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Abstract—Omnidirectional videos (ODVs) with spatial audio
enable viewers to perceive 360° directions of audio and visual
signals during the consumption of ODVs with head-mounted
displays (HMDs). By predicting salient audio-visual regions, ODV
systems can be optimized to provide an immersive sensation of
audio-visual stimuli with high-quality. Despite the intense recent
effort for ODV saliency prediction, the current literature still
does not consider the impact of auditory information in ODVs.
In this work, we propose an audio-visual saliency (AVS360) model
that incorporates 360° spatial-temporal visual representation and
spatial auditory information in ODVs. The proposed AVS360
model is composed of two 3D residual networks (ResNets) to
encode visual and audio cues. The first one is embedded with a
spherical representation technique to extract 360° visual features,
and the second one extracts the features of audio using the
log mel-spectrogram. We emphasize sound source locations by
integrating audio energy map (AEM) generated from spatial
audio description (i.e., ambisonics) and equator viewing behavior
with equator center bias (ECB). The audio and visual features
are combined and fused with AEM and ECB via attention
mechanism. Our experimental results show that the AVS360
model has significant superiority over five state-of-the-art saliency
models. To the best of our knowledge, it is the first work that
develops the audio-visual saliency model in ODVs. The code
is publicly available at: https://github.com/FannyChao/AVS360
audiovisual saliency 360.

Index Terms—Audio-visual saliency, spatial sound, ambisonics,
omnidirectional video (ODV), virtual reality (VR).

I. INTRODUCTION

Recent technical advances in head-mounted displays
(HMDs) have paved the way for the present virtual reality
(VR) technologies to move out of research lab environments
into our daily life. From video games to narrative films,
omnidirectional video (ODV) is changing how viewers interact
and perceive video by providing immersive sensation within a
scene with the help of HMDs. The audio-visual representation
of ODV is captured with omnidirectional microphone and
multi-camera systems. The audio part of ODV can be repre-
sented by spatial audio, e.g., ambisonics, which is a description
of a 3D spatial audio scene. It enables viewers to perceive
the directions of sound corresponding to their heads positions
when they are rotating heads to explore ODVs. The visual part
of the ODV signal, which is a 3D spherical representation
of a 360° scene around a given center, is typically stored
in 2D planar formats, e.g., equirectangular projection (ERP),
to be compatible with the existing video technology systems.
Thanks to its immersive and interactive nature, there has been
increasing interest in the audio-visual aspects of ODV. For

example, Rana et al. [1] and Morgado et al. [2] use texture
and mono audio of ODV to predict its audio source location.

For optimizing VR systems, such as streaming [3], it is
essential to understand and anticipate human behavior while
watching ODVs. Recent visual attention studies for ODV have
set a fundamental background for analyzing users’ behavior
in VR systems. David et al. [4] and Ozcinar et al. [5], for
instance, reveal that visual attention in ODVs tends to be
concentrated in the equator center of ODV. In addition, Chao
et al. [6] show that spatial audio sound source location in
ODVs is an important visual attention feature. They show
that different audio-visual contents (i.e., conversation, music,
and environment) of ODVs and different audio modalities
(i.e., mute, mono, and ambisonics) have a different interactive
effect on human visual saliency. However, the audio part of
ODV is highly overlooked by existing computational ODV
saliency models.

To more precisely predict visual saliency in ODVs, in this
paper, we propose a new computational audio-visual saliency
(AVS360) model for ODV that incorporates omnidirectional
visual representation and 360° spatial audio cues. Inspired
by [7], we use the two-stream structure to encode visual and
audio cues separately. For visual, we consider the geometric
nature of ODV by embedding spherical visual representation
of ODV using Cube Padding (CP) technique [8] into a 3D
ResNet. This modification can help to extract spherical spatial-
temporal features in ODVs. For audio, we integrate spatial
audio description into a 3D ResNet via attention mechanism
to emphasize the locations of sound sources. To take the effect
of audio-visual cues, we concatenate and fuse audio and visual
features with 2D convolutional neural layers. Inspired by the
finding in recent studies [4]–[6], [9], we also consider equator
center viewing behavior and the impact of sound source
locations to improve saliency prediction accuracy in ODV.
For this purpose, we use equator center bias (ECB) and audio
energy map (AEM) in the fusion process. To the best of our
knowledge, it is the first work in the literature that explicitly
tackles the problem of audio-visual saliency prediction. Our
model was trained with an eye-tracking dataset of ODVs with
audio proposed in [9] and tested on an audio-visual saliency
dataset proposed in [6] in mute, mono, and ambisonics modal-
ities. Experimental results show that our model significantly
outperforms other five state-of-the-art saliency models in three
audio modalities. We discuss the results depending on the
audio-visual contents and audio modalities of ODVs in detail.

