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Embedding molecular symmetries into machine-learning models is key for efficient
learning of chemico-physical scalar properties, but little evidence on how to extend the
same strategy to tensorial quantities exists. Here we formulate a scalable equivariant
machine-learning model based on local atomic environment descriptors. We apply
it to a series of molecules and show that accurate predictions can be achieved for a
comprehensive list of dielectric and magnetic tensorial properties of different ranks.
These results show that equivariant models are a promising platform to extend the
scope of machine learning in materials modelling.

Machine learning is revolutionizing materials science
by enabling applications such as molecular properties
prediction[1, 2], accelerated design of new compounds[3–
6], and automated AI-driven laboratories[7]. The success
of machine learning is due to its ability to understand the
underlying features of a distribution of data from exam-
ples drawn from it, even in absence of physical insights
on the problem[8, 9]. However, large improvements in
the predictive power of the model are achieved by mak-
ing it aware of the data’s properties[10]. In the context of
learning molecular properties, this is realized by includ-
ing symmetries into the model’s architecture. Invariance
by rigid translations or swaps among identical atoms, and
rotational equivariance are topical examples.

A general physical property is described by a combi-
nation of spherical tensors T l

m(~r) of order l and 2l + 1

m-components. When an arbitrary rotation R̂ is applied
to a molecule with coordinates ~r, the tensor rotates as

T l
m(R̂~r) =

∑
m′

Dl ∗
mm′(R̂)T l

m′(~r) , (1)

where Dl
mm′(R̂) is the Wigner D-matrix. Eq. 1 ex-

presses the rotational equivariance condition that any
physical property must obey. In the case of scalar quan-
tities (l = 0), Eq. 1 reduces to the definition of invari-
ance. This latter scenario has been thoroughly investi-
gated in the context of machine learning force fields[11]
and molecular properties prediction[12–14], where atomic
environments are described in terms of translationally
and rotationally invariant functions[10, 15–21]. However,
only a few attempts at designing machine-learning mod-
els able to capture equivariance for tensorial properties
so far exist.[22–29].

Gaussian Process Regression (GPR) has been the first
machine-learning model to be applied to this problem by
means of a symmetry-adapted definition of the Smooth
Overlap of Atomic Position (SOAP) kernel[22–24]. In
this contribution, we will instead focus on a different
machine-learning architecture, with the aim of identify-
ing the principles for equivariance learning of tensorial
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properties amenable to both linear and deep learning-
based models. In ref. [25], it was proposed to extend the
spectral neighbour analysis potential framework[30, 31].
Accordingly, a tensorial property is decomposed in a sum
of atomic tensors, each one linearly dependent on the
atom’s bispectrum components[32], i.e. rotationally and
translationally invariant descriptors of an atomic envi-
ronment. Given the order of the tensor l, the equiv-
ariance was then obtained by determining 2l + 1 sets of
coefficients and by reorienting any given molecular struc-
ture with respect to a reference one. Although success-
fully applied to the prediction of spin-phonon coupling
coefficients[25, 26, 33], this approach is hard to general-
ize to multi-molecule data sets or to condensed-phase.

In this contribution, we explore the possibility to
impose the equivariance condition by augmenting in-
variant atomic features with spherical harmonics. The
latter naturally transform as in Eq. 1, Y l

m(R̂~r) =∑
m′ Dl ∗

mm′(R̂)Y l
m′(~r), and therefore, provide a more

natural basis for decomposing the tensorial property.
This ansatz is also at the basis of equivariant mod-
els recently appeared in literature. Euclidean neu-
ral networks[34–38], moment-tensor potentials[39], and
Gaussian-moment neural networks (GMNN)[27] are a
few notable examples[40]. The basic idea underlying
these methods is to use contractions of high-order ten-
sors, either spherical or Cartesian, to build invariant fea-
tures. Once combined with convolutional neural net-
works (CNN), they have shown improved performance
with respect to conventional deep learning models for the
prediction of scalar quantities[41]. Interestingly, equiv-
ariant models have also been applied to the learning of
Hamiltonian operators and wave-functions, which could
in principle be used to predict molecular properties[42–
44]. However, despite their ideal features, these mod-
els have never been applied to tensorial properties. The
only exception is represented by GMNN, which have only
recently been applied to the learning of the magnetic
anisotropy tensor[27].

