A practical approach to parameter
identification for a lightly damped , weakly
non-linear system

Petr Eret

University of West Bohemia, Pilsen, Czech Republic

Craig Meskell

School of Engineering, Trinity College, Dublin, Ireland

Abstract

Fluidelastic systems are often lightly damped and exhibit weak non-linear damping.
The weak linear and non-linear damping forces have a significant effect on the
long term behaviour of the system. However, parameter identification methods tend
to concentrate on identifying the strongest forces. In this paper the applicability
of two identification methods to a single degree of freedom fluidelastic system is
investigated using experimental data. The system is weakly non-linear under the
flow conditions and is prone to the fluidelastic instability (i.e. self excited limit cycle
behaviour). The crucial effect of the weak damping forces on the system stability
and post-stable behaviour has been demonstrated. The non-linearity detection and
identification has been done using an analytic representation of the displacement
signal (FREEVIB method) and subsequently a non-linear decrement method was
used for comparison. The identified models were used to predict the global behaviour
of the system in the form of limit cycle amplitudes and this has been used as an
indication of accuracy. It was found that the non-linear decrement method yields
superior predictions, but it suffers from the limitation that the functional form of
the system must be known a priori. Therefore it is concluded that employing both
methods together provides a more powerful approach for parameter estimation in a
lightly damped system where weak non-linear damping plays an important role.
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1 Introduction

The identification of non-linear parameters in a lightly damped system is not
common in the literature. For example, a recent comprehensive review of iden-
tification strategies [1] primarily cites studies concerned with systems exhibit-
ing relatively strong non-linearities. The underlying assumption in many of
these approaches is that a weak force does not contribute signifcantly to the
overall system dynamics. Indeed, some of the methods simply cannot iden-
tify weak non-linear forces due to issues related to poor signal-to-noise ratio
(e.g. the reverse path method [2]). However, for some lightly damped sys-
tems, the weak linear and non-linear damping forces determine the long term
behaviour of the system. Fluidelastic systems are a case in point [3], [4].

Heat exchanger tube arrays are a particular example of this type of fluidelastic
system. In this case even a single flexible tube in an otherwise rigid tube array
subject to the cross flow of air may experience fluidelastic instability, which is
characterized by a rapid increase in vibration amplitude as the flow velocity is
increased. These systems have been extensively investigated experimentally.
The physical mechanisms have been classified previously by Chen [5]. For a
single flexible tube, the mechanism is referred to as a fluid damping controlled
instability. The tube motion with a limit cycle oscillation (LCO) can be ob-
served at post-stable flow velocities and thus a non-linear model of the coupled
fluid-structure system is necessary. The important issue is that the coupled
fluid-structure system is very lightly damped and weakly non-linear, but it is
these weak damping forces which determine both the onset of instability and
the post stable limit cycle amplitude.

Several authors have presented theoretical or semi-empirical non-linear mod-
els. Price and Valerio [6] have proposed a model with a strong non-linearity
in the fluid stiffness without any comparison to the experimental data. Rzen-
tkowski and Lever [7], [8] have extended the linear model from original work
by Lever and Weaver [9] and they obtained some limited agreement with the
test data. The empirical non-linear model of a single flexible tube in an oth-
erwise rigid tube array subject to cross flow has been given by Meskell and
Fitzpatrick [10]. The parameters of this fluidelastic system have been esti-
mated from the free decay tests using Force State Mapping technique [11],
[12], which processes displacement, velocity and acceleration signals acquired
independently. The level of the structural damping of the system was set high
enough to avoid the fluidelastic instability and the post-stable behaviour has
been predicted for lower levels of the structural damping. However, while good
predictions of the onset of the limit cycle behaviour (i.e. critical flow velocity)
was obtained, the LCO amplitude was systematically overestimated by more
than 100%. This large error was due specifically to an associated error in the
non-linear damping parameter value estimated and was caused by a relative



phase distortion between the response measurements [13]. In order to avoid
these errors, it is desirable to use only a single response measurement of the
free response as input to the parameter identification approach.

One possible method to achieve this is the application of the analytic rep-
resentation of response signal for a sdof system as shown by Feldman [14]
for mono-component free response. The method can detect the non-linear
behaviour of the system without an assumption of functional form. The non-
linear parameters are estimated directly in this approach. An alternative ap-
proach, was proposed by Meskell [15] and is based on consideration of the
amplitude decrement between periods of the system response. However, this
method requires knowledge of the type of non-linearity present. In this paper
the decrement method has been slightly modified to achieve more accurate
results and a numerical simulation has been conducted to verify the reliability
of this enhanced method.

