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Abstract

This thesis is focused on Winograd’s fast algorithms calculating discrete convo-

lutions. More precisely, on the most optimal in terms of the number of opera-

tions subclass of them, that is Toom-Cook algorithms. These algorithms reduce

the number of operations in a calculation process from 𝑂(𝑛2) to 𝑂(𝑛). That

means the larger input data is taken the bigger reduction in number of opera-

tions we have and in a consequence the greater speed up is obtained. However,

the accuracy of computations declines as the input size increases. We undertake

this dichotomy in our thesis. The problem is very essential because calculating

discrete convolutions is a one of the main bottleneck in convolutional neural

networks (CNNs) computations. The time required to train and use CNNs is

challenging even for modern computers.

In our thesis we formulate algorithms to construct transformation matrices

used in Toom-Cook convolutional algorithms. After analysing the mathemati-

cal background of these algorithms we prove that the error of Toom-Cook con-

volution computations grows exponentially with the input data size. This is

caused by poor numerical properties of the transformation matrices. We also

demonstrate that the error of the so called modified Toom-Cook algorithm is

smaller than the error of the original one although it still grows exponentially.

Then we identify the components of a numerical error of these convolution

algorithms.

We propose some techniques that improve the accuracy of the Toom-Cook

convolution computations and verify them empirically for the wide range of

input data sizes. We find that we can tune not only input data size but also the

number, degree and root points of polynomials used to construct transforma-

tion matrices (real valued Vandermonde matrices).

We investigate ways of choosing root points of polynomials which deter-

mine properties of the transformation matrices. We construct sets of optimal

root points for various input tile sizes both in a single and a mixed precision.
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We find that the Chebyshev points which work very good for bigger sizes real

valued Vandermonde matrices do not work properly for smaller sizes used in

DNNs. We propose and test the canonical summation order, based on the idea

of Huffman coding, to further reduce the error in the dot product computa-

tions. All proposed methods result in about 50% reduction in floating point

error of the final computations.

Finally, we come back to the general case of Winograd algorithms. We

present the algorithm for the construction of Winograd transformation matri-

ces. We present a method, using superlinear polynomials, which improves

floating point accuracy. The presented version of the Winograd algorithm of-

fers a larger space of trade-offs between computation complexity and accuracy

using higher order polynomials. Thus, it allows us to find an attractive solu-

tions that are not available when using Toom-Cook algorithms.
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Chapter 1

Introduction

This thesis is focused on improving the numerical accuracy of fast convolu-

tion algorithms - Toom-Cook/Winograd algorithms - used generally for deep

neural networks (DNNs) and especially for one of DNNs subclass, namely for

convolutional neural networks (CNNs). The wide range of CNNs applications

(for example image recognition (Antipov, Berrani, and Dugelay 2016), natural

language processing (Wang and Gang 2018) and forecasting (Vijh et al. 2021))

require very fast - often real time computations and simultaneously with a high

accuracy of numerical calculations. These needs and expectations convince to

scientific research of fast and accurate algorithms for convolution computa-

tions. A firm conclusion that it is possible to achieve these goals is at the basis

of my choice of the subject of the dissertation. However, the main goal of my

thesis focused on increasing accuracy of convolution calculations without in-

creasing the time of computations.

Winograd/Toom-Cook algorithms are used mostly in convolution compu-

tations according to the fact, that they have the least time complexity (number

of multiplication operations) compared to other algorithms that can be used

in these calculations. These algorithms focus attention (He et al. 2015; Taig-

man et al. 2014; Dean et al. 2012; Le et al. 2012; Liu et al. 2018) and are imple-

mented in standard libraries of many giant companies, for example Facebook,

Arm, Intel. The main idea of these algorithms is to transform input data and

weights, perform convolution computations and to transform them back. The
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matrices required for transformation are called Vandermonde matrices and are

constructed from chosen parameters (points). After transformation convolu-

tion computations requires a less number of multiplication operations. The

complexity decreases from 𝑂(𝑛2) to 𝑂(𝑛). The additional transformation com-

plexity amortizes over multiple use of the same sets of weights and input tiles.

Winograd/Toom-Cook algorithms perform calculations of a convolution using

a variable number of operations depending on the number of parameters (root

points). Namely, the number of choosen root points determines the number of

columns in transformation matrices and subsequently the number of multipli-

cation operations.

Unfortunately, the less number of operations is needed the bigger numeri-

cal error of the result is created. The error grows exponentially with the linear

reduction in number of operations. That is because of inadequate numerical

properties of the Vandermonde matrices with elements from the field of real

numbers. This error propagates further through all these computations, it is

accumulated and thus the final result of computations is seriously affected by

it. Hence the final result may be quite distant from the established or expected

theoretical one and subsequently cause a low performance of the entire net-

work. For example an accumulated numerical error results in wrong features

extraction that finally gives incorrect image classification.

For the sake of completeness of the research, it is worth presenting the basic

properties of the artificial neural networks. Artificial neural networks (ANNs)

are biologically inspired mathematical models simulating the human brain. It

is commonly accepted that the origins of ANNs date back to the 1940s as Mc-

Culloch and Pitts then proposed the first computational model of a biological

neuron. ANNs possess the ability to learn from data, and the process of learn-

ing is known as the training process.

Deep neural networks (DNNs) create a subclass of the ANNs and consist of

multiple hidden layers that extract input features.

The results of Toom-Cook/Winograd algorithms can be used in CNNs, a

subclass of DNNs as was mentioned above. CNNs consist typically of mul-
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tiple layers of various types - convolutional layers, pooling layers and fully-

connected layers. Some of them are controlled by latent parameters, which

in general are weights that are learnt during a training process. The convo-

lutional layers perform convolutions to extract features from the inputs and

produce the feature maps. A pooling layer reduces the dimension of a fea-

ture map while preserving the spatial locality of the features in the feature

map. Fully-connected layers perform classification and regression. It is pos-

sible to train these layers to achieve a high accuracy (over 80%) for various

tasks, especially in visual pattern recognition problems. However, even using

modern computers, CNNs are still time and memory consuming. Up to 95%

of convolutional neural network computational time is spent on computations

of convolution (He and Sun 2015). For this reason speeding up convolution

computations is very significant problem in CNNs. The computational time

depends, among the others, on the number of executed operation. The fastest

convolutional algorithms in terms of number of multiplications are the family

of Toom-Cook/Winograd convolution algorithms. However, the flaw of these

algorithms is poor accuracy of the computations. For this reason improving the

numerical accuracy of Toom-Cook/Winograd algorithms is so important.

Figure 1-1: 𝑇𝑜𝑝− 1 accuracy versus number of operations and parameters for a chosen
neural network (Canziani, Paszke, and Culurciello 2016)
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In Figure 1-1 several convolutional networks are presented with the em-

phasis on their computational accuracy, number of parameters and executed

operations. The current research efforts are focused on reducing the number

of operations (x-axis) and on improving the accuracy (y-axis). That means to

achieve for a network a position in the top left corner of the presented figure.

In this thesis we present our theoretical and experimental results that allow to

achieve these goals. The thesis aiming is at improving the numerical accuracy

of fast convolution algorithms and placing networks in the top left corner of

the chart Figure1-1.

1.1 General Research questions

This thesis answers the question, if it is possible to improve the accuracy of the

Toom-Cook/Winograd convolution computations. More precisely, the main

objective of the thesis is to detect the sources of floating point error, then to find

and propose methods for reducing numerical error in fast convolution compu-

tations to keep the proper accuracy of the final result. We focus on the most

optimal in terms of time complexity algorithms that is Toom-Cook/Winograd

fast convolution algorithms.

To reach this aim, the following specific objectives and questions are posed.

• Analysing and developing the algorithms to construct transformation ma-

trices that are involved in Toom-Cook/Winograd algorithms computa-

tions,

• Examining Toom-Cook/Winograd algorithms in terms of which parame-

ters should be tuned to achieve speeding up and a proper accuracy of the

algorithms,

• What factors have an impact for the accuracy of Toom-Cook/Winograd

convolution computations?

• Are there any methods to decrease each component of the numerical error

in Toom-Cook/Winograd convolution computations?
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• Can we balance the trade-offs of Toom-Cook/Winograd algorithm time

complexity and accuracy of convolution computations?

1.2 Contributions

This thesis is focused on improving the floating point accuracy of the Toom-

Cook/Winograd fast convolution algorithms and speeding them up. Accord-

ingly, our main contributions to the numerical and algorithmic fields and DNNs

as well, are the following:

• We provide the exact algorithm with pseudocode and mathematical for-

mula for constructing elements of transformation matrices used in Toom-

Cook/ Winograd algorithm in dependency on chosen parameters (root

points) (Section 3.1, Section 3.1.1, Algorithm 5, Section 3.2, Algorithm 6).

• We analyse the worst-case floating point normwise and componentwise

error bounds in the Toom-Cook algorithm and show that the error grows

exponentially as an error from transformations with Vandermonde ma-

trices dominates overall accuracy( Section 4.4, Theorem 5, Theorem 6).

• We present a formal analysis of the normwise and componentwise float-

ing point error bound for the ‘modified’ Toom-Cook algorithm, and prove

that its error is lower then in the original algorithm, but still exponential

(Section 4.8, Theorem 9, Section 4.9).

• We demonstrate that the order of evaluation of floating point expressions

in the linear transformation impacts accuracy. We propose a canonical

Huffman tree evaluation order that reduces the average error at no addi-

tional cost in computations (Section 5.2.1). The main idea of it is to choose

elements of the similar order of magnitude for every step, to do the cal-

culations.

• We experimentally evaluate strategies for selecting algorithm coefficients

for typical Deep Neural Network convolutions. We identify relationships
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between parameters (points) used to construct Vandermonde matrices

which improve the accuracy of convolution computations (Section 5.2.2).

• We investigate mixed-precision algorithms that compute the transforma-

tions in a double precision. These methods reduce the error typically by

around one third in our experiments (Section 5.5).

• We provide the exact algorithm with pseudocode and formula for con-

structing the elements of transformation matrices for the Winograd algo-

rithm with higher degree polynomials in dependency on chosen parame-

ters (points) (Section 6.1.1, Algorithm 7, Algorithm 8).

• We present experimental results for Winograd convolution algorithm and

show that using a higher-order polynomials can reduce the floating point

error (Section 6.3).

• We point out the trade-off between computational complexity and float-

ing point accuracy for Toom-Cook and Winograd algorithms (Section 6.2).

• We experimentally identify cases where using the Winograd algorithm

with a higher-order polynomials can improve the accuracy of image recog-

nition and/or reduce the complexity of computations when using a lower

precisions (Section 6.3.2).

• We share an implementation of Toom-Cook and Winograd transforma-

tion matrices construction and convolution algorithms on GitHub .

Results presented in this thesis are based on the following publications:

• "Error Analysis and Improving the Accuracy of Winograd Convolution

for Deep Neural Networks", Barbara Barabasz, Andrew Anderson, Kirk

M. Soodhalter and David Gregg, ACM Transactions on Mathematical Soft-

ware (TOMS), 2020, vol. 46, pp 1 - 33 (Barabasz et al. 2020)

• "Winograd Convolution for DNNs: Beyond Linear Polynomials", Barbara

Barabasz and David Gregg", AI*IA 2019 - Advances in Artificial Intelli-

24

https://github.com/BasiaBarabasz


gence - XVIIIth International Conference of the Italian Association for Ar-

tificial Intelligence, Rende, Italy, November 19-22, 2019, Proceedings, Lec-

ture Notes in Computer Science, 2019 vol. 11946, pp307–320", (Barabasz

and Gregg 2019)

• "Hardware and software performance in deep learning" in "Many-Core

Computing: Hardware and Software", Andrew Anderson, James Gar-

land, Yuan Wen, Barbara Barabasz, Kaveena Persand, Aravind Vasude-

van and David Gregg, 2019 pp. 141-161 (Anderson et al. 2019)

1.3 Thesis structure

After the introduction given in Chapter 1, in Chapter 2 we present the state-of-

the-art and also identify current unresolved issues and problems.

At the beginning of the Chapter 2 we present a brief history of Convolu-

tional Neural Networks. Next, we describe several state-of-the-art net architec-

tures. Then, we list CNNs layers and describe functions and operations they

perform. We introduce the IEEE 754 floating point number system – a method

of coding real values in modern computing on variable number of bits and

define the floating point error of a representation and operations. Finally, we

discuss direct and fast convolution algorithms in the context of their accuracy

and time complexity.

In Chapter 3 we present a theoretical background and detailed description

of the Winograd/Toom-Cook convolution algorithm and its modified version.

We provide the algorithms to construct transformation matrices for any chosen

parameters. In particular Algorithm 5, Algorithm 6 are novelties in the field.

In Chapter 4 we focus on theoretical properties of the Winograd/Toom-

Cook algorithm and its modified version. At the beginning we provide the nec-

essary mathematical background and references to literature. Then we present

the numerical error boundaries for one- and two-dimensional Winograd/Toom-

Cook convolution computations and identify the error components.
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In Chapter 5 we propose several practical methods to improve the accuracy

of the Winograd/ Toom-Cook computations. We present the methodology and

the results of tests executed on random data. At the end we discuss our results

and compare them with the state-of-the-art.

In Chapter 6 we focus on Winograd convolution algorithms with super lin-

ear polynomials. We formulate an algorithm to construct transformation ma-

trices. We also discuss its time complexity and compare it to the optimal Toom-

Cook/Winograd convolution algorithm. We present the accuracy test results

for various versions of the Toom-Cook and Winograd algorithms for random

data. We also provide an example results of the whole network accuracy for a

subset of ImageNet dataset with data stored in lower precisions.

Finally, in Chapter 7, we summarise and discuss all the results presented in

the thesis and suggest some possible future research directions.
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Chapter 2

Background and Literature Review

In this chapter we give a brief description of several background topics and in-

troduce basic notions, definitions and notations that are used throughout this

thesis. In what follows we give in Section 2.1 a brief introduction to convo-

lutional neural networks (CNNs) describing layers that CNNs consist of with

special emphasis to convolutional layer. We fix basic mathematical notions,

definitions and notations in Section 2.2. Notational conventions connected with

Winograd algorithm are in Section 2.2.2. Next, in Section 2.3 we present con-

cepts of a floating point number system and its impact on numerical errors

of number representations and computations. Later, in Section 2.4 we pro-

vide definitions of convolution and a direct/naive convolution algorithm. Sec-

tion 2.5 starts with the discussion of the idea of well known fast convolution

algorithms, their time complexity and computational accuracy. Finally, we give

a description of Toom- Cook and Winograd family of algorithms and highlight

the current unresolved issues and problems in the literature of the subject.

2.1 Convolutional Neural Networks

Artificial Neural Networks (ANNs) are inspired by the biological neural net-

works. They have the ability to learn by processing data. This learning process,

called also a training process, is such an adaptation of the network parameters

which leads to the better performance of the tasks. More precisely, during a
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training process after weight initialization, an output is calculated and then an

error is fixed. Then, weights are updated accordingly to the values of errors, to

obtain a more accurate performance of the task.

ANNs consist of artificial neurons and connections between them. The neu-

rons take an input value and process it using internal parameters to produce an

output. Typically they are organized in layers that perform different kinds of

transformations (see Figure 2-1). The output of a one layer becomes the input

to the next one. The idea of applying mathematics and logic to create a compu-

tational model of a neuron or, more generally, a model of a neural network was

introduced by McCulloch & Pitt in 1943 (Mcculloch and Pitts 1943).

The origins of CNNs are usually set in the 1990s and related to the paper

"Gradient-Based Learning Applied to Document Recognition" by Y. LeCun et

al. The authors demonstrated that a CNN model can be successfully applied

for handwritten characters recognition (LeCun et al. 1989). However, there

were some earlier works on convolutional neural networks. For the sake of

completeness we mention a multilayer neural network - Neocognitron pro-

posed in 1979 by K.Fukushima to recognise Japanese handwritten characters

and to pattern recognition (Fukushima 1980). Their work was inspired by

Hubel and Wiesel hierarchical model of the visual nervous system (Hubel and

Wiesel 1959). In the 1980’s a group of scientists from Carnegie Mellon Univer-

sity - Waibel, Lang, Hinton and others - proposed time-delay neural networks

and applied them successfully to speech recognition (Waibel et al. 1989; Lang

1988; Lang, Waibel, and Hinton 1990).

Deep Neural Networks (DNNs) use many layers to extract multiple levels of

features. They consist of input and output layers as well as the subsequence of

multiple hidden layers between them (see Figure 2-1) — their number is called

the network depth. Each layer performs a linear or a non-linear mathematical

operation on an input and it is responsible for extracting a different features.

Convolutional Neural Networks (CNNs) create a class of deep neural net-

works. In these networks, hidden layers perform a linear operation defined as
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Figure 2-1: Artificial Neural Network and Deep Neural Network (figure taken from
blog (McGinty 2018))

convolution between the input and the kernel. 1. For every layer the same set

of weights (kernel) is applied several times to the input regions. The layer pa-

rameters are designed to extract particular features of the input data. They are

used mostly in computer vision, image recognition and object detection where

the input is represented as an array of pixels.

Convolutional Neural Networks in the form as we know and use them now,

were presented by Yann LeCun in 1989 (Backpropagation Applied to Hand-

written Zip Code Recognition (LeCun et al. 1989)). He used a backpropaga-

tion algorithm to learn convolution weights from images of hand-written num-

bers. However, the widespread adoption of this approach started in 2012 with

AlexNet proposed by Krizhevsky (Krizhevsky, Sutskever, and Hinton 2012).

2.1.1 ImageNet and ILSVRC

ImageNet is a set of images tailored for a computer vision research. The work

on this dataset project started in 2006 and was led by Fei-Fei Li (Deng et al.

2009). Their goal was to improve the training data for image classification and

object detection. Right now, it is the most popular benchmark for validating

DNN accuracy. Other common used banchmark datasets for an image recogni-
1Formally the actual mathematical operation is called a correlation but in machine learning

field called a convolution, by a convience
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tion are for example MNIST (LeCun, Cortes, and C.J.Burges 2010) and CIFAR10

(Krizhevsky 2009). The generally accepted way of network accuracy measure-

ment is 𝑡𝑜𝑝 − 1 and 𝑡𝑜𝑝 − 5 scores. The first one is the ratio of the number of

images recognized correctly by network and the number of all tested images.

The second one is the ratio of the number of images for which the correct la-

bel is in five labels highest scores by the network and the number of all tested

images.

The ImageNet Large Scale Visual Recognition Challenge - ILSVRC is an an-

nual competition that focuses around developing image recognition techniques

and algorithms. The goal is to achieve the highest accuracy that is the high-

est percentage of correctly classified images. The participants evaluate their

algorithms/networks on a given dataset (subset of ImageNet) with 1000 im-

age categories (labels). In 2012 AlexNet proposed by Krizhevsky (Krizhevsky,

Sutskever, and Hinton 2012) won this competition, significantly improving the

previous year result (𝑡𝑜𝑝 − 5 score equal to 84.7% comparing to around 75% in

2011). It started a rapid development in the field of convolutional networks and

winning models began to establish the state-of-the-art in the machine learning

field.

2.1.2 Convolutional layer

Convolutional networks consist of a number of hidden layers (convolutional,

activation and pooling layers), which perform various mathematical opera-

tions. They are applied to local regions of an input (see Figure 2-2). The last,

fully-connected layer combines all of the outputs from the previous layer. Al-

though CNNs are applied to various problems in this thesis, for simplicity we

use the notations characteristic for an image classification.

Convolution computations (described in details in section 2.4) performed

in convolutional layers are the most time consuming parts of the convolutional

networks. Up to 95% of the whole time of an operating time of convolutional

networks is spent on convolution computations (He and Sun 2015). Every con-

volutional layer performs a linear operation with its own set of parameters (set
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Figure 2-2: Convolutional Neural Network (source: uk.mathworks.com)

of weights called the kernel) over local regions of the input. The kernel with

defined weights is moved over the input, applied to a few pixels at a time and

a convolution of kernel and input data is computed. So, it means that the same

kernel is used multiple times to compute the whole layer output. Also the same

input data could be convolved with various kernels.

To avoid the reduction of the input size, the border of the zero values is

added to the input. This operation is called padding. A stride determines how

far a kernel moves over the input. If the stride is smaller than the kernel size

we have so called overlaping. That means that the same values of the input are

used more than once for different local convolution computations – Figure 2-3.

The input to a convolutional layer is a three dimensional matrix

(𝑖𝑛𝑝𝑢𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑖𝑛𝑝𝑢𝑡_𝑤𝑖𝑑𝑡ℎ × 𝑖𝑛𝑝𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠). A set of kernels consists of

weights and biases. Those parameters are incrementally modified when per-

forming a training. Weights are organized in a four dimensional matrix

(𝑘𝑒𝑟𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡× 𝑘𝑒𝑟𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ× 𝑖𝑛𝑝𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠× 𝑜𝑢𝑡𝑝𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠). The most

common sizes of the kernel in widely used CNNs are small, like 3 × 3 or 5 × 5.

The corresponding results of convolution computations for every input chan-

nel are summed up and a bias is added to produce a matrix referred to as a

feature map. When we have multiple output channels we use the same input

several times with different set of weights for every single output channel. The

output of the convolutional layer is then a stack of such feature maps.
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Figure 2-3: Overlapping during convolution.
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2.2 Mathematical preliminaries and notations

In this section, we briefly introduce some mathematical preliminaries inten-

sively used across this thesis. Definitions and notations presented here follow
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Higham (Higham 2002), Datta (Datta 2010), Golub (Golub and Loan 2013) and

Wilkinson (Wilkinson 1994) notation. Deeper mathematical explanations could

be found in (Rudin 1986). Introduced definition and theorems are used mostly

in Chapter 4 in theoretical error estimations. Some of them are also briefly re-

called in the later parts of this thesis.

2.2.1 Notation

• 𝑎, 𝑏, 𝑥, 𝑅 - lower and capital letters denote scalars, constants, variables,

and coefficients.

• w = [𝑤1, . . . , 𝑤𝑛] , 𝑤(𝑎) =
∑︀

𝑖𝑤𝑖𝑎
𝑛−𝑖 - vectors are denoted by bold

lower letters, while corresponding polynomials by lower letter with an

argument. For the clarity - polynomials in Chinese Remainder Theorem

are denoted by capital letters 𝑀(𝑎) or 𝑀𝑖(𝑎).

• |w| = [|𝑤1|, . . . , |𝑤𝑛|] is a vector whose coefficients are equal to the abso-

lute values of the vector w coefficients.

• W = [𝑤𝑖𝑗], W(𝑎, 𝑏) =
∑︀

𝑖

∑︀
𝑗 𝑤𝑖𝑗𝑎

𝑖−1𝑏𝑗−1 bold capital letters stand for ma-

trices, while corresponding polynomials by bold capital letters with argu-

ments.

W =

⎡⎢⎢⎢⎣
𝑤11 · · · 𝑤1𝑛

... . . . ...

𝑤𝑚1 · · · 𝑤𝑚𝑛

⎤⎥⎥⎥⎦
• W𝑖: and W:𝑗 denote the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the matrix W respec-

tively.

• |W| is a matrix which entries are equal to the absolute values of the matrix

W elements .

|W| =

⎡⎢⎢⎢⎣
|𝑤11| · · · |𝑤1𝑛|

... . . . ...

|𝑤𝑚1| · · · |𝑤𝑚𝑛|

⎤⎥⎥⎥⎦
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• The special kind of matrices involved in Winograd algorithm called Van-

dermonde matrices will be denoted by V unless there will be a need to

differentiate between them. These matrices has a special form of entries

𝑣𝑖𝑗 = 𝑎𝑗−1
𝑖 for 𝑖 = 1, . . . ,𝑚 and for 𝑗 = 1, . . . , 𝑛.

V =

⎡⎢⎢⎢⎣
1 𝑎1 · · · 𝑎𝑛−1

1

1
... . . . ...

1 𝑎𝑚 · · · 𝑎𝑛−1
𝑚

⎤⎥⎥⎥⎦

• Field of real numbers is denoted by R, while F stands for a field in the

general case.

• Ring of polynomials of a one variable over a field F is denoted by F[𝑎].

• 𝐹 denotes a set of floating point numbers. This set consists of real values

that can be represented exactly in a finite floating point representation,

𝐹 ⊂ R.

• A function 𝑓𝑙 : R → 𝐹 returns a floating point representation of a real

value.

• The floating point representation error is bounded by 𝜀 - called a machine

epsilon

• Computational result that includes floating point error is denoted with

hat ŝ, while exact (theoretical) solution is denoted 𝑠.

• 𝑓(𝑎) - functions are denoted by lower letters with argument.

• Monic polynomial means any polynomial with the leading coefficient

equal to 1.

• w(𝑎) mod x(𝑎) is equal to a polynomial which is the remainder of the

polynomials division w(𝑎)/x(𝑎). In algorithms we also use the notation

𝑅x(𝑎)[w(𝑎)].
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• 𝐺𝐶𝐷(w(𝑎),x(𝑎)) stands for the greatest common divisor of the polyno-

mials w(𝑎) and x(𝑎).

• To estimate and compare a time complexity of algorithms in a consistent

way we use 𝑂(·) notation (Knuth 1998). It describes the asymptotical be-

haviour of a function. The equality 𝑓(𝑛) = 𝑂(𝑔(𝑛)) holds if and only if

there exist a positive integers 𝑟, 𝑛0 such that 𝑓(𝑛) ≤ 𝑟𝑔(𝑛) for all positive

integers 𝑛 ≥ 𝑛0.

• 𝛼, 𝛽, 𝛾 - greek letters that show how the exact number of particular oper-

ations change with the size of data - 𝑛. For example 𝛼(𝑛) = 𝑛 + 1

• 𝑃𝑖 stands for a set containing exactly 𝑖 values.

• vec(W) function that constructs a vector from a matrix W by stacking all

its columns into a one column.

• Diag(w) function that constructs a square diagonal matrix W from a vec-

tor w by putting its elements on the main diagonal.

• W𝑇 stands for a transposition of a matrix W .

• W−1 stands for an inverse of a matrix W.

2.2.2 Toom-Cook/Winograd algorithm notation

• 𝑘,𝑘 × 𝑘, kernel size - dimension of the space which kernel vector/matrix

belongs to.

• 𝑚,𝑚 × 𝑚, output size - dimension of the space which convolution algo-

rithm resultant vector/matrix belongs to.

• 𝑛,𝑛× 𝑛, input size - dimension of the space which input data vector/ma-

trix belongs to.

• A,B,G - matrices used to perform Toom-Cook/Winograd algorithm.
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• Gmodify(𝑛),Amodify(𝑛),Bmodify(𝑛) - matrices used for a modified version of

Toom-Cook/Winograd algorithm with input data of the size 𝑛/𝑛× 𝑛.

• A(𝑛),G(𝑛),B(𝑛) - matrices used for Toom-Cook/Winograd algorithm with

input data of the size 𝑛/𝑛× 𝑛.

• AT−C,BT−C,GT−C - matrices used for the most optimal (Toom-Cook)

version of the Winograd algorithm.

• AW,BW,GW - matrices used for any (except the most optimal one) ver-

sion of the Winograd algorithm.

In Chapter 6 we consider only modified versions of Toom-Cook and Winograd

algorithms and use the notation introduced by Winograd (Winograd 1980b)

and followed by Lavin (Lavin and Gray 2016)

• 𝐹 (𝑚, 𝑘) - set of Winograd algorithms with a kernel of the size 𝑘 and the

output size equal to 𝑚.

• 𝐹𝑇−𝐶(𝑚, 𝑘) - the most optimal version of the Winograd algorithm (Toom-

Cook) with the kernel of the size 𝑘 and the size of the output 𝑚.

• 𝐹𝑊 (𝑚, 𝑘) - set of all Winograd algorithms (with the exception of the most

optimal one) with the kernel of the size 𝑘 and the size of the output 𝑚.

2.2.3 Basic definitions

Definition 1. The Hadamard product of vectors (element-wise multiplication) is de-

noted by ⊙. For any vectors a,b ∈ R𝑛 it is defined as a⊙ b = c ∈ R𝑛

where c = [𝑎1𝑏1, . . . , 𝑎𝑛𝑏𝑛]

For any matrices A,B ∈ R𝑛×𝑚 it is defined as A⊙B = C ∈ R𝑛×𝑚

where 𝑐𝑖𝑗 = 𝑎𝑖𝑗𝑏𝑖𝑗 ∀𝑖 = 1, . . . , 𝑛 ∀𝑗 = 1, . . . ,𝑚.
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Definition 2. The Kronecker product of matrices is denoted by ⊗.

For any matrices A ∈ R𝑛×𝑚 and B ∈ R𝑝×𝑞

A⊗B = C ∈ R𝑛𝑝×𝑚𝑞

where C =

⎡⎢⎢⎢⎣
𝑎11B . . . 𝑎1𝑚B

... . . . ...

𝑎𝑛1B . . . 𝑎𝑛𝑚B

⎤⎥⎥⎥⎦

Definition 3. Let C,E ∈ R𝑛×𝑚 be block matrices where each block is of the size 𝑠𝑖×𝑠𝑗

The Khatri-Rao product is the blockwise Kronecker product defined by C ⊗𝐾𝑅 E =[︁
(Cij ⊗ Eij)𝑖𝑗

]︁
for 𝑖 = 1, . . . , 𝑛/𝑠𝑖 and 𝑗 = 1, . . . ,𝑚/𝑠𝑗 . That is

⎡⎢⎢⎢⎣
C11 ⊗ E11 . . . C1m/sj ⊗ E1m/sj

... . . . ...

Cn/si1 ⊗ En/si1 . . . Cn/sim/sj ⊗ En/sim/sj

⎤⎥⎥⎥⎦

Definition 4. Operation * stands for a convolution.

For two continuous functions 𝑓 and 𝑔 convolution over a finite range (0, 𝑡) is given by

the formula

(𝑓 * 𝑔)(𝑡) =

∫︁ 𝑡

0

𝑓(𝜏)𝑔(𝑡− 𝜏)𝑑𝜏

Discrete convolution is defined over Z - set of all integers, for 𝑓 and 𝑔 discrete functions.

(𝑓 * 𝑔)(𝑛) =
∑︁
𝑖

𝑓(𝑖)𝑔(𝑛− 𝑖)

Definition 5. Jacobian of a differentiable function 𝑓 : R𝑛 → R𝑚 is a matrix J which

elements are equal to the first order partial derivatives.

Jf =

⎡⎢⎢⎢⎣
𝜕𝑓1
𝜕𝑥1

· · · 𝜕𝑓1
𝜕𝑥𝑛

... . . . ...
𝜕𝑓𝑚
𝜕𝑥1

· · · 𝜕𝑓𝑚
𝜕𝑥𝑛

⎤⎥⎥⎥⎦
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2.2.4 Norms

In general, a norm can be defined in any vector space. However, in this thesis

we make use of finite vector spaces R𝑛 and R𝑛×𝑚. Thus we focus on vector and

matrix norms and for simplicity we limit definitions to finite vector spaces.

Definition 6. Vector norm

A vector norm is a function ‖ · ‖ : R𝑛 → R that transforms coefficients of a vector

w = [𝑤1, . . . , 𝑤𝑛] into a scalar (real number). This function has to satisfy the following

three conditions for any vectors w = [𝑤1, . . . , 𝑤𝑛] and v = [𝑣1, . . . , 𝑣𝑛] ∈ R𝑛

• ‖w‖ ≥ 0 and ‖w‖ = 0 if and only if 𝑤𝑖 = 0 ∀𝑖 = 1, . . . , 𝑛.

