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Abstract

Apatite is a common U- and Th-bearing accessory mineral in igneous and
metamorphic rocks, and a minor but widespread detrital component in clastic
sedimentary rocks. U-Pb and Th-Pb dating of apatite has potential application in
sedimentary provenance studies, as it likely represents first cycle detritus compared to
the polycyclic behaviour of zircon. However, low U, Th and radiogenic Pb
concentrations, elevated common Pb and the lack of a U-Th-Pb apatite standard
remain significant challenges in dating apatite by LA-ICPMS, and consequently in
developing the chronometer as a provenance tool.

This study has determined U-Pb and Th-Pb ages for seven well known apatite
occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mudtank, Otter Lake and
Slyudyanka) by LA-ICPMS. Analytical procedures involved rastering a 10pum spot
over a 40x40um square to a depth of 10um using a Geolas 193nm ArF excimer laser
coupled to a Thermo ElementXR single-collector ICPMS. These raster conditions
minimized laser-induced inter-element fractionation which was corrected for using the
back-calculated intercept of the time-resolved signal. A TI-U-Bi—Np tracer solution
was aspirated with the sample into the plasma to correct for instrument mass bias.
External standards (Plesovice and 91500 zircon, NIST SRM 610 and 612 silicate
glasses and STDP5 phosphate glass) along with Kovdor apatite were analysed to
monitor U-Pb, Th-Pb and Pb-Pb ratios.

Common Pb correction employed the °’Pb method, and also a 2°*Pb
correction method for samples with low Th/U. The 2°’Pb and 2°®Pb corrections
employed either the initial Pb isotopic composition where known or the Stacey and
Kramers model, and propagated conservative uncertainties in the initial Pb isotopic
composition. Common Pb correction using the Stacey and Kramers (1975) model
employed an initial Pb isotopic composition calculated from either the estimated U-Pb
age of the sample or an iterative approach. The age difference between these two
methods is typically less than 2%, suggesting that the iterative approach works well
for samples where there are no constraints on the initial Pb composition, such as a
detrital sample. No 2**Pb correction was undertaken because of low 2**Pb counts on
single collector instruments and **Pb interference by “**Hg in the argon gas supply.

Age calculations employed between 11 and 33 analyses per sample and used a
weighted average of the common Pb-corrected ages, a Tera-Wasserburg Concordia
intercept age and a Tera—Wasserburg Concordia intercept age anchored through



common Pb. The samples in general yield ages consistent (at the 2o level) with
independent estimates of the U-Pb apatite age, which demonstrates the suitability of
the analytical protocol employed. Weighted mean age uncertainties are as low as 1-
2% for U- and / or Th-rich Palaeozoic-Neoproterozoic samples; the uncertainty on the
youngest sample, the Cenozoic (31.44 Ma) Durango apatite, ranges from 3.7-7.6%
according to the common Pb-correction method employed. The accurate and
relatively precise common Pb-corrected ages demonstrate the U-Pb and Th-Pb apatite
chronometers are suitable as sedimentary provenance tools. The Kovdor carbonatite
apatite is recommended as a potential U-Pb and Th-Pb apatite standard as it yields
precise and reproducible 2°’Pb-corrected, 22Th-2Pb, and common Pb-anchored Tera-

Wasserburg Concordia intercept ages.
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1. Introduction

Apatite is a common accessory mineral in igneous, metamorphic and clastic
sedimentary rocks. It is a nearly ubiquitous accessory phase in igneous rocks, due in
part to the low solubility of P,Os in silicate melts and the limited amount of
phosphorus incorporated into the crystal lattices of the major rock-forming minerals
(Piccoli and Candela, 2002). Apatite is common in metamorphic rocks of pelitic,
carbonate, basaltic, and ultramafic composition and is found at all metamorphic
grades from transitional diagenetic environments to migmatites (Spear and Pyle,
2002). Apatite is also virtually ubiquitous in clastic sedimentary rocks (Morton and
Hallsworth, 1999).

Apatite is widely employed in low-temperature thermochronology studies with
the apatite fission track and apatite (U-Th)/He thermochronometers yielding thermal
history information in the 60 - 120°C (Laslett et al., 1987) and 55 - 80°C (Farley,
2000) temperature windows respectively. Apatite has also been employed in high-
temperature thermochronology studies which demonstrate that the U-Pb apatite
system has a closure temperature of ca. 450 — 550°C (Chamberlain and Bowring,
2000; Schoene and Bowring, 2007). Apatite has also been employed in Lu-Hf
geochronology studies (Barfod et al., 2003) and as an Nd isotopic tracer (Foster and
Vance, 2006; Gregory et al., 2009).

