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Abstract
The considerable data-handling requirements for genome wide association studies (GWAS)
prohibit individual calling of genotypes and create a reliance on sophisticated “genotype-calling
algorithms”. Despite their obvious utility, the current genotyping platforms and calling-algorithms
used are not without their limitations. Specifically, some genotypes are not called due to the
ambiguity of the data. Any bias in the missing data could create spurious results. Using data from
the Genetic Analysis Information Network (GAIN) we observed that missing genotypes are not
randomly distributed throughout the homozygous and heterozygous groups. Using simulation, we
examined whether the level and type of missingness observed might influence deviation from the
null-hypothesis under common case-control and family-based statistical approaches. Under a case-
control model, where missingness is present in a case group but not the controls, we observed bias
giving rise to genome-wide significant type-I error for missingness as low as 3%. The family-
based association simulations show close to nominal type-I error at 4% genotype missingness.
These findings have important implications to study design, quality-control procedures and
reporting of findings in GWAS.

Introduction
With advances in our understanding of genome variation and genotyping technology, it is
now possible to perform high-throughput, cost-effective genome-wide association studies
(GWAS) in many thousand individuals. There is extensive evidence emerging supporting
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GWAS as effective in identifying genes related to health and disease (Altshuler and Daly
2007). GWAS have shifted the emphasis from hypothesis-driven candidate gene analyses
towards hypothesis independent approaches reliant on biostatistic methods and very large
data-sets. The considerable data-handling requirement prohibits manual calling of genotypes
creating a reliance on sophisticated “genotype-calling algorithms”. A number of algorithms
have been developed to call genotypes from micro-array studies, including RLLM (Rabbee
and Speed 2006), BRLMM-P (Affymetrix 2006), CRLMM (Carvalho and others 2007),
CHIAMO (Wellcome Trust Case Control Consortium and others 2007) and Birdseed
(Affymetrix 2007). However, the GWAS technologies and the genotype-calling algorithms
are not without limitations and can lead to some systematic biases that have implications at
the data analysis stage. Given the vast number of genotypes being produced, systematic bias,
even if very small, may lead to spurious association signals.

We have examined data from the International Multicentre Attention Deficit/Hyperactivity
Disorder Genetics Project (IMAGE) – Genetic Association Information Network (GAIN)
study. GAIN is a public-private partnership between the Foundation for the National
Institutes of Health (FNIH), the US National Institutes of Health (NIH) and partners in the
academic and private sectors. Commitments from these partners have supported the initial
development of GAIN and the genotyping and data distribution for up to 18,000 samples.
The IMAGE-GAIN study is a parent-offspring trios design and contains 2835 participants
genotyped on the Perlegen Sciences® 600K Array.

The Perlegen Sciences® Arrays use a hybridisation technology that requires the specific
SNPs to bind to their corresponding probe. In an ideal scenario, each fragment of DNA that
corresponds to a probe would bind with equal efficiency. Different alleles of a SNP will
bind at equal efficiency at their corresponding probes at a single hybridisation temperature.
However, DNA sequence and the simple kinetics of the experiment make this scenario
universally unlikely.

The calling algorithm used by the IMAGE-GAIN project uses signal intensities from each
allele of the SNP and plots each individual on a 2-D plot. The clustering of individuals on
these plots is then used to define the genotype clusters and generate the individual genotype
call. Under ideal conditions genotypes should cluster at or around a single focal point for
each SNP. In reality, numerous factors including imperfect allele differentiation and other
non-specific hybridisation issues give rise to extended oblong or cone shaped clusters (see
Figure 1). For some SNPs these clusters also overlap. This leads to ambiguity in the call and
subsequent assignment of a “Missing” call to the individuals whose genotypes fall into the
overlapping regions on the 2-D plot. In many instances these markers will be excluded from
analysis as a result of quality-control (QC) procedures. Examples of QC procedures include
exclusion on the basis of call-rate, minor-allele frequency and deviation from Hardy-
Weinberg Equilibrium (HWE).