• ‖𝑘w‖ = |𝑘| ‖w‖ ∀𝑘 ∈ R

• ‖w + v‖ ≤ ‖w‖ + ‖v‖ - (the triangle inequality).

In this thesis we use the following two vector norms:

‖ w‖1 =
𝑛∑︁

𝑖=1

|𝑤𝑖| (2.1)

‖w‖2 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

|𝑤𝑖|2 (2.2)

Definition 7. Matrix norm

The matrix norm is a function ‖ · ‖ : R𝑚×𝑛 → R that transforms the elements of a

matrix R ∈ R𝑚×𝑛 into a scalar (real number). This function has to satisfy the following

conditions for any matrices W,V ∈ R𝑚×𝑛

• ‖W‖ ≥ 0 and ‖W‖ = 0 if and only if 𝑤𝑖𝑗 = 0 ∀𝑖 = 1, ...,𝑚 , 𝑗 = 1, ..., 𝑛

• ‖𝑘W‖ ≤ |𝑘| ‖W‖ ∀𝑘 ∈ R

• ‖W + V‖ ≤ ‖W‖ + ‖V‖ (the triangle inequality)

There are some specific matrix norms corresponding to vector norms. Given

a vector norm on R𝑛, the corresponding subordinate (induced) matrix norm is

defined below.
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Definition 8. Let ‖w‖ be a vector norm on R𝑛. Induced matrix norm ‖W‖, where

W ∈ R𝑚×𝑛 is defined by the formula

‖W‖ = max
x ̸=0

‖Wx‖
‖x‖

From the definition, it follows that all induced norms fulfill the following

inequality

‖UV‖ ≤ ‖U‖ ‖V‖ (2.3)

In this thesis we use the following matrix norms

‖W‖1 = max
𝑗

∑︁
𝑖

|𝑤𝑖𝑗| induced by ‖x‖1 (2.4)

‖W‖2 = max
x

‖Wx‖2
‖x‖2

induced by ‖x‖2 (2.5)

‖W‖𝐹 =

√︃∑︁
𝑖

∑︁
𝑗

|𝑤𝑖𝑗|2 - Frobenius norm. (2.6)

The Frobenius norm is often used in a numerical analysis instead of ‖ · ‖2,

because it is easy to compute and ‖A‖𝐹 = ‖ |A| ‖𝐹 , where |A| is a matrix with

entries equal to the absolute values of the entries of A (Wilkinson 1994).

Definition 9. Any two norms ‖·‖ and ‖·‖′ in a vector space are equivalent if and only

if there exist real numbers 𝑟1, 𝑟2 such that for any vector w, the following inequalities

hold:

𝑟1 ‖w‖′ ≤ ‖w‖ ≤ 𝑟2 ‖w‖′

The definition for matrix norms equivalence is formulated analougously.

Definition 10. Any two norms ‖ · ‖ and ‖ · ‖′ in a matrix space are equivalent if and

only if there exist positive real numbers 𝑟1, 𝑟2 such that for any matrix W,

the following inequality holds:

𝑟1 ‖W‖′ ≤ ‖W‖ ≤ 𝑟2 ‖W‖′
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Definition 11. Condition number of a function 𝑓(𝑎) : R𝑛 → R𝑚 is defined as

𝜅(𝑥) = lim sup
𝜖→0

{‖𝑓(𝑦) − 𝑓(𝑥)‖
‖𝑓(𝑥)‖

/
‖𝑥− 𝑦‖
‖𝑥‖

} (2.7)

where ‖𝑥− 𝑦‖ ≤ 𝜖

If a function 𝑓 is differentiable then

𝜅(𝑥) =
‖𝐽𝑓 (𝑥)‖‖𝑥‖
‖𝑓(𝑥)‖

(2.8)

2.2.5 Buniakowski-Schwarz inequality

In general, an inner product can be defined in any vector space. However,

similarly as in the norm case, we limit our definitions to vector or matrix spaces

R𝑛 or R𝑚×𝑛 defined over the field of real numbers R.

Definition 12. Inner product in R𝑛

An inner product in a vector space R𝑛 is a function

⟨ , ⟩ : R𝑛 × R𝑛 → R

such that the following rules hold for any vectors u,v,w ∈ R𝑛

• ⟨u,v⟩ = ⟨v,u⟩.

• ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩.

• ⟨𝑘 · u,v⟩ = 𝑘⟨u,v⟩ for any 𝑘 ∈ R.

• ⟨u,u⟩ ≥ 0 for any

• ⟨u,u⟩ = 0 if and only if u = Θ.

Definition 13. Inner product in R𝑚×𝑛

An inner product in a vector space R𝑚×𝑛 (matrix space) is a function

⟨ , ⟩ : R𝑚×𝑛 × R𝑚×𝑛 → R

such that the following conditions hold for any matrices U,V,W ∈ R𝑚×𝑛
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• ⟨U,V⟩ = ∠V,U∠.

• ⟨U + V,W⟩ = ⟨U,W⟩ + ⟨V,W⟩.

• ⟨𝑘 ·U,V⟩ = 𝑘⟨U,V⟩ for any 𝑘 ∈ R.

• ⟨U,U⟩ ≥ 0

• ∠U,U⟩ = 0 if and only if U = Θ.

A vector space equipped with an inner product is referred to as an inner vec-

tor space. The defined above inner vector spaces are called Euclidean spaces.

Notice that just from the definition of an inner product it follows that

⟨w,u + v⟩ = ⟨w,u⟩ + ⟨w,v⟩

and

⟨u, 𝑘 · v⟩ = 𝑘⟨u,v⟩

for any 𝑘 ∈ R and u,v,w ∈ R𝑛. Exactly the same equalities are true for matri-

ces.

In Chapter 4 we use intensively Buniakowski-Schwarz inequality (see In-

troduction to functional analysis). This inequality is also known as Cauchy-

Schwarz inequality, Schwarz inequality or Cauchy-Buniakowski-Schwarz in-

equality.

Theorem 1. Buniakowski-Schwarz inequality

Let u and v be arbitrary vectors in an inner product space over the field of real numbers

R. Then

|⟨u,v⟩| ≤ ‖u‖ ‖v‖ (2.9)

where ‖u‖ =
√︀

⟨u,u⟩ and ‖v‖ =
√︀
⟨v,v⟩

Our analysis in Chapter 4 is carried out in a real vector space R𝑛 where

the inner product of two vectors u,v ∈ R𝑛, u = [𝑢1, . . . , 𝑢𝑛],v = [𝑣1, . . . , 𝑣𝑛] is

defined as a dot product of u and v.
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Definition 14. A dot product of two vectors u and v ∈ R𝑛 is defined as

uv = u𝑇 v =
𝑛∑︁

𝑖=1

𝑢𝑖 𝑣𝑖 (2.10)

2.3 Floating Point number system

In this section we describe the floating point IEEE 754 standard for various

number of bits dedicated for every value. We also introduce notation and def-

initions for an estimation the floating point error that comes from a finite bits

representation and arithmetic operations.

In this thesis we focus on floating point number system as FPU (Floating

Point Unit) is widely used in modern devices for example Arm, Intel, (Reuther

et al. 2020). There are also other number systems used for more dedicated

computation tasks. In embedded microprocessors there are mostly fixed point

number system used as a faster and a less power consuming choice – Intel.

However, fixed points representation requires to know in advance the range of

values which in DNNs is unknown before a training. In addition the ranges

may vary accross different network layers that requires an additional data pro-

cessing to perform computations. It makes this number system less convienient

for DNNs (Reuther et al. 2020).

In the last decades as an alternative for fixed point and floating point num-

ber systems, a logarithmic number system was investigated (Swartzlander and

Alexopoulos 1975). It allows to use a wider range of exactly represented val-

ues and makes multiplications and divisions easier than in the floating point

number system. However, additions and substractions in logarithmic domain

might be a non trivial task. A more detailed description and comparison of

these number systems could be find in (Chugh and Parhami 2013; Parhami

2020; Haselman et al. 2005).
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2.3.1 IEEE 754 Standard

The Institute of Electrical and Electronics Engineers (IEEE) standarized it in

1985 in IEEE 754 Standard for Floating-Point Arithmetic technical report (P754

1985). Right now it is the most commonly used standard in a modern comput-

ing.

The floating point number system 𝐹 with the base equal to 2, is a finite

subset of real values where every element 𝑣 ∈ 𝐹 is in the following form:

𝑣 = (−1)𝑠 2𝑒−𝑡 (1 + 𝑚) (2.11)

where:

• The sign bit 𝑠 is equal to 0 or 1 for positive and negative values, respec-

tively.

• The integer 𝑒 stands for an exponent.

• The value 𝑚 is a fraction (also called a mantissa).

• The exponent bias 𝑡 = 2#𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡_𝑏𝑖𝑡𝑠−1 − 1 move the exponent range sym-

metrically (in increments to 1) around zero to allow obtaining negative

exponents. That makes possible to represent values smaller than 1.

When we have 4 bits exponent then 𝑒 ∈ (0, 15) takes only non negative

values but 𝑒 − 𝑡 ∈ (−7, 8) allows to represent the negative values too. Thus

the reciprocal of a floating point is a floating point too. It is also important to

mention that in IEEE 754 the floating point values with exponent containing all

zeros or ones are reserved for special values like for example infinity (Goldberg

1991).

It is worth noting that floating point numbers are not equally spaced in 𝐹

(see Equation (2.11)). However, they are uniformly spread in subranges of 𝐹 .

On Figure 2-5 there are denoted floating point numbers for 3 bits mantissa.

We have eight possible values of 𝑚 and they are equally spaced inside each of

the range: (2−1, 20), (20, 21) and (21, 22) etc. So the distance between the closest

floating points is equal to 1/16, 1/8 and 1/4 for each of the range, respectively.
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Figure 2-5: Floating point numbers for three bits mantissa (figure taken from (Higham
2002)).

IEEE 754 provides two main formats for a number representation: single

(float32/fp32) and double(float64/fp64). The first one uses 32 bits with 8 bits

exponent and the second one 64 bits with 11 exponent bits. Thus bias is equal

to 127 and 1023 for a single and a double precision, respectively.

sign exponent
(8 bits)

fraction
(23 bits)

31 23 0

Figure 2-6: Single precision

sign exponent
(11 bits)

fraction
(52 bits)

63 52 0

Figure 2-7: Double precision

It is not possible to represent exactly all real numbers in the floating point

number system. Firstly, a given number might have to big or to small order of

magnitude or its binary representation could be infinite or too long to be repre-

sented using available number of bits. In this case the values are truncated or

rounded during a conversion which results in an approximated, not the exact

representation. The difference between a real value and its floating point repre-

sentation is called the floating point error. Even a small error then propagates

with all operations and might have a significant impact on the final result of

computations. In general, the more bits the better (more accurate) representa-
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tion. On the other hand storing values in a double precision uses twice as much

memory as in a single precision.

2.3.2 Floating points error

In order to perform all kinds of computations we need to represent real values

in a limited precision. In this thesis we focus on a floating point representation

and the most commonly used IEEE 754 standard we described in Section 2.3.

Mapping the infinite field of real values into the finite set of floating points

results in a representation error that propagates through all the computations.

Also every operation might introduce an additional error. In the case of CNNs

due to a high number of convolution operations it could have a huge impact

on the accuracy of the final result.

To represent a real value 𝑥 in a floating point number system it needs to be

rounded to the value that can be exactly represented in that system.

Definition 15. A conversion from the field of real numbers R to a floating point subset

𝐹 ⊂ R is a mapping function 𝑥 → 𝑓𝑙(𝑥) such that 𝑓𝑙(𝑥) = 𝑥̂ where 𝑥̂ ∈ 𝐹 and

min𝑦∈𝐹 |𝑦 − 𝑥| = |𝑥̂− 𝑥|. It is also called rounding to the nearest operation.

If the absolute of a real value is larger/smaller than the absolute of the

largest/smallest value exactly representable in a given floating point number

system, it is referred as an over/under flow appears. In the absence of an

over/under flow we define the floating point representation error as an ab-

solute of the difference between the real value and its floating point representa-

tion (see Equation (2.13)). As every real value 𝑥 that is not exactly represented

in 𝐹 and no under/overflow, falls between two consecutive floating points,

we can bound the possible maximum floating point representation error by the

half of the distance between them. As floating point numbers are not equally

spaced, the floating point representation error boundary is not a constant and

it depends on which subrange of 𝐹 the value 𝑥 falls into (see Figure 2-5). In

the presented example values 𝑥 ∈ (1, 2) have a maximum floating point error

equal to 1/16 and values 𝑥 ∈ (2, 4) have an error boundary equal to 1/8.
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Following Higham’s notation (Higham 2002) we rewrite the mapping func-

tion as

𝑓𝑙(𝑥) = 𝑥(1 + 𝛿) (2.12)

where 𝑥, 𝛿 ∈ R and |𝛿| < 𝜀 denotes the rounding error of 𝑥 . The value 𝜀 is

called a machine epsilon and it is equal to the half of the distance between 1 and

the next floating point (see (Goldberg 1991; Demmel 1997)) - Sometimes this

value is called a roundoff unit while the machine epsilon is a distance between

1 and the next floating point value. In this thesis we stay with Goldberg and

Demmel definition. For a different floating point number systems there are

different values of epsilon.

Using Equation (2.12) we define the floating point error as the absolute dif-

ference between the real and the mapped values, so the representation error

has the following boundary

𝑒𝑟𝑟𝑜𝑟 = |𝑥− 𝑓𝑙(𝑥)| = |𝑥− 𝑥(1 + 𝛿)| ≤ |𝑥|𝜀 (2.13)

Similarly, provided there is no under/over flow the error of the floating

point arithmetic operators can be described as follows

𝑓𝑙(𝑥 op 𝑦) = (𝑥 op 𝑦)(1 + 𝛿) (2.14)

where |𝛿| ≤ 𝜀, 𝑥, 𝑦 ∈ 𝐹 and op ∈ {+,−, *, /}. It is important to notice that

we consider the floating point error introduced by performing the operation re-

gardless of the 𝑥, 𝑦 representation error, that why 𝑥, 𝑦 ∈ 𝐹 not 𝑥, 𝑦 ∈ R (Higham

2002; Goldberg 1991; Wilkinson 1994).

It is important to notice that rounding errors are determined in a determinis-

tic, not a random way. A wide variety of random sampled values with uniform

and normal distributions were examined in (Dahlqvist, Salvia, and Constan-

tinides 2019). They came to the conclusion, that rounding errors give generally

the same distribution curve, regardless the initial distribution (uniform with

𝜇 = 0, 𝜎 = 2 or normal with 𝜇 = 2, 𝜎 = 10). According to (Kahan 1996)
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rounding errors are actually not random, often correlated and behave more

like discrete than continuous variable. Additionally very often only a few (two

or three) roundings errors are the dominant contributors to the final error. All

these facts undermine applicability of Central Limit Theorem to investigate the

floating point error behaviour and makes an average case analysis unreliable.

2.3.3 Half precision

Since deep neural networks require to store a lot of data, the trend is to store

them in lower precisions and perform fused computations in 𝑓𝑙𝑜𝑎𝑡32. This

technique also allows to speed up the data flow and consequently the com-

putational time. Converting values from 32 to 16 bits representation allows to

save a memory space but has an impact on the precision of the result, which

might degrade the accuracy.

float16

Half precision format represents real values on 16 bits with a one sign bit, 5

exponent bits and 10 mantissa bits (see Figure 2-8). It was added to IEEE 754

standard in 2008 to support a reducing of a memory usage.

sign exponent
(5 bits)

fraction
(10 bits)

15 10 0

Figure 2-8: Half precision - 𝑓𝑙𝑜𝑎𝑡16

It saves a half of a memory space comparing to a single precision but results

not only in a worse accuracy but also in a much smaller range of the repre-

sentable values. Thus performing computations in 𝑓𝑙𝑜𝑎𝑡32 and storing inter-

mediate results in 𝑓𝑙𝑜𝑎𝑡16 is a problematic idea because of a lot of potential

under/over flows (see Table 2.1).
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bfloat16

The Brain Floating Point format (𝑏𝑓𝑙𝑜𝑎𝑡16) was first proposed by Google and

Intel (Young Cliff 2018; Kloss Carey and Group 2019) and was designed specif-

ically for machine learning algorithms. It occupies 16 bits with a one sign bit,

8 exponent bits and 7 mantissa bits. Thus it is a kind of a truncated single pre-

cision format. As the exponent is represented on 8 bits exactly as in 𝑓𝑙𝑜𝑎𝑡32

it allows to keep nearly the same range of representable values as a single

precision. In contrast to 𝑓𝑙𝑜𝑎𝑡16 where an exponent is represented on 5 bits

𝑏𝑓𝑙𝑜𝑎𝑡16 format allows to avoid a big number of under/over flow cases that

appear when casting to the 𝑓𝑙𝑜𝑎𝑡16 precision. The 𝑏𝑓𝑙𝑜𝑎𝑡16 number systems is

currently supported in a wide range of processors, softwares and frameworks

Nervana NNP-T1000 , Intel AVX-512, Google CLoud TPU, TensorFlow, ARM,

AMD and CUDA.

sign

sign

sign

fraction
(7 bits)

fraction
(23 bits)

fraction
(10 bits)

exponent
(8 bits)

exponent
(8 bits)

exponent
(5 bits)

15 7 0

31 23 0

15 10 0

bfloat16

float32

float16

range: ~1e-38 to ~3e38

range: ~1e-38 to ~3e38

range: ~5.9e-8 to 6.5e4

Figure 2-9: 𝑓𝑙𝑜𝑎𝑡32, 𝑓𝑙𝑜𝑎𝑡16 and 𝑏𝑓𝑙𝑜𝑎𝑡16 number systems comparison.

In the Table 2.1 we present the important parameters of all described float-

ing point number systems such as machine epsilon minimum and maximum,

exactly represented values as well as a number of bits. It provides the trade-offs

between the required memory and the accuracy in each case.
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bits sign exponent mantissa bias range 𝜀

float64 64 1 11 52 1023 10±308 2−53

float32 32 1 8 23 127 10±38 2−24

float16 16 1 5 10 15 10±4 2−11

bfloat16 16 1 8 7 127 10±38 2−8

Table 2.1: Number of bits dedicated to sign, exponent and mantissa, exponent bias,
approximate range and machine epsilon for 𝑓𝑙𝑜𝑎𝑡64, 𝑓𝑙𝑜𝑎𝑡32, 𝑓𝑙𝑜𝑎𝑡16 and 𝑏𝑓𝑙𝑜𝑎𝑡16.

2.4 Convolution

In CNNs we use the special case of convolution expressed in Definition 4 that

is a discrete convolution or discrete convolution of polynomials. It is a linear

operation defined on two polynomials represented by vectors and it is equal to

a sum of the products of the corresponding coefficients 2.

Definition 16. For any two polynomials of a degree 𝑛, 𝑤(𝑎), 𝑥(𝑎) : R𝑛 → R and

the corresponding vectors w,v ∈ R𝑛 the convolution of w and x is expressed by the

following formula

(w * x) =
∑︁
𝑖

𝑤𝑖𝑥𝑛−𝑖 (2.15)

That is the convolution of two polynomials of the same degree is equal to

the leading coefficient of the polynomial 𝑠(𝑎) = 𝑤(𝑎)𝑥(𝑎).

Analogously

Definition 17. For two matrices W,X ∈ R𝑛×𝑚, corresponding polynomials

𝑊 (𝑎, 𝑏), 𝑋(𝑎, 𝑏) : R𝑛×𝑚 → R and corresponding vectors vec (W), vec(X) ∈ R𝑛𝑚

the convolution is expressed by the following formula

(W *X) =
∑︁

𝑤𝑖𝑗𝑥(𝑛−𝑖)(𝑚−𝑗) (2.16)

2There is an inconsistency in the notation in the recent literature. Formally, the actual math-
ematical operation is called a cross-correlation (inst.eecs.berkeley. edu and (Tolimieri, An, and
Lu 1997)) called convolution in machine learning/engineering field, by a convience. Convolu-
tion differs from it by the reversed order of coefficients (elements) in a one of the vector/matrix.
We stay with machine learning/engineering field notation
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That is the convolution of two polynomials 𝑊 (𝑎, 𝑏), 𝑋(𝑎, 𝑏) : R𝑛×𝑚 → R is

equal to the leading coefficient of the polynomial 𝑆(𝑎, 𝑏) = 𝑊 (𝑎, 𝑏)𝑋(𝑎, 𝑏).

Multiple channels

In convolutional layers, there are multiple input and output channels (see Sec-

tion 2.1.2). For every input and output channel of the data we have a different

set of weights (kernels). The single output channel result is produced by per-

forming convolution on every input channel separately and then the obtained

corresponding results are added.

A one-dimensional convolution over 𝐶 input channels of two sets of vectors

of the size 𝑛 - input xc = [𝑥𝑐1, . . . , 𝑥𝑐𝑛] and weights wc = [𝑤𝑐1, . . . , 𝑤𝑐𝑛] for all

input channels 𝑐 = 1, . . . , 𝐶 - is a scalar defined as follows

(w * x) =
∑︁
𝑐

∑︁
𝑖

𝑤𝑐𝑖 𝑥𝑐𝑖 =
∑︁
𝑐,𝑖

𝑤𝑐𝑖 𝑥𝑐𝑖 (2.17)

A two-dimensional convolution over 𝐶 input channels of two sets of matri-

ces of the size 𝑛 × 𝑛 - input Xc = [𝑥𝑐𝑖𝑗] and weights Wc = [𝑤𝑐𝑖𝑗] for all input

channels 𝑐 = 1, . . . , 𝐶 and 𝑖, 𝑗 = 1, . . . , 𝑛 is a scalar defined as follows

(W *X) =
∑︁
𝑐

∑︁
𝑖,𝑗

𝑤𝑐𝑖𝑗 𝑥𝑐𝑖𝑗 =
∑︁
𝑐,𝑖,𝑗

𝑤𝑐𝑖𝑗 𝑥𝑐𝑖𝑗 (2.18)

2.4.1 Direct/Naive convolution algorithm

A direct convolution algorithm (see Algorithms 1 and 2) computes the single

output value result (scalar) of a one or two-dimensional convolution in the

straightforward way. That means that we sum up the products of the cor-

responding values of an input and a kernel. With this approach we have to

perform 𝑛 multiplications and 𝑛− 1 addition to obtain the single output value

result in a one-dimensional case and 𝑛2 multiplications and 𝑛2 − 1 additions in

a two-dimensional case.
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ALGORITHM 1: One-dimensional, single output value direct convolution algo-

rithm

Input: 𝑛 - size of the input, ;

w = [𝑤1, . . . , 𝑤𝑛] - weights/kernel,;

x = [𝑥1, . . . , 𝑥𝑛] - input

Output: 𝑠 - convolution result

𝑠 = 0 ;

for 𝑖 = 1 to 𝑛 do
𝑠+ = 𝑤𝑖 𝑥𝑖

end

ALGORITHM 2: Two-dimensional, single output value direct convolution algo-

rithm

Input: 𝑛× 𝑛 - size of the input ;

W = [𝑤𝑖𝑗 ] for 𝑖, 𝑗 = 1, . . . , 𝑛 - weights/kernel ;

X = [𝑥𝑖𝑗 ] for 𝑖, 𝑗 = 1, . . . , 𝑛- input;

Output: 𝑠 - convolution result

𝑠 = 0 ;

for 𝑖 = 1 to 𝑛 do

for 𝑗 = 1 to 𝑛 do
𝑠+ = 𝑤𝑖𝑗 𝑥𝑖𝑗

end

end

Thus, to compute a single output value using the direct algorithm we need

𝑂(𝑛) operations for a one-dimensional kernel and an input and 𝑂(𝑛2) for a two-

dimensional case. Using a direct convolution algorithm (see Algorithm 1 and

Algorithm 2) we compute every output value separately, so the complexity will

be equal to the input size (𝑤𝑖𝑑𝑡ℎ×ℎ𝑒𝑖𝑔ℎ𝑡×𝑑𝑒𝑝𝑡ℎ) multiplied by the complexity

of single output value computations, namely 𝑂(𝑛) or 𝑂(𝑛2) for a one and two

dimensions respectively. It means that a huge amount of time is spent on con-

volution computations in CNNs. Hence it is a good reason to look for faster

options.
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2.5 Fast Convolution Algorithms

An algorithm, from the general point of view, is a sequence of steps that indi-

cate how to compute an output from a given input. However, very often there

is more than a one way to solve the problem and thus more than one algorithm.

The term fast convolution algorithm is understood as the algorithm that com-

putes an output in a faster way (complexity regarding a number of performed

operations) than the classic ones. This effect is obtained mainly by reducing the

number of multiplications. For example we can compute 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 as

(𝑎+𝑏)(𝑐+𝑑) (Blahut 2010). The first method requires 4 multiplications and three

additions, while the second one only one multiplication and two additions.

Most of the fast convolution algorithms consist of three steps: linear trans-

formations of both inputs, namely input and weights/kernel, element-wise

multiplication of them (Hadamard product) and linear transformation of the

obtained result.

One of the core differences between the direct convolution algorithm and

algorithms presented below is that using the direct algorithm (see Algorithm 1

and Algorithm 2) we compute only a one output value (scalar) at a time. To

compute vector of the size 𝑚 output values we need to compute each vector el-

ement (output value) separately that means to perform 𝑚 times the convolution

computations described in the algorithm (see Algorithms 1 and 2, for one and

two-dimensional convolution respectively). In fast convolution algorithms, we

compute several output values (output vector) taking the bigger input tile. This

approach results in a lower number of overlapping values (see Section 2.1.2)

than in a direct algorithm Algorithms 1 and 2. It results in a fewer number of

multiplication operations and thus in reduction of time complexity. We will

discuss this problem in more details in Chapter 5. An interesting overview of

the fast convolution algorithms can be found in (Blahut 2010; Ju and Solomonik

2020).

It is important to be aware that despite there being two algorithms solving

the same problem and theoretically compute identical output for the same in-

put, in practice the results might be different. The reason of this fact lies in a
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finite number representation (see Section 2.3). Different kinds and order of op-

erations could result in a different floating point error arising from the limited

precision representation. In this section we briefly describe most popular fast

convolution algorithms and highlight their disadventages that are removed by

using Winograd algorithm.

2.5.1 DFT convolution

One of the most popular fast convolution algorithm uses Discrete Fourier Trans-

form (DFT) to perform linear transformations. The idea of Discrete Fourier

Transform (DFT) convolution is to transform an input and a kernel into an

other domain, where the convolution becomes an element-wise multiplication

(Hadamard product) and later to transform the obtained result back (see Fig-

ure 2-10). To keep the numerical error of transformation computations small

even for big input/kernel sizes the transformation matrices are constructed in

the complex number field (Higham 2002). For a fixed kernel size 𝑘 to com-

pute 𝑚 = 𝑛 − 𝑘 + 1 output values for a one-dimensional convolution every

transformation requires 𝑂(𝑛2) complex multiplication operations and to com-

pute element-wise multiplication in the field of complex numbers we have to

perform 𝑂(𝑛) complex multiplications (see Figure 2-10). Each of the complex

multiplication consists of at least three real multiplications (Karatsuba and Of-

man 1962). It makes DFT convolution algorithm not practical in the context of

the number of multiplication operations, and in the resulted time complexity.

2.5.2 FFT convolution

The wide application of Fourier algorithm is due to the existence of the Fast

Fourier Transform algorithm (FFT). The FFT permits rapid computation of the

DFT by decreasing the complexity of transformation operations. Namely, FFT

decreases the complexity of whole convolution computations from 𝑂(𝑛2) to

𝑂(𝑛 log 𝑛) (see Figure 2-11). The reduction of the number of multiplications

in convolution computations is significant especially for a large data size 𝑛.
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O(n2)
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Figure 2-10: DFT convolution algorithm.

There are several different implementations of FFT. The first algorithm was

presented by Good (Good 1958; Good 1960) and Thomas (Thomas 1963). The

most commonly used variant of FFT is from Cooley and Tukey (Cooley and

Tukey 1965). And the most efficient, but also the most complicated one was

proposed by Winograd (Winograd 1976; Winograd 1978). The detailed analysis

of various versions of FFT algorithms can be found in (Nussbaumer 1981).

O(nlogn)

O(nlogn)

O(3n) O(nlogn)

x

w

conv

complex

Figure 2-11: FFT convolution algorithm

Applying FFT reduces the complexity of transformations compared to DFT

in particular for bigger output/kernel sizes but the core convolution still con-
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sists of 𝑛 complex multiplications. That means at least 3𝑛 real multiplications

have to be executed. In CNNs we use the same input and kernel several times

(see Section 2.1.2), so the transformation complexity is amortized over multi-

ple uses. The number of real element-wise multiplications has more significant

impact on the time complexity. In FFT convolution these multiplications are

executed in the field of complex numbers and we have to perform at least 3𝑛

real number multiplications to compute the product of two complex values. If

we perform the core convolution operations in the field of real numbers then it

reduces the number of them from 3𝑛 to 𝑛.

2.5.3 DTT convolution

An interesting alternative for DFT and FFT convolution algorithms, where

Hadamard product is computed in the field of complex numbers might be a

discrete trigonometric transform (DTT) where Hadamard product is performed

in the field of real numbers. Discrete Cosine Transform (DCT) and Discrete Sine

Transform (DST) are alternative methods of linear transformations used in DFT

and FFT convolution algorithm. The transformation might be performed in the

same way as FFT reducing whole computational time from 𝑂(𝑛2) to 𝑂(𝑛 log 𝑛).

However, transformation matrix elements are irrational and this introduces

a representation error that propagates further. As we show in Chapter 5 for

small kernel sizes used in CNNs this propagation is very important for the

final accuracy. Very popular Chebyshev points widely used to construct Van-

dermonde matrices in numerical computations works good for bigger matrix

sizes (greater than 10) (Trefethen and Bau 1997). Moreover, their main bene-

fit is that using Chebyshev points mitigate Runge effect that is important for

continuous not discrete computations. Similarly Chebyshev points are mostly

irrational for bigger transformation matrix sizes.
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2.5.4 Winograd/Toom-Cook convolution

The family of algorithms commonly known in the machine learning field as the

Winograd convolution was firstly presented by Toom (Toom 1963) and Cook

(Cook 1966). Their work is a generalization of the Karatsuba method (Karat-

suba and Ofman 1962) (translation in (Karatsuba and Ofman 1963)) (Karatsuba

1995) implemented to decrease the complexity of a polynomial multiplication.

Shmuel Winograd applied the Toom-Cook algorithm to convolution computa-

tions in a signal processing field in 1980s (Winograd 1980b). He also has done

the significant theoretical work on this algorithm. He proved that for fixed out-

put and kernel sizes Toom-Cook algorithm performs convolution in the min-

imum possible number of real element-wise multiplication operations which

Winograd refers to as a general multiplication (Winograd 1980a).

The formal description of the Toom-Cook convolution algorithm can be

found in (Blahut 2010; Tolimieri, An, and Lu 1997). However, for those who

want to implement Winograd/Toom-Cook convolution it can be challenging

to extract algorithm from the theory and examples.

O(n2)

O(n2)

O(n) O(n2)

x

w

conv

real

Figure 2-12: Winograd convolution algorithm.

The Winograd/Toom-Cook convolution algorithm is based on the same

idea as the DFT convolution algorithm but an element-wise multiplication is

done in the field of real numbers instead of the complex one (see Figure 2-

12). Thus, as was mentioned above, every product of two real values requires
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only one multiplication in contrast to the complex field where it needs at least

three multiplications to compute product of any two complex values (see Al-

gorithm 3).