The remainder of this paper is organized as follows.978-1-7281-8068-7/20/$31.00 ©2020 European Union
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Fig. 1: Network architecture of the proposed AVS360 model.

Sec. II summarizes the related work on saliency prediction
and Sec. III describes our proposed model. The experimental
settings and results are presented in Sec. IV. Finally, Sec. V
concludes the paper.

II. RELATED WORK

Visual saliency has been broadly investigated in the litera-
ture [10]. Numerous saliency prediction algorithms have been
proposed for standard 2D video and ODV. In this section,
we briefly describe recent related works for ODV and audio-
visual saliency for standard 2D video without the intention of
providing comprehensive review on these topics.

Several algorithms have been proposed for modeling the
visual attention of ODV. In particular, Salient360! Grand
challenges at ICME 2017-2018 fostered saliency prediction
models for omnidirectional image (ODI) and ODV by pro-
viding benchmark platforms and datasets [4]. In these chal-
lenges, Chao et al. [11], for instance, proposed SalGAN360
using generative adversarial networks, and Monroy et al. [12]
proposed SalNet360 by expanding a traditional CNN-based
saliency estimation algorithm for ODI. Furthermore, Cheng et
al. [8] developed a spatial-temporal saliency prediction model
trained in a weakly-supervised manner called CubePading360,
and Xu et al. [9] proposed a large-scale eye-tracking ODV
dataset with a gaze prediction model. Despite of the ODVs in
their datasets are with audio, their proposed models ignored
audio cues by considering only visual cues as an input.

Few recent works exist that incorporate both audio and
visual cues in saliency modeling. For instance, Min et al. [13]
proposed a multi-modal saliency model integrating the spatial,
temporal, and sound features to predict saliency maps for stan-
dard 2D videos consist of high audio-visual correspondence
scenes. Their results show that the audio signal contributes
significantly to 2D video saliency prediction. A recent work
by Tavakoli et al. [7] proposed a deep audio-visual embedding
(DAVE) to investigate the applicability of audio cues in
conjunction with visual ones in predicting saliency maps using
deep neural networks. However, to the best of our knowledge,
no research on modeling of audio-visual saliency prediction
for ODV exists. To fill this gap in the literature, we propose a
model that incorporates both omnidirectional visual and spatial
audio cues to predict audio-visual saliency in ODV.

III. PROPOSED MODEL

The overall diagram of the proposed AVS360 model is
illustrated in Fig. 1. In this work, we extend the previous
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Fig. 2: Fixations distributions of our training set in latitude and
longitude. Fixations scatter within the equator area along latitude
and the center area in longitude in ODVs.

2D standard audio-visual saliency prediction model in [7] for
ODV. The proposed model is an end-to-end 2-stream structure
composed of two 3D ResNets to separately extract spatial-
temporal visual and audio cues in ODV. A fusion network
is appended after embedding of audio-visual features. The
embedded features are then enhanced with the information of
spatial audio (i.e., ambisonics) and user navigation tendency
(i.e., ECB), and decoded into a saliency map. Each module is
described in the following subsections.