The QC procedures work under the assumption that missingness is random with respect to
the genotype and the missing calls are distributed equally between the major and minor
alleles of the SNP. This may not be true and if so, could lead to bias. As part of a QC
procedure for the IMAGE-GAIN data-analysis we performed an observational examination
of the 2-D plots of markers that ranked highest in our association analysis. We found from
this procedure that missingness is not a random phenomenon. Specifically, we identified
different categories of missingness. In order to investigate this observation further we
simulated the influence of missingness on the null hypothesis under two common study
designs. Firstly, under a case-control design whereby cases and controls are genotyped with
different levels of bias, such that in the most extreme scenario one group contains no bias
whilst the other contains varying levels of systematic bias. Secondly, we simulated the
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influence of systematic bias within the parent-offspring trio design whereby all samples are
exposed to systematic bias.

Subjects and Methods
Software and Data Source

The Genetic Association Information Network (GAIN), is a public-private partnership of the
Foundation for the National Institutes of Health, Inc. (FNIH) that currently involves the
National Institutes of Health (NIH), Pfizer, Affymetrix, Perlegen Sciences®, Abbott, and the
Eli and Edythe Broad Institute (of MIT and Harvard University)
(http://www.fnih.org/GAIN2/home_new.shtml). Genotyping was conducted at Perlegen
Sciences® using their genotyping array, which comprises approximately 600,000 tagging
SNPs designed to be in high linkage disequilibrium with untyped SNPs for the three
HapMap populations. Genotypes were called by Perlegen Sciences® using a proprietary
algorithm. Genotype data were cleaned by The National Center for Biotechnology
Information (NCBI). Quality Control analyses were processed using the GAIN QA/QC
Software Package (version 0.7.4) developed by Gonçalo Abecasis and Shyam
Gopalakrishnan at the University of Michigan. A copy of the software is available by e-
mailing gopalakr@umich.edu or goncalo@umich.edu. All 2-D scatterplots were sourced
from the QC-passed “clean” dataset from the International Multicentre Attention Deficit/
Hyperactivity Disorder Genetics Project (IMAGE) –Genetic Association Information
Network (GAIN) study (The GAIN Collaborative Research Group and others 2007).

Analysis of GAIN data
Scatterplots from the 2818 individual DNA samples genotyped as part of the IMAGE-GAIN
sample, were visually assessed. We examined 1000 scatterplots for the markers that ranked
highest according to p-value (TOP1000). In addition we examined a further 1000 randomly
selected markers (RANDOM1000) from the data. As a result of previous QC procedures,
none of the scatterplots selected had missingness at greater than 5% in this sample, and all
markers were excluded where Hardy-Weinberg skew was observed at p<=0.001. . Individual
scatterplots were classified according to the guidelines described in Figure 1. Classification
was assigned only to plots showing more than a threshold of 0.9% missingness. It is
important to note that missingness did not exclusively fall into the categories described in
Figure 1. Where additional nominal missingness was observed across the scatterplot and not
deemed as Class 3, classification was given to where the majority of the missingness was
observed.

Differences in the number of missing calls in the TOP1000 and RANDOM1000 group of
scatterplots were tested using the two-way Student's T-Test. Differences in the class
distribution across groups were calculated by Pearson's Chi Square. Odds Ratios were
calculated by measuring the index class against all other classes. All statistical analysis was
performed in Stata10 (Stata Inc. TX, USA).

Simulation of Missingness
We assessed the influence of missingness on two simulated datasets of 3000 individuals
each. We examined a case-control design, with 1500 cases and 1500 controls. Secondly, we
examine a trio design, with 1000 probands and both parents. Under each model we examine
the effect of missingness on a marker that is under HWE. There are three major classes of
missingness, based on the number of clusters affected by missingness, namely Class 1 has
missingness primarily in one cluster, Class 2 in two clusters and Class 3 in three clusters.
Specific sub-classification is based on which cluster is influenced; Class 1 influencing
homozygous calls-only (C1HM), Class 1 influencing heterozygous calls-only (C1HT), Class
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2 influencing homozygous calls-only (C2HM), Class 2 influencing one homozygous and
one heterozygous cluster (C2HT) and Class 3 influencing all calls (C3). Where more than
one cluster was affected by missingness, we modelled the effect based on proportional
sharing of missingness across the clusters based on genotype counts. We present data
generated on six levels of missingness, 10%, 5%, 4%, 3% 2% and 1%, across allele
frequencies of 1% to 99%.