Moving into the field of real numbers and decreasing the number of general

multiplications is done at the cost of pre/post processing operations that have

𝑂(𝑛2) complexity. In convolutional neural networks however, it is not a big

inconvenience for two reasons. Firstly, because the kernel sizes are typically

small and secondly, because we use the same input and kernels several times,

so the preprocessing operations are amortized over multiple uses. Post pro-

cessing operations are done after summation over input channels (Lavin and

Gray 2016) which also reduces the time (see Algorithm 4). The serious disad-

vantage is that these pre and post-processing operations have bad properties

regarding the computational error. Because of this, in contrast to DFT and

FFT convolution computations, we can get inaccurate results particularly for

bigger input/kernel sizes. DTT transformation are known for the best prop-

erties for Vandermonde matrices in the field of real numbers. However ma-

trix elements are irrational that generate additional representation error. For

such small sizes of matrices as used in CNNs the DTT convolution compu-

tation result has greater numerical error than the result obtained with Toom-

Cook/Winograd algorithm.

Lavin and Gray (Lavin and Gray 2016; ) wrote the seminal paper on apply-

ing Winograd/Toom-Cook convolution to deep neural networks. They showed

how to apply two-dimensional 𝐹 (2 × 2, 3 × 3) and 𝐹 (4 × 4, 3 × 𝑠) algorithms

to DNN convolution with multiple input and output channels. They also used

distributive property to amortize the cost of post-processing operations over

multiple convolutions. They tested proposed algorithms on Vgg network in

𝑓𝑝32 and 𝑓𝑝16. Comparing to Nvidia’s DNNs library cuDNN Winograd/Toom-

Cook gave up to 2.64× speed up in convolution computations. However they

noticed that the error of computations grows significantly with output size. In

𝑓𝑝32 the floating point error of Toom-Cook/Winograd convolution computa-
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ALGORITHM 3: Two-dimensional, single channel, multiple output point Wino-

grad convolution algorithm

Input: W = [𝑤𝑖𝑗 ] for 𝑖, 𝑗 = 1, . . . , 𝑘 - weights/kernel ;

X = [𝑥𝑖𝑗 ] for 𝑖, 𝑗 = 1, . . . , 𝑛- input;

Output: S = [𝑠𝑖𝑗 ] for 𝑖, 𝑗 = 1, . . . , 𝑛− 𝑘 + 1 - convolution result

W(Win) = 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(W) ;

X(Win) = 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(X) ;

for 𝑖 = 1 to 𝑛 do

for 𝑗 = 1 to 𝑛 do

𝑠
(𝑊𝑖𝑛)
𝑖𝑗 = 𝑤

(𝑊𝑖𝑛)
𝑖𝑗 𝑥

(𝑊𝑖𝑛)
𝑖𝑗

end

end

S = 𝑃𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(S(Win))

ALGORITHM 4: Two-dimensional, multiple channels, multiple output value

Winograd convolution algorithm

Input: W = [𝑤𝑐𝑖𝑗 ] for 𝑖, 𝑗 = 1, . . . , 𝑘, 𝑐 = 1, . . . , 𝐶 - weights/kernel for 𝐶 channels;

X = [𝑥𝑐𝑖𝑗 ] for 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑐 = 1, . . . , 𝐶 - input for 𝐶 channels;

Output: S = [𝑠𝑖𝑗 ] for 𝑖, 𝑗 = 1, . . . , 𝑛− 𝑘 + 1 - convolution result

for 𝑐 = 1 to 𝐶 do

W
(Win)
c = 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(Wc) ;

X
(Win)
c = 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(Xc) ;

end

for 𝑐 = 1 to 𝐶 do

for 𝑖 = 1 to 𝑛 do

for 𝑗 = 1 to 𝑛 do

𝑠
(𝑊𝑖𝑛)
𝑖𝑗 = 𝑠

(𝑊𝑖𝑛)
𝑖𝑗 + 𝑤

(𝑊𝑖𝑛)
𝑐𝑖𝑗 𝑥

(𝑊𝑖𝑛)
𝑐𝑖𝑗

end

end

end

S = 𝑃𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(S(Win))

tions for 𝐹 (2 × 2, 3 × 3) was 10× smaller than the error of direct convolution

computations. For 𝐹 (4 × 4, 3 × 3) the error was 10× greater than error of direct
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convolution. In 𝑓𝑝16 all algorithms gave 100× greater error than direct con-

volution in 𝑓𝑝32. Although they used the Toom-Cook algorithm to generate

their core convolution algorithms, they referred to it as the Winograd convolu-

tion. This has become the accepted term in the DNN literature. They presented

transformation matrices in only two cases for the output of the size 2 × 2 and

4 × 4 and the kernel of the size 3 × 3 but they do not provide any general way

of how to construct transformation matrices for other parameters (root points)

and other output/kernel sizes.

Some research on the optimality of the Toom-Cook algorithm was done by

M. Bodrato (Bodrato 2007; Bodrato and Zanoni 2007; Bodrato and Zanoni 2006)

He focused on the optimality of this algorithm applied to the polynomial mul-

tiplication problem, as measured by the number of the required operations. Im-

proving the numerical accuracy of the result was not a goal of Bodrato’s work,

and no data is provided to the effect of the proposed techniques on numerical

accuracy.

So far there is very few results on the floating point accuracy of the Wino-

grad /Toom-Cook convolution algorithm. Vincent et al. (Vincent et al. 2017)

proposed to scale transformation matrices to improve their properties (Gautschi

2011). They demonstrated that this approach can reduce the error in exactly

one case: convolving a 5 × 5 kernel to create a 9 × 9 output block. Further they

showed, that this improved matrices could be successfully used for training

a DNN. However, they did not provide a method for choosing good scaling

factors.

At the same time as a research presented in this thesis were done, several

papers which treat about Toom-Cook/Winograd algorithm were published.

In (Zlateski et al. 2018) authors demonstrate that on existing architectures

the Toom-Cook/Winograd convolution algorithms does not achieve their the-

oretical time complexity. A lot of time is spent on data flow. They also proposed

a couple of optimization techniques to speed up Toom-Cook/Winograd convo-

lution computations.
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A couple of papers focus on efficient Toom-Cook/Winograd algorithm im-

plementation using various compression methods. William Dally’s group in-

vestigated pruning method (Han et al. 2015). They replace some values in

a transformed input and transformed weights with zeros, making matrices

sparse. That allows to perform convolution faster because decreasing num-

ber of non-trivial multiplications (Liu et al. 2018). For algorithm 𝐹 (2 × 2, 3 × 3)

they reduced the number of multiplication operations between 6.8× and 10.8×

dependent on dataset without significant accuracy loss (less than 0.1%)

An interesting idea that uses kernel decomposition was presented in (Maji

and Mullins 2018). The matrix of weights is split into two vectors whose outer

product is an approximation of the weight matrix. It reduces the space required

to store weights and consequently reduces the data flow that speeds up convo-

lution computations up to 8× (tested on Vgg network) comparing to existing

implementations. Reducing 2𝐷 convolution into 1𝐷 by this decomposition also

reduce the number of multiplications. However, an additional work on kernel

decomposition and layers reconstruction is required.

Some other research were done on using lower precision representations.

Special attention was given to unsigned 8 bits integer number system. The

other solution was to use Winograd algorithm with three linear and one su-

perlinear polynomial that gave mix of real and complex numbers (Meng and

Brothers 2019). They tested their solution on various networks using convolu-

tion 𝐹 (6 × 6, 3 × 3) . To improve data flow they convert weights in Winograd

domain to 𝑖𝑛𝑡8. They had 3× complexity reduction comparing to a direct algo-

rithm without any significant loss of accuracy.

A lot of focus was on speed up Toom-Cook/Winograd convolution com-

putations tuning implementation to particular architectures. One of the paper

presents efficient Toom-Cook/Winograd algorithm focus on performance on

Arm processors (Maji et al. 2019). They propose the optimization method that

uses General Matrix Multiplication to perform Hadamard product computa-

tions over multiple channels for each input tile. As there exists a lot of efficients
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GEMM implementations the speed of the convolution computations increases

4× in comparision to standard Arm convolution implementation (Im2row).

Later (Fernandez-Marques et al. 2020) investigated training of neural net-

works using Toom-Cook/Winograd convolution algorithm with values repre-

sented in 𝑖𝑛𝑡8. They treated transformation matrices as trainable parameters

to improve the accuracy of the convolution computation results. They get 2.7×

speed up comparing to the direct/naive algorithm (Arm - Im2row implementa-

tion) with marginal accuracy drop comparing to Toom-Cook/Winograd com-

putations in 𝑓𝑝32.

There is also Nvidia work presented in (Liu, Yang, and Lai 2021) where

Tensor cores are used for Toom-Cook/Winograd algorithm implementation in

mixed precisions. It gives 2.41× speed up comparing to GEMM based cuDNN

Toom-Cook/Winograd implementation without the accuracy loss (tested on

Vgg).

Some published research focuses on Toom-Cook/Winograd convolution al-

gorithms in other than floating points and 𝑖𝑛𝑡8 number systems. However this

approach always requires some additional costs somewhere else. For this rea-

son they are not so popular in machine learning computations as floating point

number system (see Section 2.3).

The residue number system (RNS) based on modulo arythmetic was pro-

posed by (Liu and Mattina 2020). They tested inference in 8 bits values rep-

resentation using pretrained quantized networks. For Vgg network they got

over 2× better time performance without drop in accuracy for output size up

to 16 × 16 comparing to 𝑖𝑛𝑡8 for Arm architectures. However, the conversion

into and from RNS is time consuming, particularly for longer tiles.

Logarithmic number system was investigated in (Alam and Gregg 2020;

Alam, Garland, and Gregg 2021). They found that most popular base 2 is not

the best choice for performing Toom-Cook/Winograd convolution computa-

tions in lower precisions. Using base 1.851 instead it is possible to reduce the

error of conversion from 8 bits floats (minifloats) 10× compared to base 2.
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2.5.5 Winograd convolution

Winograd developed a separate family of convolution algorithms mixing real

and complex numbers in the element-wise multiplication stage

(Winograd 1980a). His method creates a much larger set of algorithms than

Toom-Cook’s, including algorithms that are not optimal with respect to the

number of general multiplications. However, because the number of overlap-

ings is smaller for bigger input sizes, by using them we can still obtain the

optimal number of multiplications for the whole input. This observation will

be discussed in more details in Chapter 6.

The mathematical background and example of matrices for a ’nearly opti-

mal’ algorithm are described by Blahut (Blahut 2010), Parhi (Parhi 2007) and

Tolimieri (Tolimieri, An, and Lu 1997). Selesnick and Burrus (Selesnick and

Burrus 1994) investigated Winograd convolution algorithms in greater details.

However, their focus was on the number of general multiplications, not on the

accuracy of computations. Meng and Brothers in (Meng and Brothers 2019)

successfully applied one version of Winograd algorithm in DNNs to perform

computations in lower precisions.
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Chapter 3

Toom-Cook Convolution Algorithm

The Toom-Cook convolution algorithm is proved to be the most optimal one in

terms of the number of general multiplications. It was presented firstly around

fifty years ago by Toom (Toom 1963) and Cook (Cook 1966). Around thirty

years ago Winograd applied this method in signal processing computations. In

2016 Lavin and Gray (Lavin and Gray 2016) used the simplest/smallest version

to the DNNs convolution computations with the kernel of the size 3 × 3 to

compute 2 × 2 output values at a time.

In this chapter we present the theoretical background provided by Schmuel

Winograd (Winograd 1980b). The novelty is to provide an exact algorithm for

computing the elements of transformation matrices. It allows us to construct a

multiple versions of the algorithm for given kernel and input/output sizes.

3.1 Toom-Cook algorithm definition

The Toom-Cook algorithm is based on the Chinese Remainder Theorem (CRT)

for polynomials (Theorem 2) and the Matrix Exchange Theorem (Theorem 3).

The main idea of this algorithm is to transform the kernel and the input into

the other domain in machine learning field called ’Winograd domain’ where

convolution becomes an element-wise multiplication (Hadamard product Def-

inition 1) and then transform the result back. To perform convolution compu-

tations we need to construct three matrices, first one to transform the kernel,
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second one to transform the input tiles and third one to transform the results

back.

Theorem 2 (Chinese Remainder Theorem for polynomials). Let F[𝑎] denote a

ring of all polynomials over a field F. Let 𝑠1(𝑎), . . . , 𝑠ℓ(𝑎) ∈ F[𝑎] be arbitrary polynomi-

als and 𝑚1(𝑎), . . . ,𝑚ℓ(𝑎) ∈ F[𝑎] denote irreducible polynomials such that

𝐺𝐶𝐷(𝑚𝑖(𝑎),𝑚𝑗(𝑎)) = 1 ∀𝑖, 𝑗 = 1, 2, . . . , ℓ, 𝑖 ̸= 𝑗.

Then the system of congruences

𝑠(𝑎) = 𝑠𝑖(𝑎) mod 𝑚𝑖(𝑎) for 𝑖 = 1, . . . , ℓ

has exactly one solution 𝑠(𝑎) modulo 𝑀(𝑎) = 𝑚1(𝑎) . . .𝑚ℓ(𝑎) given by the formula

𝑠(𝑎) =
ℓ∑︁

𝑖=1

𝑠𝑖(𝑎)𝑁𝑖(𝑎)𝑀𝑖(𝑎) mod 𝑀(𝑎)

where for 𝑖 = 1, 2, . . . , ℓ:

𝑁𝑖(𝑎)𝑀𝑖(𝑎) = 1 mod 𝑚𝑖, and 𝑀𝑖(𝑎) =
𝑀(𝑎)

𝑚𝑖(𝑎)

In what follows we assume that F is a field of real numbers R and that a ker-

nel vector w = [𝑤1, 𝑤2, . . . , 𝑤𝑘] and a input vector x = [𝑥1, 𝑥2, . . . , 𝑥𝑛] are repre-

sented as polynomials 𝑤(𝑎) and 𝑥(𝑎), with coefficients equal to their respective

components, such that the leading coefficients of 𝑤(𝑎) and 𝑥(𝑎) are 𝑤𝑘 and 𝑥𝑛,

respectively. Namely 𝑤(𝑎) = 𝑤1+𝑤2𝑎+. . .+𝑤𝑘𝑎
𝑘−1, 𝑥(𝑎) = 𝑥1+𝑥2𝑎+. . .+𝑥𝑛𝑎

𝑛−1

(see Section 2.2.1). Then computing the one-dimensional discrete convolution

is equivalent to computing the coefficients of the polynomial product 𝑠(𝑎) =

𝑤(𝑎)𝑥(𝑎).

In the Toom-Cook algorithms, it is assumed that all 𝑚𝑖(𝑎) are monomials,

so the computation reduces to the following steps:

1. Choose ℓ pairwise different root points 𝑝𝑖 to construct polynomials

𝑚𝑖(𝑎) = 𝑎− 𝑝𝑖 for 𝑖 = 1, . . . , ℓ.
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2. Evaluate polynomials 𝑤(𝑎), 𝑥(𝑎) at each root point 𝑝𝑖 to change the do-

main, which is equivalent to computing 𝑤𝑖(𝑎) = 𝑤(𝑎) mod 𝑚𝑖(𝑎) and

𝑥𝑖(𝑎) = 𝑥(𝑎) mod 𝑚𝑖(𝑎) for 𝑖 = 1, . . . , ℓ.

3. Perform the multiplication 𝑠𝑖(𝑎) = 𝑤𝑖(𝑎)𝑥𝑖(𝑎) for 𝑖 = 1, . . . , ℓ.

4. Compute the coefficients of polynomial 𝑠𝑖 for 𝑖 = 1, . . . , ℓ using the Chi-

nese Remainder Theorem.

We can represent the result of this algorithm as:

V−1(Vxx⊙Vww) (3.1)

where matrices Vx and Vw (referred to as Vandermonde matrices - see Sec-

tion 2.2.1) represent evaluation of the polynomials 𝑥(𝑎) and 𝑤(𝑎) in root points

𝑝𝑖 for 𝑖 = 1, . . . , ℓ. The matrix V−1 is the inverse Vandermonde matrix used to

transform the result back from the ’Winograd domain’. The non-singularity of

these matrices is guaranteed by choosing the pairwise distinct root points 𝑝𝑖 so

that the assumptions of the CRT are fulfilled.

As for monomials 𝑚𝑖(𝑎) = 𝑎 − 𝑝𝑖, it is true that 𝑤(𝑎) mod 𝑚𝑖(𝑎) = 𝑤(𝑝𝑖)

this method is equivalent to the following steps:

• Evaluate polynomials 𝑤(𝑎) and 𝑥(𝑎) in ℓ pairwise distinct root points 𝑝𝑖

that are the roots of the polynomials 𝑚𝑖(𝑎). The result is ℓ pairs of values:

𝑤(𝑝𝑖) and 𝑥(𝑝𝑖).

• Mutiply corresponding values 𝑤(𝑝𝑖)𝑥(𝑝𝑖). Then when define polynomial

𝑠(𝑎) as a product of 𝑤(𝑎) and 𝑥(𝑎) (𝑠(𝑎) = 𝑤(𝑎)𝑥(𝑎)) we have a values of

𝑠(𝑝𝑖) in ℓ pairwise distinct root points 𝑝𝑖.

• Apply the Lagrange interpolation formula to get the coefficient of the

polynomial 𝑠(𝑎).

When the kernel is represented as a polynomial 𝑤(𝑎) of the degree 𝑘−1 and

input as a polynomial 𝑥(𝑎) of the degree 𝑛−1 then 𝑠(𝑎) is of the degree 𝑛+𝑘−2.

To be able to interpolate it 𝑛 + 𝑘 − 1 pairwise distinct root points are required.
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Then the method presented above allows to compute 𝑛 − 𝑘 + 1 convolution

output values in ℓ = 𝑛 + 𝑘 − 1 general multiplications. We can reduce it even

further by applying Matrix Exchange Theorem (Blahut 2010):

Theorem 3. Let D be a diagonal matrix. If the matrix M can be factorised as M =

CDE then it also can be factorised as M = (E)𝑇D(C)𝑇 , where matrix E is a matrix

obtained from E by reversing the order of its columns and C is a matrix obtained from

C by reversing the order of its rows.

We can rewrite the Equation (3.1) as V−1DwVxx, where Dw is the diagonal

matrix constructed from elements of Vww. Applying Matrix Exchange Theo-

rem the formula is equivalent to Vx
𝑇DwV

−𝑇x = Vx
𝑇 (Vww ⊙V−𝑇x).

Although the literature on DNNs typically calls this operation convolution,

from the mathematical point of view the operation we want to compute is, in

fact, the cross-correlation (see Section 2.4). This is why, when applying the

Matrix Exchange Theorem, we do not reverse the order of columns in matrix

E. Applying this theorem allows us to reduce the number of multiplications

and compute 𝑛 + 𝑘 − 1 convolution output values in 𝑛 general multiplication.

Putting A = Vx, G = Vw and B = V−1 we obtain the following formula for

one-dimensional convolution (Blahut 2010; Winograd 1980b)

(w * x)1𝐷 = A𝑇 (Gw ⊙B𝑇x) (3.2)

If we perform convolution computation in DNNs over multiple input chan-

nels 𝐶 we can take an advantage from linear properties of matrix-vector multi-

plication and compute the result in the following way (Lavin and Gray 2016)

(w * x)1𝐷 = A𝑇 (
∑︁
𝑐

(Gwc ⊙B𝑇xc)) (3.3)

where wc and xc are the vectors representing weights and input tile for an

input channel 𝑐.

For two-dimensional convolution we treat the input matrix X of the size

𝑛×𝑛 and weights/kernel matrix W of the size 𝑘×𝑘 as polynomials of two vari-

ables: 𝑋(𝑎, 𝑏) =
∑︀

𝑖

∑︀
𝑗 𝑋𝑖𝑗𝑎

𝑖𝑏𝑗 and 𝑊 (𝑎, 𝑏) =
∑︀

𝑖

∑︀
𝑗 𝑊𝑖𝑗𝑎

𝑖𝑏𝑗 (see Section 2.2.1).
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The convolution of X and W is then equal to matrix S consisted of the coef-

ficients of the polynomial 𝑆(𝑎, 𝑏) = 𝑋(𝑎, 𝑏)𝑊 (𝑎, 𝑏). To compute coefficients of

the polynomia 𝑆l equal to the product of polynomials 𝑋 and 𝑊 instead of ma-

trices A, B and G we use their Kronecker product A⊗A, B⊗B and G⊗G (see

Definition 2). We apply it to the vectorised matrices (vec(·)) by stacking their

columns into a one column vector (Blahut 2010).

(W *X)2𝐷 = (A𝑇 ⊗A𝑇 )((G⊗G) vec(W) ⊙ (B𝑇 ⊗B𝑇 ) vec(X)) (3.4)

Using the Kronecker product properties ((M ⊗M) vec(N) = vec(MNM𝑇 ))

we obtain a formula for the two-dimensional convolution is as follows

(W *X)2𝐷 = A𝑇 (GWG𝑇 ⊙B𝑇XB)A (3.5)

where matrices W and X are the two-dimensional weights/kernel and in-

put, respectively (see Figure 3-1). Similarly as for a one-dimensional convolu-

tion formula for multiple channels two-dimensional computations

(W *X)2𝐷 = A𝑇 (
∑︁
𝑐

GWcG
𝑇 ⊙B𝑇XcB)A (3.6)

Winograd
domain

Figure 3-1: Two-dimensional Toom-Cook convolution
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3.1.1 Matrices Construction

A method of constructing matrices A𝑇 , G and B𝑇 is presented in Algorithm 5.

To compute a one-dimensional convolution of the size 𝑚 with the kernel of the

size 𝑘, we need an input of the size 𝑛 = 𝑘 + 𝑚 − 1. As inputs to the algo-

rithm we provide 𝑛 pairwise different real root points 𝑝1, . . . , 𝑝𝑛 and use them

to construct 𝑛 linear polynomials 𝑚𝑖(𝑎) = 𝑥 − 𝑝𝑖, for 𝑖 = 1, . . . , 𝑛. We compute

polynomial

𝑀(𝑎) = (𝑎− 𝑝1) . . . (𝑎− 𝑝𝑛)

and polynomials

𝑀𝑖(𝑎) = 𝑀(𝑎)/𝑚𝑖(𝑎) =
∑︁
𝑗

𝑀𝑗,𝑖𝑎
𝑗−1 for 𝑖, 𝑗 = 1, 2, . . . , 𝑛

used in Theorem 2. A matrix A𝑇 is a transposed rectangular Vandermonde

matrix of the size 𝑚 × 𝑛. We compute its elements as the zeroth to (𝑚 − 1)th

powers of the 𝑛 selected root points. Next, we construct the matrix G of size

𝑛× 𝑘 in a very similar way.

Note that we scale one of the Vandermonde matrices by coefficients 𝑁𝑖 to

obtain matrices G and B𝑇 . We find the coefficients 𝑁𝑖 using the Euclidean

algorithm (Biggs 2002).

The general forms of matrices obtained by the Toom-Cook algorithm is as

follows

G =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑁1 𝑝1 *𝑁1 · · · 𝑝1

𝑘−1 *𝑁1

𝑁2 𝑝2 *𝑁2 · · · 𝑝2
𝑘−1 *𝑁2

...
... . . . ...

𝑁𝑛 𝑝𝑛 *𝑁𝑛 · · · 𝑝𝑛
𝑘−1 *𝑁𝑛

⎤⎥⎥⎥⎥⎥⎥⎦

A𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 · · · 1

𝑝1 𝑝2 · · · 𝑝𝑛
...

... . . . ...

𝑝𝑚−1
1 𝑝𝑚−1

2 · · · 𝑝𝑛
𝑚−1

⎤⎥⎥⎥⎥⎥⎥⎦ B𝑇 =

⎡⎢⎢⎢⎣
𝑀1,1 · · · 𝑀1,𝑛

... . . . ...

𝑀𝑛,1 · · · 𝑀𝑛,𝑛

⎤⎥⎥⎥⎦
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ALGORITHM 5: Algorithm to construct transformation matrices for Toom-Cook

convolution algorithm

Input: 𝑚 - size of output,

𝑘 - size of kernel,

{𝑝1, . . . , 𝑝𝑛} set of 𝑛 different root points

Output: Three matrices A𝑇 , G and B𝑇

for Toom-Cook convolution

𝑛 = 𝑚+ 𝑘 − 1;

for 𝑖 = 1 to 𝑛 do

for 𝑗 = 1 to 𝑛 do
𝑀𝑖,𝑗 = coefficient of the

polynomial
∏︀

𝑙 ̸=𝑖(𝑎− 𝑝𝑙) stands

for 𝑎𝑗−1

end

end

for 𝑖 = 1 to 𝑛 do
𝑁𝑖 =

1∏︀
𝑗 ̸=𝑖(𝑝𝑖−𝑝𝑗)

end

for 𝑖 = 1 to 𝑚 do

for 𝑗 = 1 to 𝑛 do
𝐴𝑇

𝑖,𝑗 = 𝑝𝑗
𝑖−1

end

end

for 𝑖 = 1 to 𝑛 do

for 𝑗 = 1 to 𝑘 do
𝐺𝑖,𝑗 = 𝑝𝑖

𝑗−1 *𝑁𝑖

end

end

for 𝑖 = 1 to 𝑛 do

for 𝑗 = 1 to 𝑛 do
𝐵𝑇

𝑖,𝑗 = 𝑀𝑗,𝑖

end

end

3.2 Modified Toom-Cook algorithm

A common method to reduce the number of terms in the linear transforma-

tions of Toom-Cook convolution is to use the so-called modified Toom-Cook

algorithm 1.

The main idea of the modified algorithm is to solve a one size smaller prob-

lem than in a basic version of Toom-Cook algorithm, what means that we use

a kernel of the same size 𝑘 but an input of the size 𝑛 − 1 instead of 𝑛. Having

1See tensorflow source code at https://github.com/tensorflow/tensorflow/blob/9590c
4c32dd4346ea5c356733 36f5912c6072bf2/tensorflow/core/kernels/winograd_transform.h#L1
79-L186 and MKL-DNN https://github.com/intel/mkl-dnn/blob/fa5f6313d6b65e8f6444c6900
432fb07ef5661e5/doc/winograd_convolution.md
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computed such a convolution, we then modify the output values in which the

𝑛th element of the input is included.

To minimize number of operations in Toom-Cook algorithm we construct

the polynomial 𝑀(𝑎) =
∏︀

𝑖 𝑚𝑖(𝑎) such that deg(𝑀(𝑎)) = deg(𝑠(𝑎)) + 1. We can

further reduce the number of operations by using 𝑀
′
(𝑎) where deg(𝑀 ′(𝑎)) =

deg(𝑀(𝑎)) − 1 = deg(𝑠(𝑎)).

Then if we apply now CRT in place of the polynomial 𝑠(𝑎) = 𝑤(𝑎)𝑥(𝑎) we

obtain the polynomial

𝑠
′
(𝑎) = 𝑠(𝑎) mod 𝑀

′
(𝑎) (3.7)

Because all 𝑚𝑖 we use are monic (see Section 2.2.1), 𝑀 ′
(𝑎) is also monic. We

have 𝑠(𝑎) = 𝑠
′
(𝑎) +𝑅 𝑀

′
(𝑎), where the scalar 𝑅 is the coefficient of the variable

with the highest degree in 𝑠(𝑎) = 𝑤(𝑎)𝑥(𝑎) i.e. 𝑅 = 𝑤𝑘𝑥𝑛. Finally, we have

𝑠(𝑎) = 𝑠
′
(𝑎) + 𝑤𝑘𝑥𝑛𝑀

′
(𝑎) (3.8)

where 𝑠
′
(𝑎) is a solution of the convolution with the input size equal to 𝑛−1.

Formally, we use the notation 𝑀(𝑎) = 𝑀
′
(𝑎)(𝑎−∞) (Blahut 2010).

With this approach we need only 𝑛− 1 root points to construct polynomial

𝑀
′
(𝑎) instead of 𝑛 root points used to construct 𝑀(𝑎) ( Section 3.1) . The com-

parision of number of operations needed to compute convolution with Toom-

Cook and modified Toom-Cook algorithms are presented in Table 3.1 and Ta-

ble 3.2.

3.2.1 Matrices construction

Let us denote matrices constructed by Toom-Cook algorithm for input 𝑛 as

G(n), B(n)𝑇 , A(n)𝑇 and for the modified Toom-Cook algorithm with input 𝑛 as

Gmodify(n), and Bmodify(n) and Amodify(n). The modified Toom-Cook algorithm

for input 𝑛 proceeds as follows

• Construct matrices A(n−1)𝑇 , G(n−1) and B(n−1)𝑇 as for Toom-Cook for the

problem of size 𝑛− 1 with polynomial 𝑀 ′(𝑎).
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Table 3.1: Number of multiplications for Toom-Cook and modified Toom-Cook algo-
rithms in one-dimension for the kernel of the size 3, the output of the size 𝑚 in range
(2, 8) and the input of the size 𝑛 = 𝑚+ 𝑘 − 1.

G B𝑇 A𝑇 All

𝑚 T-C mod T-C T-C mod T-C T-C mod T-C T-C mod T-C

2 12 10 16 13 8 7 36 30

3 15 13 25 21 15 13 55 47

4 18 16 36 31 24 21 78 68

5 21 19 49 43 35 31 105 93

6 24 22 64 57 48 43 136 122

7 27 25 81 73 63 57 171 155

8 30 28 100 91 80 73 210 192

Table 3.2: Number of multiplications for Toom-Cook and modified Toom-Cook al-
gorithms in two-dimensions for the kernel of the size 3, the output of the size 𝑚 in
range(2,8) and the input of the size 𝑛 = 𝑚+ 𝑘 − 1.

G B𝑇 A𝑇 All

𝑚 T-C mod T-C T-C mod T-C T-C mod T-C T-C mod T-C

2 84 70 128 104 48 40 260 214

3 120 104 250 210 120 100 490 414

4 162 144 432 372 240 204 834 720

5 210 190 686 602 420 364 1316 1156

6 264 242 1024 912 672 592 1960 1746

7 324 300 1458 1314 1008 900 2790 2514

8 390 364 2000 1820 1440 1300 3830 3484

• Construct the matrix Gmodify(n) by adding the 𝑛th row to the matrix G(n−1).

This row consists of zeros and 1 exactly at the last position. Then

Gmodify(n)w = G(n−1)w + 𝑤𝑘.
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• Construct the matrix Amodify(n) in the same way by adding the 𝑛th row

to the matrix A(n−1). This row includes zeros and 1 at the last position.

Then Amodify(n)x = A(n−1)x + 𝑥𝑛.

• Construct the matrix Bmodify(n) by adding the 𝑛th row and 𝑛th column

to the matrix B(n−1). The last row includes zeros and 1 at the last posi-

tion. The last column includes consecutive coefficients of the polynomial

𝑀
′
(𝑎). Then

Bmodify(n)(Gmodify(n)w⊙Amodify(n)x) =

B(n−1)(G(n−1)w ⊙A(n−1)x) + 𝑤𝑘𝑥𝑛𝑀
′
(𝑎)

ALGORITHM 6: Algorithm to construct transformation matrices for modified

Toom-Cook algorithm.

Input: 𝑚 - size of output,

𝑘 - size of kernel,

{𝑝1, · · · , 𝑝𝑛−1} - set of 𝑛− 1 pairwise

different root points.