The overall objective of the work is to demonstrate the applicability of these
two methods of non-linear parameter estimation to experimental data for a
lightly damped system with very weak damping non-linearities, and hence
define a robust methodology for system identification of these types of system.

2 Experimental setup

The investigated fluidelastic system is a five row normal triangular array of 38
mm diameter tubes with a pitch ratio P/d = 1.32 as shown in Fig. 1. All tubes
were rigidly supported except the central one in the third row (shaded in Fig.
1), which was mounted on a elastic support with the possibility of traverse
displacement (y) only. It has been verified experimentally that this support
behaves as a linear sdof system in quiescent air for the range of displacement
considered and the oscillating mass is approximately 1 kg. The structural
damping is controlled using a passive electro-magnetic damper. Thus, linear
damping modification is independent of system mass and structural stiffness.
Under flow conditions the system is weakly non-linear as will be apparent
from following sections. More details of the experimental setup can be found
in reference [10].

Fig. 2 shows a typical fluidelastic behaviour of the tube with obvious increase
in the rms of the displacement at the critical flow velocity. This is caused
by the negative linear fluidelastic damping overcoming the viscous structural
damping and hence there is a net transfer of the energy from the flow into the
structure [5]. The stability threshold has been investigated over a range of the
freestream velocities from 0 to 9 m/s for three different levels of the structural
damping. The logarithmic decrement 6 = [0.093,0.106,0.114] establishes the



structural damping, where § = m¢/§2 with ¢ as a mass normalized coefficient
of the structural damping and €2 as a system natural frequency. At flow veloc-
ities higher than the critical flow velocity the tube motion is not dynamically
divergent as would be indicated by a purely linear system. The amplitude of
the tube motion is limited. No hysteretic behaviour of the stability threshold
with the flow velocity has been observed. The drop around a flow velocity of
9 m/s is due to an acoustic resonance [10] and will not be considered here.

3 System identification

Two methods have been applied to estimate mass normalized parameters of
the investigated system using only a single response measurement. The first
method based on analytic signal can detect a non-linear behaviour of a sdof
system and identify parameters. This method is more complicated to imple-
ment and requires digital filtering to smooth the input signal and remove ex-
traneous noise. The second method is a non-linear decrement method, which
is limited to lightly damped systems. For completeness both techniques are
briefly described below in sections 3.1 and 3.3.

3.1 Method using analytic signal

An analytic representation of a real signal has wide applications in data pro-
cessing. An analytic approximation of a signal is usually associated with the
Hilbert transform in the time domain. It is well known that the Hilbert trans-
form is related to the Fourier transform (FFT) in the frequency domain. A
simple example can be found in Marple[16], which describes a method to cre-
ate a standard discrete time analytic signal, with the same sample rate and
frequency content as the original data, by setting the second half of the fre-
quency spectrum to zero. A method using analytic signal for a non-linearity
detection and identification of a sdof system in free response has been proposed
by Feldman [14].

Equation (1) defines an analytic signal Y (¢) in terms of a real part y(¢) (which
is the original data) and an imaginary part 7(¢) computed using the Hilbert
transform, H[y(t)] = §(t). The Hilbert transform behaves as a 90 ° phase shift
filter

Y(t) =y(t) —y(t). (1)

Then the real part and the imaginary part can be expressed as



y(t) = A(t) cos(y(1)), (2)
y(t) = —iA(t) sin(¢(t)), (3)

where A(t) and v(t) are the instantaneous amplitude and phase, respec-
tively. The time derivates using relations A(t) = /y(t)? — g(t)? and ¥(t) =
arctan(ig(t)/y(t)) can be obtained

i) = y(t)y(tllztg(t)ﬂ(t) | (4)

N 5)

where w(t) is an instantaneous frequency of a real signal.