Simulation of Missingness: Case-Control Study Design
For the analysis of the case-control sample we examined the potentially common scenario
whereby a case sample was genotyped under conditions A and the control sample was
sourced from public-domain data genotyped under condition B. Under the assumption that
the missingness-bias observed is condition and not SNP dependent, we modelled
missingness in the case-group only. Genotype counts at each minor allele frequency were
calculated assuming HWE. The influence of missingness was assessed according to
missingness-type and amount.

HWE (Pearson's Chi-square) was examined across the case-group using the genhw program
implemented in Stata10 (http://www.stata.com/users/mcleves/). Where cell counts for a
genotype were less than or equal to 5, we excluded this analysis from the summary plots.
Fisher's exact statistic to examine allelic association under each model was calculated using
the gencc program implemented in Stata10 (http://www.stata.com/users/mcleves/).

Simulation of Missingness: Trio Study Design
For the analysis of the trio sample we examined the effect of missingness randomly
distributed across the participants in a sample genotyped on a single platform. There are six
possible parent-parent mating types for allele p and q; pp-pp, pp-pq, pp-qq, pq-pq and qq-qq.
For each allele frequency, assuming HWE proportions, we generated 1000 parent-parent
matings. Proband genotype was assigned to each parent-parent mating according to
Mendel's Laws. For each missingness-type and amount, we used a random-number seed
routine to assign missingness across the relevant missingness classes. We performed 100
replicate datasets for each minor allele frequency at 1% intervals, missingness-type and
amount. The Transmission Disequilibrium Test statistics were calculated using PLINK
(Purcell and others 2007) and the mean p-values across replicates were calculated using
Stata10 (Stata Inc. TX, USA).

Results
Classes of 2-D plots according to missingness

In the IMAGE-GAIN 2-D plots we observe five classes of missingness, Class 0, Class 1,
Class 2, Class 3 and Class 4. Class 0 plots show no or minimal (<1%) missingness, these
account for approximately 80% of the IMAGE-GAIN RANDOM1000 plots. Class 1 plots
show missingness that falls predominantly within one of the genotype clusters. Class 1 plots
are further classified according to whether the missingness is predominantly within the
heterozygous cluster (C1HT), the homozygous-major allele cluster (C1HMP) or the
homozygous-minor allele cluster (C1HMQ). Class 2 plots show missingness that fall within
two of the genotype clusters. Class 2 plots are further classified according to whether the
missingness is predominantly within the heterozygous cluster and the homozygous-major
allele cluster (C2HTP), the heterozygous cluster and the homozygous-minor allele cluster
(C2HTQ), or the both homozygous clusters (C2HM). Class 3 plots show missingness
equally and randomly across all three clusters. Class 4 plots show additional discrete clusters
indicative of allele dosage such as copy number variation. A summary of the classes and
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their distribution in the TOP1000 and RANDOM1000 plots from the IMAGE-GAIN dataset
is shown in Table I. Example plots of each class are shown in Figure 1.

Distribution of Missingness Classes in GAIN ADHD Data
Analysis of the TOP1000 and RANDOM1000 2-D plots showed a significant increase in
missingness in 2-D plots of the TOP1000 compared to the RANDOM1000 (mean
missingness TOP=0.8%; RANDOM=0.6%, Two-way Student's T-Test p=0.0019).
Comparison of the TOP1000 with the RANDOM1000 2-D plots showed significantly fewer
Class 0 (Odds Ratio (OR) =0.76, Pearson's Chi-square p=0.0117), significantly more
C2HTQ 2-D plots (OR=2.0, Pearson's Chi-square p=0.0195) and significantly more C3 2-D
plots (OR=1.6, Pearson's Chi-square p=0.0041) (see Table I).

Simulated Data - Case-Control Design
Hardy-Weinberg Equilibrium in Case-Control Design—Examination of Hardy-
Weinberg statistics in the case-only group, equivalent of a genotype association, under the
five missingness classes (C1HT, C1HM, C2HT, C2HM, and C3) showed considerable
deviation from equilibrium. For the C1HT missingness class the arbitrary genome-wide
significance threshold of 10−6 was reached under the null hypothesis for all markers at 10%
missingness, and at extreme allele frequencies for 5% and 4% missingness. C1HM showed
considerable HWE deviation reaching genome-wide significance at all levels of missingness
tested, including 1%. Class C2HT and C2HM show more HWE stability. C2HT simulations
did not reach nominal significance for missingness less than 5%. C2HM reached nominal
significance (P=0.05) at 4-5% missingness around 50% allele frequencies. Random
missingness (C3) did not influence HWE. A summary of the data is presented in Figure 2.