A. Omnidirectional visual feature extraction

ODVs are captured as 3D spherical visual signals around
a given center, and they are projected to 2D planar represen-
tations to be compatible with the existing video processing
systems. ERP, which is a widely available format for ODV,
contains geometric distortion along its latitude areas. To avoid
this distortion, we adopt CP developed in [8] to alleviate
geometric distortion in visual feature extraction. CP minimizes
geometric distortion in ERP by using cubic projection to ren-
der 360° view on six cubic faces. These faces are concatenated
with the connectivity of image padding between neighboring
faces on the cube to avoid discontinuous image boundaries
between cubic faces.

We employ CP into convolution and pooling layers in a
3D ResNet to extract spatial-temporal visual features of ODV.
As visual saliency is not only guided by local visual stimuli
but also overall 360° visual information, we also extract global
spatial-temporal visual features in ERP format in the same 3D
ResNet and combine them with local spatial-temporal visual
features in CP format with an average pooling layer.

B. Spatial audio feature extraction

To extract audio features, we use a 3D ResNet in the other
branch of our 2-stream structure. We follow the same audio
processing procedures and parameters as used in DAVE [7].
Similarly, we convert audio signal resampled in 16KHz into
successive overlaying frames of log mel-spectrograms. These
frames are then used for extracting audio features with 3D
ResNet.
C. Audio-visual feature embedding and fusion

After extracting audio and visual features via two 3D
ResNets, we concatenate and embed audio and visual features
with a 2D convolutional layer with 1 × 1 kernel size. We
then fuse them with ECB and AEM to consider equator center
viewing behavior and audio source location. Fig. 1 shows the
heat map of ECB map and an example heat map of AEM.



We consider user viewing behaviour in ODV by generating
an ECB with a 2D Gaussian distribution along longitude and
latitude. In the light of the user navigation behavior analysis
in the dataset [9], we observe that users’ visual attention is
concentrated within the equator area and the center area in
ODVs. In this analysis, we see that viewers tend to look around
horizontally more than vertically, and the visual stimuli often
display a center bias in 360° conditions. These findings also
agree with previous user studies [4], [5]. Fig. 2 shows the
distributions of fixations for our training dataset [9].

We take spatial audio information of ODV into account by
computing an AEM using audio directions in four channels
(W, X, Y, Z) in ambisonics. AEM represents the audio energy
distribution with a frame-by-frame heat map as in [2], [6]. We
motivate the findings in [6], which indicates that perceiving
sound sources directions could guide visual attention in ODVs.

We leverage an attention mechanism in residual form to in-
corporate the viewing tendency in ODVs [5] and the influence
of sound source directions [6]. For this we first integrate ECB
and AEM as M̂ = (1 + AEM) × ECB, where M̂ serves
as attention map in the attention mechanism with residual
connection: F̂E = (1 + M̂) × FE , where FE and F̂E

denote the audio-visual embedded features before and after
modulated. With the residual connection, both the original
features and the enhanced features are integrated and fed into
the decoding blocks for generating saliency maps.

In decoding, we use two blocks which consist of a bilinear
up-sampling layer with factor 2, and a 2D convolution layer
with 3×3 kernel, and follow by batch normalization. A 2D
convolution layer with 1 × 1 kernel is added in the end to
generate a 1-channel gray-scale saliency map.

IV. EXPERIMENTS

A. Experimental setup

1) Dataset: As we aim to extend audio-visual saliency
model to ODVs with spatial audio, we used the dataset
proposed by Chao et al. [6] as a test set. This dataset is the
only existing audio-visual saliency dataset including visual
saliency under mute, mono, and ambisonics modalities for
ODV. It contains twelve ODVs where four are in the category
Conversation, four are in the category Music, and four are in
the category Environment. The category Conversation presents
human talking, the category Music features people singing or
instruments playing, while the category Environment contains
background sound such as the noise of crowds or vehicles on
the streets. We evaluate our model on these three categories
under three audio modalities.

In training process, we used the dataset proposed by Xu et
al. [9] as a training set. It is a large-scale eye-tracking
dataset containing 208 ODVs with mono sound, while most
of ODVs do not have correspondent audio-visual cues. Most
of ODVs are with background narrator and music. Therefore,
with the aim of modeling audio-visual saliency, we selected 27
ODVs with correspondent audio-visual cues equally allocated
in the categories Conversation, Music, and Environment as our
training set.

