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Abstract
Schizophrenia is a grave psychiatric disorder with psychotic symptoms and an enigmatic etiology.
Family studies have strongly indicated that genetic risk factors have a role in this disease. Recent
findings, together with previously established evidence, highlight the PDZ-domain-containing
protein interacting with C-kinase 1 (PICK1) as a promising candidate for a schizophrenia
susceptibility gene. Here, we outline possible molecular mechanisms, discuss clinical case-studies
that indicate an unexpected role of PICK1 in schizophrenia and discuss potential avenues for
pharmacological manipulation of PICK1.

Introduction
Schizophrenia is a severe brain disease that triggers positive and negative symptoms,
including psychotic characteristics such as hallucinations, delusions and paranoia (see
Glossary), cognitive impairment, loss of motivation and impaired ability to manage
emotions and relationships [1,2]. The illness presents in several forms, which are diagnosed
based on specific symptoms, the most common being paranoia. Schizophrenia occurs in
almost 1% of the US population and emerges earlier in men (teens to 25 years of age) than
in women (ages 25–35), with an estimated 2.2 million Americans affected each year.
Genetic association, viral infection, brain injury and drug abuse during embryonic brain
development have all been associated with the etiology of this disease [1-4].

Schizophrenia is not linked to a solitary genetic mutation and probably involves a
heterogeneous mechanism with polymorphisms in several genes and in a range of
environmental susceptibility factors [3-8]. Individually, these abnormalities probably have
sub-threshold effects that can be difficult to confirm in genetic studies but, in combination,
might manifest in symptoms [5-8]. These genetic and environmental factors result in a
complex pathophysiology that includes: (i) problems in brain development and the aberrant
formation of neuronal circuits; (ii) abnormal regulation of neurotransmitter concentrations
and receptor activity; (iii) defects in metabolic pathways and enzyme function; and (iv)
reduced brain volumes that are probably coupled with neurotoxicity and neurodegeneration
[4-8]. Some of the genetic, pharmacological and environmental evidence that has inferred
risk factors for schizophrenia is described in Box 1. The diversity in origin connected to this
illness provides potential for several therapies that could correct receptor and enzyme
function, repair neuronal circuits and prevent the progress of neurodegeneration. Better
understanding of the molecular mechanisms that underlie schizophrenia will improve the
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ability to stratify patients, make tailored drugs and improve therapeutic outcomes.
Therefore, the continued discovery of novel genes that are involved in this disorder remains
crucial for developing better drugs.

Protein interacting with C-kinase 1 (PICK1) is a recently proposed candidate protein for
involvement in schizophrenia [9,10]. The pick1 gene is located on chromosome 22q13.1,
which is a genetic locus that frequently links to schizophrenia [8,11-13]. At the protein level,
PICK1 has been studied extensively because of its role in regulating the cell biology and
functional properties of several important neuronal proteins [14-16]. PICK1 is a scaffolding
protein that is located at neuronal synapses and associates with a wide range of proteins via
its functional domains, which include a PSD95–Disc-large–ZO-1 (PDZ) domain and a Bin–
amphiphysin–Rvs (BAR) domain [14]. PICK1 interacts with protein kinase C (PKC) and
regulates the phosphorylation of many PICK1-interacting partners, thereby altering their
synaptic clustering, trafficking to the neuronal surface and membrane recycling. A search
for convergent loci has located not only PICK1 but also many of its interacting proteins,
including neuregulin receptors, glutamate receptors and ephrins, within linkageregions of
schizophrenia [8]. The proteins with an accepted association with schizophrenia and their
interaction with PICK1 are described in Box 1.