A(n−1)𝑇 , B(n−1)𝑇 , G(n−1) - matrices

constructed by Toom-Cook algorithm for

𝑛− 1 root points

Output: Three matrices Amodify(n)𝑇 ,

Gmodify(n) Bmodify(n)𝑇 for

modified Toom-Cook

convolution

𝑛 = 𝑚+ 𝑘 − 1 ;

for 𝑖 = 1 to 𝑛− 1 do

𝑁𝑖 =
1∏︀

𝑗 ̸=𝑖(𝑝𝑖−𝑝𝑗)
;

𝑀𝑖 = coefficient of the polynomial∏︀
𝑙(𝑎− 𝑝𝑙) of 𝑖th term

end

A
modify(n)𝑇
1:𝑚,1:𝑛−1 = A(n−1)𝑇 ;

for 𝑖 = 1 to 𝑚− 1 do

A
modify(n)𝑇
𝑖,𝑛 = 0

end

A
modify(n)𝑇
𝑚,𝑛 = 1 ;

G
modify(n)
1:𝑘,1:𝑛−1 = G(n−1) ;

for 𝑗 = 1 to 𝑘 − 1 do

G
modify(n)
𝑛,𝑗 = 0

end

G
modify(n)
𝑛,𝑘 = 1 ;

B
modify(n)𝑇
1:𝑛−1,1:𝑛−1 = B(n−1)𝑇 ;

for 𝑖 = 1 to 𝑛− 1 do

B
modify(n)𝑇
𝑖,𝑛 = 0

end

for 𝑗 = 1 to 𝑛 do

B
modify(n)𝑇
𝑛,𝑗 = 𝑀𝑗

end
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The general forms of matrices obtained by the modified Toom-Cook algo-

rithm are presented below:

Gmodify(n) =

⎡⎣ G(n−1)

0 · · · 0 1

⎤⎦ Amodify(n)𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣A
(n−1)T

0
...

0

1

⎤⎥⎥⎥⎥⎥⎥⎦

Bmodify(n)𝑇 =

⎡⎣ B(n−1)T 0

𝑀1(𝑎) · · · 𝑀𝑛 1

⎤⎦
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Chapter 4

Theoretical error analysis

In this chapter, we present a formal error analysis of the both Toom-Cook con-

volution algorithm Algorithm 5 and its modified version Algorithm 6 which,

to our knowledge is the first such formulation. Our approach uses the Higham

(Higham 2002) method of floating point error estimation (see Section 2.3.2) and

results on the instability of Vandermonde systems by Higham (Higham 2002)

and Pan (Pan 2016). Notice that we are interested in floating point error of

the algorithm regardless of the error of the input data. That is why we only

consider cumulation of representation errors of the algorithm parameters and

errors that arise from algorithm operations.

We formulate the error bounds for Toom-Cook convolution using similar

techniques to those used for another bilinear problem: the fast matrix multi-

plication, error estimation by Bini and Lotti (Bini and Lotti 1980), Demmel et

al. (Demmel et al. 2007) and Ballard (Ballard et al. 2016). The error estima-

tion allows us to show that the Toom-Cook convolution algorithm as well as its

modified version are unstable and to identify the components of the error.

4.1 Floating point error in transformations

The core operation in the linear transformations is a matrix-vector product,

which can be represented as a set of dot products a𝑇x. Let us take an in-

put vector x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]. As we are interested in error that arise from
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convolution algorithm Algorithm 3 not in input data representation, we as-

sume that 𝑥𝑖 ∈ 𝐹 , ∀ 𝑖 = 1, 2, . . . , 𝑛 (Higham 2002). We also take another

vector a = [𝑎1, 𝑎2, . . . , 𝑎𝑛] which is a parameter of the convolution algorithm

(column or row of transformation matrices) Algorithm 3, so we include the

representation error of the components of the vector a in our analysis. Then

𝑓𝑙(a) = [𝑓𝑙(𝑎1), 𝑓 𝑙(𝑎2), . . . , 𝑓 𝑙(𝑎𝑛)] and 𝑓𝑙(𝑎𝑖) = 𝑎𝑖(1 + 𝛿𝑖), where |𝛿𝑖| ≤ 𝜀

∀ 𝑖 = 1, 2, . . . , 𝑛 (Higham 2002). The value 𝜀 is referred to as machine epsilon

and depends on the precision of the number system (see Section 2.3). The error

of the dot product computations is then equal to the absolute of the difference

between ground truth and the computed solution. In theoretical analysis by

ground truth we mean the exact result of computations excluding all represen-

tation and operation errors.

|a𝑇x− 𝑓𝑙(𝑓𝑙(a𝑇 )x)| ≤ |a𝑇 | |x|𝛼(𝑛)𝜀 + 𝑂(𝜀2) (4.1)

where |x| - the absolute value of the vector x = [𝑥1, . . . , 𝑥𝑛] is a vector with abso-

lute values of the entries x, so |x| = [|𝑥1|, . . . , |𝑥𝑛|] (see Section 2.2.1). The value

of 𝛼(𝑛) stands for the coefficent in floating point error boundary of summing

up 𝑛 values. If we assume the linear summation in dot product computations,

𝛼(𝑛) = 𝑛+ 1 (see (Higham 2002)). There is a wide range of summation methods

that allows us to compute dot product with smaller floating point error than

using linear summation. Demmel et al. (Demmel and Hida 2004) and Rump et

al. (Rump, Ogita, and Oishi 2008a; Rump, Ogita, and Oishi 2008b) have anal-

ysed the error of several various summation algorithms. For generality, we do

not assume any particular method of dot product evaluation. Instead, we use

𝛼(𝑛), which stands for the error of the dot product computations for vectors of

𝑛 elements.

Also, in our analysis, the vector a is consider as a parameter of a convolution

algorithm (Algorithm 3) not an input. The elements of the vector a depends on

the choosen root points 𝑝𝑖 Section 3.1.1. We write 𝑓𝑙(a) because the mathe-

matically exact value of a may not be exactly representable in finite precision

floating point number system. The error may vary for different precisions for
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example for single and half floating points number systems (see Section 2.3).

We want to find an estimation of algorithm error expressed with these param-

eters, as well as the number and the type of operations.

Note that the value of 𝛼(𝑛) depends on the representation error of values 𝑎𝑖,

error from multiplication of corresponding values, the lenght of vectors (𝑛) and

the method of summation. We have three possible cases that give us different

boundaries for the error of multiplication 𝑎𝑖𝑥𝑖:

1. Values of 𝑎𝑖 are not in 𝐹 (the set of floating points numbers in precision

under consideration). In this case we have an error from the inexact rep-

resentation of 𝑎𝑖 and from the multiplication, so 𝑓𝑙(𝑎𝑖) = 𝑎𝑖(1 + 𝛿𝑖) where

|𝛿𝑖| ≤ 𝜀. Then

|𝑓𝑙(𝑓𝑙(𝑎𝑖)𝑥𝑖) − 𝑎𝑖𝑥𝑖| ≤ |𝑎𝑖| |𝑥𝑖| 2𝜀 + 𝑂(𝜀2), ∀ 𝑖 = 1, 2, . . . , 𝑛

2. Values of 𝑎𝑖 are in 𝐹 . In this case only the multiplication and summation

errors remain, that is

|𝑓𝑙(𝑓𝑙(𝑎𝑖)𝑥𝑖) − 𝑎𝑖𝑥𝑖| ≤ |𝑎𝑖| |𝑥𝑖|𝜀 + 𝑂(𝜀2), ∀ 𝑖 = 1, 2, . . . , 𝑛

3. Values of 𝑎𝑖 are integer powers of 2, so we have no error either from rep-

resentation or from multiplication, so

|𝑓𝑙(𝑓𝑙(𝑎𝑖)𝑥𝑖) − 𝑎𝑖𝑥𝑖| ≤ |𝑎𝑖| |𝑥𝑖|, ∀ 𝑖 = 1, 2, . . . , 𝑛

If we assume linear summation in Equation (4.1) we have 𝛼(𝑛) for each of

these three cases as follows

1. 𝛼(𝑛) = 𝑛 + 1 for any elements 𝑎𝑖

2. 𝛼(𝑛) = 𝑛 for 𝑎𝑖 exactly represented in 𝐹

3. 𝛼(𝑛) = 𝑛− 1 if all 𝑎𝑖 are integer powers of 2

However, 𝑛− 1 < 𝑛 < 𝑛 + 1 so using 𝛼(𝑛) = 𝑛 + 1 is a correct estimate but does

not give the tightest possible bound.
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4.2 Buniakowski-Schwartz inequality - observation

In this chapter we use the vector and matrix norms properties that arise from

Buniakowski-Schwartz inequality Section 2.2.5 Equation (2.9). We consider the

linear space R𝑛 with the Euclidean inner product.

|⟨u,v⟩| ≤ ‖u‖ ‖v‖

Let us notice that

⟨u,v⟩ =
∑︁
𝑖

|𝑢𝑖𝑣𝑖|

|⟨−u,−v⟩| = |⟨u,v⟩| = |⟨−u,v⟩| = |⟨u,−v⟩|

(Inner product properties see Section 2.2.5)

So, we can replace |∠u,v⟩| by ⟨|u|, |v|⟩

Finally we have

|⟨u,v⟩| = ‖u⊙ v‖1 ≤ ‖u‖2 ‖v‖2

Analougusly for matrices U,W ∈ R𝑛×𝑚 it holds

‖U⊙W‖1 ≤ ‖U‖2‖W‖2

4.3 Norms equivalence

In Toom-Cook error estimation we use widely known norm property so called

norms equivalence (see Definition 9 and Definition 10).

Theorem 4. Any two norms defined on the same vector space R𝑛 are equivalent.

Proof. Based on (Rudin 1986)

Let ‖·‖ denotes a norm in R𝑛. We show that it is equivalent to norm‖·‖1 defined

in Equation (2.1).. Then transitivity of the norm equivalency gives the thesis we

want.

Let us denote the canonical base in R𝑛 by e1, . . . , en, that is ei = [0, ..., 1, ...0]

for 𝑖 = 1, ..., 𝑛.
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For any x = [𝑥1, ..., 𝑥𝑛] ∈ R𝑛 we have:

‖x‖ = ‖
∑︁

𝑥𝑖ei‖ ≤
∑︁

|𝑥𝑖||ei‖ ≤
∑︁

(|𝑥𝑖| ·
∑︁

‖ei‖) =
∑︁

‖ei‖ · ‖x‖1

If we put 𝑐1 =
∑︀

‖ei‖ then we obtain ‖x‖ ≤ 𝑐1‖x‖1 for any vector x ∈ R𝑛.

To obtain the second inequality let us consider a unit sphere

𝑆 = {y ∈ R𝑛 : ‖y‖1 = 1}. The defined set 𝑆 is closed and bounded (a compact

set). Define on 𝑆 a function 𝜑 : 𝑆 −→ (0,∞) putting 𝜑(y) = ‖y‖. The following

inequality

|𝜑(y) − 𝜑(y0)| = |‖y‖ − ‖y0‖| ≤ ‖y − y0‖ ≤ 𝑐1‖y − y0‖1

implies that 𝜑 is a continuous function. Now, from the Weierstrass theorem it

follows that 𝜑 achieves the minimal value on 𝑆. Denote it by 𝑐2. Hence for any

x ∈ 𝑆 we have ‖y‖ ≥ 𝑐2. Finally for any vector x ∈ R𝑛, x ̸= 0 a vector

y = x/‖x‖1 ∈ 𝑆. So x = ‖x‖1 · y and ‖x‖ = ‖x‖1 · ‖y‖ ≥ 𝑐2‖x‖1 what finishes

the proof.

Analogically one can prove equivalence of all matrix norms in R𝑚×𝑛. How-

ever the vector spaces R𝑚×𝑛 and vec(R𝑚×𝑛) = {vec(𝑊 ) : 𝑊 ∈ R𝑚×𝑛} are

isomorphic and so the proved above theorem could be applied to the matrix

norms directly.

Based on the Theorem 4 all matrix norms introduced in Section 2.2.4 are

equivalent. In particular it is true for norms ‖ · ‖2 and ‖ · ‖𝐹 thus

‖W‖2 ≤ ‖W‖𝐹 (4.2)

And for norms ‖ · ‖1 and ‖ · ‖2

1√
𝑛
‖𝑊‖1 ≤ ‖𝑊‖2 ≤

√
𝑛‖𝑊‖1 (4.3)

The proof of above inequalities can be found in Appendix A.
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4.4 Toom-Cook error analysis

The Toom-Cook method generates algorithms for fixed-size convolutions, which

are expressed as a set of three matrices, G, B𝑇 and A𝑇 . These matrices are

computed once in advance, and can be used with many different inputs and

kernels. Figure 4-1 shows the three steps of the algorithm: (a) linear trans-

formations of the kernel w, and the input x; (b) element-wise multiplication

between the elements of the transformed the input and the kernel (Hadamard

product); and (c) the output linear transformation. All of these operations have

an impact on the accuracy of the result.

x

x

x

G

BT

AT

.

kernel

input

conv

Figure 4-1: One-dimensional Toom-Cook algorithm.

In our analysis, we use properties of square Vandermonde matrices (Pan

2016) to understand the numerical properties of the Toom-Cook algorithm and

conditioning of the underlying calculation. The matrices G and A as described

in Chapter 3 in Algorithms 5 and 6 are rectangular. However, we can inter-

pret these matrices as square Vandermonde matrices, which are multiplied by

vectors whose last entries are equal to zero. Thus, we can analyse Toom-Cook
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covolution algorithm like we used the square matrices while the implementa-

tion is actually done using rectangular matrices.

The matrix G shown in Figure 4-1 has only three elements in each row,

rather than four, because the kernel in the example has just 𝑘 = 3 elements.

The full (square) Vandermonde matrix G actually has four elements per row,

with the fourth element computed in the same pattern as the first three. The

kernel w also has four elements, but the fourth is zero. Thus, the fourth element

of each row of G is multiplied by the fourth element of w which is always zero.

As a result, we can safely eliminate the last column of the square Vandermonde

matrix G, and crucially, all associated computation. Similarly, A𝑇 in Figure 4-

1 is shown with just two rows rather than four, because in this example we

compute an output block of the size two (that is the number of computed con-

volution output values). However, we could equally show all four rows of the

Vandermonde matrix A and discard two of the computed results.

To estimate the error bounds we will use the matrix norms ‖ · ‖1, ‖ · ‖2 and

‖ · ‖𝐹 (see Section 2.2.4).

We define 𝛼(𝑛), 𝛽(𝑛) and 𝛾(𝑘) as constants in dot product floating point error

bounds in Equation (4.1) for matrices A𝑇 , B𝑇 and G respectively.

4.4.1 Toom-Cook error analysis in one dimension

Theorem 5. An error for one-dimensional Toom-Cook convolution computation satis-

fies the normwise bound equal to

‖ŝ−s‖1 ≤ ‖A𝑇‖1 ‖G‖𝐹 ‖w‖2 ‖B𝑇‖𝐹 ‖x‖2
(︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘) + 1

)︀
𝜀+𝑂(𝜀2) (4.4)

An error for the 𝑞th element of one-dimensional Toom-Cook convolution computa-

tion for 𝑞 = 1, · · · ,𝑚 satisfies the bound equal to

|𝑠𝑞 − 𝑠𝑞| ≤ |A𝑇 |
(︀
|G||w| ⊙ |B𝑇 ||x|

)︀ (︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘) + 1

)︀
𝜀 + 𝑂(𝜀2) (4.5)
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where values of 𝛼(𝑛), 𝛽(𝑛) and 𝛾(𝑘) depend on the method of summation in dot product

computations in matrices A𝑇 , B𝑇 and G as in Equation (4.1) and 𝜀 depends on the

precision of the number system used for computations.

Proof. Let 𝑓(w,x) be the bilinear function computing Toom-Cook convolution

𝑓 : R𝑘 × R𝑛 → R𝑚 such that

𝑓(w,x) = A𝑇 (Gw ⊙B𝑇x)

The computation consists of the following

1. Kernel and input transformations:

𝑓𝑤
1 : R𝑘 → R𝑛 𝑓𝑤

1 (w) = Gw

𝑓𝑥
1 : R𝑛 → R𝑛 𝑓𝑥

1 (x) = B𝑇x

2. Hadamard product:

𝑓2 : R𝑛 × R𝑛 → R𝑛 𝑓2(b, c) = b⊙ c

3. Postprocessing transformation:

𝑓3 : R𝑛 → R𝑚 𝑓3(a) = A𝑇a

We therefore need to find the error for the composition of these three com-

putations, that is the error of composed function 𝑓(w,x) where

𝑓(w,x) = 𝑓3(𝑓2(𝑓
𝑤
1 (w), 𝑓𝑥

1 (x)))

We follow Higham’s method (Higham 2002) for estimating the floating point

error of the result of the composed function computations. Let us denote

a1 = [w,x] and at+1 = 𝑓𝑡(at)
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that is the result of the first and (𝑡 + 1)th stage of the algorithm.

The vector a2 includes preprocessing transformations of kernel and input 𝑓𝑤
1 (w) =

Gw and 𝑓𝑥
1 (x) = B𝑇x.

a2 =

⎡⎣ Gw

B𝑇x

⎤⎦

The vector a3 is the Hadamard product of the two vectors Gw and B𝑇x and

is equal to 𝑓2(Gw,B𝑇x)

a3 = Gw ⊙B𝑇x

Finally, a4 is the post processing transformation 𝑓3(Gw ⊙B𝑇x)

a4 = A𝑇 (Gw ⊙B𝑇x)

The computed values are denoted by

ât+1 = 𝑓𝑡(𝑎𝑡) + ∆𝑎𝑡+1

where ∆𝑎𝑡+1 is the floating point error of the 𝑡th stage of the algorithm which

we compute using (Equation (4.1)).

Let vector s = 𝑓3(𝑓2(𝑓
𝑤
1 (w), 𝑓𝑥

1 (x))) be an exact (theoretical) result and ŝ be

the computed solution and 𝐽𝑡 is the Jacobian matrix of the function 𝑓𝑡. Follow-

ing (Higham 2002) the computed result 𝑠 is equal to

ŝ = 𝑓3(𝑓2(𝑓
𝑤
1 (w), 𝑓𝑥

1 (x))) + 𝐽3𝐽2∆𝑎2 + 𝐽3∆𝑎3 + ∆𝑎4

where

𝐽3 = A𝑇 , 𝐽2 =
[︀
Diag(B𝑇x),Diag(Gw)

]︀
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The floating point errors on each stage of the Winograd convolution algorithm

are bounded as follows

|∆𝑎2| ≤

⎡⎣ |G| |w| 𝛾(𝑘) 𝜀 + 𝑂(𝜀2)

|B𝑇 | |𝑥| 𝛽(𝑛) 𝜀 + 𝑂(𝜀2)

⎤⎦
|∆𝑎3| ≤

(︀
|G| |w| ⊙ |B𝑇 | |𝑥|

)︀
𝜀 + 𝑂(𝜀2),

|∆𝑎4| ≤ |A𝑇 |
(︀
|G| |w| ⊙ |B𝑇 | |x|

)︀
𝛼(𝑛) 𝜀 + 𝑂(𝜀2)

The componentwise error is defined as the absolute difference between ex-

act and computed solutions (Higham 2002; Wilkinson 1994)

|̂s− s|

= |𝑓3 (𝑓2 (𝑓𝑤
1 (w) , 𝑓𝑥

1 (x))) + 𝐽3𝐽2∆𝑎2 + 𝐽3∆𝑎3 + ∆𝑎4 − 𝑓3 (𝑓2 (𝑓𝑤
1 (w) , 𝑓𝑥

1 (x))) |

= |𝐽3𝐽2∆𝑎2 + 𝐽3∆𝑎3 + ∆𝑎4| ≤ |𝐽3||𝐽2||∆𝑎2| + |𝐽3||∆𝑎3| + |∆𝑎4|

≤
[︀
|𝐴𝑇 ||Diag

(︀
B𝑇x

)︀
| , |A𝑇 ||Diag (Gw) |] |∆𝑎2| + |A𝑇 ||∆𝑎3| + |∆𝑎4|

≤
[︀
|A𝑇 ||Diag

(︀
B𝑇x

)︀
| , |A𝑇 || Diag (Gw) |]

⎡⎣ |G||w|𝛾(𝑘)𝜀 + 𝑂 (𝜀2)

|B𝑇 ||x|𝛽(𝑛)𝜀 + 𝑂 (𝜀2)

⎤⎦
+ |A𝑇 |

(︀
|G||w| ⊙ |B𝑇 ||x|

)︀
𝜀 + 𝑂(𝜀2) + |A𝑇 |

(︀
|G||w| ⊙ |B𝑇 ||x|

)︀
𝛼(𝑛)𝜀 + 𝑂

(︀
𝜀2
)︀

= |A𝑇 |
(︀
|G||w| ⊙ |B𝑇 ||x|

)︀
(𝛾(𝑘) + 𝛽(𝑛))𝜀 + |A𝑇 |

(︀
|G||w| ⊙ |B𝑇 ||x|

)︀
𝜀

+ |A𝑇 | (|G||w| ⊙ |B𝑇 ||x|
)︀
𝛼(𝑛)𝜀 + 𝑂

(︀
𝜀2
)︀

= |A𝑇 |
(︀
|G||w| ⊙ |B𝑇 ||x|

)︀ (︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘) + 1

)︀
𝜀 + 𝑂

(︀
𝜀2
)︀

For the normwise error estimation we use induced norm ‖·‖1 Equation (2.4)

and Frobenius norm ‖ · ‖𝐹 Equation (2.6), hence

‖ŝ− s‖1

≤ ‖A𝑇
(︀
Gw ⊙B𝑇x

)︀ (︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘) + 1

)︀
𝜀 + 𝑂

(︀
𝜀2
)︀
‖1

≤ ‖A𝑇
(︀
Gw ⊙B𝑇x

)︀
‖1

(︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾𝑘 + 1

)︀
𝜀 + 𝑂(𝜀2)
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≤ ‖A𝑇‖1‖Gw ⊙B𝑇x‖1
(︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘) + 1

)︀
𝜀 + 𝑂(𝜀2)

Applying the Buniakowski-Schwartz inequality (see Section 4.2) to compo-

nentwise multiplication yields

‖ŝ− s‖1 ≤ ‖A𝑇‖1 ‖Gw‖2 ‖B𝑇x‖2
(︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘) + 1

)︀
𝜀 + 𝑂(𝜀2)

As matrix norm ‖ · ‖2 is induced by the vector norm ‖ · ‖2 ( see Definition 8)

‖Gw‖2 ≤ ‖G‖2‖w‖2 (see Equation (2.3)). From norms equivalence (see Equa-

tion (4.2)) ‖G‖2 ≤ ‖G‖𝐹 . Finally, we have

‖ŝ− s‖1 ≤ ‖A𝑇‖1 ‖G‖𝐹 ‖w‖2 ‖B𝑇‖𝐹 ‖x‖2
(︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘) + 1

)︀
𝜀 + 𝑂(𝜀2)

As ‖A‖1 ≤
√
𝑛‖A‖2 ≤ 𝑛‖A‖1 (see Definition 10 and Equation (4.3)), we

have

‖ŝ− s‖1 ≤
√
𝑛‖A𝑇‖𝐹‖G‖𝐹‖w‖2‖B𝑇‖𝐹‖x‖2

(︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘)

)︀
𝜀 + 𝑂(𝜀2)

Corollary 1. If we use linear summation in the dot product computations and arbi-

trary values for the elements of matrices A𝑇 , G and B𝑇 the componentwise bound is

equal to:

|̂s− s| ≤ |A𝑇 |
(︀
|G| |w| ⊙ |B𝑇 | |x|

)︀
(𝑘 + 2𝑛 + 4)𝜀 + 𝑂(𝜀2)

and the normwise bound is equal to:

‖ŝ− s‖1 ≤
√
𝑛‖A𝑇‖2 ‖G‖𝐹 ‖w‖2 ‖B𝑇‖𝐹 ‖x‖2 (𝑘 + 2𝑛 + 4) 𝜀 + 𝑂(𝜀2)

where 𝑘 is the kernel size and 𝑛 is the input size of the convolution
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4.4.2 Toom-Cook error analysis in two dimensions

Two-dimensional convolution can be implemented by nesting one-dimensional

convolutions (Blahut 2010; Lavin and Gray 2016). This nesting approach re-

quires additional pre post-processing linear transformations. In two-dimensional

convolution we use the properties of Kronecker product that means

vec(MXM𝑇 ) = (M⊗M) vec(X) (4.6)

where vec(·) is a vector constructed from matrix by stacking its columns into a

one column vector.

Notice that despite both formulas in Equation (4.6) are mathematically equiv-

alent the result in floating point arithmetic could be different.

For two-dimensional Toom-Cook convolution algorithm we can formulate

the theorem analogous to Theorem 5

Theorem 6. An error for two-dimensional Toom-Cook convolution computation sat-

isfies the componentwise bound equal to:

|Ŝ− S| ≤ |A𝑇 |
(︀
|G| |W| |G𝑇 | ⊙ |B𝑇 | |X| |B|

)︀
|A|𝑅𝜀 + 𝑂(𝜀2) (4.7)

An error for two-dimensional Toom-Cook convolution computation satisfies the

normwise bound equal to

‖Ŝ−S‖1 ≤ ‖A𝑇‖1 ‖G‖𝐹 ‖W‖𝐹 ‖G𝑇‖𝐹 ‖B𝑇‖𝐹 ‖X‖𝐹 ‖B‖𝐹 ‖A‖1𝑅𝜀+𝑂(𝜀2) (4.8)

where 𝑅 = 2𝛼(𝑛) + 2𝛽(𝑛) + 2𝛾(𝑘) + 1.

We assume the identical method of summation for matrix and transpose matrix

multiplication, where 𝛼(𝑛), 𝛽(𝑛), 𝛾(𝑘) represent errors from multiplication by matrices

A𝑇 , B𝑇 and G respectively.

Proof. Let 𝑔(W,X) be a bilinear function computing Toom-Cook two dimen-

sional convolution 𝑔 : R𝑘×𝑘 × R𝑛×𝑛 → R𝑚×𝑚 such as

𝑔(W,X) = A𝑇
(︀
GWG𝑇 ⊙B𝑇XB

)︀
A
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The computations consist of

1. Kernel and input transformations:

𝑔𝑊1 : R𝑘×𝑘 → R𝑛×𝑛, 𝑔𝑊1 (W) = GWG𝑇

𝑔𝑋1 : R𝑛×𝑛 → R𝑛×𝑛, 𝑔𝑋1 (X) = B𝑇XB

2. Hadamard product:

𝑔2 : R𝑛×𝑛 × R𝑛×𝑛 → R𝑛×𝑛, 𝑔2(M,N) = M⊙N

3. Postprocessing transformation:

𝑔3 : R𝑛×𝑛 → R𝑚×𝑚, 𝑔3(M) = A𝑇MA

We put a composed function 𝑔(W,X)

𝑔(W,X) = 𝑔3(𝑔2(𝑔
𝑊
1 (W), 𝑔𝑋1 (X)))

Denoting the exact (theoretical) result as S and computed result as Ŝ, similarly

as for one-dimensional convolution we have

| vec(Ŝ) − vec(S)| ≤ |𝐽3| |𝐽2| |∆𝑏2| + |𝐽2| |∆𝑏3| + |∆𝑏4| (4.9)

where

𝐽3 = A𝑇 ⊗A𝑇 , 𝐽2 =
[︀
Diag((B𝑇 ⊗B𝑇 )x),Diag((G⊗G)w)

]︀
Floating point errors for each stage of the algorithm are bounded as follows

|∆𝑏2| ≤

⎡⎣ (|G| ⊗ |G|) vec(|W|) 2𝛾(𝑘) 𝜀 + 𝑂(𝜀2)

(|B𝑇 | ⊗ |B𝑇 |) vec(|X|) 2𝛽(𝑛) 𝜀 + 𝑂(𝜀2)

⎤⎦
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|∆𝑏3| ≤
(︀
(|G| ⊗ |G|) vec(|W|) ⊙ (|B𝑇 | ⊗ |B𝑇 |) vec(|X|)

)︀
𝜀 + 𝑂(𝜀2),

|∆𝑏4| ≤

(|A𝑇 | ⊗ |A𝑇 |)
(︀
(|G| ⊗ |G|) vec(|W|) ⊙ (|B𝑇 | ⊗ |B𝑇 |) vec(|X|)

)︀
2𝛼(𝑛) 𝜀 + 𝑂(𝜀2)

Putting above formulas into the Equation (4.9) we have

| vec(Ŝ) − vec(S)| ≤ |𝐽3| |𝐽2| |∆𝑏2| + |𝐽2| |∆𝑏3| + |∆𝑏4|

= |A𝑇 ⊗A𝑇 |
[︀
Diag((|B𝑇 | ⊗ |B𝑇 |) vec(|X|)),Diag((|G| ⊗ |G|) vec(|W|))

]︀
|⃒⃒⃒⃒

⃒⃒
⎡⎣ (|G| ⊗ |G|) vec(|W|)2𝛾(𝑘)𝜀 + 𝑂(𝜀2)(︀

|B𝑇 | ⊗ |B𝑇 |
)︀

vec(|X|)|2𝛽(𝑛)𝜀 + 𝑂(𝜀2)

⎤⎦⃒⃒⃒⃒⃒⃒
+
(︀
|A𝑇 | ⊗ |A𝑇 |

)︀ (︀
(|G| ⊗ |G|) vec(|W|) ⊙

(︀
|B𝑇 | ⊗ |B𝑇 |

)︀
vec(|X|)

)︀
𝜀

+
(︀
|A𝑇 | ⊗ |A𝑇 |

)︀ (︀
(|G| ⊗ |G|) vec (|W|) ⊙

(︀
|B𝑇 | ⊗ |B𝑇 |

)︀
vec (|X|)

)︀
2𝛼(𝑛)𝜀 + 𝑂(𝜀2)

=
(︀
|A𝑇 | ⊗ |A𝑇 |

)︀ (︀
(|G| ⊗ |G|) vec (|W|) ⊙

(︀
|B𝑇 | ⊗ |B𝑇 |

)︀
vec(|X|)

)︀ (︀
2𝛾(𝑘) + 2𝛽(𝑛)

)︀
𝜀

+
(︀
|A𝑇 | ⊗ |A𝑇 |

)︀ (︀
(|G| ⊗ |G|) vec(|W|) ⊙

(︀
|B𝑇 | ⊗ |B𝑇 |

)︀
vec (|X|)

)︀ (︀
2𝛼(𝑛) + 1

)︀
𝜀+𝑂(𝜀2)

=
(︀
|A𝑇 | ⊗ |A𝑇 |

)︀
(|G| ⊗ |G|) vec (|W|) ⊙

(︀
|B𝑇 | ⊗ |B𝑇 |

)︀
vec (|X|) |𝑅𝜀 + 𝑂(𝜀2)

where 𝑅 = 2𝛾(𝑘) + 2𝛽(𝑛) + 2𝛼(𝑛) + 1.

Changing vectors again to matrices we obtain

|Ŝ− S| ≤

|A𝑇 |
(︀
|G| |W| |G𝑇 | ⊙ |B𝑇 | |X| |B|

)︀
|A|

(︀
2𝛼(𝑛) + 2𝛽(𝑛) + 2𝛾(𝑘) + 1

)︀
𝜀 + 𝑂(𝜀2)

We do the normwise error estimation in the same way as for one-dimensional

convolution, as the matrix consistency and Buniakowski-Schwartz inequality

88



hold both for vectors and matrices (Steele 2004).