TABLE I: Mean values for saliency prediction accuracy of
each component in our AVS360 model evaluated with the
dataset [6]. (best in bold in each content category and audio
modality)).

mute mono ambisonics

Cat. Models NSS CC NSS CC NSS CC

O
ve

ra
ll 2stream o/w CP 2.06 0.38 2.26 0.39 2.28 0.40

2stream 2.22 0.41 2.44 0.42 2.46 0.43
2stream+ECB 2.31 0.42 2.51 0.44 2.47 0.44
2stream+ECB+AEM 2.42 0.44 2.66 0.45 2.66 0.45

C
on

ve
r. 2stream o/w CP 2.24 0.40 2.56 0.41 2.37 0.38

2stream 2.28 0.41 2.73 0.45 2.42 0.39
2stream+ECB 2.41 0.44 2.82 0.45 2.40 0.40
2stream+ECB+AEM 2.57 0.47 3.12 0.50 2.68 0.42

M
us

ic

2stream o/w CP 2.19 0.40 2.22 0.38 2.24 0.40
2stream 2.30 0.42 2.37 0.39 2.42 0.46
2stream+ECB 2.44 0.43 2.40 0.40 2.50 0.44
2stream+ECB+AEM 2.53 0.45 2.50 0.42 2.68 0.47

E
nv

ir
on

. 2stream o/w CP 1.74 0.34 2.00 0.37 2.21 0.41
2stream 2.03 0.40 2.26 0.42 2.56 0.44
2stream+ECB 2.07 0.39 2.31 0.42 2.59 0.46
2stream+ECB+AEM 2.16 0.41 2.37 0.43 2.62 0.47

2) Implementation: We initialized our model with the
weights of DAVE model pre-trained on 150 2D videos in
mono sound providing diverse audio-visual contents with eye
fixations. We followed the same structure of DAVE model and
used 3D-ResNet-18 for extracting visual and audio features. In
ECB, we follow the 68–95–99.7 rule in Gaussian distribution
to design our ECB as shown in Fig. 2. We used a 2D Gaussian
distribution map with σ = 30◦ in latitude as about 95%
fixations falls in ±60◦ in latitude, and σ = 75◦ in longitude
as about 95% fixations falls in ±150◦ in longitude. Due to the
lack of the information of ambisonics in our training set, we
only use AEM as auxiliary guidance in fusion procedure in
test process. In training, Kullback-Leibler divergence (KLD)
is used as a loss function. We set the batch size to six, initial
learning rate to 1e−5 with Adam optimizer. In total, we trained
20 epochs.

B. Contribution of each component in our proposed model

For evaluation, we selected two widely-used saliency eval-
uation metrics: normalized scanpath saliency (NSS), linear
correlation coefficient (CC), to measure the performance of the
prediction. The higher score of NSS and CC indicates a better
prediction performance. Note that it is necessary to correct
for the geometric distortions of oversampling areas closer to
the north and south poles in ERP. Therefore, we follow [4]
to weight down the oversampling areas with a sine function
along latitude (sin(y) for y ∈ [0, π]).

Table I lists the evaluation results of each component in our
proposed model on the test dataset. We can see that the overall
performances, including the performances in each content cat-
egory and audio modality, are improved by using CP in visual
feature extraction and embedding ECB and AEM in audio-
visual features. In particular, the integration of spatial audio
information (i.e., AEM) not only improves the performances
in ambisonics modality but also the performances in mute
and mono modalities. Comparing three audio modalities, as
our model uses sound information to assist the audio-visual
saliency in ODVs, the overall performances of mono modality
and ambisonics modality are better than that in mute modality.



TABLE II: Mean values for saliency prediction accuracy of
the state-of-the-art models evaluated with the dataset [6] (best
in bold in each audio modality and content category).

mute mono ambisonics

Cat. Models NSS CC NSS CC NSS CC

O
ve

ra
ll

SalNet360 [12] 1.49 0.29 1.55 0.28 1.47 0.26
SalGAN360 [11] 1.58 0.31 1.65 0.30 1.60 0.30
CP360 [8] 1.16 0.24 1.19 0.23 1.16 0.22
MMS [13] 1.24 0.25 1.39 0.25 1.35 0.25
DAVE [7] 1.92 0.36 2.16 0.38 2.13 0.38
AVS360 (Ours) 2.42 0.44 2.66 0.45 2.66 0.45

C
on

ve
r.