The first and second time derivatives of the analytic signal Y (¢) are

b Alt)
Y(t)=Y(t) [m + M(t)] : | (6)
Y(t)=Y(t) [% —w(t)? + 1'2% +iw(t)|. (7)

Now consider the mass normalized equation of motion for a sdof system,
Eq.(8), where b(t) and €Q(t) are the instantaneous damping and natural fre-
quency, respectively. The application of the Hilbert transform to this equation
will yield Eq.(9) providing that the signal y(¢) (and its derivatives) has a high
frequency content compared the functions b(t) and Q?(t). In essence, this re-
quires that the damping and stiffness change slowly in time compared to the
periodic time of the data, y(t).

i+ b(t)y + L (t)y =0, (8)

J+b(t)g+ Q) = 0. (9)

In the type of system of interest here (i.e. a weak non-linearity in damping)
b(t) is almost constant in time, while y(t) describes the system motion at
a relatively high natural frequency. Thus, these two signals will have non-
overlapping spectra. Using the main properties of the Hilbert transform it can
be shown easily that H[b(t)y] = b(t)H[y] = b(t)y. Similar reasoning can be
applied to Q%(t) and y(t).

Subtracting of the equations Eq.(8) and Eq.(9), and substituting the defini-
tion if the analytic signal Eq.(1), yields the governing differential equation for



transformed data:

Y +b(t)Y +Q*(t)Y =0. (10)

Substituting Eqgs.(6) and (7) into Eq.(10) and separating the real and imag-
inary parts gives mass normalized coefficients of damping b(t) and stiffness
Q(t)

b(t) = —Q% = % (11)
2 e AW AW A@e()
O O IR LR OO (12)

The instantaneous system damping force and stiffness force, fp and fg, re-
spectively, can be expressed as

fo = b(t)w(t)A(?), (13)
fs = QL (OA(Q). (14)

To explore a non-linearity in the damping and stiffness characteristics of the
system it is convenient to plot a damping force fp against a velocity amplitude
w(t)A(t) and a stiffness force fg against a displacement amplitude A(t). As
errors can be expected in both axis, a total least square approach is used to
obtain estimates of the linear and non-linear parameters by simply fitting an
appropriate function to the data.

3.2 Experimental results for method using analytic signal

The decay measurements have been conducted at a structural damping level
of § = 0.153, where no instability (i.e. limit cycle oscillation) is observed.
The response of a single flexible tube was recorded over a range of freestream
velocities from 0 to 9 m/s in steps of 0.5 m/s. At each flow velocity a flexi-
ble tube was given a displacement of 11 mm and released from the rest. The
tube displacement was monitored with a non-contact capacitive displacement
transducer. The free response was ensemble-averaged over 10 triggered records
with a 4 s period at a sampling frequency 2048 Hz to reduce the extraneous
response due to the turbulent buffeting. Note that in fluidelastic systems tur-
bulent buffeting, which is characterized by relatively low amplitude broadband
excitation, cannot be eliminated at source and so will always corrupt the mea-
sure system response data to some extent.



As the system under investigation is weakly non-linear, no harmonics can
be found in the measured displacement response. A narrow bandpass digital
filtering, which was suggested as a part of the applied method [14], is required
to eliminate noise away from the primary response. This is necessary to ensure
numerical differentiation of the free decay displacement yields reliable time
derivations of the signal. Thus a narrow band-pass filter has been applied
to the displacement signal to get a response in the area around the natural
frequency of 6.6 Hz of the first structural mode (the natural frequency of the
second tranverse mode is above 77 Hz). An elliptic IIR filter of sixth order
with an exact stop-band matching (pass-band ripple of 0.01 dB) and pass-
band of 6Hz-8Hz was used. The original method by Feldman also proposed a
low-pass filtering of the calculated instantaneous signals b(t), Q2(t), A(t), w(t).
A 3rd order Chebyshev 2 IIR filter with a cutoff frequency of 40 Hz and an
attenuation of 100 dB in the stopband has been applied. All filters have an
impulse response amplitude below 1 x 107> after a time of 2 second.

In order to eliminate the effect of the initial transients of the digital filters,
the reversed time sequence displacement signal has been used for the applica-
tion of the method, since a higher order non-linearity is most obvious at the
higher amplitudes of the oscillations. In this way filter transients are displayed
at lower amplitudes. This corrupted data is discarded from the calculations.
Although this step leads to better non-linearity detection and identification,
it does mean that the filtering process is acausal. This does not represent a
major limition, however, as parameter identifcation is usually executed offline.

