length; 𝐴𝑝 and 𝑄𝑢𝑑 is the area and flow in the pipe.  

 

3. Actuators 

 

The flows across pumps and valves are the control variables for this work, as the flow across 

valves is manipulated to maximize the flow across PATs in Hydraulic regulation mode. 

These flows are considered continuous variables in a range of admissible values, although, 

certain head relation constraints apply. 

 

 

For valves. 

 

                                                   ∆ℎ𝑝 = ℎ𝑢 − ℎ𝑑 ≥ 0                                    (2.10), 

ℎ𝑢  ∈ [ℎ𝑢
𝑚𝑖𝑛, ℎ𝑢

𝑚𝑎𝑥  ], 

ℎ𝑑  ∈ [ℎ𝑑
𝑚𝑖𝑛, ℎ𝑑

𝑚𝑎𝑥  ], 

Where ℎ𝑢 and ℎ𝑑 denotes the heads of the valves upstream and downstream respectively, 

and ℎ𝑢
𝑚𝑖𝑛, ℎ𝑑

𝑚𝑖𝑛 are the minima of the upstream and downstream heads and ℎ𝑢
𝑚𝑎𝑥, ℎ𝑑

𝑚𝑎𝑥 

denotes the maxima of the upstream and downstream heads.  

 

2.4.2.2 Mathematical Modelling of a water network 

 

By using the modeling methodology of each component in the water distribution network 

shown above, the model of WDNs can be represented by a set of differential-algebraic 

equations (DAEs). The derived discrete-time DAE model can be written as follows (Wang 

, et al., 2016): 

 

                        𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑧(𝑘), 𝑢(𝑘), 𝛿{𝑘}, 𝑤(𝑘), 𝑑(𝑘))                       (2.11), 

                         0 = 𝑔(𝑥(𝑘), 𝑧(𝑘), 𝑢(𝑘), 𝛿{𝑘}, 𝑤(𝑘), 𝑑(𝑘))                                   (2.12),         

 

Where x represents the vector of system states, z represents the algebraic states, u represents 

the vector of manipulated variables, w is the vector of non-manipulated variables, and the d 

vector denotes the system disturbances. In this work d is the demand of the nodes, while k 
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denotes the time instantly, 𝑓(∙) and  𝑔(∙) are vectors of mapping functions. Furthermore, 

(2.11) represents the discrete-time differential equation illustrating the system dynamics, 

and (2.12) is the discrete-time algebraic equation describing the static relations of 

components in the water distribution network. Since tanks are the only elements with 

dynamical characteristics. The explicit form of (2.12) can be written as:  

 

             𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢𝑢(𝑘) + 𝐵𝑏 𝛿{𝑘} +  𝐵𝑤𝑤(𝑘) + 𝐵𝑑𝑑(𝑘)            (2.13), 

 

Where x(k) represents the vector of hydraulic heads at the tanks as system states at time 

instant k. u(k) is the vector of manipulated flows across the valves and pumps at time instant 

k. It is the control input to the MPC problem, w(k) denotes the non-manipulated variables at 

time instant k, this is useful when the network has looped links, in the case of this work, 

even though there are loops, the flows are modeled in a way w(k) can be ignored. The vector 

d(k) corresponds to the water demands at time instant k. Furthermore 𝛿{𝑘} denotes the binary 

decision comprise of {0,1}. Also, 𝐴, 𝐵𝑢, 𝐵𝑏, 𝐵𝑤 , 𝐵𝑑 are system matrices of relevant 

dimensions.  

 

Moreover, (2.12) static relationships between the elements can be explicitly explained 

below. 

 

 

                                   0 = 𝑬𝑢𝑢(𝑘) + 𝑬𝑤𝑤(𝑘) + 𝑬𝑑𝑑(𝑘)                                       (2.14), 

 

Where (2.14) are the mass balance equations at nodes in the WDN. 𝐸𝑢, 𝐸𝑤, 𝐸𝑑 are system 

matrices of appropriate dimensions.  

 

2.5 Hydropower 
  

Hydropower is one of the ancient and biggest sources of renewable energy. To generate 

electricity, hydro plants take moving water from lakes and rivers and through a penstock 

direct water to a turbine, which then turns to generated electricity. Fig 2.15. shows the setup 

of a hydropower plant. 
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Fig 2.15. Hydroelectric power generation setup  

adopted from (Environment Canada, n.d.) 

 

In the United States, hydropower contributes to 37% of the total renewable energy generated 

(US Department of Energy, n.d.). Hydropower became an energy source only in the later 

19th century when the British-American engineer James Francis built the first modern water 

turbine (Nunez, 2019). At the present day, China has the world’s largest hydropower power 

plant called the Three Gorges Dam, generating 22.5 GW (Kumar, 2017). The Fig 2.16. 

shows an image of the enormous Three Gorges Dam in China. 

 

Fig 2.16. Three Gorges Dam, China adopted (Kumar, 2017) 

 

As much as the benefits hydropower plants bring, they also have disadvantages. Big 

hydropower plants can damage river ecosystems and surroundings. For example, the Three 

Gorges Dam forced 1.5 million people out of their homes and flooded hundreds of villages 

(Lee, 2021). Additionally, hydropower plants can cause low oxygen levels in the water 
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which can be harmful to the habitats (Union of Concerned Scientists, 2013).  However, many 

say the environmental impacts of hydropower generation are low compared with the burning 

of fossil fuels (Nunez, 2019).  In some places, small hydropower plants are established to 

have minimal impact on the environment (Rotilio, et al., 2017). The Fig 2.17. shows the 

classification of hydropower plants based on the power output.  

 

 

Fig 2.17. Hydropower classification adopted from (Carrasco & Pain, n.d.) 

 

Small hydropower plants can be installed in several places in small rivers unlike large 

hydropower, which has less impact on the ecosystems (Mitsumori, 2016). For example, CO2 

emissions in 1 kWh of electricity are 11 g-CO2 (Fujii, et al., 2017). Furthermore, mini/micro 

power plants have further advantages. Mostly it is not impacted by weather conditions and 

does not involve advanced systems to operate. Furthermore, it does not impact the 

livelihoods of people and they are mostly situated on hilly/mountainside where elevation 

difference occurs in the pipeline (Bildirici, 2019).  

 

However, it is seen that the installation of conventional turbines in the sites for mini and 

micro hydropower generation is not economically viable (Ramos & Ramos, 2010). The Fig 

2.18. show the relationship between the installation cost of the turbines vs their installation 

capacity. 
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Fig 2.18. The trend for hydropower equipment initial cost 

 adopted from (Ramos & Ramos, 2010) 

 

Therefore, in the last few years, many have tried to explore other cheaper hydropower 

technologies to be used for smaller sites. Among the research, one technology gained 

attention. Pump As Turbines (PATs) (Carravetta, et al., 2012). (Delgado, et al., 2019) 

gathered average operating points from various literature in the context of WDNs, 

wastewater networks, and irrigation networks and compared their scale with the application 

of PATs that are available in the market. From Fig 2.19. the results from this study prove 

PAT technology is suitable for use in water networks. 

 

 

(a) (b) 

Fig 2.19. (a) average operating points of hydropower sites in water networks, 

(b) average operating points of the same sites with the application of PATs 

available on the market adopted (Delgado, et al., 2019). 
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2.5.1 Excess energy in water networks 

 

In water networks, in any pipe with a steady flow, the total energy line can be shown as in 

Fig 2.20., if there are no minor head losses, connecting the head between each node (Samora, 

et al., 2016). The head in each node is usually higher than the required minimum pressure. 

It is typically set by utility companies to ensure sufficient pressure is reached on the 

consumer. However, if at any point the head is higher than the minimum pressure, there is 

excess energy. This excess energy usually varies with time as the demand of the network 

does not remain fixed.  

 

Fig 2.20. Excess energy at each point in a pipe adopted from (Samora, et al., 2016)  

 

Nevertheless, this excess energy assuming its available to exploit is otherwise dissipated to 

the environment if no effort it’s taken to recover it. Therefore, micro turbines such as PAT 

could be ideally installed at locations where excess energy occurs. 

2.5.2 PAT technology 

 

Pump As Turbines are pumps operating in reverse mode which can generate power when 

coupled with an asynchronous induction motor. Unlike in pump mode where energy is 

consumed, PATs can generate energy by exploiting the surplus head otherwise dissipated in 

the PRV (Corcoran, et al., 2012). The Fig 2.21. below shows a PAT installed in a group 

water scheme in Blackstairs, Ireland.  
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Fig 2.21. PAT installed by Dwr Uisce at Blackstairs GWS adopted from (EPS, 2019) 

 

Pump As Turbines have been seen as an attractive way to couple power generation with 

pressure management due to many reasons one being having a low capital cost compared 

with other traditional turbines. Nevertheless, PAT efficiency reaches the best efficiency 

point (BEP) of around 0.6-0.7 in water networks due to flow variations (Carravetta , et al., 

2014; Fecarotta, et al., 2018). But in other settings, it could be up to 0.8 (Mitrovic, et al., 

2020). 

 

Although Pump as turbines is proven to be more attractive to couple with power generation 

and pressure regulation, there exists a lack of data, as manufacturers do not provide the 

performance curves along with the device, therefore researchers must opt to use affinity laws 

once both the performance curves of a prototype PAT are known. Affinity laws relate the 

performance of the prototype to the performance of a similar machine, i.e., having a different 

diameter and rotational speed, which can be used to predict the performance curves of 

similar machines (Morani, et al., 2018). The issue with using affinity laws is it assumes the 

efficiency of similar devices to be constant even though the rotational speed of the machine 

varies. This can contradict the actual behavior of the machines (Marchi & Simpson, 2013). 

The efficiency of a machine depends on the rotational speed; therefore, maximum efficiency 

is only achieved at an optimal speed setting, making the affinity laws only valid in a defined 

range of rotational speed, and the error in prediction increases as the rotational speed of the 

prototype and the other machine diverge. Although, (Fecarotta, et al., 2016; Carravetta, et 

al., 2018) developed a model that can predict the variation of the efficiency with the runner 
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speed, nevertheless, there exist some limitations as it can be only true for machines with a 

specific range of speeds.  

 

To test the real performance of PATs for different values of flow and head, laboratory 

experiments are required. In 2018, (Novara & McNabola, 2018), analyzed 113 PATs (with 

flows ranging from 1 to 320 l/s and pressure values from 3 to 353m, and determined a two-

degree polynomial to calculate the head across the PAT and a two-degree polynomial to 

determine the instantaneous power. This proved to be more accurate compared with the 

other polynomials derived by (Derakhshan & Nourbakhsh, 2008) and (Fecarotta, et al., 

2016). Additionally, a significant problem in water distribution networks is represented by 

the need of ensuring a required head drop, under variable operating conditions; that is, of 

head and discharge. 

 

As a solution to this, (Carravetta, et al., 2012) and (Carravetta, et al., 2013) proposed two 

configurations called Hydraulic Regulation (HR) and Electrical Regulation (ER) schemes 

for hydropower generation and pressure regulation, which are explained below. 

 
Fig 2.22. HR scheme adapted from (Carravetta, et al., 2012) 

 

This is a series-parallel hydraulic circuit in which a PRV is in series and in parallel with a 

pump as a turbine (refer to Fig 2.22.). When the available head in the system is higher than 

the head-drop deliverable by the PAT, the excess head is dissipated by the valve in series. 

In the case when the flow is large, the PAT would produce a head-drop higher than the 

available, therefore, the bypass valve will be opened to allow the excess flow to pass 

through. This configuration is preferred over the Electrical Regulation (ER) scheme, which 

consists of a similar setup, but an inverter is introduced to vary the frequency of the PAT 

(changing the rotational speed) thereby varying the performance curve. In other words, the 

PAT characteristic curve is modified to match the available head. When both the schemes 

are compared (Carravetta, et al., 2013), the HR mode showed a larger efficiency when the 

working conditions vary from the design values due to any demand pattern variation. 
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Moreover, in terms of economics, the HR mode showed shorter payback periods than the 

ER scheme. Nevertheless, to improve the global efficiency of the plant the first two 

regulation schemes (HR) and (ER) can be coupled (with HER) to represent the third scheme. 

A study by (Fecarotta, et al., 2018) showed insignificant improvements in energy production 

using HER when compared with HR schemes. A diagram of the HER scheme is provided 

for clarity (refer to Fig 2.23.).  

 

 

 
 

 

Fig 2.23. HER scheme adapted from (Carravetta, et al., 2013) 

 

2.5.3 PAT installation in a water network 

 

In gravity water networks, PATs can be installed in two potential sites (Voltz & Grischek, 

2019), also see Fig 2.24. 