Interest in PICK1 has been heightened by three recent genetic studies that investigated a role
for this protein in schizophrenia. The first of these case studies involved the examination of
225 schizophrenic and 260 control Han Chinese patients. It revealed an association between
a single nucleotide polymorphism (SNP), rs3952 in intron 3 of pick1, and the diagnosis of
schizophrenia [11]. A second case-study of 200 unrelated Japanese schizophrenic patients
and 200 age-matched Japanese normal controls found an association between an SNP,
rs2076369 in intron 4 of pick1, and schizophrenia but only when using ‘disorganized’
schizophrenics [12]. Associations of lower magnitude might be expected if disease
susceptibility results from the combined effect of several variants in a gene. Significantly,
both of the SNPs reported occurred in the PDZ domain of PICK1, with no evidence of SNPs
in the BAR domain (Figure 1). A third study comparing elderly schizophrenia patients (36
patients) with matched normal controls (26 patients) showed no difference in levels of
PICK1 mRNA in the occipital cortex of elderly schizophrenia patients compared with
matched normal controls [13]. This observation leaves open the possibility that PICK1 SNPs
are more crucial for regulating the function of the PDZ domain than are total mRNA or
protein levels. Although these genetic findings are potentially important, they require
evidence from a larger population to confirm that mutations in PICK1 are associated risk
factors for schizophrenia.

Further evidence of a role for PICK1 in schizophrenia comes from the proteins with which it
interacts that have been associated with the illness (Figure 1) and there are different possible
approaches to regulating these interactions (see later). Overall, collating evidence from
genetic and protein interaction studies, we believe that one underlying biological cause of
increased susceptibility for schizophrenia is the altered interactions between PICK1 and its
associated synaptic proteins.

Functional domains of PICK1
PICK1 is 416 amino acids in length and has a single PDZ domain [14] (Figure 1). This
domain contains ~90 residues and interacts with proteins that harbor PDZ-binding motifs at
their C-termini. The PDZ domain of PICK1 accepts a range of PDZ-binding motifs and,
thus, mediates protein–protein interactions with many different proteins [14]. PICK1 also
has a sequence homology to the BAR domain of arfaptin2 [17-19]. BAR domains, which are
present in many GTPases and other proteins, are involved in endocytosis. They are coiled-
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coil structures that dimerize to form banana-shaped structures that bind to phospholipids,
sense and/or promote membrane curvature and promote endocytosis [17-19] (Figure 1). The
two coiled-coil regions of a single PICK1 protein can dimerize and, following binding to its
PDZ receptor or transporter, PICK1 dimers can target the receptor–transporter complexes to
membrane areas in which endocytosis can occur [20,21]. Thus, via its BAR domain, PICK1
can direct PDZ-interacting proteins that are destined for internalization to membrane
invaginations such as clathrin-coated pits. PICK1 is also a Ca2+-sensing protein – consistent
with an active role in endocytosis and exocytosis, which are Ca2+ dependent [22]. When the
PDZ domain is unoccupied, autodimerization of the PICK1 BAR domain can be inhibited
by an intramolecular interaction with its own N-terminal PDZ domain [23]. Thus, the
PICK1-mediated recruitment of PKCα can lead to phosphorylation of its interacting partners
– which, together with its BAR-domain-mediated targeting of cargo to curved membranes,
indicates a central role for PICK1 in receptor and transporter endocytosis and recycling.

Roles of PICK1 in glutamate receptor function
Disruption of the glutamate system has been implicated in the pathophysiology of bipolar I
disorder and symptoms of schizophrenia [3,24-29]. Antagonists of NMDA glutamate
receptors, such as phencyclidine and ketamine, induce psychotic signs and symptoms of
schizophrenia, probably by increased glutamate release and activation of AMPA glutamate
receptors [24,30]. Moreover, genetic studies indicate that NMDA, AMPA and kainate
glutamate receptors are loci for schizophrenia [8,13]. The PDZ domain of PICK1 has been
reported to interact with the C-terminal PDZ motifs of AMPA [31,32], kainate [33] and
metabotropic [34-36] glutamate receptor subunits and subtypes. PICK1 regulates glutamate
receptor phosphorylation by PKC and can control receptor clustering and synaptic
expression [14-16,36-42]. Thus, PICK1 can regulate plasticity in the hippocampus and
cerebellum, thus having a role in learning and memory [14-16,36-42]. The mutated PDZ
domain of PICK1 in schizophrenia patients [11,12] might lead to the altered surface
expression and/or trafficking of glutamate receptors and could increase susceptibility for
schizophrenia.