The stiffness and damping characteristics of the fluidelastic system have been
obtained using the application of the FREEVIB method described above. At
zero flow velocity the investigated system is considered to have the linear
characteristics as shown in Fig. 3 for damping and in Fig. 4 for stiffness.
Strictly speaking, the analysis showed negligible, but not zero, structural non-
linear forces (negative cubic stiffness and damping). This can be attributed
to numerical and quantization errors. As the flow velocity increased, weak
non-linearities with cubic form appeared. The cubic form in damping at the
flow velocity of 4 m/s is more visible as can be seen in Fig. 5. The softening
stiffness at the same flow velocity in given in Fig. 6, it is less apparent, but the
regression analysis indicates its presence. This reflects the relative magnitude
of the structural stiffness compared to the fluidelastic stiffness. At the last
investigated flow velocity of 8.5 m/s the non-linear cubic characteristics of the
fluidelastic system are most obvious as shown for the damping in Fig. 7 and
the stiffness in Fig. 8.

The pure fluid effect is simply the difference between the total parameter of the
fluidelastic system estimated at non-zero flow velocity and the structural pa-
rameter identified in the quiescent fluid. The increasing fluidelastic frequency
against the increasing flow velocity in Fig. 9 is derived only from the positive



linear fluid stiffness (Fig. 10), since an added mass can be neglected in the
case of the air. The non-linear cubic fluid stiffness in Fig. 11 has increasing
softening effect. The damping has a crucial role in the stability of this system.
The Fig. 12 shows the increasing negative linear fluid damping, which results
in decreasing total damping of fluidelastic system, in the case of zero total
damping the stability threshold occurs. The non-linear cubic fluid damping,
which determines the post-stable amplitude, is shown in Fig. 13.

3.8 Decrement method

A method to estimate the damping parameters for lightly damped systems
with a weak non-linearity has been proposed by Meskell [15]. This section
details the main principle of the method and introduces a slight modification
to achieve more accurate results. The modified method is verified using a
numerical simulation initially, before being applied to the experimental data.

The mass normalized equation of motion of system in free response is

i+ foly.9) +Qy =0, (15)

where Q = /k/m and fp is the mass normalized damping force includ-
ing both linear and non-linear damping. The free response is assumed to
be sinusoid with time varying amplitude A(¢) and natural angular frequency

Qq = QV1 — D? where D is a damping ratio

y(t) = A(t) cos(Qqt + ¢). (16)

If the damping is weak D? < 1 (i.e. Qg ~ Q) and the change of amplitude dur-
ing short time period is small (i.e. A = 0), then the velocity and acceleration
can also be assumed to be sinusoidal.

The mass normalized instantaneous mechanical energy in the system can be
written as,

1

elt) = 39%(0) + 37 (). a7)

Substituting system displacement and velocity into Eq.(17) relates the instan-
taneous specific energy to the instantaneous amplitude of vibration

olt) = SOPA(1). (18)



Alternatively, the specific energy can be obtained by considering the energy
dissipated by the damping force fp. The instantaneous energy is simply

e(t) = eo(t) —wp(?), (19)

where eq is the initial energy at t = 0. The specific work done by the damping
force is

wp(t) = / Fo(P)g(r)dr. (20)

0

Combining Egs.(18), (19) and (20) yields

420 = A~ = [ fon)i(ryar, (21)

where Ay is the amplitude at ¢ = 0. Substituting the system velocity, changing
the variable in the integral to 6 = Q)7 + ¢ and evaluating this equation over
one period of vibration yields the basic equation for the decrement method

227r
ﬁ:%—@!mmww (22)

In previous section the form of non-linear damping force of the fluidelastic
system has been identified as cubic from experimental data. Thus, the total
damping force including non-linear and linear part is given by

fp = cy+ By’ (23)

Note that the damping coefficients are already mass normalized. Assuming a
constant response amplitude of A, the work done over one period of vibration
is

2

21 2
/ Fo(0)3(6)d0 = A2 / 02 cos?(8)df + SA / 0 cos(8)dd
0 0

0

= cA20°m + ﬁA‘C*Q“?%. (24)
Combining this with Eq.(22) yields

Af = AF = NAT = AL (25)
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)\1 = ﬁc, (26)
32

Ao = 8. (27)

In this study it is assumed, that the constant amplitude A. is simply the
average of the initial and final amplitudes in one period, which should elim-
inate accumulated errors (compare Meskell [15], where the initial and final
amplitudes were used to yield two sets of parameter estimates)

A, = %(AO +Ay). (28)

Substituting Eq.(28) into Eq.(25) and rearranging yields an equation for a
straight line

p = A+ Aor, (29)
where

r= (%%—%)2, (30)

o (=) )

Note the Ay, A; pairs are known from the response data. Once again, a total
least square approach is used for parameters A\; , Ay estimation since errors
are expected in both variables p and 7.