 

1) The location where flowrate is separated from the demand downstream through a 

storage facility (tank) – which is also known as a “buffered-site” 

2) Or at the location where flowrate is determined by the demand use in the downstream 

supply area – which is also known as the “non-buffered site” 
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Fig 2.24. The difference between buffered and non-buffered sites adapted from (Voltz & 

Grischek, 2019) 

 

For sites that have the configuration like 1), flexibility is possible for the in-flow to the PAT 

site such that it can maximize the energy production. But in 2) the turbine needs to be 

designed systematically such that it can operate in a wide range of flow and available heads. 

Therefore, it needs more information and complex methods (Pérez-Sánchez, et al., 2018; 

Ramos, et al., 2010; Carravetta, et al., 2018). Nevertheless, (Voltz & Grischek, 2019)  

mentions that sites in configuration 1) are more frequent and serve as a profitable 

opportunity for generating renewable energy. Also, they allow the water supplier the 

resilience in calculating the rate, and time of the tank filling which indirectly correspond to 

turbine operation (with the assumption that the inflow rate is not constrained – e.g.: varying 

inflow from a mountain spring). Therefore, the inflow rate can be modified to maximize the 

energy generation through the PAT despite how it was influenced in the past few years 
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(Voltz & Grischek, 2019). However, while comparing literature, there are also studies that 

treat sites in configuration 1) as sites in configuration 2). For example, (Ramos, et al., 2010; 

Vilanova & Balestieri, 2014; Novara, 2016; Monteiro, et al., 2018) all present case studies 

which focus on the configurations like in 1) but most of them treat the sites as if they were 

sites in configuration 2). That means they assume the inflow remains consistent and perform 

experiments to design PATs to suit that inflow, other than trying to adjust the flow rate to 

allow a single, optimized PAT. The term optimized PAT means that the flow rate and 

available head for it to exploit and generate the maximum power for a period have been 

optimized. Furthermore, authors such as (Fecarotta, et al., 2018; Carravetta, et al., 2018; 

Corcoran, et al., 2012; Voltz & Grischek, 2019) all show different methods numerically or 

experimentally in using a PAT in a water network, but they all show only offline methods 

and also they only summarise on controlling one PAT and does not include in the results 

where more than one PAT could be installed within a water network.  

 

 

2.6 Summary 
 

After conducting the literature review on WDNs, hydropower technology, and model 

predictive control, with particular attention to pressure management using PRVs, PAT 

technology, and control of WDNs and Hydro-turbines using model predictive control the 

following are identified as the main findings: 

 

▪ Water networks are energy intensive, and each process requires energy, for example, 

to extract, treating and distribution. Additionally, each process is associated with a 

considerable amount of GHG emissions and more sustainable solutions are needed. 

▪ Excessive pressure can have negative impacts on water networks, such as pipe breaks 

can occur when pressure management is absent. The typical way to tackle high 

pressure is through the installation of PRVs, but unlike automatic PRVs, typical 

hydraulically operated ones do not have the ability to regulate variations that occur 

with pressure at different times of the day 

▪ There exist various control techniques to control PRVs in water networks but Model 

predictive control is seen as the most attractive due to its ability to take many 

constraints into consideration and provide the optimal output based on a cost 

function and constraints.  
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▪ Research into the control of hydropower turbines using MPC is limited due to the 

reason dynamics involved in hydropower generation change much more frequently 

than in other renewable energy generation plants. 

▪ Mini/micro hydropower plants are less damaging to the environment and 

conventional turbines are not economically viable to install at locations where their 

excess energy is present.  

▪ Excessive energy exists in pipe networks and PATs are deemed more suitable for 

power generation in those sites 

▪ PAT coupled with PRVs can be installed in three configurations, (i) HR scheme 

where a PRV is in parallel and series with the PAT (ii) ER scheme which coupling 

the PAT with an inverter introduced to vary the frequency of the PAT (iii) Having 

HR and ER combined to make HER scheme as ER alone cannot maximize the energy 

production. 

▪ PATs installed in gravity water networks can have two configurations (i)The 

location where flowrate is separated from the demand downstream through a storage 

facility (tank) – which is also known as a “buffered-site” and (ii) Or at the location 

where flowrate is determined by the demand use in the downstream supply area – 

which is also known as “non-buffered site”. However, configuration (i) is preferred 

as PAT flow can only be optimized if installed in that setup.  

▪ Besides, all of the above-mentioned literature focuses only on the optimisation of 

one PAT site and does not show how more than one PAT in water networks can be 

optimized together for maximum power generation.  
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3. Methodology 
3.1 Research Approach  
 

 

To answer the research question and sub-questions defined in section 1.3 the research work 

that will be presented in the following sections of this thesis consists of a background study 

that points out that WDNs are energy intensive along with GHG emissions associated with 

each process. One of the methods to make WDNs energy efficient would be to introduce 

Pressure Management, which is also part of the background study. One of the ways to reduce 

pressure in a network would be to introduce PRVs to nodes that have high downstream 

pressure, therefore some control techniques on how to control PRVs in existing WDNs are 

also part of the literature review. A review on model predictive control is also done as part 

of the background study as it is seen as a better option to control PRVs in WDNs. 

Additionally, it is also shown how PRVs are replaced at the sites where excess pressure 

occurs with PATs. As PATs lack flow regulation, PRVs are installed in a series-parallel 

configuration (HR scheme) in WDNs. Finally, the background study also shows how PATs 

are installed in gravity networks. Following that, the question to be answered which is, 

“What technology can be used to maximize the potential of PATs in WDNs” is done in the 

methodology section which shows the steps involved in deriving how MPC can be used to 

maximize the power generation. This will also answer the sub-question, “While maximizing 

the potential can model predictive control fulfill the common objectives in water networks 

such as pressure management”. The results for that are shown in the results section and the 

validation section which show how the algorithm considers head loss constraints and 

pressure constraints in the WDN under study.  

 

To further challenge the answer, two different controllers are compared. Both controllers’ 

objective is to maximize power production but is designed in two ways. This will answer 

one of the sub-questions “Is there an improvement in maximizing the power of all PATs 

simultaneously between the controllers called Hybrid MPC and Linear MPC” and the final 

sub-question to be answered is “Which controller performs better for it to be suitable for 

near real-time operation”. This is also answered in the results section as the response times 

are shown on which performs better and why. The research approach can be broadly viewed 

in Fig 3.1., 3.2. below, which shows the flow in this thesis starting from the research question 
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Fig 3.1.  Research approach  
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Fig 3.2. Research approach continuation 
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3.2 Introduction 
 

This work presents a methodology for optimization of more than one PAT like configuration 

1) in section 2.4.2 for a drinking water network using an optimization algorithm. There are 

four potential locations for the installation of PATs within the part of the network. Besides, 

the methodology determines the optimal flow that should be passed through the PAT based 

on a prediction model that considers the dynamics and demand of the network. The 

prediction model is designed based on Model Predictive Control. MPC is a control technique 

used for decades to control a plant or a system by predicting the behavior based on the 

current state. MPC uses an explicit representation of the system and in this work, the system 

represents the water network. Furthermore, like any other optimization algorithm, MPC also 

has the typical structure of having an objective function and constraints. The advantage of 

MPC is that the constraints do not need to be static. It can be updated inside the algorithm 

for every time step if needed. Also, it can consider more than one objective, thus allowing 

for multiple objective formulations (Wojsznis, et al., 2007).  

 

In most drinking water networks, there are equality and equality constraints to be included 

in the optimization method. Equality constraints would be for example: -mass balance 

equations in nodes and if tanks are present, then the tank dynamics relating volume with 

tank inflow and outflow. Moreover, inequality constraints would be on tank levels 

(minimum and maximum levels). Additionally, there would another set of actuators, as most 

networks have pumps or valves present to increase the head or control the flow through the 

pipes. Pumps have a head-flow curve that is provided by the manufacturer which needs to 

be considered and valves also have maximum and minimum flow values which need to be 

included (Sun, et al., 2016). 

 

Moreover, apart from equality and in-equality constraints, head loss constraints also need to 

be considered.  The issue with head-loss constraints is that it is highly non-linear because if 

Hazen-Williams or Darcy-Weisbach formulae are used to describe their relationship they 

would have either an exponential or a quadratic trend (Ormsbee & Walski, 2016). Therefore, 

to accurately model a water network, this non-linear nature has to be taken care of inside the 

prediction model. For this work, a novel method is presented which is added to the 

algorithm. This method will estimate the head loss values using a function based on yalmip 

(Lofberg, 2004). This is an alternative method for linearisation or including non-linear 
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constraints in the algorithm as previous works have done. The advantage of using the 

proposed method apart from easing the computational burden of using non-linear constraints 

is that it can accurately represent the head/flow relationship and it gives the freedom to 

choose between formulas  

 

Additionally, it is also important to keep a secure volume in the tank for any emergency 

reasons. Also, valves need to be operated smoothly avoiding a potential unsteady state in 

the water network if made to close and open suddenly. However, some of the previous work 

consider the emergency volume and valve safety operation as part of the objective function 

(Grosso, et al., 2014; Wang , et al., 2016; Sun, et al., 2016; Wang, et al., 2017). This 

increases the computational burden on the solver to find the optimal solution to satisfy all 

the objectives in the multi-objective scenario. Therefore, in this work, the emergency 

volume aspect and the valve smoothness are considered as part of the constraints.  

 

Additionally, another set of constraints needs to be considered for optimizing PATs. PATs 

are usually installed in a water network in a series-parallel configuration as suggested by 

(Carravetta, et al., 2012). The reason behind that is to effectively regulate the operation of 

the PATs. PATs are installed with a combination of PRVs in both series and parallel 

branches to regulate the head and with the PAT in series with one PRV to exploit the surplus 

head. Therefore, this also is considered in the prediction model. To accommodate the 

operation of the PAT, the algorithm is modified in a way to include logic in the constraints. 

 

 

3.2 Objective of this work  
 

A case study from Ireland is used to test the control algorithm developed in this work. The 

network is summarised under the case study section, this network has five PRVs present and 

one pump present. For this work, only the locations of four PRVs are considered, and the 

pump operation is not included in the objective function. Moreover, two different layouts of 

the network were tested. The first arrangement is called the one-tank model, which has only 

one tank and one PAT proposed to be installed. The other arrangement is called the three-

tank model, which has four potential locations for PAT installation in a tree-based network. 

It also has three tanks to be monitored along with one critical node where the pressure is 

always kept at more than 12m (minimum standard pressure).  
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This work aims to maximize the hydropower generation of multiple PATs in a WDN for 

five days. As an initial step, the algorithm developed is tested on the one-tank model and 

later tried on the three-tank model. To fulfill the objectives for this work, a linear multi-

objective function is formed which will determine the optimal flow to pass through the PATs 

to maximize power over five days of simulation. Once the optimal flow setpoints for the 

PATs are derived from the control algorithm it is implemented in the network. For both 

arrangements, the demand of the network is considered as a measured disturbance to the 

network, i.e., the controller does not know in advance what the demand is. Furthermore, to 

test the controller performance the measured disturbance is set to change randomly every 

hour and the controller performance is tested. 

 

Apart from the above, another aspect of this work is to keep the pressure on all nodes always 

including the critical nodes between 12m – 48m. This is done to avoid leakage or avoid low-

pressure scenarios. Also, as the network has storage tanks, their level is monitored and kept 

within the minimum and maximum values. In addition, a security volume is established 

which can be used in case of an emergency. The other objectives include considering head 

loss constraints. An approximation technique is performed using Darcy-Weisbach formulas.  

 

To summarize, the objectives of this algorithm are: 

o Implementing MPC to multiple PATs for: 

• Power maximization for all four PATs 

• Integrating a logic for the operation of the PATs  

• Considering the demand as a measured disturbance 

• Predicting the tank level for 36 hours ahead (choice of 30 hours of prediction 

horizon is justified later in the thesis) and simulating for five days 

o Changing the demand to test the performance of the control algorithm 

o Keeping the pressure at nodes satisfied 

o Keeping the tank levels within the minimum and maximum range 

o Always keeping a safe volume in all three tanks 

o Keeping the actuators functioning smoothly  

o Validating the head loss approximation technique 
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3.3 Case study and Model set up 
 

The case study used for this work is from a rural water supply network in Ireland, located in 

County Laois about 100 km from the capital city. The case study is adapted from (Morani, 

et al., 2018) and it is a tree-based network. This network configuration was chosen because 

apart from the simplicity, in a practical scenario pipe laying is easy and cost-effective 

compared with other layouts. Additionally, for hydraulic analysis of networks, the preferable 

configuration is tree networks when compared with other types (Hafsi, et al., 2018). The 

reason is due to no closed loops in the network and only node equations are required 

directing it to a linear system of equations (Hafsi, et al., 2018).  