‖Ŝ− S‖1 ≤ ‖A𝑇
(︀
GWG𝑇 ⊙B𝑇XB

)︀
A

(︀
2𝛼(𝑛) + 2𝛽(𝑛) + 2𝛾(𝑘) + 1

)︀
𝜀 + 𝑂(𝜀2)‖1

≤ ‖A𝑇
(︀
GWG𝑇 ⊙B𝑇XB

)︀
A‖1

(︀
2𝛼(𝑛) + 2𝛽(𝑛) + 2𝛾(𝑘) + 1

)︀
𝜀 + 𝑂(𝜀2)

As the norm ‖ · ‖1 is an induced norm we use Equation (2.3)

‖Ŝ− S‖1 ≤

‖A𝑇‖1‖
(︀
GWG𝑇

)︀
⊙

(︀
B𝑇XB

)︀
‖1‖A‖1

(︀
2𝛼(𝑛) + 2𝛽(𝑛) + 2𝛾(𝑘) + 1

)︀
𝜀 + 𝑂(𝜀2)

Applying Buniakowski-Schwartz inequality for Hadamard product (see Sec-

tion 2.2.5 and Section 4.2)

‖Ŝ−S‖1 ≤ ‖A𝑇‖1 ‖GWG𝑇‖2 ‖B𝑇XB)‖2 ‖A‖1
(︀
2𝛼(𝑛) + 2𝛽(𝑛) + 2𝛾(𝑘) + 1

)︀
𝜀+𝑂(𝜀2)

Finally, from norm equivalency (see Definition 10)

‖Ŝ− S‖1 ≤ ‖A𝑇‖1 ‖G‖𝐹 ‖W‖𝐹 ‖G𝑇‖𝐹 ‖B𝑇‖𝐹 ‖X‖𝐹 ‖B‖𝐹 ‖A‖1𝑅𝜀 + 𝑂(𝜀2)

𝑅 = 2𝛼(𝑛) + 2𝛽(𝑛) + 2𝛾(𝑘) + 1

From definition (see Equation (2.6)) the Frobenius norm of any matrix M is

equal to the Frobenius norm of matrix M𝑇 , so we can formulate the normwise

bounds

‖Ŝ− S‖1 ≤

‖A𝑇‖1 ‖A‖1 ‖G‖2𝐹 ‖W‖𝐹 ‖B𝑇‖2𝐹 ‖X‖𝐹
(︀
2𝛼(𝑛) + 2𝛽(𝑛) + 2𝛾(𝑘) + 1

)︀
𝜀 + 𝑂(𝜀2)

Note that from norms equivalence (see Section 4.3) we can bound

‖A𝑇‖1‖A‖1 ≤ 𝑛‖A𝑇‖𝐹‖A‖𝐹 = 𝑛‖A𝑇‖2𝐹
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see (Higham 2002). Then we have an error bound for two-dimensional Toom-

Cook algorithm equal to

‖Ŝ− S‖1

≤ 𝑛‖A𝑇‖2𝐹 ‖G‖2𝐹 ‖B𝑇‖2𝐹 ‖W‖𝐹 ‖X‖𝐹
(︀
2𝛼(𝑛) + 2𝛽(𝑛) + 2𝛾(𝑘) + 1

)︀
𝜀 + 𝑂(𝜀2)

Comparing it to the one-dimensional Toom-Cook convolution bound Equa-

tion (4.5), we observe that the error bound for two-dimensionsional Toom-Cook

convolution computations is approximately the square of the error of the one-

dimensional algorithm.

Corollary 2. If we use a linear summation in the dot product computations and arbi-

trary values for the elements of matrices 𝐴𝑇 , 𝐺 and 𝐵𝑇 , the componentwise bound for

two-dimensional Toom-Cook convolution is

|Ŝ− S| ≤ |A𝑇 |
(︀
|G||W||G𝑇 | ⊙ |B𝑇 ||X||B|

)︀
|A| (2𝑘 + 4𝑛 + 7) 𝜀 + 𝑂(𝜀2)

and the normwise bound is equal to

‖Ŝ− S‖1 ≤

𝑛‖A𝑇‖2𝐹 ‖G‖2𝐹 ‖W‖𝐹 ‖G𝑇‖𝐹 ‖B𝑇‖𝐹 ‖X‖𝐹 ‖B‖𝐹 ‖A‖1 (2𝑘 + 4𝑛 + 7) 𝜀 + 𝑂(𝜀2)

4.5 Components of the Toom-Cook error

The Toom-Cook errors in Theorem 5 and Theorem 6 states that the bound is

proportional to the product of three main factors:

• The product of the norms of the three convolution matrices G, B𝑇 and

A𝑇 .

• The product of the norms of the input x/X and kernel w/W

• The sum of the errors from the linear transformations 𝛼(𝑛), 𝛽(𝑛) and 𝛾(𝑘).

Interpreting the error bounds derived in Theorem 5 and Theorem 6, we see that

the relative errors are controlled by norms of the Vandermonde matrices and
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the summation order. Furthermore, the errors arising from the linear transfor-

mations are polynomial, as shown in Equation (4.1).

However, it should be noted that the relative condition number may depend

on x and w (see Section 4.7).

As we describe in more details in Section 3.1, matrices G and A are Vander-

monde matrices (theoretically square although normally presented as rectan-

gular) and matrix B𝑇 is the inverse of the square version of A𝑇 . The product

of the norms of a square Vandermonde matrix and its inverse grows at least

exponentially with their size 𝑛 (Pan 2016). Thus, our bound on the error grows

at least exponentially with 𝑛.

The third component of the Toom-Cook algorithm error depends on the val-

ues of 𝛼(𝑛), 𝛽(𝑛), 𝛾(𝑘), which means that it depends on the method of evaluation

of the matrix-vector multiplication.

4.6 Multiple channels

Note that in DNNs convolution is also usually computed across multiple input

channels. Both their input and kernel have the same number of channels, and

separate convolutions are computed for each channel. The resulting vectors or

matrices (for one- and two-dimensional convolution respectively) are summed

pointwise to yield a single-channel result vector or matrix (see Section 2.1.2).

Toom-Cook convolution consists of three stages: pre-processing, element-

wise multiplication (Hadamard product), and post-processing. Lavin and Gray’s

(Lavin and Gray 2016) DNN convolution algorithm dramatically reduces the

work of post-processing for multi-channel convolution. The post-processing

step is a linear transformation, so the sum of the transformed Hadamard prod-

ucts is equal to the transformation of the sum of the Hadamard products. Thus

the post-processing transformation is applied just once after summing the

Hadamard products, rather than separately for each input channel before sum-

mation.
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If we compute Toom-Cook convolution over 𝐶 input channels we add the

results of Hadamard products
∑︀𝐶

𝑐=1(Gwc ⊙B𝑇xc) for one-dimensional convo-

lution and
∑︀𝐶

𝑐=1(GWcG
𝑇 ⊙ B𝑇XcB) for two-dimensional convolution, using

the same matrices G and B𝑇 on every channel (see Section 2.4 - Equation (2.17),

Equation (2.18)). Thus we have the error

‖ŝ− s‖1 ≤ ‖A𝑇‖1𝐶 ‖G‖𝐹 max
𝑐

‖wc‖2 ‖B𝑇 |𝐹 max
𝑐

‖x𝑐‖2𝑅𝜀 + 𝑂(𝜀2) (4.10)

where 𝑅 = 𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘) + 1 + 𝜆(𝐶), wc and xc are the kernel and input

vectors on channel 𝑐, 𝛼(𝑛), 𝛽(𝑛), 𝛾(𝑘) represent the dot product errors and 𝜆(𝐶) is

the error in pointwise summation.

For two dimensions we have

‖Ŝ− S‖1 ≤(︁
‖A𝑇‖1𝐶 ‖G‖𝐹 max

𝑐
‖wc‖2 ‖G𝑇‖𝐹 ‖B𝑇‖𝐹 max

𝑐
‖xc‖2 ‖B‖𝐹 ‖A‖1

)︁
𝑅𝜀 + 𝑂(𝜀2)

(4.11)

where 𝑅 = 2𝛼(𝑛) + 2𝛽(𝑛) + 2𝛾(𝑘) + 1 + 𝜆(𝐶)

When summing 𝑛 inputs, the worst-case error from simply accumulating to

a single variable is 𝑂(𝑛). In contrast, the pairwise summation algorithm has a

worst-case error of just 𝑂(log2 𝑛) (Knuth 1998). Given our existing error bound

for Toom-Cook convolution with multiple channels, we can formulate the effect

of using pairwise summation instead of a linear summation.

Corollary 3. The error for 1D convolution based on Theorem 5 and Theorem 6, using

linear summation across channels is

‖ŝ− s‖1 ≤

‖A𝑇‖1 ‖G‖𝐹 ‖B𝑇‖𝐹 ‖w‖𝐹 ‖x‖𝐹
(︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘) + 𝐶

)︀
𝜀 + 𝑂(𝜀2) (4.12)
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For pairwise summation across channels, the corresponding error is

‖ŝ− s‖1 ≤

‖A𝑇‖1 ‖G‖𝐹 ‖B𝑇‖𝐹 ‖w‖2 ‖x‖2
(︀
𝛼(𝑛) + 𝛽(𝑛) + 𝛾(𝑘) + ⌊log(𝐶)⌋ + 2

)︀
𝜀 + 𝑂(𝜀2)

(4.13)

As we can observe comparing Equation (4.12) and Equation (4.13) we have

smaller overall error when we use the pairwise summation over channels than

for linear summation.

4.7 Estimate of norm and conditioning

This section contains the work of Professor Kirk M. Soodhalter from the School

of Mathematics, Trinity College Dublin and is put into this thesis for the sake of

completeness. The presented results provide some estimates of the norm and

conditioning of the Toom-Cook/Winograd convolution algorithm, namely of

the product A𝑇
(︀
Gw ⊙B𝑇x

)︀
. In what follows we firstly express the Hadamard

product using a special kind of matrix product called the Khatri-Rao product

(see Definition 3). The result of Khatri- Rao product of two matrices is similar

to Hadamard product. However, in Hadamard product we compute each ele-

ment of the resulting vector/matrix as multiplication of respective elements in

input matrices. In Khatri-Rao product we compute each element of the result-

ing vector/matrix as the Kronecker product of respective blocks of input matri-

ces (Golub and Loan 2013). In particular we can use blocks identical to matrix

rows. Then we reformulate Hadamard product in Toom-Cook/Winograd con-

volution algorithm formula using Khatri-Rao and Kronecker products.

Theorem 7. Let B and G denote Vandermonde matrices, that are used in the Toom-

Cook/Winograd algorithm and and x = [𝑥1, . . . , 𝑥𝑛],w = [𝑤1, . . . , 𝑥𝑘] be vectors. The

Hadamard product Gw ⊙B𝑇x admits the expression

Gw ⊙B𝑇x =
(︀
B𝑇 ⊗𝐾𝑅 G

)︀
· (x⊗w) .
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Proof. Let

G =

⎡⎢⎢⎢⎢⎢⎢⎣
g𝑇
1:

g𝑇
2:

...

g𝑇
𝑛:

⎤⎥⎥⎥⎥⎥⎥⎦ and B𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣
b𝑇
1:

b𝑇
2:

...

b𝑇
𝑛:

⎤⎥⎥⎥⎥⎥⎥⎦
with b𝑇

𝑖: = [𝑏𝑖1, 𝑏𝑖2, . . . , 𝑏𝑖,𝑛]. Then the 𝑖th entry of B𝑇x is b𝑇
𝑖:x =

∑︀𝑛
𝑗=1 𝑏𝑖𝑗𝑥𝑗 and

the 𝑖th entry of Gw ⊙B𝑇x can thus be written as

g𝑇
𝑖:w · b𝑇

𝑖:x = g𝑇
𝑖:w ·

𝑛∑︁
𝑗=1

𝑏𝑖𝑗𝑥𝑗 =
𝑛∑︁

𝑗=1

𝑏𝑖𝑗g
𝑇
𝑖: (𝑥𝑗w) ,

which can be rewritten as the dot product

g𝑇
𝑖:w · b𝑇

𝑖:x = [𝑏𝑖1gi:
𝑇 , 𝑏𝑖2g

𝑇
𝑖: , . . . , 𝑏𝑖𝑛g

𝑇
𝑖: ]

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1w

𝑥2w
...

𝑥𝑛w

⎤⎥⎥⎥⎥⎥⎥⎦ =
(︀
b𝑇
𝑖: ⊗ g𝑇

𝑖:

)︀
(x⊗w) .

This proves the result.

We now calculate the condition number of Toom-Cook/Winograd convolu-

tion algorithm, that is

𝜅(a) =
‖J(a)‖ · ‖a‖

‖𝑓(a)‖
;

see Definition 11 Equation (2.8), (Trefethen and Bau 1997)

Let us define a function 𝑦 of two vector variables x and w as the Kronecker

product of them, that is 𝑦(x,w) = x ⊗ w. Now we can formulate the Jacobian

for the Toom-Cook/Winograd convolution transformation as the Jacobian of

the composite function:

J(x,w) = A𝑇
(︀
B𝑇 ⊗𝐾𝑅 G

)︀
J𝑦(x,w),

where J𝑦(w,x) is the Jacobian of 𝑦(w,x). Thus the condition number for Toom-

Cook/Winograd convolution algorithm with the input x and the kernel w sat-
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isfies

𝜅(x,w) =

⃦⃦
A𝑇

(︀
B𝑇 ⊗𝐾𝑅 G

)︀
J𝑦(x,w)

⃦⃦
· ‖x⊗w‖

‖A𝑇 (B𝑇 ⊗𝐾𝑅 G) · (x⊗w)‖
. (4.14)

Now we can estimate the upper bound for the Toom-Cook/Winograd convo-

lution algorithm condition number.

Theorem 8. The condition number 𝜅(x,w) with respect to ‖·‖1 admits the upper

bound estimate

𝜅(x,w) ≤
√
𝑚𝑘𝑛max {‖x‖1 , ‖w‖1}𝜅2

(︀
A𝑇

(︀
B𝑇 ⊗𝐾𝑅 G

)︀)︀
.

Proof. To estimate the upper bound for the condition number we firstly must

get appropriate lower bound estimates for the denominator of 𝜅(w,x). From

the vector norms equivalence Equation (A.1)

⃦⃦
A𝑇

(︀
B𝑇 ⊗𝐾𝑅 G

)︀
· (x⊗w)

⃦⃦
1
≥

⃦⃦
A𝑇

(︀
B𝑇 ⊗𝐾𝑅 G

)︀
· (x⊗w)

⃦⃦
2

Thus, we can estimate the denominator of the condition number formula in the

following way

⃦⃦
A𝑇

(︀
B𝑇 ⊗𝐾𝑅 G

)︀
· (x⊗w)

⃦⃦
2

=

⃦⃦⃦⃦
A𝑇

(︀
B𝑇 ⊗𝐾𝑅 G

)︀
· x⊗w

‖x⊗w‖2

⃦⃦⃦⃦
2

‖x⊗w‖2

≥ min
𝑦∈R𝑛𝑘

‖𝑦‖2=1

⃦⃦
A𝑇

(︀
B𝑇 ⊗𝐾𝑅 G

)︀
· 𝑦

⃦⃦
2
‖x⊗w‖2

Applying this to Equation (4.14) we obtain

𝜅(x,w) ≤
⃦⃦
A𝑇

(︀
B𝑇 ⊗𝐾𝑅 G

)︀
J𝑦(x,w)

⃦⃦
1
· ‖x⊗w‖1

min
𝑦∈R𝑛𝑘

‖𝑦‖2=1

‖A𝑇
(︀
B𝑇 ⊗𝐾𝑅 G

)︀
𝑦‖2 ‖x⊗w‖2

. (4.15)

Now, we can formulate the bound for the numerator of the condition number

formula. Using norms equivalence Equation (4.3), we can estimate

‖x⊗w‖1 ≤
√
𝑛𝑘 ‖x⊗w‖2 .
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The induced matrix norm inequalityEquation (2.3) implies

⃦⃦
A𝑇

(︀
B𝑇 ⊗𝐾𝑅 G

)︀
J𝑦(x,w)

⃦⃦
1
≤

⃦⃦
A𝑇

(︀
B𝑇 ⊗𝐾𝑅 G

)︀⃦⃦
1
‖J𝑦(x,w)‖1 .

Taking into account 1-norm of partial derivatives with respect to the elements

of vectors x and w we obtain

‖J𝑦(x,w)‖1 = max {‖x‖1 , ‖w‖1} .

Furthermore, from matrix norms equivalence Equation (4.3) we have

‖A𝑇 (B𝑇 ⊗𝐾𝑅 G)‖1 ≤
√
𝑚‖A𝑇 (B𝑇 ⊗𝐾𝑅 G)‖2

Substituting into Equation (4.15)

𝜅(w,x) ≤
√
𝑚‖A𝑇 (B𝑇 ⊗𝐾𝑅 G)‖2 max{‖x‖1, ‖w‖1}

√
𝑛𝑘‖x⊗w‖2

min
𝑦∈R𝑘𝑛
‖𝑦‖2=1

‖A𝑇 (B𝑇 ⊗𝐾𝑅 G)𝑦‖2‖x⊗w‖2

=
√
𝑚𝑘𝑛max{‖x‖1, ‖w‖1}

‖A𝑇 (B𝑇 ⊗𝐾𝑅 G)‖2‖x⊗w‖2
min
𝑦∈R𝑘𝑛
‖𝑦‖2=1

‖A𝑇 (B𝑇 ⊗𝐾𝑅 G)𝑦‖2‖x⊗w‖2

=
√
𝑚𝑘𝑛max{‖x‖1, ‖w‖1} max

𝑦∈R𝑘𝑛
𝑦 ̸=0

‖A𝑇 (B𝑇 ⊗𝐾𝑅 G)‖2‖y‖2
‖A𝑇 (B𝑇 ⊗𝐾𝑅 G)y‖2

From condition number definition with respect to 2-norm - Definition 11, Equa-

tion (2.8) we obtain

≤
√
𝑚𝑘𝑛max{‖x‖1, ‖w‖1}𝜅2(A

𝑇 (B𝑇 ⊗𝐾𝑅 G))

that completes the proof.

The condition number of the Toom-Cook/Winograd convolution algorithm

is bounded by the formula which is dependent on the input, the output and the

kernel sizes. Consequently, the numerical error of the computations growth ex-
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ponentially with respect to the size of Vandermonde matrices A, B and G that

are used in the Toom-Cook/Winograd algorithm. The boundary also depends

on the absolute value of input and kernel vector elements. Namely, on their

1-norms ‖x‖1 and ‖w‖1. In the case of pathologically large elements of vectors

x or w the algorithm may exhibit even worse conditioning.

4.8 Modified Toom-Cook error analysis

Our Theorem 5 and Theorem 6 about error estimation applies to both the Toom-

Cook and modified Toom-Cook algorithms. However, we can distinguish error

bounds for those two algorithms. In this section, we present a floating point er-

ror analysis for the modified version of Toom-Cook and show that it gives us

tighter error bounds than for Toom-Cook. As before, our error analysis is novel,

but we rely on prior methods and results from Higham (Higham 2002), Dem-

mel (Demmel et al. 2007), Pan (Pan 2016) and the work of Bini and Lotti (Bini

and Lotti 1980) on the error of fast matrix multiplication. The presented bounds

allow us to see the exact difference in floating point error for both algorithms.

For a modified Toom-Cook algorithm, we have some zero elements in trans-

formation matrices that are independent of the parameters (root points) we

choose. The guaranteed properties of the modified Toom-Cook algorithm is

that we have 𝑘 − 1 zero elements and a single 1 in the last row of G matrix,

𝑛 − 1 zero elements and a single 1 in the last column of B𝑇 matrix and 𝑚 − 1

zero elements and 1 in the last column of A𝑇 matrix. Also, we can observe

that Toom-Cook matrices for input 𝑛 − 1 are submatrices of the matrices for

modified Toom-Cook for input 𝑛 (see Section 3.1, Section 3.2).

Let us denote the exact result vector of modified Toom-Cook algorithm for

input 𝑛 as smodify(𝑛) and convolution vector computing by modified Toom-

Cook algorithm for input 𝑛 by ŝmodify(𝑛). Similarly let us denote the exact result

vector of Toom-Cook algorithm for input 𝑛 by s(𝑛) and computed result by ŝ(𝑛).

We put the vector x(𝑛) as a vector of the size 𝑛 and x(𝑛−1) as the vector of size

𝑛− 1 where 𝑥
(𝑛−1)
𝑖 = 𝑥

(𝑛)
𝑖 for 𝑖 = 1, . . . , 𝑛− 1.
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Theorem 9. The componentwise error of the 𝑞th element of the output of one-dimensional

modified Toom-Cook for 𝑞 = 1, . . . ,𝑚 is bounded by

|𝑠modify(𝑛)
𝑞 − 𝑠modify(𝑛)

𝑞 | ≤

|A(𝑛−1)𝑇
𝑞:|

(︀
|G(𝑛−1)||w| ⊙ |B(𝑛−1)𝑇 ||x(𝑛−1)|

)︀ (︀
𝛾(𝑘) + 𝛽(𝑛−1) + 𝛼(𝑛−1) + 1

)︀
𝜀 + 𝑂(𝜀2)

for 𝑞 = 1, . . . ,𝑚− 1. (4.16)

|𝑠(𝑚𝑜𝑑𝑖𝑓𝑦(𝑛))
𝑚 − 𝑠𝑚𝑜𝑑𝑖𝑓𝑦(𝑛)

𝑚 | ≤

|A𝑞:
(𝑛−1)𝑇 |

(︁
|G(𝑛−1)||w| ⊙ |B(n−1)𝑇 ||x(𝑛−1)| + |𝑤𝑘||B𝑛:

modify(𝑛)𝑇 ||x|
)︁

(︀
max

{︀(︀
𝛾(𝑘) + 𝛽(𝑛−1) + 𝛼(𝑛−1) + 1

)︀
,
(︀
𝛽(𝑛) + 1

)︀}︀
+ 1

)︀
𝜀 + 𝑂(𝜀2)

for 𝑞 = 𝑚. (4.17)

Proof. We denote matrices constructed for Toom-Cook algorithm of input size

𝑛 as G(𝑛), A(𝑛)𝑇 and B(𝑛)𝑇 and for modified Toom-Cook algorithm of input size

𝑛 as Gmodify(𝑛), Amodify(𝑛)𝑇 and Bmodify(𝑛)𝑇 .

As we can see from the modified Toom-Cook algorithm definition (see Al-

gorithm 6) we solve the problem of size 𝑛 by solving problem of size 𝑛 − 1

by Toom-Cook algorithm and modify the last element of output vector. Thus

the error boundary of the first 𝑚 − 1 elements of the output vector in modi-

fied Toom-Cook convolution algorithm is equal to the boundary of Toom-Cook

convolution algorithm for input size 𝑛− 1. The computation of the last output

value (the last element of the output vector) include two parts: we compute the

partial result using Toom-Cook convolution for input 𝑛−1 and add the missing

value

𝑠𝑚
𝑚𝑜𝑑𝑖𝑓𝑦(𝑛) = 𝑠(𝑛−1)

𝑚 + 𝑤𝑘B
modify(𝑛)
𝑛: x
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Thus

|𝑠modify(𝑛)
𝑚 − 𝑠modify(𝑛)

𝑚 | ≤

|𝑠𝑚(𝑛−1)|
(︀
𝛾(𝑘) + 𝛽(𝑛−1) + 𝛼(𝑛−1) + 1

)︀
𝜀 + 𝑂(𝜀2)+

|𝑤𝑘| |Bmodify(𝑛)𝑇
𝑛: | |x|(𝛽(𝑛) + 1)𝜀 + 𝑂(𝜀2)

=
(︀
|𝑠𝑚(𝑛−1)| + |𝑤𝑘| |Bmodify(𝑛)𝑇

𝑛: ||x|
)︀

max
{︀
𝛾(𝑘) + 𝛽(𝑛−1) + 𝛼(𝑛−1) + 1, 𝛽𝑛 + 1

}︀
𝜀 + 𝑂(𝜀2)

For DNNs convolution the kernel size 𝑘 is almost always greater than or

equal to 3 and 𝑘 ≤ 𝑛. If we compute the convolution then from dot product

error analysis in Section 4.1 we know that: 𝛾(𝑘) ≥ 𝑘 − 1, 𝛽(𝑛−1) ≥ 𝑛 − 2 and

𝛼(𝑛−1) ≥ 𝑛 − 2. In this case 𝛾(𝑘) + 𝛽(𝑛−1) + 𝛼(𝑛−1) + 1 ≥ 𝑘 + 2𝑛 − 4, while

𝛽(𝑛) + 1 ≤ 𝑛 + 2. When 𝑘 ≥ 3 the maximum in Section 4.8 is always equal to

𝛾(𝑘) + 𝛽(𝑛−1) + 𝛼(𝑛−1) + 1. Thus, we can formulate the following corollary

Corollary 4. If we use the kernel size 𝑘 ≥ 3 computing for one-dimensional convo-

lution using modified Toom-Cook algorithm then the componentwise error for the last

output element is bounded as follows

|𝑠(modify(𝑛))
𝑚 − 𝑠modify(𝑛)

𝑚 | ≤

|A𝑇
𝑞:

(𝑛−1)|
(︀
|G(𝑛−1)| |w| ⊙ |B(𝑛−1)𝑇 | |x(𝑛−1)| + |𝑤𝑘| |Bmodify(𝑛)𝑇

𝑛: | |x|
)︀
𝑅𝜀 + 𝑂(𝜀2)

(4.18)

where 𝑅 =
(︀
𝛾(𝑘) + 𝛽(𝑛−1) + 𝛼(𝑛−1) + 1

)︀
Fixing any elements in matrices Gmodify(𝑛), Bmodify(𝑛)𝑇 and Amodify(𝑛)𝑇 and

linear summation for computing the dot product we have the following bound-

aries

|𝑠modify(𝑛)
𝑚 − 𝑠modify(𝑛)

𝑚 | ≤(|A𝑇
𝑞:

(𝑛−1)|(|G(𝑛−1)||w| ⊙ |B(𝑛−1)𝑇 ||x(𝑛−1)|+

𝑤𝑘||B𝑛:
modify(𝑛)𝑇 ||x|)(𝑘 + 2𝑛 + 2)𝜀 + 𝑂(𝜀2)
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4.9 Toom-Cook and modified Toom-Cook errors com-

parison

Comparing the componentwise error of Toom-Cook (Equation (4.5)) and a mod-

ified Toom-Cook algorithm (Equation (4.16) and Section 4.8) algorithms, we ob-

serve that the error of the modified Toom-Cook algorithm is smaller than the

error of the Toom-Cook algorithm. We can see from the formula of the modi-

fied Toom-Cook algorithm (Equation (4.16) and Section 4.8) that, in contrast to

the unmodified Toom-Cook algorithm(Equation (4.5)) the errors do not spread

uniformly over all output values (output vector elements). The idea of com-

puting one size smaller convolution and using the pseudo-point ∞ results in

a different error boundary for the last output values. Thus our comparision is

split into two parts: the error comparison for first 𝑚− 1 output values and the

error comparison for the last output value.

Looking to the error formulas in Equation (4.5) and Equation (4.16) for the

first 𝑚 − 1 output values we observe that the submatrices used in error esti-

mation of the modified Toom-Cook algorithm with the input of size 𝑛 are the

same as in the Toom-Cook algorithm with the input of the size 𝑛 − 1. Those

results from the modified Toom-Cook algorithm definition in Section 3.2 – Al-

gorithm 6. Thus we have the same error in the modified Toom-Cook algo-

rithm with the input 𝑛 as for Toom-Cook with the input 𝑛 − 1. Since the ill-

conditioning of Vandermonde matrices increase exponentially with size, the

error due to the conditioning of matrices in modified Toom-Cook algorithm is

significantly smaller, although still exponential.

The second factor in the formulas for the first 𝑚 − 1 output values of both

algorithms is the error from floating point operations. The error introduced by

the dot product has tighter boundaries for modified Toom-Cook (𝛾(𝑘) +𝛽(𝑛−1) +

𝛼(𝑛−1)) than for Toom-Cook (𝛾(𝑘) + 𝛽(𝑛) + 𝛼(𝑛)), if we assume the same method

of summation in both algorithms. It is clear that the worst-case error of sum-

mation of 𝑛 − 1 elements is smaller than the worst-case error of summation of

𝑛 elements, that is 𝛽(𝑛−1) < 𝛽(𝑛) and 𝛼(𝑛−1) < 𝛼(𝑛).
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Because both components of the error in the first 𝑚 − 1 output values are

smaller in the modified Toom-Cook, we can safely conclude that the overall

worse case error in these points is smaller than in the unmodified Toom-Cook

algorithm.
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Chapter 5

Proposed improvements and

experimental results

A convolution of any output size 𝑚 > 1 can be decomposed into the sum of

smaller convolutions. For example, a convolution with 𝑚 = 8 can be computed

as eight convolutions with 𝑚 = 1 (i.e. direct convolution), four convolutions

with 𝑚 = 2, two convolutions with 𝑚 = 4, or one convolution with 𝑚 = 8.

With a kernel of size 𝑘 = 3, the total number of general multiplications for each

of these decompositions will be 8× 3 = 24, 4× 4 = 16, 2× 6 = 12 or 1× 10 = 10

respectively.

The larger the size of each sub-convolution, the smaller number of overlap-

ping values occur (see Section 2.5), so fewer general multiplications are needed

to compute the total output. Unfortunately, bigger output sizes lead to larger

floating point error. In fact, as we show in Chapter 4, the error grows at least

exponentially with 𝑚 + 𝑘 − 1.

Tables 5.1 and 5.2 summarize the number of general multiplications per

output value for different output block sizes using a selection of typical ker-

nel sizes from real-world DNNs. Clearly, we would like to benefit from the

efficiency of large output block sizes. For example, a 5 × 5 Toom-Cook con-

volution with an output block size of 12 × 12 uses around 14× fewer general

multiplications per output value than direct convolution (output of the size

1 × 1).
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Table 5.1: Number of multiplications per single output value for one and two-
dimensionals direct and Toom-Cook convolutions for kernel of the size equal to 3 and
3× 3, various output sizes and number of root points equal to 𝑛.

1D 2D

𝑛 output size multiplications output size multiplications

0 1 3 1 × 1 9

4 2 2 2 × 2 4

5 3 1.67 3 × 3 2.78

6 4 1.5 4 × 4 2.25

7 5 1.4 5 × 5 1.96

8 6 1.34 6 × 6 1.78

9 7 1.29 7 × 7 1.65

10 8 1.25 8 × 8 1.56

11 9 1.22 9 × 9 1.49

12 10 1.2 10 × 10 1.44

13 11 1.18 11 × 11 1.4

14 12 1.17 12 × 12 1.36

15 13 1.15 13 × 13 1.33

16 14 1.14 14 × 14 1.31

The formal error analysis that has appeared in Chapter 4 is a worst-case

analysis. However, even if the worst-case error is potentially very large, it is

important to know something about the typical error that arises in practice.

Almost all formal analyses of floating point error are worst-case analyses. For

example, all the analyses in Higham’s standard textbook on floating point er-

ror are worst-case estimates (Higham 2002). Studies of average case probabilis-

tic floating point error are possible in principle, but they rely on assumptions

about the distribution of errors that are difficult to verify (see Section 2.3.2).

The focus of our work is on understanding and reducing the floating point

error in fast DNN convolution. So rather than deal with the many pitfalls of

formal average case analysis, we make empirical measurements of the floating
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Table 5.2: Number of multiplications per single output value for one and two-
dimensionals direct and Toom-Cook convolutions for kernel of the size equal to 5 and
5× 5, various output sizes and number of root points equal to 𝑛.