Inspired by these works, we here demonstrate the
generality and accuracy of this framework. Instead of
using deep-learning architectures, we decided to use
linear regression to introduce our method for a two-fold
reason. On the one hand, this makes it possible to
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clearly individuate the principles underlying equivariant
models for tensors by removing the dependency of
results with respect to the model’s complexity. This
comes at no loss of generality, as the model can be
readily scaled-up with neural networks (vide infra). On
the other hand, linear machine-learning models have
shown an excellent compromise between learning rate
and accuracy with respect to complex architectures[31],
which instead perform better for large data sets[45].

Following the approach of ref. [25], we write each com-
ponent of the spherical tensor T l

m as a sum of atomic
tensors, where T l

m(a) is the a-th atom’s contribution in
a system with Na atoms. The total contribution reads

T l
m =

Na∑
a

T l
m(a) =

Na∑
a

Ni∑
i

ci(a)Bi(a)Ȳ l
m(a) , (2)

where i runs over Ni bispectrum components, Bi(a), and
ci(a) are coefficients that need to be determined. The use
of complex or real coefficients does not change the results.
Ȳ l
m(a) are the spherical harmonics of the a-th atom’s

environment and are defined as Ȳ l
m(a) =

∑Nb

b Y l
m(~rba),

where b runs over Nb neighboring atoms within rcut from
atom a, Y l

m is the standard definition of a complex spher-
ical harmonics, and ~rba are the coordinates of the atom
b rescaled by the coordinates of the atom a. The bispec-
trum components for each atom a are also computed up
to the same cutoff radius rcut. The coefficients ci(a) are
determined by minimizing the root mean squared error
(RMSE) with respect to a training set of reference val-
ues T l

m(~r). Here we use ridge regression, which includes a
L2-regularization. The definitions of Bi(a) and Ȳ l

m(a) en-
force the model’s translational invariance, while the sym-
metry with respect to the swap of identical atoms is im-
posed by using the same set of coefficients ci(a) for atoms
of the same chemical element. The sum over atomic con-
tributions in Eq. 2 makes the model independent on the
atoms’ order. Finally, the model also satisfies the equiv-
ariance condition of Eq. 1, as the right-hand side auto-
matically transforms as a spherical tensor. This is made
possible by the fact that the coefficients multiplying Ȳ l

m

do not depend on the index m.
In order to illustrate the power of our model, we apply

it to series of dielectric and magnetic molecular proper-
ties of key importance for various spectroscopies, namely
the dipole moment, the polarizability tensor, magnetic
anisotropy and the coefficients of effective crystal field
Hamiltonian. The dipole moment and the polarizability
tensor are needed for the modelling of infra-red and
Raman spectra[28, 29, 46, 47], while the molecular
magnetic anisotropy and the effective crystal field
Hamiltonian underpin electron paramagnetic resonance
(EPR) spectroscopy and spin relaxation[33, 48, 49].

Let us begin by discussing the results over dielectric
properties for three data sets presented in ref. [23]: a
water monomer, a water dimer, and the Zundel cation.

FIG. 1. Learning of dielectric properties. (a) The molec-
ular structure of (i) the water monomer, (ii) the water dimer,
and (iii) the Zundel cation. The Oxygen atom is in red and
Hydrogen atoms are in white. (b) The learning curve of our
model over the water monomer data set for the polarizability
spherical tensor α2 and the dipole spherical tensor µ1. The
test set always contains 500 configurations and all quantities
are expressed in atomic units.

The structure of these compounds is reported in Fig.
1. The target properties for our model are the dipole
moment vector µ, which is equivalent to a spherical
tensor with l = 1 (µ1), and the polarizability tensor α,
which is equivalent to the sum of two spherical tensors
with l = 0 and l = 2, respectively. Here we focus on
learning the non-scalar component with l = 2 (α2). The
three data sets each contains 1000 configurations with
arbitrary distortion and orientation in space[23]. Both
the dipole and the polarizability tensor were computed
at the CCSD/d-aug-cc-pvtz level. Fig. 1b shows the
learning curve our model for the water monomer data
set, namely the plot of the test set’s RMSE as function
of the number of training points. The learning curve
for water dimer and Zundel cation data sets show
similar trends and they are reported in Fig. S1[50]. It
is clear that with more training points, the test error
goes down and the accuracy of the model’s prediction
improves. Although a thorough comparison of different
methods is beyond the scope of this work, we found
that symmetry-adapted Gaussian process regression
(SA-GPR)[23] performs similarly or slightly better than
our linear model (see Table S1[50]).