 

The original network consists of 58 nodes and 55 links, and this was reduced to 29 nodes 

and 29 links by aggregation of the demand nodes not connected to any control element/tanks. 

This means any downstream demand nodes (with no control elements) in any branch 

expanding from the main line are added to the upstream node. This ensured that the branch 

always gets the required demand. Moreover, it also reduced the complexity of the network, 

making it simple to model accurately.  

 

To move into the detailed information on the network, this is a gravity-fed network with a 

reservoir at 160 m. A pressure-reducing valve (PRV5) is present, and it is located 

downstream of the reservoir for managing the pressure at desired levels throughout. Apart 

from that valve, there are four other pressure-reducing valves distributed in the network 

(PRVs referred to as PRV1, PRV2, PRV3, and PRV4).  PRV5 is not considered for this 

work as the flow line from PRV5 splits into two parts at N8 (see Fig 3.4.). Pipe 6 and 10 

which flows towards T4 are not captured in the results of this work as the pump is not 

considered in the algorithm. Fig 3.3 shows the original network and Fig 3.4 shows the 

modified network. 
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Fig 3.3. Original Ballacolla Network 
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Fig 3.4. Modified Ballacolla network 
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To address the potential for the head that can be recovered by replacing it with PATs, a 

head-flow diagram is shown for all four PRVs in Fig 3.5. 

 

 

 

Fig 3.5. Head/Flow at PRV sites a) surplus mean head at PRV1 = 2.88m, b) surplus mean 

head at PRV2 = 9.27m c) surplus mean head at PRV3 = 24.72m d) surplus mean head at 

PRV4 = 4.80m 

 

The network is modified by adding four storage tanks (T1, T2, T3, and T4). T1 is installed 

upstream of node N20 (a critical node). T2 is located between nodes N24 and N25, and T3 

is added between N28 and N29. Moreover, another tank T4 is added between N36 (where a 

pump is present) and N37. The tanks are added to see the variation of the demand in the 

downstream nodes    

 

Additionally, to increase the level of network complexity at least closer to a beta index of 

one, two pipes are added in a looped configuration (Ducruet & Rodrigue, n.d.). Apart from 

the extra links added, a new branch was created which is located between valves N11 and 

N13 (see Fig 3.4.), this branch has a tank (T2) and demand nodes like other branches. The 

reason to add another branch was to include an extra tank to model three tanks instead of 

two. Another reason for modifying the original network by adding tanks and branches is to 

create a configuration like class 1 sites as proposed (Voltz & Grischek, 2019). This is 

because a new inflow regime to the PAT site can only be introduced for maximum 

(a) (b) 

(c) 
(d) 
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hydropower generation if storage tanks are present. Furthermore, for this work only three 

tanks T1, T2, T3, and four PRVs, PRV1, PRV2, PRV3, and PRV4 are considered.  

There are two demand patterns defined, one is the original pattern which was inherited from 

the original Ballacolla network and that pattern is adjusted to match the reservoir outflow 

discharge which is shown below in Fig 3.6.  

 

 

Fig 3.6. Outflow discharge from the reservoir in the Ballacolla network between 4/1/2016 

and 13/12/2016 

 

The other pattern is adapted from the D-town network (artificial network) (Salomons, et al., 

2012) which is a modeled demand pattern based on demand nodes connected. The demand 

patterns used for this work are shown below in Fig 3.7. and Fig 3.8. 
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Fig 3.7. D-Town demand pattern 

 
Fig 3.8. Ballacolla demand pattern 

 

3.4 Algorithm design 
 

 

The overview of the methodology is given in Fig 3.9, which illustrates the methodology step 

by step following the explanation afterward.  Stage 1 represents the initial step in the design 

algorithm, at this stage, the hydraulics of the network is calculated and integrated with 

MATLAB via the Epanet/Matlab toolkit. At this stage, all the constraints are also formulated 

related to actuators (PRVs) and tank minimum and maximum levels. Once it is completed, 

at stage two, the theoretical curve of the suitable PAT is calculated, it is elaborated in section 

3.4.3.2.  Additionally, at this stage, the PAT logic is also designed based on the operating 

points in the network. Furthermore, this logic is integrated into the control algorithm at stage 

three along with the controller design. Section 3.4.3.3 elaborates in detail on how the control 

algorithm is formulated. Additionally, the next sub-sections 3.4.1 and 3.4.2 gives a thorough 
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understanding of formulating the constraints and the objective function. The bigger picture 

of the methodology can be viewed below in Fig 3.9. 
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Fig 3.9. Flow diagram for the methodology
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3.4.1 Constraints formulation 

 

 

▪ The network pressure needs to be in an acceptable range throughout the time 

including the critical nodes (12-48m). 

▪ Head loss constraints: As it is proposed to install PATs in a series-parallel 

configuration, it is important to keep the downstream head the same as it was set in 

the PRVs. Therefore, the head at the downstream nodes where PRVs were present is 

kept constant. It is validated using the Bernoulli equation by aggregating the head 

loss between the downstream nodes and tank nodes. 

▪ Storage tank level constraints: the levels of the tank need to be maintained within the 

minimum (1m) and maximum (15m) values to meet the demand and avoid overflow. 

The minimum level is set as the safety level for emergency purposes. The reason to 

include it in the constraints instead of in the objective function is clarified later in 

this section.  

▪ PAT operational constraints: PAT operation is coordinated into the prediction model 

in the algorithm by using logic constraints. The reason is justified further in this 

section. 

▪ Flow constraints: The maximum and minimum flow allowed through the valves in 

the series-parallel configuration is set as:  

a) Minimum being zero (valve closed) in both series and parallel lines 

b) Maximum in the generation line (series) is the maximum allowable flow through 

the PAT 

c) Maximum in the bypass line (parallel) is the maximum value retrieved from the 

PRV which is already installed (obtained from Epanet – hydraulic simulator) 

 

 

For an accurate representation of the network and applying MPC, it is worthwhile to include 

as many constraints as possible. Therefore, this work includes all the above constraints into 

the prediction model of the control design algorithm. As mentioned above, one of the most 

important constraints is network pressure. It is crucial to always keep the pressure at 

acceptable values to avoid pipe damage due to high pressure or not meeting demands due to 

low pressure.  
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Additionally, another set of important constraints is the head loss in pipes. Usually, in 

literature, flow models are used without considering the pressure to avoid taking head loss 

into account, because the equations to model the relationship between head and flow are 

non-linear. Nevertheless, these equations are important to give an accurate representation of 

the network dynamics. 

 

There are numerous ways ranging from linearisation to approximation techniques to 

approximation methods and optimization algorithms, to tackle these non-linear equations.  

At the same time, there are also different formulas to calculate the flow pressure. Some 

examples include Hazen-Williams, an exponential representation between head and flow. 

Another example includes Darcy-Weisbach, which is a non-linear quadratic representation 

including a dimensionless term called friction factor. The friction factor depends on a flow 

regime ranging from laminar flow to fully turbulent flow. Due to the friction factor being 

applicable for a range of flows, Darcy-Weisbach is proven to be an accurate formula to 

represent the head loss in a pipe. Therefore, the latter is used to represent the head loss in 

pipes and an approximation method is developed using the interp1 function in yalmip.  

 

Interp1 is a type of approximation method of constructing new data points within a range of 

the discrete set of known data. This is an alternative methodology to linearisation or other 

approximation techniques used for representing a head loss in networks. Linearisation 

methods use either Hazen-William and Darcy Weisbach formulas and construct a linear 

relationship between head and flow at a specific operating point in the network. This 

operating point could be the equilibrium point where the input and output derivatives are 

zero. Furthermore, in the current literature other approximation techniques are used, in the 

most common ones the head loss equations are modeled using a smooth polynomial 

function, and the error between the original and the modeled is reduced over a range of flow 

values to get the best approximation for the head loss (Pecci, et al., 2017). This method looks 

promising as it can be used in analyzing large-scale water networks, but the only drawback 

is errors still exist due to the nature of the methodology. Therefore, in this work, an improved 

approximation method is used as opposed to other methods available in the existing 

literature. Using interp1 is further explained in section 3.4.3 – Algorithm Flow 

 

The other set of constraints is tank level maintenance. Since the network used in this work 

has tanks, it is important to keep their levels within the minimum and maximum levels to 
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ensure demand is always met and tanks do not overflow in the case of flow increasing above 

the maximum level. For the final two sets of constraints on PAT operation and flow 

constraints, sections 3.4.3.4 of this thesis reveal the logic and constraints on the actuators 

(valves) in a comprehensive approach. 

 

Before applying model predictive control, the prediction model needs to be designed using 

the constraints mentioned above and the cost function which is a multi-objective function in 

this work. The main challenge in applying MPC in water networks is mainly solving a large 

nonlinear optimization problem while considering the full dynamics of the system and a 

huge amount of decision variables within a sampling time. However, for WDNs the 

sampling time is normally selected to be one hour (Ye, et al., 2018). From referring to Fig 

2.13 in section 2, MPC is in the global control layer and setpoints derived from it are in 

hourly time stamp but in the local control layer, sampling time needs to be less than that. 

The reason being local controllers such as PID need to react faster to control the opening 

and closing of the valves. Most of the literature focusing on the control of WDNs does not 

explain it or include both layers to control the plant.  

 

3.4.2 Cost Function 

 

The objective of this work is formulated into a multi-objective function where a trade-off is 

found in maximizing power and at the same time keeping the common objective of WDNs 

satisfied. A common way to obtain a scalar objective function is to form a linearly weighted 

sum of functions, 𝑓𝑖  (Miettinen, n.d.), 

 

∑ 𝑊𝑖𝑓𝑖
𝑟
𝑖                                                    (3.1), 

When expanded.  

 

𝑚𝑖𝑛𝑧∈Ζ [𝑓1(𝑧), 𝑓2(𝑧), … , 𝑓𝑟(𝑧)]                                       (3.2), 

 

The objective function can be broken down into three parts, 𝑓1 , 𝑓2, and 𝑓3 

 

 

 

 

1) Flow optimization for power maximization. 

 

This part of the objective function ensures that flow set-points are derived for power 

maximization. The range for power maximization is set as in between best efficiency flow 
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to maximize allowable flow through the PAT. The rationale behind the range is for ensuring 

feasibility in the control algorithm, if the controller fails to get a setpoint close to the 

maximum flow it will ensure the flow set point will fall in between that range. The setpoint 

derived from the controller is optimal considering all the constraints and maximizing the 

power of all four PATs proposed at once.  

 

 𝑓1 = ‖𝑢{𝑘} − 𝑢𝑚𝑎𝑥 {𝑘}‖𝑤𝑢  
2 = (𝑢{𝑘} − 𝑢𝑚𝑎𝑥{𝑘})𝑇𝑊𝑢(𝑢{𝑘} − 𝑢𝑚𝑎𝑥 {𝑘})        (3.3), 

 

Where 𝑢𝑚𝑎𝑥  ∈ [ 𝑄𝑏𝑒𝑝{𝑘}, 𝑄𝑚𝑎𝑥{𝑘}] and 𝑊𝑢 is the weight to penalize big changes relating 

to 𝑢{𝑘}. Also 𝑢{𝑘}  ∈ [𝑢{𝑘}(1), 𝑢{𝑘}(2), 𝑢{𝑘}, 𝑢{𝑘}(4)]  and it corresponds to the flow 

setpoint in each PAT, PAT1-PAT4. 

 

 

2) Stability of control inputs 

 

Pumps and valves in networks should operate smoothly to avoid large variations in 

pressurized pipes that could lead to their damage. To obtain the smoothing effect, an 

additional term to the objective function is added which penalized the control signal 

variations. 

 

                    𝑓2 = ‖∆𝑢{𝑘}‖ 𝑤∆𝑢 
2 =  ∆𝑢{𝑘}𝑇𝑊∆𝑢∆𝑢{𝑘}                                     (3.4), 

 

Where, ∆𝑢{𝑘} are the changes of the input vector and 𝑊∆𝑢 corresponds to the weight matrix 

of suitable dimensions. The significance of weights is explained in the constraints section 

under hybrid MPC (refer to section 3.4.3.3).  

 

3) Ensuring feasibility in Tanks 

 

An additional term is added to the cost function, which minimizes a slack variable along 

with the rest of the objectives and that variable is added to the inequality constraints in the 

tanks to ensure infeasibility is avoided when the controller derives the flow setpoints.  