1D 2D

𝑛 output size multiplications output size multiplications

0 1 5 1 × 1 25

4 - - - -

5 - - - -

6 2 3 2 × 2 9

7 3 2.33 3 × 3 5.44

8 4 2 4 × 4 4

9 5 1.8 5 × 5 3.24

10 6 1.67 6 × 6 2.78

11 7 1.57 7 × 7 2.47

12 8 1.5 8 × 8 2.25

13 9 1.44 9 × 9 2.09

14 10 1.4 10 × 10 1.96

15 11 1.36 11 × 11 1.86

16 12 1.33 12 × 12 1.78

errors. To measure the error in Toom-Cook convolution, we first need the al-

gorithm for a specific size, which is defined by 𝑘, 𝑚 and the 𝑛 = 𝑘 + 𝑚 − 1

real-valued root points that are used to sample the polynomials corresponding

to the input and kernel.

5.1 Methodology

We study over 40000 of root point selections and find that they have a huge

impact on the floating point error (see Section 5.2). It is not surprising as the

error is proportional to the norm of transformation matrices (see Chapter 4).
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When generating the A𝑇 , G and B𝑇 matrices (see Algorithm 5 and Al-

gorithm 6), we represent all values symbolically rather than as floating point

numbers. This allows us to generate exact values in each element of the con-

volution matrices. Once the elements have been generated, we convert each

value to the nearest representable floating point number. Recall that A𝑇 , G and

B𝑇 are constant matrices, so we compute them as accurately as possible ahead

of time.

Floating point numbers are constructed as a logarithmic sampling of the

real number line, and the range (−1, 1) is where they are the most accurate. The

values of trained DNN weights are, in practice overwhelmingly concentrated

in this range. Since we are interested in differentiating the inherent error in

the convolution algorithms, not just in the context of specific networks, we

would like to know something about the average case error independent of

any specific dataset or network. For this reason, rather than model inputs and

kernels with specific distributions drawn from real networks, we model them

as random variables with uniform or normal distributions in the range(−1, 1).

The distrtibution of the sampled values is not really important, as floating point

errors are not random (Kahan 1996) and distributed in nearly the same way for

uniform and normal values distribution (Dahlqvist, Salvia, and Constantinides

2019) (see Section 2.3.2).

We compute the error as the entrywise norm ‖ · ‖𝐿1 from the difference be-

tween the result of the convolution computations, and an approximation of the

numerically correct result (ground truth) . We find our approximation of the

numerically correct result using direct convolution in double precision floating

point (𝑓𝑙𝑜𝑎𝑡64). The Toom-Cook convolution is implemented according to the

formulas Equation (3.2) and Equation (3.5). Thus the error for one and two-

dimensions are computed in following way:

‖A𝑇 (Gw ⊙B𝑇x) −w * x‖𝐿1

‖A𝑇 (GWG𝑇 ⊙B𝑇XB)A−W *X‖𝐿1

106



where, for two vectors: a = [𝑎1, · · · , 𝑎𝑛] and b = [𝑏1, · · · , 𝑏𝑛] the norm ‖·‖𝐿1 is

equal to the sum of absolute of a difference between correspondend elements:

‖a − b‖𝐿1 =
∑︀

𝑖 |𝑎𝑖 − 𝑏𝑖|. Thus it is equal to the vector norm ‖ · ‖1. For two

matrices A and B the formula is ‖𝐴−𝐵‖𝐿1 =
∑︀

𝑖,𝑗 |𝐴𝑖𝑗 −𝐵𝑖𝑗|.

We found that 5000 iterations of random testing were sufficient for the av-

erage error to become stable. In all experiments we use a kernel of size 3 for

one-dimensional and 3×3 for two-dimensional convolution, which are the most

common sizes in real DNNs.

5.1.1 Algorithm choice

We empirically compared the numerical error of convolution algorithms gener-

ated by the Toom-Cook (Algorithm 5) and modified Toom-Cook methods (Al-

gorithm 6). The error is susceptible to the root points that are selected. How-

ever, for a given set of root points, replacing one of them with the ∞ pseudo-

point almost always reduces the error. It agrees with our theoretical analysis

presented in Section 4.9. For sets of root points that result in a low error, we

observed that modified Toom-Cook for kernel size 3 gave a reduction in nu-

merical error from around 2% to around 66% for one-dimensional convolution

computations and up to 90% in two-dimensional convolution computations

(see Table 5.3 and Table 5.4). We can notice different result for the algorithms

with output of the size 9 × 9 which use 11 root points. The reason is in the lack

of symmentry. In modified Toom-Cook algorithm we use 0, −∞, 1, −1 and 7

other root points while in Toom-Cook algorithm we use 0, −1, 1 and 8 other

root points that form full symmetric set - negatives and reciprocals of 2 and 4.

As we show in Section 5.2.2 using such sets of root points significantly reduces

floating point error.Thus in all our empirical evaluations presented in subse-

quent sections we used the modified version of the Toom-Cook convolution

algorithm.
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Table 5.3: Comparision of Toom-Cook and modified Toom-Cook algorithms error per
single output value for one-dimensional computations for kernel of the size 3, various
output sizes and number of root points equal to 𝑛.

error

n output size T-C modify T-C

4 2 6.07E-08 2.43E-08

5 3 6.18E-08 5.37E-08

6 4 9.83E-08 7.21E-08

7 5 1.14E-07 1.02E-07

8 6 2.97E-07 1.27E-07

9 7 3.2E-07 2.81E-07

10 8 7.13E-07 4.03E-07

11 9 7.58E-07 7.35E-07

12 10 1.7E-06 8.98E-07

13 11 1.81E-06 1.77E-06

14 12 2.98E-06 2.31E-06

15 13 4.51E-06 4.28E-06

16 14 1.71E-05 5.71E-06

17 15 2.19E-05 1.77E-05

5.2 Selecting root points and orders of evaluation

The Toom-Cook method gives the mathematically correct result using any suf-

ficiently large set of distinct sampling root points. However, there is a large

difference between the floating point error using different sets of root points

and there is no known systematic method for selecting the best root points to

minimise the error.

The root points we use have an impact on the norm of matrices G, A𝑇 and

B𝑇 as well as for the values of 𝛼(𝑛), 𝛽(𝑛) and 𝛾(𝑛ℎ) in error formula in Chapter 4

(Theorem 5, Theorem 6 and Theorem 9).
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Table 5.4: Comparision of Toom-Cook and modified Toom-Cook algorithms error per
single output value for two-dimensional computations for kernel of the size 3, various
output sizes and number of root points equal to 𝑛.

error

n output size T-C modify T-C

4 2 × 2 3.1E-07 7.78E-08

5 3 × 3 2.76E-07 2.51E-07

6 4 × 4 5.74E-07 3.74E-07

7 5 × 5 7.64E-07 6.64E-07

8 6 × 6 4.74E-06 9.75E-07

9 7 × 7 5.35E-06 4.44E-06

10 8 × 8 2.59E-05 8.67E-06

11 9 × 9 2.8E-05 2.9E-05

12 10 × 10 1.35E-04 4.08E-05

13 11 × 11 1.5E-04 1.47E-04

14 12 × 12 3.65E-04 2.56E-04

15 13 × 13 8.45E-04 8.0E-04

16 14 × 14 1.38E-02 1.35E-03

17 15 × 15 1.9E-02 1.45E-02

In this section, we study the problem of selecting root points experimen-

tally. In the first stage, we simply evaluated the random sets of root points, and

quickly discovered that

• Selecting an optimal set of points is NP-hard.

• Some sets of root points are much better than others.

• Not just the value of the root points, but their ordering matters. The same

set of root points considered in a different order can give quite different

numerical errors.
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5.2.1 Canonical summation order

Different orderings of the same root points give different orderings of the val-

ues within the A𝑇 , G, B𝑇 matrices. The transformation steps of Toom-Cook

convolution involve multiplying each of the input, kernel, and output by one

of these matrices. If we change the order of entries in the matrix, then we

change the order of evaluation at execution time, which causes different float-

ing point rounding errors. Some root point orderings are better than others,

but it is difficult to predict the good ones ahead of time.

Rather than searching different orderings of root points, we propose to fix

the order of evaluation, so that all orderings of the same set of root points will

be evaluated in the same order. The remaining problem is to pick a canonical

order of evaluation that works well in practice. Each row of the A𝑇 , G, B𝑇

matrices is used to compute single dot product within a linear transformation,

and we specify a canonical ordering for evaluating each of these dot products.

39

5 34

6 28

6 22

15 7

+

+

+

+

(a) Linear

5667

1113

2415

39

+

+ +

+

(b) Huffman

Figure 5-1: Linear and Huffman tree (canonical) summation methods. Our canonical
ordering has two main advantages. It reduces the floating point summation error in
the linear transformations by improving the order of evaluation. It also ensures that
we get the same error if we evaluate the same set of root points in different orderings;
the order of evaluation is determined by the Huffman tree, not by the order in which
the root points are presented.
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We build a Huffman (Huffman 1952) tree using the absolute values of each

row, which are used to specify the order of summation. We also use simple

heuristics to break ties between coefficients with the same absolute values. A

basic principle of accurate floating point summation is to try to sum smaller

values first, as shown in Figure 5-1. The more detailed analysis of this sum-

mation method could be found in (Higham 2002). Our Huffman tree is based

purely on the values of the row elements in our transformation matrices; we

build the tree at algorithm design time when the input and kernel are un-

known. This makes it much easier for us to search empirically for good sets

of root points because we need only to consider their value, not their ordering.

Further, this method allows us to use a different order of summation for every

row of matrices which is not possible to obtain by root points permutation.

A lot of different summation methods were investigated in detail by Rump

et al. (Rump, Ogita, and Oishi 2008a; Rump, Ogita, and Oishi 2008b), Dem-

mel et al. (Demmel and Hida 2004) and Castaldo et al. (Castaldo, Whaley, and

Chronopoulos 2008). These methods guarantee the accurate or nearly accurate

result of dot product computations. However, they require additional arith-

metic operations either for a compensated summation, or to sort elements be-

fore summation, that slows down the convolution computations. These meth-

ods increased accuracy for the cost of increased computation cost, which is

similar to the mixed-precision method we propose in Section 5.5.

Our canonical evaluation order is not guaranteed to sum in increasing or-

der of absolute value because of the execution time inputs might contain big or

small values. However, in practice, our canonical ordering performs much bet-

ter than arbitrary orderings. We tested our approach with the setup described

in Section 5.1. Across a range of convolution sizes using various root points,

we found roughly a 14% improvement in accuracy for one-dimensional and

12% for two-dimensional convolutions compared with the same selection of

root points in an arbitrary order. All subsequent test results presented in this

chapter use our Huffman summation for the transformations.
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5.2.2 Root points selection

We empirically evaluated over 40000 of random selections of values for the root

points which are used to construct the G, A𝑇 and B𝑇 matrices that are used to

perform the linear transformations. We quickly found that it is very easy to find

sets of root points that cause huge floating point errors, and more challenging

to find better root points.

There is common knowledge in the literature on another approach to se-

lecting root points to reduce the computation in the linear transformations. In

general, the root points {0,−1, 1,∞} are useful in reducing these costs, and

are used in Lavin implementation (Lavin and Gray 2016) – code. Multiplica-

tion by 1 or -1 can simply be skipped, and multiplication by zero allows both

the scaling and addition to be skipped. Obviously, eliminating floating point

operations also eliminates their associated error, so these root points are also

suitable for reducing floating point error.

Problems start to arise when we need more than just these four basic root

points. In general, selecting small, simple integers and fractions are good choices

for reducing the required number of scalings and additions. We also found this

type of root points to be good for reducing the floating point error. But there is

no agreed-upon method in the literature for selecting between different values

such as 2,−2, 1
2
,−1

2
, 3
2
, 2
3
, etc.

To help us find good sets of these simple values to reduce the floating point

error, we developed the following rules which act as a heuristic to guide our

search. The size of the kernel and output block determine the number of root

points needed. We start with the basic root points {0,−1, 1,∞}, which work

well when four root points are needed. We perform our search for sets of good

root points for output 𝑛 based on the good sets of root points for output 𝑛− 1.

We identify a set of potentially interesting rational root points with numerator

in {−4,−3,−2,−1, 0, 1, 2, 3, 4} and denominator in {1, 2, 3, 4}. This approach

gives us a set 𝑃 of 23 possible root points.
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Root points selection algorithm

• We start with a set 𝑃𝑛−1 of 𝑛− 1 good root points 𝑝1, . . . , 𝑝𝑛−1.

• We construct sets of 𝑛 root points by adding 𝑝𝑛 (𝑝𝑛 ∈ 𝑃 ) to 𝑃𝑛−1 (𝑃𝑛 =

𝑃𝑛−1∪{𝑝𝑛}). As we want matrices 𝐺, 𝐵𝑇 and 𝐴𝑇 be nonsingular therefore

root point 𝑝𝑛 must be different than all 𝑝𝑖 ∈ 𝑃𝑛−1 (𝑃𝑛−1 ∩ {𝑝𝑛} = ∅).

• In addition:

If 𝑛 is even, then we have at least one root point 𝑝𝑗 ∈ 𝑃𝑛−1 without sym-

metry, that is, ∃𝑝𝑗 ∈ 𝑃𝑛−1 and − 1
𝑝𝑗

/∈ 𝑃𝑛−1. We construct sets of 𝑛 root

points by removing the root point 𝑝𝑗 and add instead all symmetric pairs

of root points 𝑝𝑘 and − 1
𝑝𝑘

that are in a set of potientially interesting root

points 𝑃 and are not in 𝑃𝑛−1 (𝑃𝑛 = 𝑃𝑛−1∖{𝑝𝑗}∪{𝑝𝑘,− 1
𝑝𝑘
} (𝑃𝑛−1∩{− 1

𝑝𝑗
} = ∅,

𝑃𝑛−1 ∩ {𝑝𝑘,− 1
𝑝𝑘
} = ∅)

• If there are different sets of root points for 1𝐷 and 2𝐷 we check both of

them.

• We check empirically which of the sets of root points constructed with

above rules has the smallest floating point error and assign it to be 𝑃𝑛.

The resulting sets of “good” root points are presented in Table 5.5. The basic

four root points are always {0,−1, 1,∞}. Table 5.5 shows that when we add a

fifth root point, we found empirically that 1
2

is the best root point to add for both

1D and 2D convolution. Occasionally, when moving to the next larger number

of root points, we remove an existing root point and add two new ones, such

as when we add the eighth root point for 1 dimensional convolution. Note

that the floating point error versus direct convolution grows rapidly with the

number of root points. The growth in error appears to be roughly exponential

in the number of root points in practice. However, the growth in error is not

smooth (see Figure 5-3).
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Table 5.5: Example root points for Toom-Cook in 𝑓𝑙𝑜𝑎𝑡32 with kernels of size 3 (for 1D)
or 3 × 3 (for 2D). We start with set of 4 root points 𝑃4 = {0,−1, 1,∞}. We present the
sets of root points for different cardinality as an union and/or subtraction of sets of
root points.

1D 2D

𝑛 Root points output size Root points output size

0 Direct convolution 1 Direct convolution 1 × 1

4 𝑃4 = {0,−1, 1,∞} 2 𝑃4 2 × 2

5 𝑃4 ∪ {1
2
} 3 𝑃4 ∪ {1

2
} 3 × 3

6 𝑃4 ∪ {1
2
,−3} 4 𝑃4 ∪ {1

2
,−2} 4 × 4

7 𝑃4 ∪ {1
2
,−1

2
,−3} 5 𝑃4 ∪ {1

2
,−2,−1

2
} 5 × 5

8 𝑃8 = 𝑃4 ∪ {1
2
,−1

2
, 2,−2} 6 𝑃8 6 × 6

9 𝑃8 ∪ {−1
4
} 7 𝑃8 ∪ {−1

4
} 7 × 7

10 𝑃10 = 𝑃8 ∪ {−1
4
, 4} 8 𝑃10 8 × 8

11 𝑃10 ∪ {1
4
} 9 𝑃10 ∖ {0} ∪ {3

4
,−4

3
} 9 × 9

12 𝑃10 ∪ {3
4
,−4

3
} 10 𝑃10 ∪ {3

4
,−4

3
} 10 × 10

13 𝑃10 ∪ {3
4
,−4

3
, 1
4
} 11 𝑃10 ∪ {3

4
,−4

3
, 1
4
} 11 × 11

14 𝑃14 = 𝑃10 ∪ {1
4
,−3

4
, 4
3
,−4} 12 𝑃14 12 × 12

15 (𝑃14 ∖ {0}) ∪{2
3
,−3

2
} 13 𝑃14 ∖ {0} ∪{3

4
,−4

3
} 13 × 13

16 𝑃14 ∪ {2
3
,−3

2
} 14 𝑃14 ∪{3

4
,−4

3
} 14 × 14

17 𝑃14 ∪ {2
3
,−3

2
,−2

3
} 15 𝑃14 ∪{2

3
,−3

2
, 3
2
} 15 × 15

18 𝑃14 ∪ {2
3
,−3

2
,−2

3
, 3
2
} 16 𝑃14 ∪ {2

3
,−3

2
,−2

3
, 3
2
} 16 × 16

5.2.3 Chebyshev nodes

There is no single recognised method for selecting root points that minimize the

floating point error. However, the Chebyshev nodes are known to improve the

conditioning of polynomial interpolation (Higham 2002), which is an essential

step of Toom-Cook convolution. Results for the floating point error of using the

Chebyshev nodes can be found in Table 5.7. In general, the Chebyshev nodes

are orders of magnitude better than typical random root point selections, but

suboptimal for small convolution sizes.
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Table 5.6: Floating point error for Toom-Cook convolution with kernel of the size 3
(1D) and 3 × 3 (2D) for different output size using sets of root points as presented in
table Table 5.5.

1D 2D

n output size error output size error

0 1 1.75E-08 1 × 1 4.63E-08

4 2 2.45E-08 2 × 2 7.65E-08

5 3 5.19E-08 3 × 3 2.35E-07

6 4 6.92E-08 4 × 4 3.29E-07

7 5 9.35E-08 5 × 5 6.81E-07

8 6 1.15E-07 6 × 6 8.79E-07

9 7 2.34E-07 7 × 7 3.71E-06

10 8 3.46E-07 8 × 8 7.35E-06

11 9 5.91E-07 9 × 9 2.2E-05

12 10 7.51E-07 10 × 10 3.22E-05

13 11 1.32E-06 11 × 11 1.09E-04

14 12 1.84E-06 12 × 12 1.99E-04

15 13 3.42E-06 13 × 13 5.54E-04

16 14 4.26E-06 14 × 14 8.8E-04

17 15 1.35E-05 15 × 15 1.07E-02

18 16 2.24E-05 16 × 16 1.93E-02

5.3 Error growth

Let us consider one-dimensional convolution and the growth in error when

increase from seven to eight root points. The error grows from 9.35 × 10−8

to 1.15 × 10−7, which is a factor of around 1.12×. In contrast the growth in

error from eight to nine root points is 1.15 × 10−7 to 2.34 × 10−7, which is a

factor of 2.03×. This is not a coincidence. The empirically good solution that

we found when seven root points are used for one-dimensional convolution

is {0,−1
2
, 1
2
,−1, 1,−3,∞}. In contrast when eight root points are needed, the
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Table 5.7: Error for one- and two-dimensional convolution for Chebyshev points and
root points we found. Column "Ratio" present how many times the error for Cheby-
shev points is bigger then for root points we found.

1D 2D

n Our points Chebyshev Ratio Our points Chebyshev Ratio

4 2.49E-08 3.51E-08 1.41 7.65E-08 1.01E-07 1.32

5 5.21E-08 5.535E-08 1.06 2.46E-07 2.12E-07 8.62

6 7.32E-08 1.04E-07 1.42 3.49E-07 5.65E-07 1.62

7 1.00E-07 1.68E-07 1.68 7.11E-07 1.70E-06 2.39

8 1.23E-07 3.78E-07 3.07 9.21E-07 6.50E-06 7.06

9 2.59E-07 6.76E-07 2.61 4.07E-06 2.59E-05 6.36

10 3.87E-07 1.48E-06 3.82 8.23E-06 1.09E-04 1.32E+01

11 6.62E-07 3.18E-06 4.80 2.53E-05 4.84E-04 1.91E+01

12 8.42E-07 7.46E-06 8.86 3.67E-05 2.18E-03 5.94E+01

13 1.56E-06 1.53E-05 9.81 1.24E-04 1.00E-02 8.06E+01

14 2.10E-06 3.21E-05 1.53E+01 2.32E-04 4.72E-02 2.03E+02

15 3.91E-06 7.12E-05 1.82E+01 6.35E-04 2.31E-01 3.64E+02

16 5.06E-06 1.56E-04 3.08E+01 1.04E-03 1.10 1.06E+03

17 1.68E-05 3.53E-04 2.10E+01 1.31E-02 5.43 4.15E+02

18 2.36E-05 8.03E-04 3.40E+01 0.24E-02 26.91 1.12E+04

good solution is {0,−1
2
, 1
2
,−1, 1,−2, 2,∞}. Among the eight root points there is

a symmetry between the four values {−1
2
, 1
2
,−2, 2}, which are negations and re-

ciprocals of one another. As we discuss in Section 5.4, these symmetries reduce

a floating point error.

In contrast, where seven root points are needed, the root points {−1
2
, 1
2
,−3}

do not cancel in the same way, and so the error for seven root points is larger

than a smooth growth in error with root points would suggest. Note that

the appearance of the root point −3 as the sixth selected root point for one-

dimensional convolution was a great surprise to us. However, −3 has just two

significant binary digits, so there is no representation error of −3 in floating

point, and multiplication by −3 causes a very small error. Further, when com-
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puting differences between pairs of root points for the 𝐵𝑇 matrix, −3 − (−1) =

−2 and −3 − 1 = −4, the absolute value of both of them are powers of two.

For two-dimensional convolution, small differences mean that −3 is slightly

worse than 1
2
, 2 or −2 and is not selected.

Given these trends, it is reasonable to ask where are the good trade-offs be-

tween computation and error growth. The number of general multiplications

is simply the number of root points in the convolution algorithm. Using good

root point selections has no additional cost over bad ones, but dramatically re-

duces the error. Similarly, our Huffman summation reduces the error at no ad-

ditional computation cost. There is no single best trade-off because it depends

on the required accuracy. However, using our methods, it may be possible to

increase the output block size by perhaps 1-3 units, without loosing accuracy.

(a) 1D (b) 2D

Figure 5-2: Number of multiplication and error for single output value for different
input block sizes in one- and two-dimensional Toom-Cook convolution

Figure 5-3: Increasing
error in one- and two-
dimensional Toom-Cook
convolution. The vertical
axis show the difference of
logarithms from error of
convolution computed with
𝑛 and 𝑛 − 1 root points, to
show error growth.
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When we examine the measured errors in Figure 5-3 we see that even using

good root point selections the measured error increases roughly exponentially

with the size of the convolution. The average measured error grows at a rate

that is compatible with the worst-case bound proven in Chapter 4.

Our analysis in Chapter 4 also suggests that the floating point error for two-

dimensional convolution grows quadratically more quickly than the error for

one-dimensional convolution. This is borne out in Figure 5-3, where the two-

dimensional convolution error as a function of the one-dimensional convolu-

tion error is approximately 𝑓(𝑥) = 𝑥2

2.97
.

As a further check on the consistency of our measurements, we also im-

plemented a running error analysis for one-dimensional Toom-Cook convolu-

tion. Running error analysis (Higham 2002, p. 65) is an empirical method that

computes a partial bound based on actual values alongside the executing algo-

rithm. In our experiments we found that the running error closely matched the

exponential rate of growth of the average error, with the running error 4.63× to

7.51× times the average error.

5.4 Discussion of root point selection

The root point selection affects both components of forward error: conditioning

of transformation matrices and floating point error. The goal of our tests is to

find a good balance between them. Based on the our theoretical analysis in

Chapter 4, literature ((Higham 2002; Gautschi 1974; Gautschi 1990)) and our

empirical experiments, it is possible to explain why some root points are better

than others.

One common way to mitigate ill-conditioning of Vandermonde matrices is

to use Chebyshev nodes. We tried this approach (see Section 5.2.3), but found

that it did not perform well.

The size of Vandermonde matrices used in DNN convolution is relatively

small. The error generated by ill-conditioning grows exponentially. But for

the small convolutions in DNNs, the error from ill-conditioning is not large
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enough as to outweigh the error from floating point operation and represen-

tation. Chebyshev nodes are mostly irrational, so they can not be represented

exactly as floating point values. This representation error propagates through-

out the algorithm.

In addition, we are interested in the accuracy of discrete convolution. There

is a single correct answer (with known degree) to the interpolation in Toom-

Cook convolution. If we were computing with infinite precision, we could

compute the result polynomial precisely. This is somewhat different from an-

other common use of interpolation, which is to estimate a polynomial where

the degree is unknown. The advantages of Chebyshev interpolation points to

mitigate Runge’s phenomenon does not help in Toom-Cook convolution. We

can not ignore conditioning entirely. Nevertheless, our goal is to find a set of

root points which will minimize both factors: problem conditioning and float-

ing point error.

The set of four basic root points {0,−1, 1,∞} are almost always the right

choice. In particular, 0 and ∞ result in guaranteed zeros in all three matrices

𝐴𝑇 , 𝐺 and 𝐵𝑇 which cause no floating point error. We note that some clear

rules for root point selection emerge from our empirical study.

Firstly, we should use pairs of root points that differ in sign (positive/neg-

ative), and pairs of reciprocal root points — see Table 5.5. If we use root point

𝑝 then using −𝑝, 1
𝑝

and −1
𝑝

allow us to get better accuracy than introducing an-

other root point. Positive/negative pairs of root points generate lower elements

in matrix 𝐵𝑇 (see Algorithm 5). Examining the formula for constructing the el-

ements of matrix 𝐵𝑇 , we note that multiplication (𝑎− 𝑝)(𝑎+ 𝑝) = −𝑝2 + 0𝑎+ 𝑎2

results in a zero coefficient in the second term. Reciprocal root points intro-

duce the coefficient of the first term equal to 1 in multiplication (𝑎− 𝑝)(𝑎− 1
𝑝
) =

1− 𝑝2+1
𝑝

𝑎+𝑎2 that does not introduce any additional scaling error. The opposite

points are also known to be good for conditioning of Vandermonde matrices

(Gautschi 1974; Gautschi 1990).

Secondly, the floating point error boundary depends directly on the values

used in operations (see Equation (4.1)). That means that we should look for the
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small values close to one to reduce the error. Putting this together with the pre-

vious observation, we can say that choosing rational root points minimizing

numerator and denominator is a good strategy. This approach to root points

selection also has a positive impact on the floating point error. Assuming that

each of kernel and input elements have a similar distribution, then using scal-

ing factors with a similar order of magnitude, makes it more likely to avoid

cancellation error while computing dot product. An interesting point is that

for bigger sets, this is not always leading rule. We found that 1
4

together with

(0,−1, 1,−1/2, 1/2,−2, 2) works better than 1
3

for 9 root points (see Tables 5.5

and 5.8). We explain this phenomenon later in this chapter.

Thirdly, the representation error of matrices elements have a big impact on

the accuracy of the result. The representation error propagates through all float-

ing point operations and therefore can grow significantly. This is why the ex-

actly represented root points work well (see Tables 5.5 and 5.8).

Finally, as we described in Section 4.1, the error from multiplication while

computing the dot product also affects accuracy. The elements equal to the

power of 2 do not introduce any error from scaling and therefore keep the float-

ing point error small. This explains why root point 1
4

is better than 1
3
. The value

1
4

in contrast to 1
3

is exactly represented and does not introduce any error from

multiplication.

Thus there is no simple algorithm to choose a set of good root points. Our

theoretical analysis allows us to identify all components of the error and dra-

matically narrow the search space. With that knowledge, it is possible to check

the narrowed search space empirically, to find which of the sets of root points

work the best in practice.

5.5 Mixed-precision pre/post-processing

In CNNs we typically apply the same kernel to a set of many different inputs.

Similarly, we compute convolution with different kernels for the same input

data (see Section 2.1.2). Thus, the pre/post processing of each input, kernel and
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output are done just once, whereas the transformed data is used many times.

One way to improve accuracy is to use a mixed-precision algorithm, where the

pre/post processing is done in higher precision, while the inner loops that per-

form the pairwise multiplication (Hadamard product) are computed in stan-

dard precision. This approach lowers the value of machine epsilon 𝜀 for the

linear transformations in the error formula in Theorem 5 and Theorem 6. This

idea may be use to run networks on embedded devices.

Table 5.8 shows the root point selection and measured errors for a mixed-

precision Toom-Cook that performs the pre-processing in 𝑓𝑙𝑜𝑎𝑡64 and all other

processing in 𝑓𝑙𝑜𝑎𝑡32. We found that the mixed precision algorithm reduced

the error in both 1𝐷 and 2𝐷 by up to around 40% (see column "Ratio" in Ta-

ble 5.8). The result is that for the same level of error, the mixed-precision algo-

rithm can often allow an output size that is one unit larger. We observe that in

most cases the same sets of root points worked best for convolution computed

in 𝑓𝑙𝑜𝑎𝑡32 and mixed precision. Where there are differences, in most cases, this

is the result of a slight difference in the order in which root points are selected

when the number of root points is odd. In the mixed-precision version, round-

ing errors during the pre/post processing steps become a little less important

because intermediate values are represented in 𝑓𝑙𝑜𝑎𝑡64.

5.6 Multiple channels

The proposed techniques up to this point of this chapter have been for simple

one- or two-dimensional convolution with size 3 or 3 × 3. However, an im-

portant feature of convolution in deep neural networks is multiple channels

Figure 2-4. Convolution inputs and kernels in many of the best known DNNs,

such as GoogLeNet (Szegedy et al. 2015) or ResNet (He et al. 2016) typically

have something between 3 and 1024 channels. However, the number of chan-

nels is a parameter selected by the designer of the neural network, and there is

no upper limit on the number of channels used.
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Table 5.8: Example root points for Toom-Cook transformations in 𝑓𝑙𝑜𝑎𝑡64 and
Hadamard product in 𝑓𝑙𝑜𝑎𝑡32 with kernels of size 3 (for 1D) or 3 × 3 (for 2D). We
start with set of 4 root points 𝑃4 = {0,−1, 1,∞}. We present the sets for different
cardinallity as an union and/or substraction of sets of root points.

1D 2D

𝑛 Root points output size Root points output size

0 Direct convolution 1 Direct convolution 1 × 1

4 𝑃4 = {0,−1, 1,∞} 2 𝑃4 2 × 2

5 𝑃4 ∪ {3} 3 𝑃4 ∪ {3} 3 × 3

6 𝑃4 ∪ {3,−1
2
} 4 𝑃4 ∪ {3,−1

2
} 4 × 4

7 𝑃4 ∪ {3,−1
2
, 1
2
} 5 𝑃4 ∪ {3,−1

2
, 1
2
} 5 × 5

8 𝑃8 = 𝑃4 ∪ {−1
2
, 1
2
,−2, 2} 6 𝑃8 6 × 6

9 𝑃8 ∪ {−1
4
} 7 𝑃8 ∪ {4} 7 × 7

10 𝑃10 = 𝑃8 ∪ {−1
4
, 4} 8 𝑃10 8 × 8

11 𝑃10 ∪ {1
4
} 9 𝑃10 ∖ {0} ∪ {3

4
,−4

3
} 9 × 9

12 𝑃12 = 𝑃10 ∪ {3
4
,−4

3
} 10 𝑃12 10 × 10

13 𝑃12 ∪ {1
4
} 11 𝑃12 ∪ {−4} 11 × 11

14 𝑃14 = 𝑃12 ∪ {1
4
,−4} 12 𝑃14 12 × 12

15 𝑃12 ∖ {0} ∪ {2
3
,−3

2
} 13 𝑃12 ∖ {0} ∪ {−3

4
, 4
3
} 13 × 13

16 𝑃16 = 𝑃14 ∪ {2
3
,−3

2
} 14 𝑃 ′

16 = 𝑃14 ∪ {−3
4
, 4
3
} 14 × 14

17 𝑃16 ∪ {−2
3
} 15 𝑃 ′

16 ∪ {3
2
} 15 × 15

18 𝑃18 = 𝑃16 ∪ {−2
3
, 3
2
} 16 𝑃18 16 × 16

When performing convolution, a separate convolution is performed at each

channel, and then the results of each separate convolution are summed with

the corresponding values in the other channels (see Section 2.1.2). The obvi-

ous way to implement summation across channels is to perform the complete

convolution separately on each channel and sum the results. However, this

would require that the linear post-processing transformation is applied to each

channel, which is a relatively expensive operation. Lavin and Gray (Lavin and

Gray 2016) observed that, post-processing and summation commute because

they are linear transformations on orthogonal subspaces. So, the items could

be summed before the matrix multiplications so that the post-processing step
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Table 5.9: The column Ratio present the ratio between the error of mixed-precision
convolution and the error with all computations in 𝑓𝑙𝑜𝑎𝑡32.