Next, we apply our model to the magnetic properties
of coordination compounds. The target property for
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FIG. 2. Learning of magnetic anisotropy. (a) Plot of the predicted spherical tensor’s components, T 2
m, using our model

against spherical tensors calculated from the D tensor obtained by CASSCF calculation for different configurations of CoL2. (b)
Plot of the predicted spherical tensor component T 2

m with m = 1 when the molecule is rotated by an angle θ and comparison
to the rotated tensor component T 2

1 calculated by applying the Wigner D-matrix to the predicted tensor of the unrotated
structure ~r. The inset shows the molecular structure of CoL2 with the Co atom in pink, the N atoms in blue, the S atoms in
yellow, the O atoms in red, the C atoms in cyan, and the H atoms in white. The plots for all other spherical tensor components
are provided as Supplemental Material[50] (see, also, references [23, 51, 52] therein).

the following tests is the magnetic anisotropy tensor
D, which can be accurately computed using Complete
Active Space (CASSCF) and valence state perturbation
theory (NEVPT2) methods[53]. D is a symmetric
trace-less tensor and can thus be converted into a
spherical tensors of order l = 2.

Firstly, we study a data set that contains only local
distortions of a single molecular structure, namely the
one of the top-performance single molecule magnet CoL2

(with H2L=1,2-bis- (methanesulfonamido)benzene)[54].
The data set, presented in ref. [25], contains at total
of 1500 configurations obtained by applying a random
distortion of maximum displacements of ±0.05 Å to each
atom’s Cartesian components. 1200 configurations were
used to train the model, 150 were used as validation to
tune the hyper-parameters, and 150 were used as test set.
Fig. 2a illustrates the accuracy of our model in predict-
ing the magnetic anisotropy, with an error of 1.6 cm−1

for all T 2
m. Most importantly, it should be noted that the

orientation of the configurations in the training and test
sets does not affect the accuracy of the model. The error
of the model remains identical when the configurations
in the data set are all oriented in the same direction or
when the configurations are randomly rotated. To fur-
ther demonstrate that our method is in fact equivariant,
a configuration ~r of the test set is randomly rotated by
an angle θ. The predicted spherical tensor for this config-
uration T 2

m(~r) is rotated using the corresponding Wigner
D-matrix. Then, our model is used to predict the tensor

values for the rotated configuration T 2
m(R̂~r). Based on

Eq. 1, these two values should be identical for an equiv-
ariant model, which is indeed the case (see Fig. 2b and
Fig. S8[50]).

Next we apply our model to a data set that con-
tains multiple molecules. The data set includes the six
molecules [Co(H2O)1]2+, [Co(H2O)3]2+, [Co(H2O)4]2+,
[Co(H2O)5]2+, [Co(H2O)6]2+, and [Co(OH)1]+. Each
molecule was randomly distorted 100 times by applying
a maximum displacements of ±0.05 Å to each atom’s
Cartesian components. 80 configurations per molecules
were used for training and 20 configurations per molecule
as test set. The tensor D was then computed with
CASSCF for each molecular frame. The accuracy of our
predictions is illustrated in Fig. 3a, with an error of 5.9
cm−1 for all m components. Similarly to the previous
test with CoL2, the accuracy of the model does not de-
pend on the specific orientation of the molecules. To
further test the reliability of the model’s predictions, we
use it to predict how the tensor D changes as function of
small distortions of the Co2+ ion in [Co(H2O)6]2+. Al-
though none of these configurations explicitly appear in
the training set, Fig. S4[50] shows that the correct pro-
file of T 2

m as a function of the atomic displacement is well
reproduced. The positive outcome of this test enables
applications in spin relaxation, where the derivatives of
D(~r) are needed[33, 55]. As a second test, we re-train the
model by adding an additional spectator water molecule
at great distance from the Co complexes. We compute
the contribution to the total axial magnetic anisotropy
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FIG. 3. (a) Plot of predicted spherical tensors T 2
m using

our model against spherical tensors calculated from CASSCF
D tensor values of the Co(H2O)x set. (b) The molecu-
lar structure of (i) [Co(H2O)1]2+, (ii) [Co(H2O)3]2+, (iii)
[Co(H2O)4]2+, (iv) [Co(H2O)5]2+, (v) [Co(H2O)6]2+, and (vi)
[Co(OH)1]+ where the Co atom is coloured in cyan, the O
atoms are coloured in red, and the H atoms are coloured in
white.