A numerical simulation has been performed for same system parameter values
given in Tab. 1 and same the computational conditions as in [15]. The proce-
dure has been applied for the displacement response only as this is consistent
with the experimental data. Fig. 14 shows data associated with Eq.(29). An
improvement of results is apparent from Tab. 2 for linear damping and non-
linear cubic damping, where ¢ and /3 are estimated parameters from decrement
method and ¢, § are exact parameters in the simulation.

10



3.4 FExperimental results for decrement method

The displacement free decay responses at each flow velocity were smoothed
using an acausal band pass filter with zero-phase distortion. This filter has
precisely zero phase distortion and minimal magnitude attenuation in the
pass band.

Using this technique the information about system damping is available. As
can be seen in Fig. 15 the linear fluid damping is negative and Fig. 16 shows
positive non-linear cubic fluid damping, which seems to reach a constant value
again within flow velocity range from 3 to 7.5 m/s. This effect is hard to
explain physically. However, as will be seen below, the good prediction of
overall system behaviour (i.e. LCO amplitude) supports this trend in the cubic
damping parameter. Further study into this problem is required to isolate the
fluid mechanism responsible and is beyond the scope of this study.

The drop in parameter values at the last flow velocity can be attributed to an
interaction with acoustic resonance. The increase in fluidelastic frequency is
due to fluidelastic stiffness as shown in Fig. 17 which has been obtained from
averaged steady peak periods. The information about non-linear fluid stiffness
is unknown using the decrement method. However, as will be demonstrated
below, the non-linear fluid stiffness does not play an important role in the
dynamics of this fluidelastic system.

3.5 Prediction of post-stable response

A criterion of good parameter estimates of linear and non-linear damping from
both applied techniques is the prediction of the stability thresholds and the
post-stable behaviour. In post-stable regimes fluidelastic systems establishes a
limit cycle oscillation (LCO) with constant amplitude at a given flow velocity.
The total work during one period is zero as shown in [10] is a function of the
damping coefficients and fluidelastic frequency only, since all stiffness forces
are conservative. The limit cycle amplitude is expressed as

B 4 ¢c;(U) + ¢
o= Sty -

where all parameters have been experimentally determined previously, cy is
linear fluid damping coefficient, § is non-linear cubic fluid damping coeffi-
cient and € is fluidelastic frequency, all as a function of flow velocity U;
¢ is structural damping coefficient independent on flow velocity U. Using
these identified parameters for structural damping 6 = 0.153 the limit cy-
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cle amplitudes can be predicted for the system with lower damping levels
9 =[0.093,0.106, 0.114] assuming the same trends for the fluid coefficients.

Comparing the predicted response amplitudes, obtained using the identified
linear and non-linear coefficients, with experimental response amplitudes for
the same system damping (Fig. 2) offers a measure of the accuracy of the
identification methods. Tab. 3 compares the two sets of predictions for the
critical velocity with the directly measured experimental values. Tab. 4 com-
pares the predicted and experiemntal rms response of the system at three
levels of damping for a flow velocity of 8m/s.

The rms levels for the system predicted using the analytic signal method
(FREEVIB) is shown in Fig. 18. The estimates of the critical velocity are
consistently overestimated (Tab. 3), implying a systematically low value of
the estimated linear fluid damping . The trend of the post-stable behaviour is
in satisfactory agreement with the experimental data but the amplitudes are
a slightly overestimated (Tab. 4). As the LCO amplitude depends on the ratio
of the linear to the cubic damping and so this implies, that the cubic damping
is also underestimated.

The decrement method (Fig. 19) gives better predictions of the critical flow
velocities (Tab. 3), although there are still slightly overestimated. This implies
a superior estimation of the linear fluidelastic damping compared to FREE-
VIB. The post-stable amplitudes are also predicted reasonably well (Tab. 4)
and the trend is in a good agreement to the experimental data.

Thus, it is appears that the decrement method yields superior estimates of
the damping parameters, both linear and non-linear, for this type of system,
although it should be noted that the functional form of the non-linearity must
be assumed.