Apatite has been widely used in detrital thermochronology studies (Bernet and
Speigel, 2004), and potentially has broad application as a sedimentary provenance
tool. Firstly, several analytical techniques (e.g., fission track, (U-Th)/He or Nd
isotopes) can in principle be undertaken on the same apatite grain (e.g., Carter and
Foster, 2009). Secondly, compared to the well documented polycyclic behaviour of
the stable heavy mineral zircon, apatite is unstable in acidic groundwaters and
weathering profiles and has only limited mechanical stability in sedimentary transport
systems (Morton and Hallsworth, 1999). It therefore likely represents first cycle
detritus, and would yield complementary information to zircon provenance studies.
Zircon provenance studies have been revolutionised in the last decade by the advent
of the LA-ICPMS U-Pb method, which offers low-cost, rapid data acquisition and
sample throughput compared to the ID-TIMS or ion microprobe U-Pb methods (e.g.,
Kosler and Sylvester, 2003). However, even though it is also a U-bearing accessory
phase, there are few studies which demonstrate the applicability of the LA-ICPMS U-



Pb apatite chronometer by dating apatite standards of known crystallization age. This
study has determined LA-ICPMS U-Pb and Th-Pb ages for seven well known apatite
occurrences and one apatite sample of unknown age, with the aim of developing the
U-Pb and Th-Pb apatite chronometers as a sedimentary provenance tool.

1.1 The problem of common Pb correction in U-Th-Pb dating of apatite

Precise U-Pb and Th-Pb apatite age determinations are commonly hindered by
low U, Th and Pb concentrations and high common Phb / radiogenic Pb ratios which
usually necessitate common Pb correction. Although high-precision, low-blank ID-
TIMS analysis can partially circumvent the problem of low parent and daughter
isotope contents, common Pb correction remains a major drawback in U-Pb apatite
chronometry. Apatite can accommodate a significant amount of initial Pb in its
crystal structure and as a consequence one of the main limitations on the accuracy and
precision of apatite age determinations is the need to use either i) Concordia or
isochron plots on a suite of cogenetic apatite grains with a large spread in common Pb
/ radiogenic Pb ratio or ii) to undertake a Pb correction based on an appropriate choice
of initial Pb isotopic composition.

1) There exist a variety of methods that do not require an estimate of the initial
Pb isotopic composition. They typically require several analyses of a suite of
cogenetic apatite grains with a significant spread in common Pb / radiogenic Pb ratios
to define a well constrained linear array on a Concordia diagram or isochron. The
Total-Pb/U isochron, a three-dimensional “*U/2Pb vs. 2'Pb/*®Pb vs. 2*Ph/*®Ph
plot (Ludwig, 1998), yields the smallest error of any possible U/Pb or Pb/Pb isochron
as all relevant isotope ratios are used at the same time. Discordance and variation in
the initial Pb composition of the suite of analysed grains on a Total-Pb/U isochron can
also be assessed by the MSWD of the regression. Other isochrons, such as the
238UP%Ph vs. 2°Pb/***Ph, 2°UP%Ph vs. 2'Pb/***Ph, Z*2Th/***Pb vs. *®Pb/***Pb and
207pp204pp s, 2%8ph/?*Ph plots assume the U-Pb* data (where Pb* = the radiogenic
Pb component) are concordant to calculate accurate isochron dates, which can be
difficult to assess but can be evaluated to some extent by the MSWD of the regression.
Another approach often employed in U-Pb dating of high common Pb phases, such as
the LA-ICPMS U-Pb dating studies of perovskite (Cox and Wilton, 2006) and titanite
(Simonetti et al., 2006) involves projecting an intercept through the uncorrected data



on a Tera—Wasserburg Concordia to determine the common Pb-component (y-
intercept) on the 2°’Pb/?°®Pb axis. The *U/*®Pb age can then be calculated as either
a lower intercept age on the 2*2U/*®®Pb axis (x-intercept) or as a weighted average of
27ph_corrected ages (see below) using the Concordia 2°’Pb/?°®Pb intercept as an
estimate of the initial Pb isotopic composition. This approach also assumes that the
U-Pb* data are concordant and equivalent.