PICK1 regulation of dopamine transporters
Monoamine transporters are located at perisynaptic sites and recycle monoamines via uptake
and vesicle storage. In monoamine-transporter-knockout mice, the level of monoamines in
intracellular stores and transmitter release are depleted [43]. Numerous pharmacological
agents stimulate (e.g. amphetamine) or inhibit (e.g. cocaine) these transporters and induce
hallucinogenic symptoms. They are also targeted by antidepressants and psychostimulants
and are involved in psychiatric diseases [43]. The dopamine neurotransmitter system as a
model for schizophrenia was developed based on pharmacological evidence that dopamine
receptor agonists and antagonists trigger and reduce psychosis, respectively, and the
suggestion that dopamine receptor polymorphisms are associated with the disease [44].

The PDZ domain of PICK1 also interacts with monoamine transporters of dopamine (DAT)
and norepinephrine (NET), both of which have been associated with schizophrenia [43,45].
In dopamine-containing neurons, PICK1 co-localizes with DAT, and the expression of
recombinant PICK1 results in DAT–PICK1 clusters that enhance dopamine uptake because
of an increase in the number of plasma membrane DATs, probably through a PKC-
dependent mechanism [45]. Therefore, it seems plausible that the regulation of DAT surface
expression via PICK1 provides another potential mechanism for the involvement of PICK1
dysfunction in schizophrenia.
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Interaction of PICK1 with serine racemase
Glutamate released from neurons activates AMPA receptors on astrocytes, which express
serine racemase. This enzyme converts L-serine to D-serine, which is an endogenous ligand
for the glycine site of NMDA receptors [46]. The treatment of schizophrenics with D-serine
ameliorates some symptoms [47]. In addition, genes encoding the D-serine-degrading
enzyme D-amino acid oxidase (DAAO) and its activator–regulator G72 contain SNPs that are
associated with schizophrenia [48-51]. Recent studies show that the PDZ domain of PICK1
interacts with serine racemase [12], which provides additional support for a role of PICK1 in
schizophrenia.

Pharmacological modulation of PICK1
Together, the genetic reports, chromosomal location and protein interaction studies
implicate a role for PICK1 in schizophrenia. Therefore, an important challenge is to
determine whether PICK1 can be therapeutically targeted to provide treatment for this
disorder. Little is known about how to regulate the BAR domain of PICK1. By contrast,
numerous examples indicate that PDZ domain interactions can be competitively antagonized
by synthetic blocking peptides (for review, see Ref. [52]) (Figure 1). These ‘PDZ peptides’
can be designed to block specific PDZ interactions and are effective both in vitro
[33,38,53-55] and in vivo [56,57]. However, although they are useful research tools, PDZ
peptides cannot readily penetrate cellular membranes, are rapidly degraded and have poor
pharmacokinetic properties. These limitations of PDZ peptides have fuelled interest in
generating low molecular weight drugs that block PDZ domain interactions. Indeed, crystal
structure analysis and modeling approaches [37,58], in addition to chemical library
screening, have provided drugs that block PDZ domain interactions [59-62]. These early
compounds provide proof that low molecular weight compounds can block PDZ-protein–
protein interactions [60-62] and give hope that the PDZ domain of PICK1 can be modulated
by drugs.

Concluding remarks
Outstanding questions that must be resolved to define unequivocally a role for PICK1 in
schizophrenia include: (i) will studies using a larger number of patients confirm that PICK1
mutations are associated with an increased risk of schizophrenia? (ii) Do the currently
reported SNPs in the PDZ domain of PICK1 alter its function and its interaction with all or
just some of its associated proteins? (iii) Are SNPs in other regions of PICK1, for example
its BAR domain, also associated with schizophrenia? (iv) Are other PICK1-interacting
proteins also associated with schizophrenia? Overall, there are several possible avenues for
future research aimed at modulating PICK1 PDZ interactions and/or modulating the levels
of specific interacting partners with drugs. Obviously, a great deal of work must be carried
out on each of these approaches to refine the methodology, define better the precise target
sequences for enhanced selectivity and design improved delivery mechanisms. Further work
is also needed to determine which combinations of PICK1 interactions should be regulated
and which of these interactions should be enhanced or inhibited for beneficial effects in
schizophrenia.