4 Conclusions

A sdof fluidelastic system with one degree of freedom has been identified us-
ing only a single free response measurement. The behaviour of a single flexible
tube in otherwise rigid array with a pitch ratio P/d = 1.32 was found to
be non-linear with cubic form in damping and stiffness under the flow condi-
tions. However, both elements of the damping force (linear and non-linear) are
small compared to either the inertial of stiffness force. Since many systemn
identification techniques are ultimately based on a force balance, the weak
damping can lead to poor estimates of damping parameters. The use of free
response data eliminates that possibility of errors due to phase distortion and
also permits ensemble averging in the time domain to improve the signal-to-

12



noise ratio. With this in mind, two different methods which are suited to this
type of situation, have been applied to estimate system parameters and to
predict the post-stable behaviour with stability threshold. The results show
that each technique has a specific advantage. The method using an analytic
signal (FREEVIB) can detect the non-linear behaviour of a system without
prior knowledge of the functional form and subsequently the non-linear decre-
ment method can be used to achieve more accurate parameter estimates as
verifying by the prediction of global behaviour (i.e. limit cycle amplitudes).
Therefore, it is concluded that the application of the both methods together
provides a powerful tool for parameter estimation of a sdof system, where a
weak non-linear and linear damping play an important role.
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Fig. 5. Total damping at U = 4 m/s including structural and fluidelastic components:
—, experimental data; - - -, cubic fitting.
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Fig. 6. Total stiffness at U = 4 m/s including structural and fluidelastic components:
—, experimental data; - - -, cubic fitting.
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Table 2
Linear and non-linear cubic damping parameter.

c B
¢ B
Ref. [15] current study | Ref. [15] current study
1.02 1.00 1.04 0.98

Table 3
Experimental and predicted critical velocities (m/s).

Structural viscous damping, §

0.093 0.106 0.114

Experiment 4.0 5.5 6.5
FREEVIB [14] 55 65 7.0
Decrement Method [15] 4.5 5.5 6.0

Table 4
Experimental and predicted rms levels at a velocity of 8m/s (mm).

Structural viscous damping, §

0.093 0.106 0.114

Experiment 2.6 2.1 1.8
FREEVIB [14] 3.5 2.1 1.0
Decrement Method [15] 2.8 2.2 1.8

0.8
0.4
£ 0
-
L
—04 /
-0.4 -0.2 0 0.2 0.4

tube velocity (m/s)

Fig. 7. Total damping at U = 8.5 m/s including structural and fluidelastic compo-
nents: —, experimental data; - - -, cubic fitting.
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Fig. 8. Total stiffness at U = 8.5 m/s including structural and fluidelastic compo-
nents: —, experimental data; - - -, cubic fitting.
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Fig. 9. Fluidelastic frequency.
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Fig. 10. Mass normalized linear fluid stiffness.

18



Fig. 11.

— X 10
2 0
“e
£ _ o
2 04 Q
= Q
- _os ,
£ 12 els}
w
2 O’QQ
= -16 L0 T
Q 0O
s _ R O
© 0 1 2 3 45 6 7 8 9

Free flow velocity, U (m/s)

Mass normalized non-linear cubic fluid stiffness.

E .

z

< -05 -

o OOO

2 'OO

3 -1 o

'Es O'OQ

=) Q

= o)
£ -2 -
- 0 1 2 3 4 5 6 7 8 9

Free flow velocity, U (m/s)

Fig. 12. Mass normalized linear fluid damping.

Fig. 13.

_\zalz

“e

o 10 o 09
£ S 00

n 8 o OO O]
=2 o) (O]
s 6 ©¥6}

£

3 4t

o

2 2t

Q .

5 t—m
O 0 1 2 3 4 5 6 7 8 9

Free flow velocity, U (m/s)

Mass normalized non-linear cubic fluid damping.

19



0 1 2 3 4 5 6
r (m?) x10°

Fig. 14. Linear approach for data associated with Eq.(29).
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Fig. 15. Mass normalized linear fluidelastic damping.
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Fig. 18. Predicted RMS of tube displacement using analytic signal: A, § = 0.093;
o, 0 =0.106; V, § = 0.114.
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Fig. 19. Predicted RMS of tube displacement using decrement method: A, § = 0.093;
o, § =0.106; V, 6 = 0.114.

23