Allelic Association in Case-Control Design—Allelic association analyses under the
five missingness classes (C1HT, C1HM, C2HT, C2HM, and C3) showed highly significant
deviation from the null hypothesis. Under C1HT missingness we observed strong type-I
error at both high and low allele frequencies. At missingness rates of as little as 3% we
observed association signals at p=10−6. C1HM missingness also gave rise to type-I error at
lower allele frequencies. Moreover, nominal significance observed at missingness rates of
5% at allele frequencies going as high as 59%. C2HT missingness followed similar patterns
to the C1HT class, however type-I error is restricted to low allele frequencies only. C2HM
and C3 missingness were robust to type-I errors under the models examined. A summary of
the data is presented in Figure 3.

Simulated Data- Transmission Disequilibrium Analysis in the Parent-Child Trio Design
Analysis of mean transmission disequilibrium statistics across simulations showed deviation
from the null hypothesis. None of the models reach genome-wide significance as a result of
the deviation. C1HT missingness showed nominal association signals at 4-5% missingness
at extreme allele frequencies. C1HM showed greater influence at lower allele frequencies,
reaching nominal significance at 5% missingness for allele frequencies less than
approximately 40% and at 4% missingness for allele frequencies less than approximately
25%. C2HT missingness showed nominal association signal at 5% missingness and
approximately 5% allele frequencies. C2HM and C3 missingness showed insignificant
deviation from the null hypothesis under these model parameters. A summary of the data is
presented in Figure 4. Overall, these data showed a similar pattern to that of the case –
control allelic association plots. However, the influence of missingness was not as large.
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Simulated Data – Influence of HWE Quality Control on Cleaning Non-Random Bias
Prior to association analysis, a standard QC procedure is to exclude those samples that
deviate from HWE at a given threshold. This procedure may be sufficient to exclude some
of the non-random bias. We examined this under the two models, missingness affecting
1500 cases but not 1500 controls and missingness affecting 3000 individuals that make up
the 1000 parent-parent-child trios. Deviation from Hardy-Weinberg Equilibrium was
calculated for each level of missingness under each class of missingness using the
immediate variant of the genhw procedure in Stata10 (http://www.stata.com/users/mcleves/).
A summary of these findings are presented in Figures 5 and Figure 6. For the parent-parent-
child trio simulation, missingness as low as 1% in the C1HM class would result in exclusion
if the frequency of the affected allele was less than 14% and as a frequency as high as 47%
if the missingness was as high as 5%. For the case-control simulations, the influence of
missingness would result in exclusion where the affected allele was less than 21% at 3%
missingness and less than 31% when missingness was 5%. Exclusion of a test marker based
on HW deviation was most likely for the trio datasets, as twice the level of missingness was
present for each SNP.

Discussion
For the top 1000 SNP markers in the GAIN ADHD data generated on the Perlegen
Sciences® 600K Array we observed five major classes of 2-D plots, showing no or nominal
missingness (Class 0), missingness restricted to one (Class 1), two (Class 2) or all three
clusters (Class 3) and those showing extra clusters (Class 4). Compared to a random sample
of 2-D plots from the same data, we observed approximately 20% of plots from the top 1000
SNPs ranked by p-value showed greater than nominal missingness. The most common
missingness class observed were C2HTP (missingness across the heterozygous cluster and
the major-allele homozygous cluster) and the C3 clusters (missingness randomly distributed
across all three clusters). Under case-control and trio design association simulations,
markers with C2HTP and C3 missingness patterns were robust to type-I error. There was a
significant over representation of C2HTQ (missingness across the heterozygous cluster and
the minor-allele homozygous cluster) 2-D plots in an array of the top 1000 markers
(OR=2.0, p=0.0195). This class of 2-D plots may result in inflated association signals,
however under the null hypothesis they are unlikely to reach nominal significance.