We believe that PICK1 is an exciting target for potential pharmaceutical intervention and
that the capability to manipulate PICK1 interactions will lead to a greater understanding of
its putative role in neuronal function and dysfunction; this, in due course, could lead to a
novel therapy for schizophrenia.
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Glossary

AMPA receptor subtype of ionotropic transmembrane receptor for glutamate that
mediates most of the fast synaptic transmission in the CNS.

BAR domain crescent-shaped structure within proteins that is involved in
membrane bending and tubulation.

Disorganized
schizophrenics

characterized by agitated and purposeless behavior.

Dopamine receptor G-protein-coupled metabotropic receptors that can be excitatory or
inhibitory to the postsynaptic neuron.

Ephrins a family of protein ligands for ephrin receptor protein-tyrosine
kinases that regulate axon guidance.

G72 a protein that activates D-serine oxidation by DAAO.

GTPases a large family of enzymes that bind to and hydrolyze GTP. They
have important functions in many aspects of cell function,
including signaling and protein trafficking.

Neuregulin a family of four structurally related growth factors that are highly
expressed in the developing and adult brain.

NMDA receptor subtype of ionotropic transmembrane glutamate receptor. Calcium
flux through NMDA receptors has a crucial role in synaptic
plasticity, which is a cellular mechanism for learning and memory.

Occipital cortex visual-processing region at the back of the mammalian brain.

Paranoia a psychotic disorder characterized by delusions of persecution.

PDZ domain protein-binding module within proteins that consists of 80-90
amino acids that fold into six β-strands and two α-helices.

PICK1 a single-PDZ-domain protein that mediates interaction with the C
termini of several receptors, transporters, ion channels and kinases.

Polymorphisms differences in DNA sequence among individuals. Genetic
variations occurring in >1% of a population would be considered
useful polymorphisms for genetic linkage analysis.

SNP DNA sequence variation at a single nucleotide. SNPs make up
90% of all human genetic variations.
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Box 1. Drug targets for schizophrenia

Pharmacology and genetics of schizophrenia

Pharmacological evidence using modulators of glutamate-mediated, dopamine-mediated
and 5-hydroxytryptamine (5-HT)-mediated neurotransmission has helped to develop
models of schizophrenia for these receptor systems (Table I). Antipsychotics such as
haloperidol, chlorpromazine (Largactil®), clozapine (Clozaril®) and risperidone
(Risperdal®) have pharmacology profiles that include dopamine and 5-HT receptor
antagonism but might also include antagonist activity at adrenoceptors, acetylcholine
receptors and histamine receptors. These antipsychotics reduce delusions and
hallucinations but might induce extrapyramidal-motoric uncontrolled body movements
(tardive dyskinesia, dystonias, akathisia and pseudo-parkinsonism) due to dopamine
action in nigrostriatal pathways [1,2]. Genetic studies have helped to identify putative
risk factors for schizophrenia (Table I). Chromosomal hotspots for schizophrenia have
been suggested and the chromosomal locations of some genes implicated in
schizophrenia include regulator of G-protein signaling (RGS) (1q21-q22), dystrobrevin
binding-protein 1 (DTNBP1) (6p24-p22), neuregulin (NRG) (8p22-p21), D-amino acid
oxidase activator (DAOA) (13q32-q34) and catechol-O-methyl-transferase (COMT)
(22q11-q22) [3-8].

PICK1-interacting proteins with strong links to schizophrenia

The three PICK1-interacting proteins for which there is strong evidence for roles in
schizophrenia are: (i) glutamate (Glu) receptor subunits and subtypes (e.g. Glu2 receptor
AMPA subunit, Glu5 receptor kainate subunit and mGlu7 receptor metabotropic
receptor); (ii) DAT; and (iii) serine racemase (SR) (Table I).