1D 2D

n output size error Ratio output size error Ratio

0 1 1.75E-08 1 1 × 1 4.63E-08 1

4 2 1.87E-08 0.76 2 × 2 5.27E-08 0.69

5 3 3.66E-08 0.71 3 × 3 1.62E-07 0.65

6 4 4.41E-08 0.64 4 × 4 2.14E-07 0.69

7 5 6.09E-08 0.65 5 × 5 3.69E-07 0.54

8 6 6.97E-08 0.61 6 × 6 5.18E-07 0.59

9 7 1.55E-07 0.66 7 × 7 2.42E-06 0.65

10 8 2.09E-07 0.6 8 × 8 4.41E-06 0.6

11 9 3.64E-07 0.62 9 × 9 1.27E-05 0.58

12 10 4.50E-07 0.6 10 × 10 1.89E-05 0.59

13 11 8.25E-07 0.63 11 × 11 6.38E-05 0.59

14 12 1.11E-06 0.6 12 × 12 1.14E-04 0.57

15 13 2.17E-06 0.63 13 × 13 3.08E-04 0.56

16 14 2.78E-06 0.65 14 × 14 4.95E-04 0.56

17 15 8.43E-06 0.62 15 × 15 5.93E-03 0.55

18 16 1.39E-05 0.62 16 × 16 1.04E-02 0.54

need to be applied only to the sum. Therefore, in order to perform convolution

over multiple channels, we have to sum up the results of pairwise multiplica-

tion (Hadamard product) before we apply the transposition represented by A𝑇

matrix. The convolution is computed according to the following formulas:

A𝑇 (
∑︁
𝑐

(Gwc ⊙B𝑇xc)) (5.1)

A𝑇 (
∑︁
𝑐

(GWcG
𝑇 ⊙B𝑇XcB))A (5.2)

where 𝑐 = 1, . . . , 𝐶 and 𝐶 is a number of input channels.
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As a result, the floating point error from DNN convolution is not just the

error of the one- or two-dimensional convolution, but also the error from sum-

ming across channels. The impact of summation over channels in error formu-

las (Equation (4.10)) and (Equation (4.11)) is represented by 𝜆. Second, there are

well-known techniques for reducing the error from summation. If we reduce

the error of summation, this may offset some part of the loss of accuracy arising

from Toom-Cook convolution.

In Section 5.5, we proposed a mixed precision algorithm that does pre/post-

processing in higher precision. However, this is not a suitable approach to

increase the accuracy of the summation across channels. Summation across

channels is in the inner-most loop of DNN convolution, so we cannot afford

to double its cost. We instead propose the well-known pairwise summation

algorithm (Knuth 1998) for summing across channels.

Tables B.1, B.4, B.7 and B.10 present measured errors for Toom-Cook convo-

lution with just a single channel, with 32 channels, and with 64 channels.

We see that the error per output value for 64 input channels is much larger

than the error for just a single input channel, but not 64 times larger. The reason

is that when these values are summed, some of the errors cancel one another.

Our results presented in Tables B.2, B.3, B.5 and B.6 show that pairwise

summation can reduce the total floating point error by around 20%–40%.

Similar tests presented in Tables B.8, B.9, B.11 and B.12 show that when

pairwise summation across channels is used with mixed-precision transforma-

tions, the improvement compared to mixed-precision transformations alone is

25%− 45%. Using both proposed methods: mixed precision and pairwise sum-

mation gives us an improvement in accuracy of around 50% in both one- and

two-dimensional computations (see Table B.13).

5.7 Conclusions

In this chapter we present the methodology and empirical results of our in-

vestigations on floating point error of one- and two-dimensional Toom-Cook
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convolution algorithm. We observe that using modified version of Toom-Cook

convolution algorithm reduces the error by 20% to over 70%, with no additional

computation cost.

We notice that the order of root point selection impacts the accuracy of the

algorithm. We propose a canonical evaluation order based on Huffman trees.

This fixes the order of evaluation, and empirically reduces the error by a further

12%−14%, in addition to the improvement from using the modified algorithm,

again with no additional computation cost.

We identify four key criteria for good root point selections: (1) few signif-

icant mantissa bits, (2) positive/negative root point symmetry, (3) reciprocal

root point symmetry, and (4) subtractions of root points leading to few signifi-

cant mantissa bits. For important convolution sizes for DNNs, our empirically

selected root points yield much better accuracy than the Chebyshev nodes. The

Chebyshev nodes fail to meet our criteria (1), (3) and (4) which makes them rel-

atively poor choices for the small convolutions found in DNNs.

We also propose a mixed precision approach where the transformations are

computed in double precision, while the remaining inner loops are computed

in 𝑓𝑙𝑜𝑎𝑡32. We find that performing pre/post-processing transformations in

𝑓𝑙𝑜𝑎𝑡64 decreases error typically by around one third in our experiments. We

also empirically investigate summation across channels using pairwise sum-

mation and find that this reduces the error by around 20% to 50%. Unlike the

other methods we investigated, mixed precision transformations and pairwise

summation impose an additional computation cost.

Using our root point selections and techniques for improving floating points

accuracy, we can reduce the error between 2× and orders of magnitude, when

compared with the Chebyshev nodes. Each approximately 2× reduction in the

error allows the output block size dimension to be increased by around one.
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Chapter 6

Winograd Convolution Algorithm

with Super-linear Polynomials

The family of Winograd’s algorithms can be used to generate a wide variety of

convolution algorithms with different trade-offs. They require a set of polyno-

mials whose roots are used as parameters to generate transformation matrices

based on Chinese Remainder Theorem (Theorem 2). These polynomials can be

linear (degree 𝑑 equal to 1) as described in previous Chapter 3 or super-linear

(degree 𝑑 greater than 1).

If only linear polynomials are used (Toom-Cook version) their roots and

all transformation matrices elements belong to the field of real numbers. In

this case convolution algorithms are guaranteed to need only the (theoretically

specified) minimum number of general multiplication operations. The selected

tile size is critical to the performance of Winograd convolution. A larger tile

size increases the number of element-wise multiplication operations needed

for that tile, but on the other hand they compute more results per tile. Taking

into account the overlapping that is an extra operations needed at the boundary

of each tile (see Section 2.1.2), larger tiles reduce the number of general multi-

plication operations per computed output value (see Chapter 5). However, the

floating point error also grows exponentially with the tile size (Chapter 4 and

Chapter 5). This is the reason why existing implementations of Winograd for

DNNs typically use a small tile size.
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Using higher order polynomials increases the required number of general

multiplications per single output value. Thus, higher order polynomials offer a

very similar trade-off as using Toom-Cook with smaller tile sizes. This chapter

addresses the question: Is there a benefit in using the Winograd method with

super-linear polynomials for DNNs, as compared to the simpler Toom-Cook

method?

6.1 Winograd algorithm

A convolution can be expressed as a result of polynomials multiplication (see

Chapter 3). Mapping the elements of a kernel vector w and an input vector x to

coefficients of polynomials 𝑤(𝑎) and 𝑥(𝑎) respectively, the elements of output

vector s (convolution of w and x) are equal to the coefficients of polynomial

𝑠(𝑎) = 𝑤(𝑎)𝑥(𝑎). The Winograd family of algorithms for convolution is based

on Chinese Remainder Theorem (CRT) for polynomials (Theorem 2).

The CRT says that for a polynomial 𝑀(𝑎) in ring of polynomials over a

field F, 𝑀(𝑎) = 𝑚1(𝑎) . . .𝑚ℓ(𝑎) where 𝑚𝑖(𝑎) for 𝑖 = 1, . . . , ℓ are irreducible and

pairwise coprime there exists 𝑠(𝑎) such as deg(𝑠(𝑎)) < deg(𝑀(𝑎)) the unique

solution of system of congruences:

𝑠(𝑎) = 𝑠𝑖(𝑎) mod 𝑚𝑖(𝑎)

and

𝑠(𝑎) =
∑︁
𝑖

𝑠𝑖(𝑎)𝑁𝑖(𝑎)𝑀𝑖(𝑎) mod 𝑀(𝑎) (6.1)

where 𝑁𝑖(𝑎)𝑀𝑖(𝑎) + 𝑛𝑖(𝑎)𝑚𝑖(𝑎) = 1 and 𝑀𝑖(𝑎) = 𝑀(𝑎)/𝑚𝑖(𝑎).

To compute the result of the convolution - the coefficients of the product of

polynomials 𝑤(𝑎) and 𝑥(𝑎) - we put

𝑠𝑖(𝑎) = 𝑤𝑖(𝑎)𝑥𝑖(𝑎) mod 𝑚𝑖(𝑎),

𝑤𝑖(𝑎) = 𝑤(𝑎) mod 𝑚𝑖(𝑎),

𝑥𝑖 = 𝑥(𝑎) mod 𝑚𝑖(𝑎)
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Operations modulo 𝑚𝑖(𝑎) are equivalent to finding the remainder from division

by 𝑚𝑖(𝑎); so if we assume that all polynomials 𝑚𝑖(𝑎) are of the first degree then

the results in modulo 𝑚𝑖(𝑎) arithmetic are all constant polynomials (scalars)

𝑤𝑖(𝑎) = 𝑤(𝑎) mod 𝑚𝑖(𝑎) = 𝑟𝑤

𝑥𝑖(𝑎) = 𝑥(𝑎) mod 𝑚𝑖(𝑎) = 𝑟𝑥

Then we can perform the computations of 𝑠𝑖(𝑎) = 𝑤𝑖(𝑎)𝑥𝑖(𝑎) mod 𝑚𝑖(𝑎) for

𝑖 = 1, . . . , ℓ as single multiplication

𝑠𝑖(𝑎) = 𝑟𝑤𝑟𝑥

These operations for all 𝑖 = 1, . . . , ℓ are represented by Hadamard product of

two vectors consisting of elements 𝑤1(𝑎), . . . , 𝑤ℓ(𝑎) and 𝑥1(𝑎), . . . , 𝑥ℓ(𝑎) (see Fig-

ure 6-1).

As described in Section 3.1 the following computations formula expresses

two-dimensional Winograd convolution algorithm

A𝑇 (GWG𝑇 ⊙B𝑇XB)A

where matrices W and X represent kernel and input values, respectively.

If we use polynomial 𝑚𝑖(𝑎) of degree 𝑑 > 1, then the results of 𝑤𝑖(𝑎) =

𝑤(𝑎) mod 𝑚𝑖(𝑎) and 𝑥𝑖(𝑎) = 𝑥(𝑎) mod 𝑚𝑖(𝑎) are polynomials, not scalars (see

Figure 6-2). Thus, to compute 𝑠𝑖(𝑎) we need to multiply two polynomials 𝑤𝑖(𝑎),

𝑥𝑖(𝑎) rather than using simple scalar multiplication. However, to solve this

sub-problem (i.e. computing the coefficients of the product of two polynomials

𝑤𝑖(𝑎) and 𝑥𝑖(𝑎)) we can apply any suitable algorithm, including the Toom-Cook

algorithm.

All polynomials 𝑚𝑖(𝑎) used in the Winograd algorithm have to be pairwise

coprime, and similarly all polynomials used in the Toom-Cook algorithm to

solve the sub-problem also need to be pairwise coprime. But polynomials in

the two different groups do not need to be coprime. Some root points of poly-
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nomials 𝑚𝑖(𝑎) such as 0, −1 and 1 (polynomials 𝑎, 𝑎+1 and 𝑎−1), offer superior

floating point accuracy. This means that we can use them to solve both, an orig-

inal and a sub-problem. In Figure 6-2 we can have 𝑞𝑖 = 𝑝𝑗 .

h
xWinograd domain

Figure 6-1: Transformation of the kernel (using matrix G) and input (using matrix
𝐵𝑇 ) in one-dimensional Toom-Cook convolution algorithm 𝐹(𝑇−𝐶)(2, 3) with four root
points 𝑝1, 𝑝2, 𝑝3 and 𝑝4 (polynomials 𝑎− 𝑝1, 𝑎− 𝑝2, 𝑎− 𝑝3 and 𝑎− 𝑝4).

The approach with polynomials, 𝑚𝑖(𝑎) of degree 𝑑 > 1 requires two steps

of transformations (see Figure 6-2). Firstly, we transform input/kernel into the

"Polynomials Winograd domain". This means we map input/kernel into poly-

nomials of degree greater than zero. We then transform all polynomials into

scalars in the "Winograd domain". To perform the second transformation we

use the Toom-Cook algorithm. Similarly, after computing Hadamard product

we first transform the result into "Polynomials Winograd domain" and conse-

quently into the original domain. Each of these transformations can be repre-

sented by a matrix which multiplied by the input/kernel/output performs the

transformation. We can merge the matrices for these two stages of transfor-

mation into a single transformation, allowing us to create three matrices GW,

BW and AW applied to the kernel, input and result of the Hadamard product

respectively. For the clarity, we denote matrices constructed for Toom-Cook al-

gorithm as GT−C, AT−C and BT−C. The exact method of constructing transfor-

mation matrices (AT−C, BT−C and GT−C) is presented in Section 3.1.1 (Algo-

rithm 6). Through the rest of this chapter we will also use the notation based on

Winograd (Winograd 1980a) and follow by Lavin (Lavin and Gray 2016) where

𝐹 (𝑚, 𝑘) denotes one-dimensional Winograd convolution algorithm with the

output of the size 𝑚 and the kernel of the size 𝑘. Respectively 𝐹 (𝑚×𝑚, 𝑘×𝑘) de-
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notes two-dimensional Winograd convolution algorithm with the output of the

size 𝑚×𝑚 and the kernel of the size 𝑘×𝑘. When we consider only the most op-

timal version (Toom-Cook), we refer to it as 𝐹𝑇−𝐶(𝑚, 𝑘) and 𝐹𝑇−𝐶(𝑚×𝑚, 𝑘×𝑘)

for one and two dimensions, respectively.

h
x

Winograd domain

Polynomials' Winograd domain

Figure 6-2: Transformation of kernel (matrix G) and input (matrix B𝑇 ) in one-
dimensional Winograd convolution algorithm 𝐹 (2, 3) with polynomials 𝑎− 𝑝1, 𝑎− 𝑝2,
𝑎2 + 𝑏𝑎 + 𝑐. The subproblem is solved with Toom-Cook algorithm 𝐹𝑇−𝐶(2, 2) for root
points 𝑞1, 𝑞2, 𝑞3 (polynomials 𝑎− 𝑞1, 𝑎− 𝑞2, 𝑎− 𝑞3).

6.1.1 Matrices construction

Matrices GW and AW

We use the function vec(𝑚(𝑎)) to map the polynomial 𝑚(𝑎) = 𝑚1 +𝑚2𝑎+ . . . +

𝑚𝑛𝑎
𝑛−1 to the vector

vec(𝑚(𝑎)) =
[︁
𝑚1, . . . ,𝑚𝑛

]︁𝑇
We use 𝑅𝑚(𝑎)[𝑝(𝑎)] to denote the remainder of polynomial division of 𝑝(𝑎)

by 𝑚(𝑎)

𝑅𝑚(𝑎)[𝑝(𝑎)] = 𝑝(𝑎) mod 𝑚(𝑎) (6.2)

Matrices GW and AW are both constructed in the same way. They are also

the same for one- and two-dimensional Winograd algorithm. Rows of the ma-

trix GW and AW, which stand for transformation with polynomials of the first
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degree are identical to those in the Toom-Cook algorithm (see Algorithm 6) to

within factors 𝑁𝑖). Then we have to construct the submatrices that correspond

to the transformation with the polynomial 𝑚𝑖(𝑎) of the degree 𝑑 higher than

one. To do this we have to compose the matrix G with G′ (GW = G(T−C)×G′),

where G′ represents transformation to the “Polynomials’ Winograd domain”

and the G matrix stands for transformation to the “Winograd domain” and is

equal to matrix GT−C of apropriate size (used in algorithm 𝐹𝑇−𝐶(𝑑, 𝑑)).

Similarly, matrix AW = AT−C ×A′, where AT−C is generated by the Toom-

Cook algorithm 𝐹𝑇−𝐶(𝑑, 𝑑) and A′ stands for transformation into the “Polyno-

mial Winograd domain” with polynomials 𝑚𝑖(𝑎) of the degree higher than 1.

The last rows Aℓ and Gℓ represent the pseudo point ∞ needed to construct the

modified version of the algorithm.

Below we present an example of the construction of matrices AW and GW

for kernel of size 3/3 × 3 and output of size 2/2 × 2, choosing polynomials

𝑚1(𝑎) = 𝑎 and 𝑚2(𝑎) = 𝑎2 + 𝑏𝑎 + 𝑐. To solve the sub-problem we use Toom-

Cook algorithm 𝐹𝑇−𝐶(2, 2)/𝐹𝑇−𝐶(2×2, 2×2) with root points 0, 1 (polynomials

𝑎 and 𝑎− 1).

G1 =
[︁
1 0 0

]︁
A1 =

[︁
1 0 0 0

]︁

G2 = GT−C ×G′ =

⎡⎢⎢⎢⎣
−1 0

1 1

0 1

⎤⎥⎥⎥⎦
⎡⎣1 0 −𝑐

0 1 −𝑏

⎤⎦ =

⎡⎢⎢⎢⎣
−1 0 𝑐

1 1 −𝑏− 𝑐

0 1 −𝑏

⎤⎥⎥⎥⎦

A2 = AT−C×A′ =

⎡⎢⎢⎢⎣
1 0

1 1

0 1

⎤⎥⎥⎥⎦
⎡⎣1 0 −𝑐 𝑏𝑐

0 1 −𝑏 𝑏2 − 𝑐

⎤⎦ =

⎡⎢⎢⎢⎣
1 0 −𝑐 𝑏𝑐

1 1 −𝑏− 𝑐 𝑏𝑐 + 𝑏2 − 𝑐

0 1 −𝑏 𝑏2 − 𝑐

⎤⎥⎥⎥⎦
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GW =

⎡⎢⎢⎢⎣
G1

G2

0 0 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

−1 0 𝑐

1 1 −𝑏− 𝑐

0 1 −𝑏

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AW =

⎡⎢⎢⎢⎣
A1

A2

0 0 0 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1 0 −𝑐 𝑏𝑐

1 1 −𝑏− 𝑐 𝑏𝑐 + 𝑏2 − 𝑐

0 1 −𝑏 𝑏2 − 𝑐

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The exact algorithms to compute matrices GW and AW are presented in algo-

rithm (7).

Matrix BW

First we construct auxiliary matrix C that includes blocks Ci for 𝑖 = 1, · · · , ℓ

where ℓ is the number of the polynomials 𝑚𝑖(𝑎). The matrix C represents

transformation from the “Polynomial Winograd domain” into the “Winograd

domain”.

The rows which stand for transformation with polynomials 𝑚𝑖(𝑎) of the first

degree are equal to identity matrix. Blocks which stand for transformation with

polynomial 𝑚𝑖(𝑎) of degree 𝑑 greater than 1 represents transformation with ma-

trix BT−C, generated for sub-problem with 𝐹𝑇−𝐶(𝑑, 𝑑). A second matrix E in-

cludes the rest of operations, that is modulo 𝑀(𝑎) (remainder) from product

of polynomials 𝑀𝑖(𝑎) and the polynomial obtained from extended Euclidean

algorithm 𝑁𝑖(𝑎) (see Equation (6.1)). Additional zeros in rows of matrix E and

column with coefficients of the polynomial 𝑀𝑖(𝑎) implement the modified ver-

sion of the Winograd algorithm. The exact algorithm to compute matrix BW is

presented in Algorithm 8.
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ALGORITHM 7: Construction of matrix GW and AW to transform kernel and

result of Hadamard product in a Winograd convolution algorithm 𝐹 (𝑚, 𝑘)

Input: 𝑚 - size of output,

𝑘 - size of kernel,

{𝑚1(𝑎), · · · ,𝑚ℓ(𝑎)} set of ℓ irreducible and pairwise coprime polynomials such as∑︀
𝑖 deg(𝑚𝑖(𝑎)) = 𝑘 +𝑚− 2

Output: Matrices GW and AW for Winograd convolution

𝑛 = 𝑘 +𝑚− 2

for 𝑖 = 1 to ℓ do
𝑑 = deg(𝑚𝑖(𝑎))

if 𝑑 == 1 then
𝑝𝑖 = 𝑟𝑜𝑜𝑡(𝑚𝑖(𝑎))

Gi =
[︁
𝑝0𝑖 , . . . , 𝑝

𝑘−1
𝑖

]︁
,

Ai =
[︀
𝑝0𝑖 , . . . , 𝑝

𝑚−1
𝑖

]︀
end

if 𝑑 > 1 then
GT−C - matrix G for 𝐹(𝑇−𝐶)(𝑑, 𝑑)

G′ =
[︀
vec(𝑅𝑚𝑖(𝑎)[𝑎

0]), . . . , vec(𝑅𝑚𝑖(𝑎)[𝑎
𝑘−1])

]︀
AT−C matrix A for 𝐹(𝑇−𝐶)(𝑑, 𝑑)

A′ =
[︀
vec(𝑅𝑚𝑖(𝑎)[𝑎

0]), . . . , vec(𝑅𝑚𝑖(𝑎)[𝑎
𝑚−1])

]︀
Gi = G(T−C)G′

Ai = A(T−C)A′

end

Gℓ+1 = [0, . . . , 0, 1]

Aℓ+1 = [0, . . . , 0, 1]

end

GW =

⎡⎢⎢⎢⎢⎢⎢⎣
G1

...

Gℓ

Gℓ+1

⎤⎥⎥⎥⎥⎥⎥⎦AW =

⎡⎢⎢⎢⎢⎢⎢⎣
A1

...

Aℓ

Aℓ+1

⎤⎥⎥⎥⎥⎥⎥⎦
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ALGORITHM 8: Construction of matrix B to transform the input in the Winograd

convolution algorithm 𝐹 (𝑚, 𝑘)

Input: 𝑚 - size of output,

𝑘 - size of kernel

{𝑚1(𝑎), · · · ,𝑚ℓ(𝑎)} set of ℓ irredicible and pairwise coprime polynomials such as∑︀
𝑖 deg(𝑚𝑖(𝑎)) = 𝑘 +𝑚− 2

Output: Matrix 𝐵𝑊 for Winograd convolution

𝑛 = 𝑘 +𝑚− 2

𝑀(𝑎) =
∏︀

𝑖𝑚𝑖(𝑎)

𝑀𝑖(𝑎) = 𝑀(𝑎)/𝑚𝑖(𝑎)

for 𝑖 = 1 to ℓ do
𝑑 = deg(𝑚𝑖(𝑎))

if 𝑑 == 1 then
Ci = [1]

end

if 𝑑 > 1 then
BT−C matrix B for 𝐹𝑇−𝐶(𝑑, 𝑑)

for 𝑗 = 1 to 2𝑑− 1 do
𝑏𝑗(𝑎) = BT−C

1,j +BT−C
2,j 𝑎+ . . .+BT−C

2d−1,j𝑎
2𝑑−2

end

Ci =
[︁
vec(𝑅𝑚𝑖(𝑎)[𝑏1(𝑎)], . . . , vec(𝑅𝑚𝑖(𝑎)[𝑏2𝑑−1(𝑎)])

]︁
end

end

C =

⎡⎢⎢⎢⎣
C1

. . .

Cℓ

⎤⎥⎥⎥⎦
for 𝑖 = 1 to ℓ do

𝑁𝑖(𝑎) — polynomial obtained from extended Euclidean algorithm for

polynomials 𝑚𝑖(𝑎) and 𝑀𝑖(𝑎)

Ei =
[︁
vec(𝑅𝑀(𝑎)[𝑎

0𝑁𝑖(𝑎)𝑀𝑖(𝑎)]), . . . , vec(𝑅𝑀(𝑎)[𝑎
𝑑−1𝑁𝑖(𝑎)𝑀𝑖(𝑎)])

]︁
end

E =

⎡⎣E1 · · · Eℓ

0 · · · 0

⎤⎦
BW =

[︁
E×C vec(𝑀(𝑎))

]︁
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We present an example of constructing matrix BW for kernels of the size

3/3 × 3 and outputs of size 2/2 × 2, chosing polynomials: 𝑚1(𝑎) = 𝑎 and

𝑚2(𝑎) = 𝑎2 + 𝑏𝑎 + 𝑐 (as in Section 6.1.1). Matrix B(T−C) is generated by the

Toom-Cook algorithm 𝐹𝑇−𝐶(2 × 2, 2 × 2) with root points 0, 1.

B(T−C) =

⎡⎢⎢⎢⎣
−1 0 0

1 1 −1

0 0 1

⎤⎥⎥⎥⎦ C2 =

⎡⎣−1 0 −𝑐

1 1 −𝑏− 1

⎤⎦ C =

⎡⎢⎢⎢⎣
1 0 0 0

0 −1 0 −𝑐

0 1 1 −𝑏− 1

⎤⎥⎥⎥⎦

Next, we construct the blocks of matrix E. The polynomials obtained from ex-

tended Euclidean algorithm (Biggs 2002) are: 𝑁1 = 1, 𝑁2 = −𝑎.

E1 =

⎡⎢⎢⎢⎣
1

𝑏

𝑐

⎤⎥⎥⎥⎦ E2 =

⎡⎢⎢⎢⎣
0 0

0 𝑐

−1 𝑏

⎤⎥⎥⎥⎦ E =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

𝑏 0 𝑐

𝑐 −1 𝑏

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

E×C =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

𝑏 0 𝑐

𝑐 −1 𝑏

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0

0 −1 0 −𝑐

0 1 1 −𝑏− 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

𝑏 𝑐 𝑐 −𝑐(𝑏 + 1)

𝑐 𝑏 + 1 𝑏 𝑐− 𝑏(𝑏 + 1)

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

𝐵𝑊 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0

𝑏 𝑐 𝑐 −𝑐(𝑏 + 1) 𝑐

𝑐 𝑏 + 1 𝑏 𝑐− 𝑏(𝑏 + 1) 𝑏

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

6.2 Optimality of Winograd algorithm

The family of Toom-Cook convolution algorithms have an optimal number of

multiplications 𝑛 = (𝑘 +𝑚− 1)2 (for two dimensions) for fixed 𝑘 and 𝑚. While
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computing convolution in DNNs, we break our input into the pieces of the size

equal to algorithm input tile. This results in overlap of input tiles at boundaries.

The exact number of overlapping input values for whole input depends on the

kernel and input/output sizes (see description in (Lavin and Gray 2016)). We

express the performance of the algorithm as the ratio of the number of multipli-

cations per single output value and we denote as 𝑟𝑎𝑡𝑖𝑜. Thus, Toom-Cook algo-

rithm 𝐹𝑇−𝐶(2×2, 3×3) requires 16 multiplications to compute 4 output values,

so we have ratio equal to 4. For algorithm 𝐹𝑇−𝐶(4 × 4, 3 × 3), the 𝑟𝑎𝑡𝑖𝑜 = 2.25.

For Toom-Cook convolution with a fixed kernel size, the 𝑟𝑎𝑡𝑖𝑜 decreases with

tile size. The bigger input/output tile, the fewer general multiplications are

needed (see Table 5.2). The element-wise multiplications dominate the execu-

tion time of DNN convolution, so reducing number of general multiplications,

reduces execution time. Unfortunately, with increasing the input/output size

the floating point error of the computations increases exponentially (see Chap-

ter 4).

When we apply Toom-Cook algorithm 𝐹𝑇−𝐶(𝑚×𝑚, 𝑘×𝑘) the 𝑟𝑎𝑡𝑖𝑜 is equal

to (𝑘 + 𝑚 − 1)2/𝑚2. In the Winograd method, as we can see from matrix con-

struction, introducing polynomials 𝑚𝑖(𝑎) of the degree greater than one results

in larger matrix sizes, which means the bigger (not optimal) number of general

multiplications. Every Toom-Cook algorithm 𝐹𝑇−𝐶(𝑑 × 𝑑, 𝑑 × 𝑑) used to solve

sub-problem in Winograd algorithm requires 2𝑑 − 1 polynomials of the first

degree. The bigger number and higher degree polynomials we use the more

additional general multiplications per output value are required. To compute

𝐹 (2 × 2, 3 × 3) we can use

• Four polynomials of the first degree (Toom-Cook algorithm). It requires

16 general multiplications to compute 4 output values, so 𝑟𝑎𝑡𝑖𝑜 = 16/4 =

4.

• Two polynomials of the first degree and one of the second degree. It re-

quires 25 general multiplications to compute 4 output values, so 𝑟𝑎𝑡𝑖𝑜 =

(2 + 3)2/4 = 6.25.
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• One polynomial of the first degree and one of the third degree. It requires

36 general multiplications to compute 4 output values, so 𝑟𝑎𝑡𝑖𝑜 = (1 +

5)2/4 = 9.

• Two polynomials of the second degree. It requires 36 general multiplica-

tions to compute 4 output values, so 𝑟𝑎𝑡𝑖𝑜 = (3 + 3)2/4 = 9.

• One polynomial of the fourth degree. It requires 49 general multiplica-

tions to compute 4 output values, so 𝑟𝑎𝑡𝑖𝑜 = 72/4 = 12.25.

We can notice that in the above example using the polynomial 𝑚𝑖(𝑎) of the

4th degree does not change an input (mapped to the polynomial of the 3rd

degree) and a kernel (mapped to the polynomial of the 2nd degree) pending

transformations, so in this case it only introduces additional multiplications

into convolution computations. Analogously using polynomial 𝑚𝑖(𝑎) of the

3rd degree does not change the kernel. For this reason we will not consider

such cases in presented work.

Table 6.1: Number of multiplications for single output value in two-dimensional Wino-
grad convolution algorithm for kernel 3 × 3 and outputs: 2 × 2, 4 × 4 and 6 × 6, for
various number of the polynomials of the first and second degree used in CRT. In or-
ange is Toom-Cook algorithm with all polynomials of the first degree.