As part of a quality control procedure for GWAS a range of filters are generally applied.
Filters for missingness are applied under the assumption that missingness is random across
genotypes. We have shown that this is not always the case. In order to investigate this
observation we simulated the influence of missingness on the null hypothesis firstly using a
case-control design where case and control data are genotyped under different conditions,
one of which has inherent missingness bias. Secondly, we simulated the influence of
systematic bias within the parent-offspring trio design whereby all samples are genotyped
within the same bias conditions.

For data that contains missingness bias randomly distributed at equal proportions within the
case and control groups, there would be no bias in the association signal. It is equally
possible that bias in one of the case or control datasets can be observed if they are genotyped
on the same platform but at different sites, using different array batches or from different
quality or source of DNA. Our data would suggest that caution is required when considering
the use of different conditions or algorithms to call genotypic data for cases compared to
controls. For example, one may consider the cost-benefit of using “clean” genotype data
from control samples from public domain collections such as the Welcome Trust Case
Control Consortium (WTCCC) (Wellcome Trust Case Control Consortium 2007; Wellcome
Trust Case Control Consortium and others 2007) and compare these data to new collection

Anney et al. Page 6

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2010 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.stata.com/users/mcleves/


of cases. However, unless extremely stringent quality control procedures are put in place, we
would argue strongly against such an approach.

Unequal bias between the case and control groups, the most extreme scenario examined in
this study, can lead to highly significant type-I error. In our simulated data we observed
type-I error at genome-wide significance levels (p<10−6) for missingness levels as low as
1% under genotypic associations and 3% under allelic associations. At the expense of type-
II error one can apply stringent HWE quality control to the case and control datasets. When
bias occurs randomly when genotyping all case and control or all parent-child trio design
together, the association tests are robust to type-I error. In the parent-child design from the
GAIN-ADHD study, a quality control threshold of no more than 5% missingness is likely to
be sufficient to exclude even nominal type-I error. However, if possible one would prefer to
exclude or correct missingness bias as opposed to being able to tolerate their presence.
Exclusion of poorly performing markers across a given platform, such as the Perlegen
Sciences® array, can be achieved by examining additional GWAS performed on the
platform. A prudent exclusion of markers that fail QC in any of the GWAS studies may
identify and exclude technology specific problems. Additional method are being developed
to impute ambiguous genotyping calls using prior information from linked markers
(Marchini and others 2007). Moreover, recent software advances enable missingness by
caseness (e.g. PLINK – missingness-by-phenotype routine) and non-random missingness at
genotype (e.g. PLINK – non-random missingness-by-genotype routine). These routines offer
an additional prudent step to the QC pipeline for GWAS, especially where different
genotyping conditions exist for different groups.

It is important to note that we observed the non-random missing phenomenon on QC-
cleaned data released from a study using the Perlegen Sciences® array and Perlegen
Sciences® proprietary genotype calling algorithm. How this relates to other platforms and
algorithms is untested. It would be of interest to examine whether this phenomenon is
genotyping technology (e.g. Affymetrix, Illumina), SNP or algorithm (e.g. Birdseed,
CHIAMO) specific.

In this study we have used a moderate simulated sample size based on 3000 genotypes, 1500
cases and 1500 controls and 1000 complete parent-child trios. As sample sizes increase the
influence of missingness could be amplified further, leading to a greater incidence of type-I
error. The application of filtering on HWE and missingness alone is not sufficient to exclude
class 4 2-D plots. These plots are indicative of allele dose differences, e.g. copy-number
variation, pseudo-genes and therefore these SNPs would require different analytical
techniques to ensure exclusion from analysis.

In summary, we strongly recommend manual visualisation and filtering of the top-ranked
plots in GWAS before publication and follow-up, such that false positive associations due to
genotype calling errors might be identified. These markers which will likely represent
poorly genotyped SNPs should not be carried forward to replication as they may represent
type-I error. Direct examination of closely linked or imputed data may be a prudent
approach to exclude type-II error when dealing with these SNPs.