           

𝑓3 = ‖𝑠{𝑘}‖ 𝑤𝑠 
2 =  𝑠{𝑘}𝑇𝑊𝑠𝑠{𝑘}                                                    (3.5), 

 

For example: If a tank has in-equality constraints as: - 

              𝑚𝑖𝑛𝑙𝑒𝑣𝑒𝑙 ≤ 𝑡𝑎𝑛𝑘𝑙𝑒𝑣𝑒𝑙  ≤  𝑚𝑎𝑥𝑙𝑒𝑣𝑒𝑙                                               (3.6), 
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The slack variable is added as: 

               𝑚𝑖𝑛𝑙𝑒𝑣𝑒𝑙 − 𝑠{𝑘} ≤ 𝑡𝑎𝑛𝑘𝑙𝑒𝑣𝑒𝑙  ≤  𝑚𝑎𝑥𝑙𝑒𝑣𝑒𝑙                                  (3.7), 

 

Where, 𝑚𝑖𝑛𝑙𝑒𝑣𝑒𝑙 is the safety level the tank maintains and 𝑚𝑎𝑥𝑙𝑒𝑣𝑒𝑙 is the maximum level 

for the tank before overflow. This will ensure a feasible solution is guaranteed from the 

controller. It is crucial to always get a feasible solution as the controller will set the control 

variables (flow setpoints) to zero if no viable solution is guaranteed. Therefore, this term in 

the cost function will allow us to alter the inequality constraint in the tank levels and further 

expand the range for the controller to give the optimal solution.    

 

 

3.4.3 Algorithm Flow 

 

The algorithm of the MPC used to maximize the energy production from PATs can be 

demonstrated in three separate stages. The first stage includes solving the hydraulics, the 

second is the selection of the theoretical PAT, and the third is the application of MPC which 

will be later called Hybrid-MPC. It is also explained in detail in stage 3 in section 3.4.3.3. 

The following steps are for the first stage. 

 

3.4.3.1 Stage 1 – Hydraulic data of the network 

 

 

1) The aggregated hydraulic network is imported to the Epanet Matlab toolkit (G. Eliades, 

et al., 2016) and the hydraulics are solved to obtain the head/flow values of the pressure-

reducing valves in the network. Demand aggregation is performed by skeletonization, 

and a more detailed explanation is given in (Saldarriaga, et al., 2010). To solve the 

hydraulics, the toolkit needs to set the time duration. For this work, the time duration is 

set to 96 hours to simulate the network for five days. The reason is to test the controller 

for a longer time. The hydraulics is solved, and the surplus head and flow are passed on 

to stage 2 to derive the theoretical PATs.  

 

2) The next step is to obtain data for the approximation technique which uses the interp1 

function and Darcy-Weisbach equation for head loss, the friction factor part of the head 

loss equation attributes to non-linearity. The equation for head loss can be generally 

defined as: 

ℎ𝑖 − ℎ𝑗 = 𝑘𝑖𝑗𝑞𝑖𝑗
𝑛        (3.8), 
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𝑘𝑖𝑗 is the term containing the variable friction factor, it can be defined as: 

                          𝑘𝑖𝑗  = 
8∗𝑓(𝑟𝑒)∗𝐿𝑖𝑗

𝑝𝑖2∗𝐷𝑖𝑗
5∗𝑔

          (3.9), 

Where 𝑓(𝑟𝑒) is the friction factor which depends on Reynolds number (re). In this work, 

this formula is used to estimate the head loss using the interp1 function from the yalmip 

toolbox (Lofberg, 2004). The new interp1 function developed in yalmip can overload the 

usual interp1 function for generating mixed integer-based approximation. i.e., if the previous 

interp1 function could only construct data patterns in spline, linear or quadratic trends, the 

new function can construct data for mixed-integer solutions. In this work, since the logic for 

PAT operating is included in the constraints in the form of binary constraints (this is 

explained in stage 3 in section 3.4.3.3), the problem to solve becomes a mixed-integer 

problem. Therefore, the new interp1 function is used to represent head loss constraints in 

the algorithm.  

 

 

3.4.3.2 Stage 2 – PAT curve selection and operating points 

 

This stage consists of three main functions to determine the optimal PATs and the theoretical 

curves of head/flow and power operational limits.  

 

1) The first function is to determine the best efficiency point (flow and head) to construct 

the curve to get the theoretical pump as a turbine for the specific location. The results of 

(Mitrovic, et al., 2020) show that the best efficiency flow and the head are close to the 

average point at the PRV site. The optimal BEPs for power maximization correspond to 

92% of the average operating flow (𝑄𝑎𝑣𝑔) at the site and 85% for the site’s average 

operating head (𝐻𝑎𝑣𝑔). Therefore, the following equations are used. 

 

 

           
𝑄𝑏𝑒𝑝

𝑄𝑎𝑣𝑔
= 0.95       (3.10), 

 

                                     
 𝐻𝑏𝑒𝑝

𝐻𝑎𝑣𝑔
= 0.85          (3.11), 

 

Before the second function, three rotational speeds are used to get the suitable one for 

the flow/head available in this network. 1005,1510 and 3020 rpm are the three rotational 

speeds used because centrifugal pumps or pumps as turbines are usually coupled with 

asynchronous electric generators with magnetic pole pairs or either 3, 2, or 1 (Mitrovic, 
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et al., 2020). Referring to the methodology in (Mitrovic, et al., 2020) and Fig 3.10, out 

of the three, 1005 rpm is chosen as the one suitable for this network. As the surplus does 

not exceed 30 m and the flow has a big range. Refer to Fig 3.4. for justification for the 

choice.  

 

 
Fig 3.10. Boundaries of available PATs in the market adapted from (Mitrovic, et al., 

2020) 

 

2) Once the rotational speed is decided, the second function is used to determine the 

specific speed based on the best efficiency flow and the rotational speed of 1005 rpm.  

 

                     𝑁𝑠 = 𝑛
𝑄𝐵𝐸𝑃

0.5

𝐻𝐵𝐸𝑃
0.75                                             (3.12),  

     

 

3) The second function also determines the polynomial for the extrapolation of the head 

loss and power curves based on the design variables given by (Novara & Mc Nabola, 

2018). 

𝐻𝑖
𝑃𝐴𝑇

𝐻𝐵𝐸𝑃
= 𝑎 (

𝑄𝑖
𝑃𝐴𝑇

𝑄𝐵𝐸𝑃
)
2

+  𝑏 (
𝑄𝑖

𝑃𝐴𝑇

𝑄𝐵𝐸𝑃
) + 𝑐                  (3.13), 

 

The coefficients are as such, 𝑎 = 1.160, 𝑏 = 0.0099𝑁𝑆 + 1.2573 − 2𝑎 and 𝑐 = 1 −

𝑎 − 𝑏, and 

  

𝑃𝑖
𝑃𝐴𝑇

𝑃𝐵𝐸𝑃
= 𝑑 (

𝑄𝑖
𝑃𝐴𝑇

𝑄𝐵𝐸𝑃
)
2

+  𝑒 (
𝑄𝑖

𝑃𝐴𝑇

𝑄𝐵𝐸𝑃
) + 𝑓       (3.14), 
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The coefficients are such, 𝑑 = 1.248, 𝑒 = 0.0108𝑁𝑆 + 2.2243 − 2𝑑 and 𝑓 = 1 − 𝑑 −

𝑒. The power at BEP was calculated as 𝑃𝐵𝐸𝑃 = 𝜌𝑔𝑄𝐵𝐸𝑃𝐻𝐵𝐸𝑃𝜂𝑚𝑎𝑥 where 𝜂𝑚𝑎𝑥 is found 

using an equation defined by (Novara, et al., 2017) 

 

𝜂𝑚𝑎𝑥 = 0.89 −
0.024

𝑄𝐵𝐸𝑃
0.41 − 0.076 (0.22 + 𝑙𝑛

𝑁𝑠

52.933
)
2
                              (3.15), 

 

4) The third function is to get the optimal PAT which will produce the maximum power. 

Before getting the optimal PAT, the operational limits need to be derived. To get 

maximum and minimum flows the methodology proposed in (Mitrovic, et al., 2020) is 

used. And that suggests getting maximum and minimum flow by using the relative 

mechanical power produced by the pump as a turbine instead of relative flow. Therefore, 

for minimum flow, relative power limits of  𝑃𝑟𝑒𝑙(𝑄𝑚𝑖𝑛
𝑃𝐴𝑇) = [0.25, 0.375,0.5] are used 

and 𝑃𝑟𝑒𝑙(𝑄𝑚𝑎𝑥
𝑃𝐴𝑇 ) = [1,1.5,2] for the maximum flow in the upper limits.  

 

For all three lower and upper limits, the minimum and maximum flow values are derived 

and passed on to the PAT logic function (explained in stage 3 in section 3.4.3.3) along 

with other inputs. The PAT logic function returns the flow that should be passed in the 

generation valve and the bypass valve. Additionally, it also returns the head that can be 

exploited by PAT for power generation, along with the head that needs to be reduced by 

the PRVs in each branch. Finally, to get the suitable PAT for the control algorithm, the 

data from EPANET is used. This has the information on the surplus head and flows 

available at each PRV site. Therefore, using that and power curves the theoretical PAT 

which produces the maximum power is derived.  At the last stage, the operational limits 

of PAT which produces the maximum power are passed on and MPC derives the flow 

setpoints based on a prediction model that is used to mimic the whole network keeping 

all the constraints and the objectives satisfied.  

 

3.4.3.3 Stage 3 – MPC prerequisites 

 

 

Stage three is summarised in four parts; the first part is gathering all the prerequisites for the 

controller and the next part is setting the feasible region for the controller to work which is 

also known as the constraints in the system and application of control. The third part reveals 

how MPC becomes Hybrid-MPC, and the final part shows how the approximation of head 

loss constraints is formulated in the algorithm. 
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1) As the first step in this stage, the matrices to define the network are derived by using the 

modeling techniques as explained in section 2.3.2.1 of this thesis.  

             

2) The time step is selected as t = 3600s for the first set of results which are hourly 

simulations. The time step of one hour is selected as the dynamics in drinking water 

networks change every hour. 

 

3) The next step is defining the control design parameters, for example, the prediction 

horizon is selected as 36 hours, which is the number of future control intervals the 

controller must calculate by prediction when optimizing the manipulated variables at 

any control interval k. The higher the prediction horizon the more the cost of 

computational load, whereas a lower prediction horizon may be inefficient to predict the 

behavior of the system and may make the controller aggressive (Ramasamy , et al., 

2019).  

 

Another important step is to set the values of the weights used on the objective function. 

MPC is multi-objective optimization in nature, and its cost function consists of an 

aggregation of various performance metrics for example squared tracking error or 

change in manipulation. Since these metrics are related to each other, the minimization 

of all the metrics at the same time is infeasible. To avoid this problem weights are 

introduced (Aldaouab, et al., 2019). Accurate tuning of these weights can provide a 

reliable feasible solution. Additionally, the weights can be set according to the priority 

of the objectives, for example, a value of 0.05 represents a low priority on the objective, 

which allows a large tracking error. Whereas a value of 20 represents a high priority and 

a small tracking error is required (Mathworks, n.d.). For this work, the weights on the 

flow objective are set between 1 and 10. Where 1 represents the default value and 10 

represents high priority. The weights switch among the flow objectives to find a feasible 

solution. Furthermore, the weights on the term with the slack variable are set to 0.01 

which is a low priority 

 

3.4.3.4 Stage 3 - MPC constraints and how MPC becomes Hybrid-MPC 
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1) Equality constraints –  

o The system dynamics are set as equality constraints as explained in equation (2.11) 

in section 2.4.2.2 

o The mass balance constraints are also another set of equality constraints as explained 

in the example below. Fig 3.11. shows how to write a mass balance equation at a 

particular location.  

 

 
 Fig 3.11. Part of the case study of the Ballacolla network 

 

From the diagram at node N14, all the flow coming into that node is equal to the flow 

consumed and leaving that node, therefore, at the N14 node if the flow from N14 to N15 is 

denoted as q1 and the flow from N14 to N21 is denoted as q2, also if flow across the PRV2 

is split between flow through generation line (qpat) and bypass line (qbypass) as in HR scheme 

and water consumed at that node is d14; 

 

                        𝑞𝑝𝑎𝑡 + 𝑞𝑏𝑦𝑝𝑎𝑠𝑠 =  𝑞1 + 𝑞2 + 𝑑14                               (3.16), 

 

2) One set of inequality constraints is the state constraints which are the level of the tanks. 

The maximum and minimum levels are obtained from Epanet by simulating the network 

in a steady state for 7 days. Tanks 1, 2, and 3 all have a minimum level of 1m and a 

maximum level of 15m. Additionally, each tank has a diameter of 12 m. This value was 

derived after performing a trial-and-error exercise shown in the appendix of this thesis.  
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3) The other set of inequality constraints is on the manipulated variables (flow in the 

valves) in the algorithm which is the flow across the PAT and the bypass. 