SalNet360 [12] 1.72 0.33 1.84 0.31 1.61 0.28
SalGAN360 [11] 1.86 0.36 1.94 0.33 1.77 0.31
CP360 [8] 1.20 0.24 1.25 0.22 1.19 0.22
MMS [13] 1.53 0.30 1.91 0.33 1.70 0.30
DAVE [7] 2.18 0.40 2.68 0.44 2.25 0.37
AVS360 (Ours) 2.57 0.47 3.12 0.50 2.68 0.42

M
us

ic

SalNet360 [12] 1.46 0.27 1.48 0.28 1.40 0.25
SalGAN360 [11] 1.55 0.29 1.52 0.29 1.53 0.28
CP360 [8] 1.15 0.23 1.14 0.22 1.14 0.22
MMS [13] 0.99 0.19 0.96 0.17 1.03 0.20
DAVE [7] 1.67 0.32 1.66 0.30 1.93 0.36
AVS360 (Ours) 2.53 0.45 2.50 0.42 2.68 0.47

E
nv

ir
on

.

SalNet360 [12] 1.30 0.28 1.33 0.27 1.39 0.27
SalGAN360 [11] 1.33 0.29 1.47 0.29 1.51 0.30
CP360 [8] 1.12 0.24 1.17 0.23 1.18 0.23
MMS [13] 1.18 0.24 1.30 0.26 1.30 0.25
DAVE [7] 1.89 0.36 2.16 0.39 2.21 0.41
AVS360 (Ours) 2.16 0.41 2.37 0.43 2.62 0.47

We also notice that there is no significant difference between
mono and ambisonics modality in their overall performances.

We then take a more in-depth look at the evaluation of
each content category. In the category Conversation, the mono
modality has better accuracy performance than ambisonic
modality even when ambisonics information (i.e., AEM) is
provided. In contrast, in category Music and Environment,
ambisonics modality outperforms mono modality in the model
with and without AEM. These results are inconsistent with
the finding of the user behavior analysis mentioned in [6],
where users may tend to follow the human voice in categories
Conversation and Music while looking around in general in
category Environment. The reason might be the inefficiency
of the integration method (i.e., attention mechanism in the
residual form) of AEM and ECB maps. The lack of a large-
scale audio-visual saliency dataset of ODVs with spatial sound
disables us for developing a trainable integration method. We
will leave this as our future work.

C. Comparison to the state of the arts

Table II shows the accuracy of our proposed AVS360
model and other five state-of-the-art models evaluated on the
test dataset. SalGAN360 [11] and SalNet360 [12] are visual
saliency prediction for ODIs, CP360 [8] is visual saliency
prediction for ODVs, while MMS [13] and DAVE [7] are
audio-visual saliency prediction for 2D videos. We can see
from the results that our model significantly outperforms the
others in overall ODVs and every content category in all three
audio modalities. To our surprise, even in mute modality, our
model, which takes account of spatial auditory information,
surpasses a significant margin over the models, only taking
account of visual information. The results show that using
AEM as an input feature can improve the saliency prediction
models for ODV.

V. CONCLUSION

In this paper, we proposed an end-to-end trainable audio-
visual saliency prediction model for ODVs with spatial audio.
The experimental results show that our proposed model signif-
icantly outperforms other five state-of-the-art methods in mute,
mono, and ambisonics modalities. The results also suggest that
using audio energy map computed from ambisonics as an input
feature could benefit the saliency prediction models for ODV.
In addition, we demonstrated that the 360° representation
with cube padding, equator center bias and audio energy map
contribute significantly to audio-visual saliency prediction in
ODVs. As a future work, we plan to improve the fusion block
of the proposed model and propose a large scale audio-visual
ODV dataset with spatial audio.
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