The GWAS methodologies offer an exciting opportunity to apply hypothesis-free
identification of genetic factors important in disease. However, GWAS are not a panacea for
genetic association studies as they offer additional challenges to data management, data
cleaning and analysis.
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Figure 1.
Cluster-Plot Classes. Clusters defined according to homozygous call of the minor-allele
(blue), heterozygous (purple) and homozygous major-allele (red). Missing genotypes are
shown as a black cluster. Specific cluster bias is coded as follows; Class 1 influencing one
cluster of homozygous calls-only (C1HM), Class 1 influencing the one cluster of
heterozygous calls-only (C1HT), Class 2 influencing both (two) clusters of homozygous
calls-only (C2HM), Class 2 influencing one homozygous and one heterozygous cluster
(C2HT) and Class 3 influencing all three clusters (C3).
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Figure 2.
Influence of Missingness on Hardy-Weinberg Equilibrium (HWE). Each graph shows the
influence on HWE at markers for each class of “missingess”. 1%, 2%,3%, 4%, 5% and 10%
missingness is plotted (see legend). Arbitrary genomewide significance is highlighted
(p=10−6) alongside nominal significance (p=0.05). Specific cluster bias is coded as follows;
Class 1 influencing one cluster of homozygous calls-only (C1HM), Class 1 influencing the
one cluster of heterozygous calls-only (C1HT), Class 2 influencing both (two) clusters of
homozygous calls-only (C2HM), Class 2 influencing one homozygous and one
heterozygous cluster (C2HT) and Class 3 influencing all three clusters (C3).
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Figure 3.
Influence of Missingness on Allelic Association. Each graph shows the influence on alleleic
association at markers for each class of “missingess”. 1%, 2%,3%, 4%, 5% and 10%
missingness is plotted (see legend). Arbitrary genomewide significance is highlighted
(p=10−6) alongside nominal significance (p=0.05). Specific cluster bias is coded as follows;
Class 1 influencing one cluster of homozygous calls-only (C1HM), Class 1 influencing the
one cluster of heterozygous calls-only (C1HT), Class 2 influencing both (two) clusters of
homozygous calls-only (C2HM), Class 2 influencing one homozygous and one
heterozygous cluster (C2HT) and Class 3 influencing all three clusters (C3).
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Figure 4.
Influence of Missingness on Transmission Equilibrium. Each graph shows the influence on
the transmission disequilibrium test (TDT) at markers for each class of “missingess”. 1%,
2%,3%, 4%, 5% and 10% missingness is plotted (see legend). Arbitrary genomewide
significance is highlighted (p=10−6) alongside nominal significance (p=0.05). Specific
cluster bias is coded as follows; Class 1 influencing one cluster of homozygous calls-only
(C1HM), Class 1 influencing the one cluster of heterozygous calls-only (C1HT), Class 2
influencing both (two) clusters of homozygous calls-only (C2HM), Class 2 influencing one
homozygous and one heterozygous cluster (C2HT) and Class 3 influencing all three clusters
(C3).
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Figure 5.
Influence of Missingness on Hardy Weinberg Equilibrium (HWE) in 1500 cases of a 3000
individual case-control study. Each graph shows the influence on HWE (Pearson's Chi-
square) at markers for each class of “missingess”. 1%, 2%,3%, 4%, 5% and 10%
missingness is plotted (see legend). HWE thresholds of p=10−3 are highlighted. Specific
cluster bias is coded as follows; Class 1 influencing one cluster of homozygous calls-only
(C1HM), Class 1 influencing the one cluster of heterozygous calls-only (C1HT), Class 2
influencing both (two) clusters of homozygous calls-only (C2HM), Class 2 influencing one
homozygous and one heterozygous cluster (C2HT) and Class 3 influencing all three clusters
(C3).
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Figure 6.
Influence of Missingness on Hardy Weinberg Equilibrium (HWE) in 3000 individuals of a
1000 parent-parent-child trio study. Each graph shows the influence on HWE (Pearson's
Chi-square) at markers for each class of “missingess”. 1%, 2%,3%, 4%, 5% and 10%
missingness is plotted (see legend). HWE thresholds of p=10−3 are highlighted. Specific
cluster bias is coded as follows; Class 1 influencing one cluster of homozygous calls-only
(C1HM), Class 1 influencing the one cluster of heterozygous calls-only (C1HT), Class 2
influencing both (two) clusters of homozygous calls-only (C2HM), Class 2 influencing one
homozygous and one heterozygous cluster (C2HT) and Class 3 influencing all three clusters
(C3).
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