                     𝑞𝑚𝑖𝑛  ≤ 𝑞𝑝𝑎𝑡{𝑘}  ≤  𝑞𝑚𝑎𝑥                                         (3.17), 

  

                                                 𝑞𝑚𝑖𝑛  ≤ 𝑞𝑏𝑦𝑝𝑎𝑠𝑠{𝑘}  ≤ 𝑞𝑚𝑎𝑥                       (3.18), 

  

Where, 𝑞𝑚𝑖𝑛  and 𝑞𝑚𝑎𝑥 are the minimum flow and maximum flow in the PRV              

locations. The minimum flow is zero which means the valves are closed. The maximum 

flow across the generation valve in which the PAT is located is the maximum allowable 

flow value as mentioned in section 3.4.1. The maximum flow for the bypass valve is chosen 

from Epanet as the maximum flow across the PRV at that location in the network.   

 

3.4.3.5 Stage 3 - Hybrid MPC logical constraints 

 

4) The other set of constraints is the binary/logical constraints which make up the term 

“Hybrid”. The binary constraints are used to control the flow in each line in the HR 

scheme. This can be also called MLD (Mixed Logical dynamical) MPC. The binary 

constraints are defined below considering the scenarios of the HR scheme. Fig 3.13. 

shows the operational limits of Pump As Turbines and the flow/head points in the 

network for one theoretical PAT proposed to be installed in the HR scheme as shown in 

Fig 3.12. The PAT curve was chosen after analysis in section 3.4.3.2. 
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Fig 3.12. Ballacolla modified network with PAT installation 

 

 
Fig 3.13.  Head/Flow points with PAT curve and limits 

 

The control variables in the algorithm are the flow setpoints derived using Hybrid 

MPC. Hybrid MPC (HMPC) is derived after the dynamical model defined in 

PAT location: PAT is modelled 

as a GPV in Epanet 

Equation 3.19 

Equation 3.20 

Equation 3.21 

Equation 3.22 
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equation (2.13) in section 2.3.2.2 employs binary control variables or logic states. 

The water network model becomes known as the hybrid dynamical model. As the 

objective is a linear objective, the hybrid dynamical model is piecewise linear, and 

the problem can solve using a mixed-integer linear solver. The framework used in 

the modeling of HMPC is called Mixed logical dynamical systems (MLD), in this 

framework, both linear dynamical systems (water network model) and logical 

variables (logic constraints) are included. For example, if the controller gives zero 

flow for the bypass as the total flow is favorable for power generation, then the 

dynamical model in equation (2.13) in section 2.3.3.2 accommodates the change for 

the binary variable. 

 

The flow across each line can be seen in the configuration as previously shown in 

Fig 2.22, an HR scheme. The configuration is composed of the PAT and a control 

valve in series and the bypass line which has a control valve in parallel. The scenarios 

for the PAT operation are defined below and these are incorporated into the 

dynamical model of the water network.  

 

Scenario 1: In the case where the total flow is less than the minimum flow for power 

generation or the head is less than the minimum head for power generation, then the 

generation line is closed and the bypass is opened. This prevents the potential 

operation of the generator as a motor. The control valve in the bypass line reduces 

the excess head.  

 

 𝑄𝑡 < 𝑄min
𝑃𝐴𝑇 𝑜𝑟 < 𝐻𝑚𝑖𝑛

𝑃𝐴𝑇                                                   (3.19),  

 

 

Scenario 2: In the case where the total flow is between the minimum and maximum 

flow for power generation, and the total head is greater than the head of the PAT 

curve, the bypass is closed, and the total flow goes through the generation line for 

maximum power production.  

 

𝑄𝑚𝑖𝑛
𝑃𝐴𝑇 ≤ 𝑄𝑡 < 𝑄𝑚𝑎𝑥

𝑃𝐴𝑇  𝑎𝑛𝑑 𝐻𝑖 ≥ 𝐻𝑃𝐴𝑇(𝑄𝑡)                       (3.20), 

 

Scenario 3: The case where the total head is between the minimum and maximum 

head for power generation, and the total flow is greater than the PAT flow 

corresponding to the curve. Then part of the flow is bypassed, and the exact flow 
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should be passed through the PAT to further maximize the energy recovery which 

corresponds to the flow from the PAT curve.  

 

𝐻𝑚𝑖𝑛
𝑃𝐴𝑇 ≤ 𝐻𝑡 < 𝐻𝑚𝑎𝑥

𝑃𝐴𝑇  𝑎𝑛𝑑 𝑄𝑖 > 𝑄𝑃𝐴𝑇(𝐻𝑡)                         (3.21), 

 

Scenario 4: The case where the total flow is greater than the maximum permissible 

flow for power generation and the total head is greater than the maximum head for 

power generation. The bypass is active allowing all the flow greater than the 

maximum flow and the rest is passed through the generation line for maximum 

power generation. Both control valves are active to regulate the excess head. The 

PAT curve shown in Fig 3.13 does not have points in this region, but it is defined for 

the rest of the PATs.  

 

                            𝑄𝑡 ≥ 𝑄𝑚𝑎𝑥
𝑃𝐴𝑇  𝑎𝑛𝑑 𝐻𝑡 ≥ 𝐻𝑚𝑎𝑥

𝑃𝐴𝑇           (3.22), 

 

 

 

 

3.4.3.6 Stage 3 - Hybrid MPC head loss constraints 

 

5) The constraints explained below are the approximation of non-linear head loss 

equations, this also includes the available head approximation of pressure-reducing 

valves. An adjacency matrix of a weighted directed graph is used to model the 

relationship between nodes and links (in this work the direction of flow is considered). 

Fig 3.14 shows the transformation from a network to a matrix representation. 

 

 
Fig 3.14. Adjacency matrix with weights in links adapted from (Jaiswal, 2011) 

 

The weights of the links are represented by the head loss equation by  

 

ℎ𝑖 − ℎ𝑗 = 𝑘𝑖𝑗𝑞𝑖𝑗
𝑛                                             (3.23), 
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Where n = 2 as the Darcy-Weisbach equation is used. Additionally, to obtain the value 

of the head loss, the flow chart below is incorporated into the algorithm. See Fig 3.15 

for reference 

 

 

Fig 3.15. Head loss calculation adopted from (Diniz & Souza, 2009) 
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Where the inputs are as follows, 𝜐 is the viscosity of water, Q and L are the flow and pipe 

length. D and ∈ are the pipe diameter and roughness. Depending on the flow and Reynolds 

number the friction factor is determined, and head loss is calculated at the last step. 

Moreover, to illustrate the head loss approximation, an example of a small water network is 

shown below (see Fig 3.16.). 

 

 

 

Fig 3.16. A small water network for illustration purposes 

 

 

The directed adjacency matrix for this network is as follows:  

 

                                           R1  N10  N11 T1  N20 

𝑅1
𝑁10
𝑁11
𝑇1
𝑁20 [

 
 
 
 
      0   1   0   0 0   
      0   0   1   0    0      
      0   0   0    1 0   
      0   0   0   0 1   
      0   0   0   0 0   ]

 
 
 
 

   =     

𝑘4 ∗ 𝑄4
2

𝑘𝑣3 ∗ 𝑄𝑣3
2

𝑘3 ∗ 𝑄3
2

𝑘1 ∗ 𝑄𝑝2_𝑜𝑢𝑡
2

0

                 (3.24), 

 

Since N20 is not connected to another node, that row can be ignored in the calculation. The 

next step is to write all the non-manipulated flows in terms of manipulated flows and 

demands. For this demonstration, only the first row in the matrix is considered for the sake 

of brevity.  

 

                                                       𝑘4 ∗ 𝑄4
2 --- row 1                                                 (3.25), 

 

𝑄4 can be written using mass balance equations as:  

𝑄4 = 𝑄𝑣3 + 𝐷10 , where 𝐷10 is the demand of N10 therefore equation (3.25) becomes: 
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                                                     𝑘4 ∗ (𝑄𝑣3 + 𝐷10) 
2                                                      (3.26), 

 

𝑄𝑣3 + 𝐷10 are the manipulated variables that are used in the hybrid MPC problem and 

demand which is considered a disturbance. The next step is for approximation since the 

equation (3.26) is non-linear, a piecewise affine function representation as its also non-

differentiable. Interp1 function in yalmip is used with the flag as “mixed-integer-linear-

programming”. Therefore, the constraint becomes: 

  

min(𝐻𝑢 − 𝐻𝑑) ≤ 𝑖𝑛𝑡𝑒𝑟𝑝1(𝑄4, 𝑘4 ∗ 𝑄4
2, (𝑄𝑣3 + 𝐷10), ′𝑚𝑖𝑙𝑝′) ≤ max(𝐻𝑢 − 𝐻𝑑)                 

(3.27), 

 

This is written for each row in the adjacency matrix and included in the constraints space 

in the control algorithm.  
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4 Validation 
 

 

Validation for the head loss constraints between the approximation method with interp1 

function in yalmip and the actual head loss function using the Darcy-Weisbach formula. The 

section below shows the validation areas in the network. The network is given below for 

reference, see Fig 4.1.  

 

 

Fig 4.1. Ballacolla network 

 

Validation has been performed for three branches: 

1) Validation 1: From the downstream node, N16 to N17 in pipe 43 (this is the branch 

where the PAT1 will be installed closer to T1 (Tank 1) 

2) Validation 2: From the downstream node, N11 to N12 in pipe 8 (this is the pipeline 

that branches out to pipe 3 and pipe 34 at Node N12  

3) Validation 3: From downstream node, N26 to N27 in the pipe 16  

These validations are selected at random from the network. It also works for all other pipes 

other than the ones validated.  
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Validation 1: Head loss predicted by the approximation technique should be equal to the 

head loss between N16-N17 using the original Darcy-Weisbach formula. Therefore, the 

following steps are performed to compare the two. For the first step, the head loss is 

estimated using the interp1 function individually between N16-N17. The flow between the 

pipes is derived from mass balance equations and the head loss is finally estimated from the 

interp1 function. After the flow is derived, the Darcy-Weisbach formula is used to predict 

the actual head loss. Both trends are then plotted to see if there is any visible error. Fig 4.2 

shows the head loss approximated and the actual head loss followed by Fig 4.3 showing the 

actual error between the two trends and the mean error, also suggests how to make it more 

accurate. 

 

 

Fig 4.2. Head loss comparison in pipe 43 

 

To demonstrate the accuracy, the flag in equation 3.27 is changed. Spline is the flag that is 

set initially, and Fig 4.3 shows the results. Spline is a function that is defined in a piecewise 

nature by polynomials. For accuracy is it often advised to use spline as it generates similar 

results as compared with the original function (Pelinovsky, n.d.). For comparison purposes, 

the flag is now set as “linear” (head loss is approximated as a linear function) and Fig 4.4 

shows the results.  
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Mean error is calculated as: 2.25e-15 m ~ 0 m 

 

 

Fig 4.3. The error between the two trends using the flag spline 

 

      Mean error is calculated as: 2.60e-07 fluctuating around the mean 

  

 
 

Fig 4.4. The error between the two trends using the flag linear 
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The mean error calculated in Fig 4.3 is approximately zero whereas, the mean error 

calculated using the “linear” flag is 2.6e-07 and the error in head loss is seen fluctuating 

around the mean error.  Therefore, using spline has proven to yield a more accurate 

representation of the original formula. It is also proven in the next validations.  

 

Validation 2: Like the first validation, the second one is performed. The head loss in pipe 8 

between node N11 and N12 (from Fig 4.1) is validated by comparing the head loss 

approximated using the interp1 function and the actual head loss calculated using the Darcy-

Weisbach formula. The results are given in Fig 4.5 

 

 

Fig 4.5. Head loss comparison in pipe 8 
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The mean error is calculated as: 1.11e-16 ~ 0 m 

 

 

Fig 4.6. The error between the two trends using the flag spline 

 

The mean error is calculated as 3.42e-7 

 

 

Fig 4.7. The error between the two trends using the flag linear 

 

The mean error calculated in Fig 4.6 is approximately zero whereas, the mean error 

calculated using the “linear” flag is 3.42e-7 and the error in head loss is seen fluctuating 

around the mean error 
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Validation 3: Like the first and second validation, the third one is performed. The head loss 

in pipe 16 between node N26 and N27 (from Fig 4.1) is validated by comparing the head 

loss approximated using the interp1 function and the actual head loss calculated using the 

Darcy-Weisbach formula. The results are given in Fig 4.8 

 

Fig 4.8. Head loss comparison in pipe 16   

 

The mean error is calculated as: 7.43e-15 ~ 0 m 

 

 

 

Fig 4.9. The error between the two trends using the flag spline 
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The mean error is calculated as 1.83e-7 

 

 

 

 

Fig 4.10. The error between the two trends using the flag linear 

 

The mean error calculated in Fig 4.9 is approximately zero whereas, the mean error 

calculated using the “linear” flag is 1.83e-7 and the error in head loss is seen fluctuating 

around the mean error.  