PICK1-interacting proteins with possible roles in schizophrenia

Proteins that interact with PICK1 and have putative roles in schizophrenia include: (i)
neuregulin (NRG) and ErbB tyrosine kinase receptors (e.g. ErbB2/HER2), which
regulate neurodevelopment, neuronal migration and differentiation, and synaptic
plasticity; (ii) presynaptic-vesicle-docking proteins such as syndecan-interacting protein
(β-SNAP) and possibly N-ethylmaleimide-sensitive factor (NSF); (iii) Coxsackie and
adenovirus receptor (CAR); and (iv) brain-derived neurotrophic factor (BDNF), which
regulates PICK1 expression (Table I).

Proteins that interact with PICK1 but have no or weak evidence for roles in schizophrenia

These proteins include: (i) Eph tyrosine kinase receptor (e.g. EphB2) and ephrin ligands;
(ii) brain Na+ channel (e.g. BNaC1) and acid-sensitive ion channel (ASIC); (iii)
prolactin-releasing peptide receptor (PrRP); (iv) tetradecanoyl phorbol ester-induced
primary response sequence (TIS21); (v) ADP ribosylation factor (e.g. ARF1); (vi)
kalirin7, a guanine-nucleotide-exchange factor; (vii) syntenin; (viii) homolog of
Caenorhabditis elegans UNC5 (UNC5H); (ix) aquaporin-9; (x) anion exchanger-1; and
(xi) neuroligin [14].
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Figure 1.
PICK1-interacting proteins and regulation of PICK1 domains. (a) The structure of PICK1
and mutations linked to schizophrenia. Shown are the SNPs in the PDZ domain of PICK1
that are associated with schizophrenia. (b) Three proteins that interact with the PDZ domain
of PICK1 and have a role in schizophrenia. The PDZ domain of PICK1 is unusual because it
can bind to many types of PDZ motif (for review, see Ref. [14]). For example, it binds to
PKCα via a type I PDZ motif [9,10], whereas it binds to Glu2 receptor (an AMPA receptor
subunit) via a type II PDZ motif [15,31,32]. Although PICK1 interacts with ~20 different
types of protein family [14], only the three proteins that have been associated with
schizophrenia are shown: namely, AMPA receptors, DAT and serine racemase. PICK1
interacts with these proteins to regulate their function by PKC-mediated phosphorylation,
synaptic clustering and/or membrane expression. (c) PICK1 harbors a BAR domain, in
addition to its PDZ domain, that is involved in dimerization of PICK1 and interaction with
glutamate-receptor-interacting protein (GRIP) [14]. GRIP is a PDZ-domain-containing
protein that anchors AMPA receptors to the membrane [13,40,41]. The positively charged
BAR homodimer of α-helical bundles is sufficient to support electrostatic forces with the
negatively charged membrane and enable lipid–protein interactions. For example, a
membrane containing 20% phosphatidylserine has a negative surface potential of
approximately −30 mV, attracting K+ ions and clusters of basic protein residues (e.g.
lysine). (d) Pharmacological approaches for regulating the PDZ domain interactions of
PICK1. Competitive PDZ peptides match the sequences of PDZ motifs and fit into PDZ
domains, thereby inhibiting the entry of endogenous PDZ motifs. PDZ peptides can be
engineered to block specific interactions; for example, the PDZ peptide NVYGIESVKI,
which is based on the PDZ-binding motif of the Glu2 receptor, blocks Glu2 receptor
interaction with GRIP and PICK153. By contrast, the PDZ peptide NVYGIEEVKI, which is
modeled on a phosphorylated Glu2 receptor mimic, blocks Glu2 receptor interaction with
PICK1 but not GRIP53. Although no examples have been reported, the allosteric binding of
drugs to PDZ motifs or PDZ domains could, in theory, alter the conformation of these
interacting structures. This novel approach might be amenable to augment or attenuate PDZ
interactions.
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