2 × 2 4 × 4 6 × 6

deg = 1 4 2 0 6 4 2 0 8 6 4 2 0

deg = 2 0 1 2 0 1 2 3 0 1 2 3 4

Ratio 4 6.25 9 2.25 3.06 4 5.06 1.78 2.25 2.78 3.36 4

The Winograd method allows us to construct algorithms with different 𝑟𝑎𝑡𝑖𝑜s

for fixed kernel and output size, while the Toom-Cook method has a constant

𝑟𝑎𝑡𝑖𝑜 for given 𝑘 and 𝑚. Thus, for fixed kernel size we can construct sets of

Winograd matrices with the same 𝑟𝑎𝑡𝑖𝑜 but different output/input size. For

example for 𝐹𝑇−𝐶(4 × 4, 3 × 3), 𝑟𝑎𝑡𝑖𝑜 = 36/16 = 2.25 and 𝐹𝑊 (6 × 6, 3 × 3), with

6 polynomials of the first degree, and one polynomial of the second degree, we

have the same 𝑟𝑎𝑡𝑖𝑜 = 81/36 = 2.25 – see Table 6.1. Given these choices with the
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same computational 𝑟𝑎𝑡𝑖𝑜, we can investigate the floating point error of such

algorithms and pick the more accurate one.

6.3 Tests results

6.3.1 Random data

We tested the accuracy of the Winograd convolution algorithm for the kernel of

the size 3(1D) and 3 × 3(2D). We studied a range of output tile sizes from 2 to 8

(1D) and from 2×2 to 8×8 (2D). We run our initial experiments over 5000 loops

where kernel and input values were sampled randomly from normal distribu-

tion with mean equal to 0 and standard deviation equal to 1. We computed the

Euclidean error of Winograd convolution performed in 𝑓𝑙𝑜𝑎𝑡32 and compared

it with the direct convolution in 𝑓𝑙𝑜𝑎𝑡64.

We investigated Winograd convolution algorithm with the most promising

configurations of polynomials of the first and second degree (using the kernel

of size 3 or 3× 3). The best results for each 𝑟𝑎𝑡𝑖𝑜 (number of general multiplica-

tions per output value) and polynomial degree configuration are presented in

Figure 6-3. We construct the first degree polynomials using known good root

points: 0, −1, 1, −1/2, 2, 1/2, −2, −1/4, 4 (see Table 5.6). As second degree

polynomials, we pick those with the coefficients equal to 0, −1 and 1, coprime

with the polynomials of the first degree. That is: 𝑎2 +1, 𝑎2 +𝑎+1 and 𝑎2−𝑎+1.

To solve the sub-problem for the polynomial of degree greater than 1, we use

Toom-Cook convolution algorithm 𝐹𝑇−𝐶(2 × 2, 2 × 2) and root points 0, 1 and

∞.

We can notice that the accuracy of Winograd convolution does not always

decrease smoothly with the 𝑟𝑎𝑡𝑖𝑜, at least with our way of choosing polyno-

mials. It is the result of matrix properties where the symmetric root points

𝑎,−𝑎,1/𝑎,−1/𝑎 work best. For example, Winograd with output 8 × 8 requires

ten root points for the Toom-Cook version (all polynomials 𝑚𝑖(𝑎) of the first

degree). Replacing two of them by the polynomial of the degree 𝑑 = 2 results

in eight symmetric root points 0, −1/2, 1/2, −1, 1, −2, 2 and ∞ and the poly-
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(a) (b)

Figure 6-3: Euclidean error of Winograd convolution in 𝑓𝑙𝑜𝑎𝑡32 comparing to the direct
method computed in 𝑓𝑙𝑜𝑎𝑡64

nomial 𝑎2 + 1. This configuration is good for accuracy. When increasing the

number of root points to 11 we have to introduce one more root point: −1/4

which has a great impact on the floating point error. When we use only one

polynomial of the second degree, we found that 𝑎2 + 1 works best. It provides

only two non zero coefficients instead of three (for 𝑎2 + 𝑎 + 1 and 𝑎2 − 𝑎 + 1).

We can also observe that for smaller 𝑟𝑎𝑡𝑖𝑜s (up to 𝑟𝑎𝑡𝑖𝑜 around 1.9 and 3.5

for one- and two-dimensional convolution) – that means lower time complex-

ity – the Winograd algorithm with one polynomial of the second degree gives

smaller floating point error. For 𝑟𝑎𝑡𝑖𝑜 equal to 1.9 Winograd algorithm reduces

the error by over 20% and for 𝑟𝑎𝑡𝑖𝑜 equal to 2.25 nearly 40% compared to Toom-

Cook, for one- and two-dimensional convolution respectively (see Figure 6-3).

Thus, we are able to decrease the error keeping the same 𝑟𝑎𝑡𝑖𝑜 or improve time

performance keeping similar floating point error of computations.

6.3.2 Extended example

We run simple experiments for the Vgg16 CNN using Tensorflow Slim (Abadi

et al. 2015; Sergio Guadarrama 2016) with thirteen convolution layers, with the

kernel of the size 3 × 3. As inputs we used 2000 images from the ImageNet

validation set (Deng et al. 2009). The computations were done in 𝑓𝑙𝑜𝑎𝑡32 and
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intermediate results were casted to half precision numbers system 𝑓𝑙𝑜𝑎𝑡16 and

𝑏𝑓𝑙𝑜𝑎𝑡16.

G()GT

BT()B

AT()A

Q(W_tr)

Q(X_tr)

Q(W)

Q(X)

Q(S)Q(S_tr)

Input tile

Weights
Output tile

Winograd
Domain

Figure 6-4: Winograd convolution overview - cast

We tested the Toom-Cook algorithms with outputs 4 × 4, 6 × 6 and 8 × 8.

This means the 𝑟𝑎𝑡𝑖𝑜 of multiplications per single ouptut point was 2.25, 1.78

and 1.56 respectively (see Table 6.1). For comparison we chose the Winograd

algorithm with one polynomial of the second degree for even output sizes, from

6 × 6 up to 12 × 12. The 𝑟𝑎𝑡𝑖𝑜 of multiplications per single output value was

2.25, 1.89, 1.69 and 1.56 respectively.

In our initial tests on random data, we have found that using 𝑎2 + 1 as the

polynomial of the second degree works best. Polynomials of the first degree for

𝐹𝑊 (𝑚×𝑚, 3×3) were identical as those used for 𝐹𝑇−𝐶((𝑚−2)× (𝑚−2), 3×3)

Table 5.5.

In our tests, we used Winograd algorithms with only one polynomial of the

second degree. We could achieve better accuracy by using more second degree

polynomials, but this would be at the cost of a worse computational 𝑟𝑎𝑡𝑖𝑜. We

focused on the cases where the image recognition accuracy decreases – 𝑟𝑎𝑡𝑖𝑜

equal to 2.25 in 𝑓𝑙𝑜𝑎𝑡16 and 𝑟𝑎𝑡𝑖𝑜 between 1.78 and 1.56 in 𝑏𝑓𝑙𝑜𝑎𝑡16. We do not

present the all possible results, e.g. for 𝐹𝑊 (12 × 12, 3 × 3) with 2 polynomials

of the second degree (𝑟𝑎𝑡𝑖𝑜 = 1.78), but our results are indicative.

We looked at the percentage of image recognition (𝑡𝑜𝑝 − 1) for Vgg16 net-

work with Winograd convolution layers in comparison to the same network
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Table 6.2: Percentage of image recognition for Toom-Cook convolution algorithm for
kernel of the size 3×3 and outputs 4×4, 6×6 and 8×8 in 𝑓𝑙𝑜𝑎𝑡32, 𝑓𝑙𝑜𝑎𝑡16 and 𝑏𝑓𝑙𝑜𝑎𝑡16

dir T-C(4 × 4) T-C(6 × 6) T-C(8 × 8)

ratio 9 2.25 1.78 1.56

𝑓𝑙𝑜𝑎𝑡32 70% 70% 70% 70%

𝑓𝑙𝑜𝑎𝑡16 70% 10% 0.05% 0.05%

𝑏𝑓𝑙𝑜𝑎𝑡16 70% 70% 70% 68%

Table 6.3: Percentage of image recognition for Winograd convolution algorithm with
one polynomial of the second degree 𝑎2 + 1 for kernel of the size 3 × 3 and outputs
6× 6, 8× 8, 10× 10 and 12× 12 in 𝑓𝑙𝑜𝑎𝑡32, 𝑓𝑙𝑜𝑎𝑡16 and 𝑏𝑓𝑙𝑜𝑎𝑡16.

dir W(6 × 6) W(8 × 8) W(10 × 10) W(12 × 12)

ratio 9 2.25 1.89 1.69 1.56

𝑓𝑙𝑜𝑎𝑡32 70% 70% 70% 70% 70%

𝑓𝑙𝑜𝑎𝑡16 70% 65% 0.1% 0.05% 0.05%

𝑏𝑓𝑙𝑜𝑎𝑡16 70% 70% 70% 70% 62%

with direct convolution using the same floating point precision. In Table 6.2

and Table 6.3 we present the results for various floating point precisions (see

Section 2.3). For the output sizes under consideration, we do not observe any

changes in network accuracy when using 𝑓𝑙𝑜𝑎𝑡32. In 𝑓𝑙𝑜𝑎𝑡16, all investigated

versions of Toom-Cook algorithms failed due to under/overflows. In 𝑏𝑓𝑙𝑜𝑎𝑡16

the percentage of image recognition for Toom-Cook algorithm with output 6×6

(𝑟𝑎𝑡𝑖𝑜 equal to 1.78) is the same as for direct convolution , but for output size

8 × 8 the accuracy decreases.

With 𝑓𝑙𝑜𝑎𝑡16, we see that using Winograd convolution instead of Toom-

Cook with the same performance 𝑟𝑎𝑡𝑖𝑜 (equal to 2.25), increases the recogni-

tion accuracy from 10% to 65%. The main problem we face with 𝑓𝑙𝑜𝑎𝑡16 is that

it cannot store the same range of values as 𝑓𝑙𝑜𝑎𝑡32. Then using the same good

root points (like 0, −1 and 1) more than once results in lower intermediate val-

ues, and less likelihood of overflow.
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Using 𝑏𝑓𝑙𝑜𝑎𝑡16, the decrease in image recognition appears for bigger input

sizes than in 𝑓𝑙𝑜𝑎𝑡16. The 𝑏𝑓𝑙𝑜𝑎𝑡16 format allows us to represent nearly the

same range of values as single precision (see Section 2.3). However, the lower

number of bits results in lower accuracy of values representation and larger

floating point error from operations. In our experiments we can observe the

impact of this for network with Toom-Cook convolution algorithm with out-

put of the size 8 × 8. We have not found a configuration of polynomials that

would give us the accuracy of image recognition better than 68% with the 𝑟𝑎𝑡𝑖𝑜

equal to 1.56. We construct the Winograd algorithm with the accuracy of image

recognition equal to 70% (the same accuracy we get using of a direct convolu-

tion algorithm) with 𝑟𝑎𝑡𝑖𝑜 = 1.69. Presented results are only an example how

Winograd convolution algorithm might be beneficial in improving the accuracy

of computations in DNNs.

6.4 Conclusions

In this chapter we describe and provide the explicit algorithm for the construc-

tion of Winograd transformation matrices in a general case. We show that the

main benefit of using superlinear polynomials is that the same good root points

can be used multiple times, which improves floating point accuracy. The Toom-

Cook method allows to find a balance between number of general multiplica-

tions and floating points accuracy by varying the tile size. The presented Wino-

grad method offers a larger space of trade-offs between computation complex-

ity and accuracy using higher order polynomials. Thus, it allows us to find an

attractive solutions that are not available when using Toom-Cook. The similar

approach is presented in (Meng and Brothers 2019). However, they used one

superlinear polynomial and do not provided any general method of construct-

ing transformation matrices .

In presented case study we find that in 𝑏𝑓𝑙𝑜𝑎𝑡16 precision we can construct

an algorithm that maintains the same accuracy of image recognition as Toom-

Cook, but has better 𝑟𝑎𝑡𝑖𝑜 of elementwise multiplications per single output
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value than Toom-Cook. In 𝑓𝑙𝑜𝑎𝑡16 precision we can obtain better accuracy us-

ing Winograd convolution algorithm with one polynomial of the second de-

gree, as compared to Toom-Cook (for the kernel of the size 3 × 3, and output

4×4) with the same 𝑟𝑎𝑡𝑖𝑜 of number of elementwise multiplications per output

value. The presented Winograd convolution algorithm does not require addi-

tional operations in the transformation to/from the "Winograd domain", and

although the Winograd method itself is complex, the generated convolution

algorithm does not require a more advanced implementation.
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Chapter 7

Discussion and Conclusions

This thesis contains our results achieved studying the problem of numerical

errors which occur during calculations of the Winograd fast convolution algo-

rithms. These algorithms are widely used in many problems for which Deep

Neural Networks are applied. We achieved state-of-the-art results developing

a set of novel methods that significantly improve the accuracy of the computa-

tional results, not increasing their complexity (in terms of the number of oper-

ations). Our work integrates several various approaches to the problem.

Four major contributions of our thesis are detailed below.

Firstly, after investigation a mathematical background and providing the

exact algorithms with pseudocodes for a construction of transformation matri-

ces (Chapter 3) we fixed an idea which parameters of Toom-Cook/Winograd

convolution algorithms we can manipulate. We had found that it is advisable

to tune not only kernel and output sizes but also the number, degree and root

points of polynomials used to construct transformation matrices. As a matter

of the fact, it appears that the family of the Winograd convolution algorithms is

wider than practically used in machine learning field. We investigated in more

details the simpler, most optimal subclass of it, that is Toom-Cook algorithms.

Secondly, we identified in a theoretical way the components of numerical

errors of the Toom-Cook convolution algorithms (Chapter 4). We proved that

the accuracy of the computational results of these algorithms depends on trans-

formation matrices, on the summation method in dot product computations,
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the method of summation over input channels and the precision of the number

system in which we perform computations. We proved that the errors of the

convolution computations grows exponentially with the output sizes. We also

demonstrated that the errors of the modified Toom-Cook algorithm is smaller

than the errors of the Toom-Cook algorithm, although still grows exponentially.

Thirdly, we proposed a couple of techniques that improve the accuracy of

the Toom-Cook convolution computations based on our theoretical results and

verified them empirically for the wide range of input sizes and the most com-

monly used kernel sizes (Chapter 5). We investigated in details, the way of

choosing points which determines properties of the transformation matrices.

We constructed sets of optimal points for various input tile sizes, both in a sin-

gle and a mixed precision. We proposed and tested the canonical summation

order, based on the idea of the Huffman coding, to reduce further the error in

dot product computations. In addition we used the pairwise summation over

input channels instead of a linear one.

All the proposed methods give an error reduction of the floating point com-

putation up to 50% over the state-of-the-art.

Finally, we analyzed the Winograd algorithms (Chapter 6). Despite the fact

that these algorithms are not optimal in terms of the number of general mul-

tiplications, we show that we can reduce this number in context of the whole

layer by increasing output size. Based on our performance analysis and the

fact that one particular Winograd convolution algorithm has been successfully

applied by Meng and Brothers (Meng and Brothers 2019) we come to the con-

clusion that it would be worth to investigate this technique further, particularly

for lower precisions and bigger output sizes.

Our work has been done in the general context and tested mainly on ran-

dom data. The actual results of how much we can speed up the convolution

computations depends for sure on the particular network architecture, com-

puter architecture, processor and input data properties like for example an im-

age size if we consider pattern recognition problems.
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It can also be interesting to investigate much bigger input sizes, for example

30 × 30. For such big matrices the dependency between the errors from ill-

conditioning can have even bigger impact on the accuracy. Techniques like

Chebyshev nodes or matrix factorizations can appear to be extremely useful in

this case.
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Appendix A

Norm Equivalence - Some

Inequalities

In Chapter 2, Section 2.2.4 we introduced definitions of vector and matrix norms

in vector spaces R𝑛 or R𝑚×𝑛, respectively. In Chapter 4, Section 4.3 we also

proved the following theorem.

Theorem 10. Any two norms defined on the same vector space of finite dimension are

equivalent.

Now we demonstrate some norm inequalities which are introduced in Chap-

ter 4 and used throughout the thesis.

For any vector x ∈ R𝑛 it holds

‖x‖2 ≤ ‖x‖1 ≤
√
𝑛‖x‖2 (A.1)

For any matrix W ∈ R𝑚×𝑛 we have

1√
𝑚
‖W‖1 ≤ ‖W‖2 ≤

√
𝑛‖W‖1 (A.2)

‖W‖2 ≤ ‖W‖𝐹 ≤
√︀

𝑚𝑖𝑛(𝑚,𝑛)‖W‖2 (A.3)
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Proof. Based on (Rudin 1986)

To justify the first inequality of Equation (A.1), let us observe that

‖x‖22 =
∑︁
𝑖

𝑥2
𝑖 ≤

∑︁
𝑖

|𝑥𝑖| ·
∑︁
𝑖

|𝑥𝑖| = ‖x‖21

Hence ‖x‖2 ≤ ‖x‖1.

For the second inequality of Equation (A.2) let us notice

‖x‖1 =
∑︁
𝑖

|𝑥𝑖| =< 1, |x| >=
∑︁
𝑖

1 · |𝑥𝑖| ≤

continuing, from the Buniakowski-Schwartz inequality (see Section 2.2.5) we

obtain

≤
√︀

< 1,1 > ·
√
< x,x > =

√︃∑︁
𝑖

1 ·
√︃∑︁

𝑖

𝑥2
𝑖 =

√
𝑛‖x‖2

what gives ‖x‖1 ≤
√
𝑛‖x‖2 and finishes the proof of the above inequalities

Equation (A.1) for vector norms.

Given a matrix W ∈ R𝑚×𝑛 we have

‖W‖2 = max
x ̸=0

‖Wx‖
‖x‖

= max
x ̸=0

‖W x

‖x‖
‖

what implies, that

‖W‖2 = max
‖x‖2=1

‖W · x‖

Now from inequalities (1) and norm properties we obtain

‖Wx‖2 ≤ ‖Wx‖1 ≤ ‖W‖1‖x‖1 ≤ ‖W‖1
√
𝑛‖x‖2

Taking a maximum of both sides for x ∈ R𝑛 such that ‖x‖2 = 1 we obtain finally

‖Wx‖2 ≤
√
𝑛‖W‖1
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To obtain the second inequality of Equation (A.2) notice that for a vector

x ∈ R𝑚 we have ‖Wx‖1 ≤
√
𝑚‖Wx‖2 from (1).

Then
√
𝑚‖Wx‖2 ≤

√
𝑚‖W‖2‖x‖2 ≤

√
𝑚‖W‖2‖x‖1.

Hence

(**) ‖Wx‖1 ≤
√
𝑚‖W‖2‖x‖1

Remind that 1-norm of a matrix ‖W‖1 it is a maximal value of the sums of

entries of columns. Let us assume that the maximum is achieved for the j-th

column. That is ‖W‖1 =
∑︀

𝑖 |𝑤𝑖𝑗|. Denote ej = (0, ...0, 1, 0, ...0) a vector in R𝑛.

Thus we have

‖Wej‖1 = ‖(𝑤1𝑗, ....., 𝑤𝑚𝑗)‖1 =
∑︁
𝑖

|𝑤𝑖𝑗| = ‖W‖1

Now putting in (**) ‖ej‖ = 1 we obtain

‖W‖1 ≤
√
𝑚‖W‖2

So the inequalities of Equation (A.2) are proven.

To justify inequalities of Equation (A.3) let x ∈ R𝑛, ‖x‖2 = 1 and W ∈ R𝑚×𝑛.

Thus

‖Wx‖2 =
∑︁
𝑖

|
∑︁
𝑗

𝑤𝑖𝑗𝑥𝑗|2 ≤
∑︁
𝑖

(|
∑︁
𝑗

|𝑤𝑖𝑗||𝑥𝑗|)2 ≤

≤
∑︁
𝑖

(|
∑︁
𝑗

|𝑤𝑖𝑗|2)(
∑︁
𝑗

(|𝑥𝑗|)2) = ‖W‖2𝐹

Hence

‖W‖2 ≤ ‖W‖𝐹

and the first inequality of Equation (A.3) is justified. To prove the second

inequality of Equation (A.3) observe that any matrix W ∈ R𝑚×𝑛 could be

identified with a vector composed of its columns W = [W1, .....,Wn] where

Wi = [𝑤1𝑖, ....., 𝑤𝑚𝑖]
𝑇 is a vector equal to an i-th column of W. This identifi-

cation is in fact an isomorphism of the vector spaces R𝑚×𝑛 and (𝑅𝑚)𝑛. Such
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isomorphic spaces have exactly the same properties, and identical norms, in

particular.

Let us denote ej = (0, ...0, 1, 0, ...0) a vector in R𝑚 which all coefficients are

equal 0 except on the j-th position which is equal 1. We have ‖ej‖2 = 1 and

Wej = Wj. Hence ‖W‖2 ≥ ‖W𝑒𝑗‖2 = ‖Wj‖2 and

𝑛 · ‖W‖22 ≥
∑︁
𝑗

‖Wj‖22.

Consequently

‖W‖22 ≥
1

𝑛

∑︁
𝑗

‖Wj‖22 =
1

𝑛
‖W‖2𝐹

Thus ‖W‖𝐹 ≤
√
𝑛‖W‖2.

To finish the justification of Equation (A.3) observe that just from the defini-

tion we have ‖W‖𝐹 = ‖W𝑇‖𝐹 and ‖W‖2 = ‖W𝑇‖2.

Hence from the last inequality it follows that ‖W𝑇‖𝐹 ≤
√
𝑚‖W𝑇‖2

and finally

‖W‖𝐹 ≤
√
𝑚‖W‖2

Taking into account proved above inequality

‖W‖𝐹 ≤
√
𝑛‖W‖2

we finish the proof of Equation (A.3).
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Appendix B

Toom-Cook Convolution Over

Multiple Channels

B.1 Single precision - 1D

Table B.1: Toom-Cook over multiple channels in 𝑓𝑙𝑜𝑎𝑡32 - error per single output value
for one-dimensional convolution.

𝑚 1 channel 32 channels 64 channels

1 1.75E-08 2.74E-07 5.12E-07

2 2.45E-08 3.80E-07 7.03E-07

3 5.19E-08 7.08E-07 1.28E-06

4 6.92E-08 8.35E-07 1.48E-06

5 9.35E-08 1.09E-06 2.00E-06

6 1.15E-07 1.31E-06 2.34E-06

7 2.34E-07 2.90E-06 5.21E-06
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Table B.2: Toom-Cook over 32 channels in 𝑓𝑙𝑜𝑎𝑡32 - error per single output value for
one-dimensional convolution. Columns "ratio in %" present the ratio of error per single
output value achieved with pairwise summation and error per single output value
with linear summation in %.

𝑚 1 channel linear summation pairwise summation ratio in %

1 1.75E-08 2.74E-07 1.90E-07 69%

2 2.45E-08 3.80E-07 2.71E-07 71%

3 5.19E-08 7.08E-07 5.11E-07 72%

4 6.92E-08 8.35E-07 6.17E-07 74%

5 9.35E-08 1.09E-06 8.35E-07 77%

6 1.15E-07 1.31E-06 9.79E-07 75%

7 2.34E-07 2.90E-06 2.16E-06 74%

Table B.3: Toom-Cook over 64 channels in 𝑓𝑙𝑜𝑎𝑡32 - error per single output value for
one-dimensional convolution. Columns "ratio in %" present the ratio of error per single
output value achieved with pairwise summation and error per single output value
with linear summation in %.

𝑚 1 channel linear summation pairwise summation Ratio in %

1 1.75E-08 5.12E-07 2.87E-07 56%

2 2.45E-08 7.03E-07 4.00E-07 57%

3 5.19E-08 1.28E-06 7.59E-07 59%

4 6.92E-08 1.48E-06 9.18E-07 62%

5 9.35E-08 2.00E-06 1.24E-06 62%

6 1.15E-07 2.34E-06 1.47E-06 63%

7 2.34E-07 5.21E-06 3.20E-06 61%
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B.2 Single precision - 2D

Table B.4: Toom-Cook over multiple channels in 𝑓𝑙𝑜𝑎𝑡32 - error per single output value
for two-dimensional convolution.

𝑚×𝑚 1 channel 32 channels 64 channels

1 × 1 4.63E-08 5.25E-07 9.44E-07

2 × 2 7.65E-08 9.05E-07 1.65E-06

3 × 3 2.35E-07 2.87E-06 5.33E-06

4 × 4 3.29E-07 3.60E-06 6.56E-06

5 × 5 6.81E-07 7.78E-06 1.41E-05

6 × 6 8.79E-07 9.48E-06 1.71E-05

7 × 7 2.43E-06 4.66E-05 8.41E-05

Table B.5: Toom-Cook over 32 channels in 𝑓𝑙𝑜𝑎𝑡32 - error per single output value for
two-dimensional convolution. Columns "ratio in %" present the ratio of error per single
output value achieved with pairwise summation and error per single output value
with linear summation in %.

𝑚×𝑚 1 channel linear summation pairwise summation ratio in %

1 × 1 4.63E-08 5.25E-07 3.95E-07 75%

2 × 2 7.65E-08 9.05E-07 6.47E-07 71%

3 × 3 2.35E-07 2.87E-06 2.09E-06 73%

4 × 4 3.29E-07 3.60E-06 2.70E-06 75%

5 × 5 6.81E-07 7.78E-06 5.71E-06 73%

6 × 6 8.79E-07 9.48E-06 7.12E-06 75%

7 × 7 2.43E-06 4.66E-05 3.41E-05 73%
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Table B.6: Toom-Cook over 64 channels in 𝑓𝑙𝑜𝑎𝑡32 - error per single output value for
two-dimensional convolution. Columns "ratio in %" present the ratio of error per single
output value achieved with pairwise summation and error per single output value
with linear summation in %.

𝑚×𝑚 1 channel linear summation pairwise summation ratio in %

1 × 1 4.63E-08 9.44E-07 5.83E-07 62%

2 × 2 7.65E-08 1.65E-06 9.59E-07 58%

3 × 3 2.35E-07 5.33E-06 3.11E-06 58%

4 × 4 3.29E-07 6.56E-06 3.98E-06 61%

5 × 5 6.81E-07 1.41E-05 8.57E-06 61%

6 × 6 8.79E-07 1.71E-05 1.04E-05 61%

7 × 7 2.43E-06 8.41E-05 5.09E-05 61%
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B.3 Mixed precision - 1D

Table B.7: Toom-Cook computation over multiple channels in 𝑓𝑙𝑜𝑎𝑡32 with transfor-
mations in 𝑓𝑙𝑜𝑎𝑡64 - error per single output value for one-dimensional convolution.

𝑚 1 channel 32 channels 64 channels

1 1.75E-08 2.73E-07 5.15E-07

2 1.87E-08 3.60E-07 6.73E-07

3 3.66E-08 6.50E-07 1.20E-06

4 4.41E-08 7.45E-07 1.41E-06

5 6.09E-08 1.00E-06 1.92E-06

6 6.97E-08 1.17E-06 2.18E-06

7 1.55E-07 2.60E-06 4.91E-06

Table B.8: Toom-Cook computation over 32 channels in 𝑓𝑙𝑜𝑎𝑡32 with transformations
in 𝑓𝑙𝑜𝑎𝑡64- error per single output value for one-dimensional convolution. Columns
"ratio in %" present the ratio of error per single output value achieved with pairwise
summation and error per single output value with linear summation in %.

𝑚 1 channel linear summation pairwise summation ratio in %

1 1.75E-08 2.73E-07 1.90E-07 70%

2 1.87E-08 3.60E-07 2.31E-07 64%

3 3.66E-08 6.50E-07 4.39E-07 68%

4 4.41E-08 7.45E-07 5.16E-07 69%

5 6.09E-08 1.00E-06 6.98E-07 70%

6 6.97E-08 1.17E-06 7.90E-07 68%

7 1.55E-07 2.60E-06 1.80E-06 69%
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Table B.9: Toom-Cook computation over 64 channels in 𝑓𝑙𝑜𝑎𝑡32 with transformations
in 𝑓𝑙𝑜𝑎𝑡64- error per single output value for one-dimensional convolution. Columns
"ratio in %" present the ratio of error per single output value achieved with pairwise
summation and error per single output value with linear summation in %.

𝑚 1 channel linear summation pairwise summation

1 1.75E-08 5.15E-07 2.88E-07 56%

2 1.87E-08 6.73E-07 3.58E-07 53%

3 3.66E-08 1.20E-06 6.72E-07 56%

4 4.41E-08 1.41E-06 7.86E-07 56%

5 6.09E-08 1.92E-06 1.06E-06 55%

6 6.97E-08 2.18E-06 1.20E-06 55%

7 1.55E-07 4.91E-06 2.75E-06 56%
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B.4 Mixed precision - 2D

Table B.10: Toom-Cook computation over multiple channels in 𝑓𝑙𝑜𝑎𝑡32 with transfor-
mations in 𝑓𝑙𝑜𝑎𝑡64 - error per single output value for two-dimensional convolution.

𝑚×𝑚 1 channel 32 channels 64 channels

1 × 1 4.63E-08 5.25E-07 9.48E-07

2 × 2 5.27E-08 8.51E-07 1.59E-06

3 × 3 1.62E-07 2.70E-06 5.13E-06

4 × 4 2.14E-07 3.60E-06 6.68E-06

5 × 5 3.69E-07 6.06E-06 1.14E-05

6 × 6 5.18E-07 8.48E-06 1.59E-05

7 × 7 3.39E-06 4.21E-05 8.03E-05

Table B.11: Toom-Cook computation over 32 channels in 𝑓𝑙𝑜𝑎𝑡32 with transformations
in 𝑓𝑙𝑜𝑎𝑡64- error per single output value for two-dimensional convolution. Columns
"ratio in %" present the ratio of error per single output value achieved with pairwise
summation and error per single output value with linear summation in %.

𝑚×𝑚 1 channel linear summation pairwise summation ratio in %

1 × 1 4.63E-08 5.25E-07 3.95E-07 75%

2 × 2 5.27E-08 8.51E-07 5.54E-07 65%

3 × 3 1.62E-07 2.70E-06 1.80E-06 67%

4 × 4 2.14E-07 3.60E-06 2.36E-06 66%

5 × 5 3.69E-07 6.06E-06 4.07E-06 67%

6 × 6 5.18E-07 8.48E-06 5.64E-06 67%

7 × 7 3.39E-06 4.21E-05 2.91E-05 69%
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Table B.12: Toom-Cook computation over 64 channels in 𝑓𝑙𝑜𝑎𝑡32 with transformations
in 𝑓𝑙𝑜𝑎𝑡64- error per single output value for two-dimensional convolution. Columns
"ratio in %" present the ratio of error per single output value achieved with pairwise
summation and error per single output value with linear summation in %.

𝑚×𝑚 1 channel linear summation pairwise summation ratio in %

1 × 1 4.63E-08 9.48E-07 5.85E-07 62%

2 × 2 5.27E-08 1.59E-06 8.48E-07 53%

3 × 3 1.62E-07 5.13E-06 2.75E-06 54%

4 × 4 2.14E-07 6.68E-06 3.61E-06 54%

5 × 5 3.69E-07 1.14E-05 6.17E-06 54%

6 × 6 5.18E-07 1.59E-05 8.53E-06 54%

7 × 7 3.39E-06 8.03E-05 4.34E-05 54%
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B.5 Summary

Table B.13: Ratio of Toom-Cook in 𝑓𝑙𝑜𝑎𝑡32 with linear summation over the channels
and in mixed precision with pairwise summation over the channels - error for single
output value in 1 and 2 dimensions.

1D 2D

𝑚 32 channels 64 channels 𝑜𝑢𝑡 size 32 channels 64 channels

1 69% 56% 1 × 1 75% 62%

2 61% 51% 2 × 2 61% 51%

3 62% 53% 3 × 3 63% 52%

4 62% 53% 4 × 4 66% 55%

5 65% 53% 5 × 5 52% 44%

6 60% 51% 6 × 6 59% 50%

7 62% 53% 7 × 7 62% 52%
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