 

A similar pattern is seen for comparisons in the trends using two different flags in the 

equation (3.27) with validation 1,2,3. Therefore using a spline flag has proven to be more 

accurate than the linear flag.  It was also tested for linear type flag as yalmip does not support 

quadratic or cubic representation. The validation of the interp1 function is proven to be 

accurate using the spline flag and it can be used as an alternative for linearisation. 

Linearisation usually is time-consuming as an operating point needs to be derived and 

it can be only accurate around that operating point. The difference between this method 

and linearisation is, that the full non-linear function is considered making it a more 

accurate representation of the head loss constraints.  
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5 Results 
 

A case study of 29 nodes and 29 links is used to apply power maximization through flow 

optimization using Hybrid-MPC. This is a gravity-fed network with a reservoir at 160 m 

a.s.l. Initially, this network is tested in Epanet (Hydraulic simulator) to ensure the network 

adheres to basic principles in hydraulics. Next, the network is exported to MATLAB and 

the methodology is applied. Four theoretical PATs are installed at the location of the existing 

PRVs. The methodology proposed in this work is applied to the network and the results are 

plotted for five days. The reason for five days is a random selection, the controller works for 

any period between 1-10 days. To test if the controller can take on unmeasured disturbance, 

such as changing demand randomly and adjusting its ability to derive the optimal flow 

setpoints, the demand is changed in the simulation loop (a random number is generated and 

added to the demand – The demand patterned used for this work is the ballacolla demand 

pattern in Fig 3.7 and the d-town demand pattern in Fig 3.8) which means the controller does 

not know what the demand will be at each time step.  

 

As mentioned in the methodology a hybrid-mpc is used to maximize the power generation 

through the PATs by deriving the optimal setpoints for the lower-level control layer (this 

layer performs the physical opening of valves, and it has PIDs giving instructions obtained 

from the upper layer which has the mpc). This methodology is compared with linear mpc 

without logic constraints. PAT operation is done after deriving the setpoints in linear mpc. 

This comparison is done to answer two sub-questions from chapter 1 derived from the 

research question: 

 

1) Is there an improvement in maximizing the power of all PATs simultaneously 

between the controllers called hybrid MPC and linear MPC 

 

2) Which controller performs better for it to be suitable for near real-time operation 

 

For the first question, the results of the four PATs are shown below and an explanation is 

given comparing both controllers. 
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5.1 Flow results for PAT1 
 

To observe if there is any change in theoretical power generated when comparing the two 

controllers, linear mpc and hybrid mpc, two figures are shown which plot the flows in the 

generation line, and bypass line respectively for PAT1. From Figs 5.1 and 5.2 a comparison 

in the flows is shown along with tank level changes that occur due to the inflow coming 

from the valve line and outflow flow which has a downstream demand node. The main 

difference observed between the two is that flow through the hybrid mpc remains 

between the minimum flow allowable and the maximum flow allowable.  

 

PAT 1 in the location of PRV1 

 

 

 
Fig 5.1. Flow in PAT1 and Bypass for Hybrid MPC 
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Fig 5.2. Flow in PAT1 and Bypass for Linear MPC 

 

 

For linear mpc the variation is not limited to that range but from 0 to the maximum flow 

allowable. This means the bypass is active for most of the time and in linear mpc, the 

controller cannot derive the optimal setpoints as the PAT operational constraints are 

outside of the algorithm, therefore the power generated by hybrid mpc overpowers the 

power generated using linear mpc. Another important observation is that the flow in 

hybrid MPC is mostly constant for the five days simulation, the bypass flow has large 

variations to compensate for the constant flow in the PAT (even though it looks 

constant, there are small variations that are not very visible in Fig 5.1). (Voltz & 

Grischek, 2019) states for maximizing power generation, it is most suitable if the flow 

through the PAT is a constant flow and not fluctuating. Therefore, the controller is 

trying to keep the flow through the PAT constant.  

 

The tank levels are shown in the pink line in Fig 5.1 and 5.2 shows the level changes in 

tank 1 which is situated downstream of PAT 1. From Fig 5.1, in hybrid mpc, the tank 

level increases in the first 10 hours because the sum of the flow in bypass and generation 

line (total flow in the black dotted line) is increasing before it starts to decrease. This 

makes the tank level peak up to about 10m and soon after the total flow starts to decrease 

to a downward peak, this makes the tank level start to decrease soon afterward before it 
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starts to fluctuate around 9m. This is partly due to the outflow from the tank as the 

demand node is also attributed to the changes in the tank level. The same pattern is seen 

repeating in the next hours up to 96 hours. However, the important thing to note here is 

that total flow through PAT and bypass is only varying because of the flow in the 

bypass, it has the same trend. The flow through PAT is more or else constant which is 

favorable for power generation (Voltz & Grischek, 2019). On the other hand, for linear 

mpc, the controller predicts the total flow instead of going through the PAT logic to 

give PAT flow and bypass separately (hybrid MPC). After the controller predicts the 

total flow, the logic is applied which determines the best operation for the PAT to 

generate power. The tank level starts to increase as the total flow is high for nearly 5 

hours. Soon afterward the tank level starts to become constant as the PAT flow is 

constant. This is also due to the outflow from the tank serving the demand node 

downstream of the tank like the inflow (influenced by the total flow in bypass and PAT). 

Moreover, Fig 5.3 for hybrid MPC below shows the total flow/ available head points 

(red dots) derived by the controller and the flow/head (black dots) through PAT 1. The 

logic is seen to be operating correctly inside the predictive model and there are no 

flow/head points below the minimum flow value (not favorable for power generation). 

Another interesting discovery is that the maximum flow allowable is also the best 

efficiency flow through the PAT. This limit was derived after analyzing the average 

operating points for PRV 1 from EPANET and using the second section in the 

methodology to obtain the PAT with maximum power generation 

 

 

 



  

80 

 

 

Fig 5.3. Flow-Head points in Hybrid MPC for PAT 1 

 

5.2 Flow results for PAT 2 
 

PAT 2 is located between node N13 and node N14 in Fig 4.1. PAT 2 is not influencing any 

tank level except the flow through PAT 1 and PAT 4. The objective for generating the 

optimal setpoints for this has the second priority in the cost function for power maximization 

term. The priority for power maximization term has different values. The order of 

priority can be ranked as follows: 

High – Low priority: PAT 3 – PAT 2 – PAT 1 – PAT 4 

This is due to the way the PRVs are present in the branches. The branch closer to the 

reservoir has the highest priority and the farthest one has the lowest. If the other way is 

done, then PAT 3,2,1 will have no improvement in power generation. This theory was 

tested numerous times and the weights are tuned accordingly. 

  

Fig 5.4 and 5.5 shows the flow through PAT and bypass. Since it does not directly 

influence the inflow to any tank, no tank levels are shown. The total flow in the hybrid 

mpc setup becomes equal to the flow through the PAT when the bypass flow becomes 

zero. Another observation is that the flow through the PAT in hybrid MPC does not fall 
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to zero, this is because since the logic is integrated into the algorithm the controller can 

decide in advance to prioritize for power maximization. Hence the flow setpoint derived 

from the controller is the total flow that is passed through the PAT with the bypass being 

closed. This does not allow for the PAT flow to become zero like in linear mpc. In the 

linear mpc, the opposite happens, as the controller is unable to prioritize the power 

maximization as it does not know in advance the logic, which makes the total flow 

unfavorable for power generation. This theory further confirms the findings of (Voltz 

& Grischek, 2019) where author says for maximizing power generation, is most suitable 

if the flow through the PAT is a constant flow and not fluctuating. Additionally, from 

Fig 5.6, it can be observed that there are some points less than the maximum flow, which 

explains the fluctuations in the flow in Fig 5.4, also the points where the bypass is closed 

(left side), total flow is passed through PAT 2 and the PRV in the generation line reduces 

the head.  

 

Fig 5.4. Flow in PAT2 and Bypass for Hybrid MPC 
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Fig 5.5. Flow in PAT2 and Bypass for Linear MPC 

 

 

 

Fig 5.6. Flow-Head points in Hybrid MPC for PAT 2 

 

 

Flow(L/s) 
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5.3 Flow results for PAT 3 
 

PAT 3 is located between nodes N10 and N11 (refer to Fig 4.1). PAT 3 is influencing the 

inflow to tank 2 as it is to be installed in the main branch dividing the pipeline, with one 

towards the tank and the other towards PAT 2. Therefore, it has the main priority as the flow 

setpoint derived from the controller will affect the other PATs in the other branches.  

 

From Figs 5.7 and 5.8, the total flow in linear mpc and hybrid mpc has a similar trend 

with different fluctuations.  This part is the reason the tank level stays almost the same. 

Although it is not very visible there is a slight increase in tank level in hybrid mpc. 

Nevertheless, it is because the total flow is also slightly higher, which means the inflow 

to the tank is also higher. It is not very clear but if zoomed in the change is visible. 

Moreover, the head/flow points in the PAT 3 operation are given in Fig 5.9. From Fig 

5.8 it is visible that for one flow head point the logic does not work correctly as planned, 

it bypasses the flow instead of allowing total flow to pass through the PAT 3. The reason 

is due to the mixed integer nature of the logic operation. As the quadratic PAT curve 

(discrete trend) is also approximated using the interp1 function, the controller is unable 

to derive the flow point right below the curve, so it opts to find the next suitable flow 

point hence some flow is bypassed in the process.  

 

  

 
 

Fig 5.7. Flow in PAT3 and Bypass for Hybrid MPC 

 



  

84 

 

 

 

Fig 5.8. Flow in PAT3 and Bypass for Linear MPC 

 

 

  

 

For only this 

point, the flow is 

slightly by 

passed and the 

head is reduced 

Flow(L/s) 
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 Fig 5.9. Flow-Head points in Hybrid MPC for PAT 3 

Additionally, Fig 5.10 below shows a close-up of Fig 5.9 where where the flow is 

greater than 170 L/s 

 

Fig 5.10. Close up of the Flow-Head points in Hybrid MPC for PAT 3 

 

5.4 Flow results for PAT 4 
 

PAT 4 is located between the nodes in N21 and N22 (refer to Fig 4.1). The flow through 

the Bypass and this PAT is directly influenced by the flow through PAT 2 and PAT 3. 

Moreover, the inflow to the tank (tank 3) downstream of this tank will also get affected 

because of this PAT.  

 

From Fig 5.11 and 5.10, it can be observed that the trend in the hybrid mpc flow is 

similar to the PAT flow in PAT 2 (refer to Fig 5.4). This is because both PATs are to 

be installed in the same line, therefore this PAT which is called PAT 4 is influenced by 

the optimal flow through PAT 2 and PAT 3. Therefore, the controller has the least 

priority for this PAT. If the controller weights are set to be equal for all flow setpoints 

in PATs, results from it will generate more power, but other constraints will not be 

satisfied e.g.: tank levels will go beyond the maximum level to cause overflow.  
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Additionally, from Fig 5.11 and 5.12 for linear mpc, the bypass flow is more than in the 

hybrid mpc, this is because the total flow, which is the flow in bypass and the flow in 

PAT is higher for linear mpc. This is the reason for the rise in the tank level trend in the 

linear mpc. Furthermore, as the trend in PAT flow for hybrid mpc and linear mpc is 

similar, no improvement in power generation is seen. This will be clearer when 

observing the power curves for this PAT. Also, from Fig 5.13 most of the flow setpoints 

are on the right side of the diagram, which means the bypass is switched on. The only 

times both bypass is closed is for the points toward the left side of the diagram. 

 

 

Fig 5.11. Flow in PAT4 and Bypass for Hybrid MPC 
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Fig 5.12. Flow in PAT4 and Bypass for Linear MPC 

 

 

 

Fig 5.13. Flow-Head points in Hybrid MPC for PAT 4 
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Moreover, the next sections demonstrate the stability aspect of the controller. As 

mentioned before the cost function is a multi-objective function and has three terms, (i) 

maximize power (ii) stability (iii) ensure tank levels are maintained. Therefore, the next 

section will show how stability changes when that term is omitted in the objective 

function. 

 

5.4 Stability  
 

For smooth operation of valves, the range of ∆Q (change in flow between one-time 

steps) is kept between 0 - 50 L/s, this is chosen for a valve with a ranged ability of equal 

percentage. This is the most chosen range for control valves used in practice. Even 

though the top layer of control is deriving the setpoints from MPC, the bottom layer 

(PIDs) is controlling the opening/closing of valves. PID controllers are linear devices 

and for optimal performance, the process should behave linearly too, but that is not the 

case in practice. The pressure difference is not always constant, and it is a function of 

the flow, and it changes with the valve position. Due to this, the inherent flow 

characteristics are often distorted by the process, and the resulting curve is known as 

the installed valve characteristic. Therefore, to refine the linearity requirement to reflect 

the installed valve characteristic, it is advised to use a control valve with an equal 

percentage of inherent characteristics to obtain a linear installed characteristic (Smuts, 

2013).  