|D| for a water molecule bonded to one of the Co(H2O)x
molecules and for the spectator one. Fig. S3[50] shows
that the model correctly captures the physics of the prob-
lem by assigning a vanishing |D| value, within the model’s
RMSE, to the non-bonded water molecule, and a finite
|D| value to the water molecules coordinating the Co
ion. Importantly, the possibility to learn multi-molecule
training sets regardless of the orientation of the molec-
ular frames implies that our method can be applied to
condensed-phase, where is not necessary possible to de-
fine molecular entities.

Next we present the results for the magnetic proper-
ties of the [Dy(H2O)9]3+ coordination complex, whose
structure is depicted in the inset of Fig. 4. The Dy3+

ion posses 5 unpaired electrons in the f -shell and an un-
quenched electronic angular momentum, resulting in a

ground state with a total angular moment ~J = 15/2. The
16 electronic levels associated with this multiplet can be
described with the effective crystal field Hamiltonian

ĤCF =
∑

l=2,4,6

l∑
m=−l

Bl
mÔ

l
m(~J) , (3)

where Bl
m are coefficients adjusted to reproduce CASSCF

simulations[56]. The operators Ôl
m(~J) are tesseral ten-

sor operators, which can be transformed into spherical
tensor operators[57]. We prepare a training set of over
3000 entries by distorting the DFT-optimized structure
of Dy[H2O9]3+. Random distortions of a maximum value
of ±0.05 Å are applied to each atom’s Cartesian coordi-
nates. The crystal field coefficients appearing in Eq. 3
are then computed with CASSCF methods as detailed
in the Supplemental Material[50] (see, also, references
[51, 52] therein). We apply our method to the coefficients

FIG. 4. Learning of crystal field parameters. The learn-
ing curve of our model over the [Dy(H2O)9]3+ data set for the
spherical tensors of crystal field parameters of order l = 2, 4, 6.
The test set always contains 430 configurations. Continuous
lines and filled circles refer to the results of the linear model,
dashed lines and filled circles to the results obtained with a
neural network architecture. The inset shows the molecular
structure of [Dy(H2O)9]3+ where the Dy atom is in cyan, the
O atoms are in red, and H atoms are in white.

Bl
m, converted into the spherical components, and report

the learning curve in Fig. 4, demonstrating that tensors
up to the sixth order can be well reproduced. Graphical
representation of predictions vs reference data and proof
of model equivariance for this data set are reported in
Figs. S5 and S9-S11[50].

Finally, we use the Dy[H2O9]3+ data sets to also show
that the model of Eq. 2 can be easily generalized to deep
learning architectures by feeding the bispectrum compo-
nents, {B(a)}, to a neural network with weights/biases
{c(a)}, and real scalar output f (see Fig. S6[50])

T l
m =

Na∑
a

T l
m(a) =

Na∑
a

fa [{c(a)}, {B(a)}] Ȳ l
m(a) . (4)

Results for a model with one independent neural net for
each chemical species, each with three hidden layers and
32:32:16 nodes, are reported in Fig. 4 and Fig. S7 and
highlight the fact that the linear model provides better
results for a small training set. However, as expected,
as larger training sets are employed, the deep-learning
model is able to keep leaning from data, while the
performance of the linear model reaches a plateau due
to the limited flexibility of its architecture. Similar
results are obtained for tensors of higher order and
for neural networks with different numbers of layers or
nodes (see Supplemental Material[50]). The excellent
results obtained with Eq. 4 demonstrate the generality
of our approach, where models designed to predict
scalar properties can be extended to the case of tensors
by simply learning the coefficients of a combination of
spherical harmonics functions.
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In conclusion, we have presented a general procedure
to build equivariant machine-learning models able
to predict tensorial properties. Even in its simple
linear form, the model accurately predicts properties
of different type and rank, and it is able to handle
realistic compounds as well as multi-molecule data sets.
Moreover, we have shown that higher accuracy can be
achieved be using deep-learning architectures and large
data sets. This model can find immediate application
in magnetism[49, 58], magnetic resonance[26, 59], and
vibrational spectroscopy[47], or be further optimized by
combining it with the wealth of methods already devel-
oped for the prediction of scalar properties[1, 2, 10, 12].
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