 

The below Figs 5.14 - 5.17 are plotted with and without the stability term in the objective 

function. The changes in the PAT flow are not shown as it is not very visible as the bypass 

flows. Because of previous sections, it can be concluded that PAT flow does not change 

frequently, only the bypass flows show a variation in flow. Nevertheless, it is seen that 

without the stability term, the valves’ opening degrees fluctuate higher with time, whereas, 

with the stability term added, the valves do not change their opening degrees frequently. 

Therefore, it is safe to conclude that adding the stability term has improved the valve 

performance thus keeping sudden variations from occurring which in turn will cause an 

unsteady state in the network. The next section shows if there is any improvement in the 

power generation between the two controllers, answering a sub-question from the main 

research question.  
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Fig 5.14. With and without stability in the bypass of PAT 1 

 

Fig 5.15. With and without stability in the bypass of PAT 2 
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Fig 5.16. With and without stability in the bypass of PAT 3 

 

 

Fig 5.17. With and without stability in the bypass of PAT 4 
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5.5 Power improvement between Hybrid MPC and Linear MPC 
 

The section will demonstrate if there is any improvement in using hybrid mpc over linear 

mpc and how much extra power will hybrid mpc generate. Table 5.1 is also provided to 

show the total power generated with each controller respectively and show if there is any 

improvement. 

 

 

 

Fig 5.18. Power generated in Hybrid MPC and Linear MPC for PAT 1 
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Fig 5.19. Power generated in Hybrid MPC and Linear MPC for PAT 2 

 

 

Fig 5.20. Power generated in Hybrid MPC and Linear MPC in PAT 3 

 

 

Fig 5.21. Power generated in Hybrid MPC and Linear MPC in PAT 4 
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 Total power in 

Hybrid MPC (kWh) 

Total power in 

Linear MPC (kWh) 

% Improvement 

PAT 1 488.16 481.041 1.48 

PAT 2 75.83 74.82 1.35 

PAT 3 3008.330 2918.428 3.08 

PAT 4 99.56 99.56 0 

 

Table 5.1. Power generated in PAT1-PAT4 

 

The table shows the total power in (kWh) generated by hybrid mpc and linear mpc for the 

five days of simulation. The first PAT has only a 1.48% improvement, PAT 2 has 1.35% 

and PAT 3 has a 3.08% improvement and PAT 4 has no improvement. This is due to the 

prioritization of the power maximization term in the objective function. The order of priority 

is as follows: High – Low priority: PAT 3 – PAT 2 – PAT 1 – PAT 4. However, as PAT 

3 has the highest priority, the power generated is almost double that of PAT 1 and PAT 

2. Also, since PAT 4 is getting the effects of PAT 3 and PAT 2, has no improvement 

been shown. Additionally, part of the reason for the improvement in PATs 1 2, and 3 is 

due to using tanks to store water and use them at a later stage to maintain the PAT flow. 

Moreover, from this conclusion, it is evident that hybrid mpc has the upper hand in 

power generation. The next section shows how the algorithm honors other constraints 

such as keeping pressure in the critical node above the required pressure.  

 

5.6 Pressure at critical node 
 

The network has a critical node at N20, which is downstream of tank 1. As per the constraints 

in the algorithm, it is designed to always maintain the pressure between 12 m – 40 m. 

Therefore, from Fig 5.22 it can be seen that both for linear mpc and hybrid mpc, the pressure 

is kept within the required range.  
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Fig 5.22. Critical head comparison 

 

5.7 Unmeasured disturbance – changing demand 
 

To further test the performance and the quality of the hybrid controller, an unmeasured 

disturbance was added to the model. This is in the form of demand; the interesting point is 

that the controllers do not know what the demand is before predicting as the demand is added 

only in the simulation loop and the controller needs to act immediately in real-time. This 

study was done purely for stretching the controller’s ability to predict unforeseeable future 

events. For this work, the demand is changed every hour to both the Ballacolla demand 

pattern and the D-town demand pattern. The flow through PATs 1 - 4 and bypass is shown 

below in Fig 5.23 - 5.26. To see a difference in the flows in the generation lines and by-pass 

lines, the lines are plotted in different colors. The tank level is also plotted to show the reason 

for the variation of the total flow in the PAT and Bypass lines. PAT 2 has no direct influence 

on any tank, so Fig 5.24 only shows the flow comparison.  

 

For the unmeasured disturbance, a random demand is generated using the rand function in 

MATLAB. The demand patterns for the Ballacolla demand pattern and D-town demand 

pattern from Epanet are multiplied by a random number and simulated at each time step. 

From Fig 5.23 – 5.26 it can be observed that the algorithm can consider the unmeasured 
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disturbance and react accordingly. Moreover, the tank level is kept within the minimum and 

maximum level keeping an extra volume in case of an emergency. Furthermore, it is not 

tracking the changes to the flow in the PAT and bypasses demand as it is generated 

randomly. 

 

 

 

Fig 5.23. Flow comparison between demand derived from demand patterns and 

unmeasured demand in nodes for PAT 1 in hybrid MPC 
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Fig 5.24. Flow comparison between demand derived from demand patterns and 

unmeasured demand in nodes for PAT 2 in hybrid MPC 

 

  
Fig 5.25. Flow comparison between demand derived from demand patterns and 

unmeasured demand in nodes for PAT 3 in hybrid MPC 
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Fig 5.26. Flow comparison between demand derived from demand patterns and 

unmeasured demand in nodes for PAT 4 in hybrid MPC 

 

5.7 Performance of Linear and Hybrid MPC 
 

To test which controller can be used in a near real-time operation, the time taken for 

simulations done for five days was recorded. First, the time taken for each time step using 

hybrid mpc was recorded and from the simulation, it took an average of 3.7 s. Fig 5.27 shows 

a snapshot of the simulation time of hybrid mpc in which the average time was calculated 

for 96 hours. Fig 5.27 and Fig 5.28 merely show a small section of the long simulation. 

Similarly, Fig 5.28 shows a snapshot of the simulation using linear mpc. From the results, it 

was evident that the simulation for the linear mpc is faster than the hybrid mpc by almost 

2.5s. Moreover, the reason for faster performance is merely due to the logic being 

implemented inside the control algorithm in the hybrid mpc.  
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Fig 5.27. Snapshot of simulation time using hybrid mpc 

 

 

 
 

Fig 5.28. Snapshot of simulation time using linear mpc 

 

 

Furthermore, the simulation was performed for 96 hours (five days) and the prediction 

model was only for 36 hours (1.5 days). The prediction time was chosen in a trial-and-error 

method and it will change the performance of the controller if reduced or increased. For 

example: if the prediction model is less than 1 day, the controller becomes more aggressive 

and gives infeasible solutions, and if it is more than 2 days the controller takes time (> 1 

min) to give solutions. The reason for keeping it at 1.5 days is to allow for real-time 

operation of the controller in the future work 
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6 Discussion and Conclusion 
 

 

6.1 Discussion 
 

The main aim of this thesis is to find a way to maximize the power generated from PAT 

technology in Water Distribution Networks during their operation. To do that, the second 

chapter focused on a thorough background study in understanding the hydraulic principles 

of WDNs. Soon afterward a study on energy consumption of WDNs was performed in 

understanding the consumption at each process involved from sourcing raw water – to 

treating – distributing – usage. This concluded that not only is it energy intensive, but 

harmful GHG emissions are also associated with each process. Therefore, it is important to 

make WDNs energy efficient. One of the ways to make it energy efficient is by introducing 

pressure management (PM) to networks. One of the ways to introduce PM is by installing 

Pressure Reducing Valves at locations where higher pressure is noticed. However, it was 

noticed that PRVs have disadvantages themselves. They lack the reliability to regulate 

pressure at various times of the day. For this reason, the next study was conducted to analyze 

the existing control techniques for PRVs.  

 

Model Predictive control was finalized as the best way to control PRVs and a process 

because it can capture all the dynamics of a certain process and predict its output based on 

the current inputs to the controller. Now looking back at PRVs, the next study was done to 

find a method to recover the lost excess energy that is dissipated when associated with the 

pressure reduction. Therefore, PATs were seen as an attractive option to couple with PRVs 

to recover that potential. The next study then focused on the PAT technology and the best 

way to install it in a water network like the case study. This sparked a gap in the literature, 

using model predictive control to maximize the power in PAT installed within WDNs is not 

focused anywhere. Although it was noticed there is limited literature on how to control large 

hydro-turbines using MPC as well.  

 

 

This led to the development of a controller which is based on MPC to generate flow setpoints 

which will be passed on to the actuators (PRVs) to open/close depending on the inputs. The 

first part was to model the network using modeling techniques and the dynamics from 
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EPANET. The next step focused on obtaining the best theoretical PAT that will be available 

in the market. Even if a PAT is available most manufacturers do not give those curves 

therefore researchers need to find solutions on how to derive them. (Novara & McNabola, 

2018) proposes a method to extrapolate the curves using polynomial equations. Those 

equations need the best efficiency flow/head point of a PAT. To obtain the BEP point, 

practical and theoretical experiments need to be performed. (Mitrovic, et al., 2020), suggests 

a methodology get the optimal BEP from analyzing a PRV database and choosing the correct 

limits for PATs that are currently available in the market. The author states that the best 

efficiency flow is always close to its average point of the PRV site. Moreover, as the author 

suggests, the optimal BEPs for power maximization correspond to 92% of the average 

operating flow (𝑄𝑎𝑣𝑔) at the site and 85% for the site’s average operating head (𝐻𝑎𝑣𝑔). 

Therefore, for this work has its limitations as it uses the method proposed by (Mitrovic, et 

al., 2020) in obtaining the optimal BEPs. 

 

After finding the theoretical PATs, the model of the network is derived using the system 

dynamics and their corresponding matrices are entered into the algorithm. The constraints 

are also added as shown in the methodology. One such constraint is the head loss constraint. 

This work uses an approximation technique to approximate the quadratic terms of the head 

loss using the interp1 function in yalmip. Again, limitations exist as any other quadratic 

approximation technique in the literature, as it does not fully capture the quadratic nature. 

Therefore, in this work, the value of mean error calculated by comparing the approximated 

head loss and the actual head loss is 10-15 and it is derived from using the Darcy-Weisbach 

formula. Nevertheless, the error is almost ~ 0m but future work could be focused on reducing 

this error and enhancing controller performance.  

 

Moreover, for the maximization of power, two types of controllers are compared. One is 

called linear mpc, which used the same objective, but the logic operation is outside the 

algorithm and the latter is called hybrid mpc which has a logic operation in the algorithm 

itself. The objective is to derive the optimal set points by minimizing the error between the 

desired and the actual flow value. From the results, it can be observed that for three PATs 

hybrid MPC outperforms the linear MPC. The generated power in all PATs differs according 

to their priority set in the weights of this algorithm. PAT 3 which is located closer to the 

reservoir has high priority and it generates twice the amount generated from PAT 1 and PAT 

2. However, in PAT 4 there is no improvement observed. For future work, it could be better 
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to see if there is any other way to tune the weight so that these are dynamic instead of static. 

Moreover, the algorithm also has a stability term added to avoid unnecessary variations in 

the valves causing an unsteady state in the network. Therefore, some results are shown 

comparing the performance with the stability and without the stability, term added. From 

the results, it could be seen that there is a difference when the stability term is omitted in the 

objective function. Moreover, the pressure at the critical node is also kept well within the 

range and an extra challenge to the algorithm is also shown. The demand of the network is 

changed at random. This means the controller does not know the demand in advance to react 

to the changes. It must decide in real-time to give the optimal solution. This change is 

referred to as an unmeasured disturbance to the controller. From the results, it could be seen 

that the controller behaves in the way it takes in this unpredicted change and gives the best 

optimal solution for the flow setpoints in each PAT.  

 

Looking back at the research question, “How to maximize the energy generation of PATs in 

WDNs using model predictive control?”   

 

▪ What technology can be used to maximize the potential of PATs in WDNs – From 

this work, MPC was seen as the best option to control WDNs while maximizing the 

power generation in the PATs 

 

▪ While maximizing the potential can model predictive control to fulfill the common 

objectives in water networks such as pressure management – MPC was able to 

maximize the power while keeping the head loss constraints satisfied as well as the 

pressure at the critical node. It was also able to avoid water hammer situations by 

adding a stability term to the objective function. Moreover, it was able to keep the 

tank levels well within the range with saving an extra volume in case of an 

emergency 

 

▪ Is there an improvement in maximizing the power of all PATs simultaneously 

between the controllers called hybrid mpc and linear mpc – Hybrid MPC showed the 

best performance, PAT 1 and PAT 2 an average of 1.5 % increase was observed 

while PAT 3 had a 3 % increase. Nevertheless, there was no improvement in PAT 4.  
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▪ Which controller performs better for it to be suitable for near real-time operation for 

the performance aspect of the two controllers, from simulations, it was observed that 

each run took an average of about 3.7s for hybrid mpc whereas for linear mpc it only 

took 1.5s. The simulation was performed for 96 hours (five days) and the prediction 

model was only for 36 hours (1.5 days). This means the controller predicts its 

behavior well in advance for the 36 hours and therefore it has an idea of the future 

events that can occur. 

 

Additionally, for MPC to act in real-time, the sampling time of the model and simulation 

time can be set as seconds rather than hours/minutes. Although it would then increase the 

computational load, proper design of the model can reduce it immensely. Some best 

practices include choosing linear objective functions and avoiding quadratic objective 

functions where possible. Caching solvers in the optimizer also reduces the time for the 

controller to find an appropriate solver repeatedly for every simulation. Minimizing a slack 

variable in the objective function will also help to ensure feasibility by relaxing some hard 

constraints which means using fewer equality constraints. All the modeling, predictions, and 

simulations were performed in Yalmip 2019/MATLAB R2021a environment. Additionally, 

a method is given in the appendix which will help derive the tank diameter which will 

discrete equations for numerical modeling of WDNs.  

 

6.2 Conclusion 
 

 

This work presents a methodology by combining MPC with logic giving it the name Hybrid-

MPC to cater to PAT operation. The goal of this work is to maximize power while keeping 

the objectives in the water network satisfied. From the results it can be summarised as 

Hybrid-MPC controller performed better at maximizing the power of multiple PATs while 

keeping tank levels satisfied, demand nodes satisfied, and head loss constraints satisfied. It 

can also keep the actuators working smoothly as it is one of the objectives. Throughout one 

can argue the purpose of bypass valve for Hybrid-MPC, it is essential to keep the bypass in 

case the controller is unable to cater for keeping the flow in between the BEP and maximum 

power value the flow will be essentially bypassed to avoid the PAT operating as a motor or 

to avoid overheating scenarios. To compare the work, linear MPC is formulated having the 

same objective function but the difference is that the logic is inserted outside of the 
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predictive model. Therefore, linear MPC only derives the total flow/head setpoints predicted 

and simulated for 5 days.  

 

From the results, it can be seen that PAT1 and PAT2, each have a percentage increase of 

~1.5%, PAT 3 had a 3 % increase and PAT 4 had 0% of extra power that is generated when 

using hybrid MPC compared with linear MPC. This is because the priority of the weights 

included the objective function for all the PATs. If the tuning of the weights changes and 

their priority changes, the percentage will also change. As for this work, the aim is to 

maximize power, the tuning is performed in a way the highest priority is given to the PAT 

closer to the reservoir.  

 

Each run took an average of about 1.5s for hybrid mpc whereas it took only 3.7s for linear 

mpc. This concludes for the performance scenario in operating in near real-time, hybrid mpc 

is much faster than linear mpc. The simulation was performed for 96 hours (five days), and 

the prediction model was only for 36 hours (1.5 days). This means the controller predicts its 

behavior well in advance for the 36 hours and therefore it has an idea of the future events 

that can occur. An additional set of results are given with a varying demand in the simulation 

loop. This exercise was performed to stretch the ability of the controller to take corrective 

actions in the case of an accounted circumstance. The results clearly show that both 

controllers were able to take proper steps to ensure the objectives were met and the 

constraints were satisfied. For future work, it would help to study how model predictive 

control would act in real-time and take valve dynamics into account when predicting the 

flow set points.  
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8 Appendix 
 

Method to derive the diameter for tanks in numerical modeling 

 

To use MPC in a water network, the network dynamics need to be modeled using 

continuous or discrete equations, if the dynamics of the next stage of the network is 

depending on the previous state, discrete equations can be used, if not continuous 

algebraic equations are used. Since this work used discrete equations to model the 

dynamics of the network relating to the volume of the tanks, it is essential to verify if 

the equations give an accurate representation of the dynamics. The volume of a tank in 

a water network can be related by the following discrete equation with the sampling 

time (∆𝑡) of one hour. 

 

𝑣𝑛(𝑘 + 1) =  𝑣𝑛(𝑘) + ∆𝑡 (∑ 𝑞𝑖𝑛,𝑖(𝑘) − ∑ 𝑞𝑜𝑢𝑡,𝑗(𝑘) 𝑗𝑖 )                          (9.1), 

 

The volume of the tank is related to the previous volume with the change in the flow of 

inflow and outflow in the tank. Therefore, the pressure equation at the tank node also 

known as the tank level can be derived by dividing (9.1) by the area of the tank (𝑆𝑛). It 

was assumed cylindrical tanks are used.  

 

ℎ𝑛(𝑘 + 1) =  ℎ𝑛(𝑘) + ∆𝑡 (
∑ 𝑞𝑖𝑛,𝑖(𝑘)− ∑ 𝑞𝑜𝑢𝑡,𝑗(𝑘) 𝑗𝑖

𝑆𝑛
)                                     (9.2), 
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The equation (9.2) was validated with the pressure equation which is the Bernoulli principle 

used in Epanet. Fig 9.1 demonstrates a simple example of how Epanet calculates the pressure 

head at the tank node using the principle. For illustration purposes, if a pipe with a constant 

diameter is used between points 1 and 2 in Fig 9.1, point one is a node in the network and 

point two is the tank node, then the Bernoulli equation relating the energy can be written as 

equation (9.4). Where 𝐸1 and 𝐸2 are elevations of points 1 and 2 and 𝐻𝑙 = The head loss 

between the two points is due to friction and minor losses and since the diameter is constant 

the velocity remains constant for a time step, therefore, 𝑉1 = 𝑉2, If the kinetic energy relating 

to the velocity is ignored equation 30 can be rearranged to equation 31, where the pressure 

head/tank level is 
𝑃2

𝜌𝑔
.  

 

 
Fig 9.1. Example diagram to illustrate Bernoulli equation 

 

𝐸1 +
𝑃1

𝜌𝑔
+ 

𝑉1
2

2𝑔
= 𝐸2 +

𝑃2

𝜌𝑔
+ 

𝑉2
2

2𝑔
+ 𝐻𝑙                           (9.3), 

  
𝑃2

𝜌𝑔
= ∆𝐸 + 𝐻𝑙 + 

𝑃1

𝜌𝑔
                                                       (9.4), 

 

If both the tank levels (T1 and T2) in the network are simulated using equation (9.2) (discrete 

equation) and simultaneously if the tank levels are simulated in Epanet using equation (9.4), 

through trial and error, for certain diameters of the tanks the equations tend to become near 

close to equal with a minute error. Two different sets of results are generated for two 

different diameters to check if the error decreases or increases. This error can be improved 

by more trial and error or by using an optimization algorithm to get a global optimum for 

when both equations become equal.  

 

For tank 1, two diameters are set at one instance, D = 12.2m and at the other D = 12.5m, in 

Fig 9.2 the results for a comparison between the equations (9.2) and (9.4) are shown for D 

= 12.2 m and Fig 9.3 shows the results for the absolute error and the average error. Similarly, 
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Fig 9.4 shows the results for D = 12.5m and Fig 9.5 shows the results for the absolute error 

and mean error between the equations (9.2) and (9.4).  

 

 
 

Fig 9.2. Comparisons between equation (9.2) and (9.4) for D = 12.2 m in Tank 1 
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Fig 9.3. Absolute error(black) and Mean error(red) in Tank 1 for D = 12.2m 

 

 

 
Fig 9.4.  Comparisons between equation (9.2) and (9.4) for D = 12.5 m in Tank 1 

 

 

 

 
Fig 9.5. Absolute error(black) and Mean error(red) in Tank 1 for D = 12.5m 

 

In Fig 9.4 in tank 1 for D = 12.2m, it can be observed that for the initial 27 hours of 

simulation when comparing equations (9.2) and (9.4), the error remains less than 0.02m but 

for the next 21 hours the error increases and stay between 0.16m and 0.18m. The mean error 
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for this scenario is 0.085m but it can be noted that the absolute error does not stay stable, it 

is stable for the first day but there is a sharp increase on the next day. Whereas in Fig 9.4 for 

tank 1 for D = 12.5m, the absolute error is seen to fluctuate around the mean value of 0.086m 

from 12 hours onwards. The mean error is still slightly higher for D =12.2m but there is no 

sharp increase or decrease in the absolute error, only a small change is noticed. Therefore, 

it can be concluded that 12.5m is a better design value for the diameter of tank 1 than D = 

12.2m for the above reasons. The ideal situation would be for the absolute error to fluctuate 

and remain closer to zero, but this can be done by performing more trial and error or using 

an optimization algorithm by having a diameter as the design parameter.  

 

Often in the literature using discrete state space equations for modeling water networks, they 

do not mention the validation aspect. Choosing the correct diameter for the tank in the 

network is crucial as it can depend on if the discrete equations can be used to model the 

network or not. For tank 1, if a diameter less than 12.2m is chosen, modeling using the 

discrete equations can become invalid the results generated from using model predictive 

control can be inaccurate and a different method should be chosen to accurately represent 

the network dynamics.  

 

Similarly, for tank 2, instead of two sets, three sets of results comparing the two equations 

(9.2) and (9.4) are generated for three different diameters. For the first scenario, the diameter 

is chosen as 12m the results are shown in Fig 9.6 and Fig 9.7. For the second scenario, the 

diameter is changed to 12.2m and the results are shown in Fig 9.8 and 9.9 below. Finally, 

the diameter is changed to 12.5m and the results are shown in Fig 9.10 and 9.11, the reason 

behind choosing three different diameters is to support the conclusion reached for tank 1 

results. The discussion is given below the results. 
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Fig 9.6.  Comparisons between equation (9.2) and (9.4) for D = 12m in Tank 2 

 

 
Fig 9.7.  Absolute error(black) and Mean error(red) in Tank 2 for D = 12m 
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Fig 9.8.  Comparisons between equation (9.2) and (9.4) for D = 12.2m in Tank 2 

 

 

Fig 9.9. Absolute error(black) and Mean error(red) in Tank 2 for D = 12.2m 
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Fig 9.10. Comparisons between equations 30 and 33 for D = 12.5m in Tank 2 

 

 

 

Fig 9.11. Absolute error(black) and Mean error(red) in Tank 2 for D = 12.5m 

 

The diameter is set as 12m for the first scenario and Fig 9.6 is the comparison of the results 

of two equations (9.2) and (9.4) for tank 2. It can be seen from Fig 9.7, that there is not much 

difference between the two equations. Although this diameter setting looks promising, from 

Fig 9.7, it can be observed that there is a sharp increase in the absolute error after 25 hours. 

Nevertheless, the mean error which is 0.00837m is very low compared with other diameter 
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settings. For scenario 2, for diameter = 12.2m, it can be seen from Fig 9.8 and 9.9, that the 

absolute error is fluctuating around the mean error. The mean error is 0.0748m it can be 

noted that it is higher than for diameter = 12m, but there is a pattern in the absolute error. It 

remains around the mean error for the first 35 hours and gradually increases and comes down 

after 46 hours. However, for diameter = 12.5 it can be seen from figures 9.10 and 9.11, that 

the absolute error also has a pattern and is around the mean error of 0.0373m but it increases 

without any signs of decreasing after 38 hours.  

 

The interesting fact is that for three different diameter settings the absolute error in the 

comparing equations (9.2) and (9.4) show different patterns. The diameter of 12m looks 

promising as the absolute error remains stable for the first 24 hours at less than 0.002m and 

then there is a sharp increase at the 25th hour up to 0.0175m. for the simulation of the next 

24 hours, the error remains around 0.0175m. Nevertheless, it can be seen that 12.2m offers 

more stability in the absolute error as it fluctuates around the mean value for the simulation 

of 2 days but for the diameter setting, 12.5m shows otherwise. It does fluctuate around the 

mean error for less than 38 hours but keeps on increasing after that. Due to no definite pattern 

with diameter settings 12m and 12.5m, 12.2m is chosen as the optimal setting in this case 

for tank 2. This also proves the point stated in tank 1 results as if the diameter is less than or 

greater than the near-optimal value the equations (9.2) and (9.4) tend to become more 

independent with no pattern in the absolute error.    

 

▪ PAT curves 

 

Theoretical PAT curves for three rotational speeds: 
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Fig 9.12. PAT curves for different rotational speeds



  
  

 

 

 

 