I1) The second set of approaches involves correcting for initial Pb. Three
methods are commonly employed in the literature, the 2**Pb-, ?’Pb- and 2°®Pb-
correction methods (e.g., Williams, 1998). The mathematical details of how these
approaches are applied are described in Appendix A. Estimates of initial Pb isotopic
compositions are typically derived from Pb evolution models (e.g., Stacey and
Kramers, 1975) or by analysing a low-U co-magmatic phase (e.g., K-feldspar or
plagioclase) which exhibits negligible in-growth of radiogenic Pb.

The 2**Pb correction method is potentially the most powerful as it does not
assume U/Pb* concordance. It does however require accurate measurement of 2**Pb
and is also sensitive to the low *®Pb/?**Pb ratios encountered in Phanerozoic samples
(e.g., Cocherie et al., 2009). It is thus ideally suited to U-Pb dating by high-precision
ID-TIMS, as low 2**Pb concentrations can be measured accurately. Additionally the
2%4ph method preserves one of the strengths of the U-Pb system, which is the ability
to identify concordance of the ?*Pb-corrected data. However potential discordance
can be obscured by an inappropriate choice of initial Pb (e.g., by using Pb evolution
models). An alternative approach involves analysing a co-existing phase with a low
U/Pb ratio (p), such as K-feldspar or plagioclase, which preserves the initial Pb
isotopic composition at the time of apatite crystallization (e.g., Chamberlain and
Bowring, 2000; Schoene and Bowring, 2007), although this approach is often not
feasible for the analysis of detrital minerals and minerals in complex metamorphic

rocks where isotopic equilibrium between phases cannot be assumed.

Both the 2°’Pb- and *®®Pb-correction methods assume initial concordance in
2381/2%pp - 297pp/2%ph and 28U/2%°Ph - 2%8ph/*2Th space respectively. The 2°’Pb-
correction method is commonly used in U-Pb ion microprobe studies (Gibson and
Ireland, 1996), and only requires precisely measured *2U/*®Pb and %’Pb/?*®Pb ratios
and an appropriate choice of common Pb. The *®Pb-correction method is less
commonly applied. It requires the measurement of “*Pb/*%°Pb and *2Th/***U and an



appropriate choice of initial 2®Pb/*°Pb, and works well for samples with low Th/U
(e.g., <0.5) (Appendix A; Cocherie, 2009; Williams 1998).

1.2 U-Th-Pb apatite dating by LA-ICPMS

In addition to the problem of incorporation of common Pb into the apatite
crystal lattice, U-Th-Pb dating by LA-ICPMS also presents the problem of laser-
induced U-Th-Pb fractionation. A matrix-matched standard is usually required for
external calibration of down-hole fractionation of Pb, Th and U in LA-ICPMS dating
of accessory minerals because different minerals (e.g., apatite, titanite and zircon)
typically show different time-resolved Pb/U and Pb/Th signals during ablation (e.g.,
Gregory et al. 2007).

Few studies have undertaken U-Pb apatite dating by LA-ICPMS. 2’Pb—?%°ph
dating of apatite has been conducted on Paleoproterozoic samples with good precision
(0.3% 2SE on individual analyses) and accuracy by multi-collector LA-ICP-MS
(Willigers et al., 2002). Common Pb correction either employed Pb isotopic analysis
of coexisting plagioclase or utilized isochron calculations where there was sufficient
Pb isotopic heterogeneity on replicate analyses of single crystals. Although it does
away with the need to correct for laser-induced U-Th-Pb fractionation, Pb-Pb dating
removes the ability to evaluate concordance and is of limited application to dating
Phanerozoic apatites due to the difficulty in obtaining precise 2°’Pb—"Pb ratios from
young samples.

Storey et al. (2006) dated Paleoproterozoic apatite mineralization hosted by
intermediate to acid volcanic rocks of the Norrbotten iron ore province in northern
Sweden by quadrupole ICP-MS. Common Pb was monitored by analysing ***Pb and
was sufficiently low in this sample suite as to not necessitate a common Pb correction.
U/Pb ratios in apatite were corrected using the zircon geostandard 91500
(Wiedenbeck et al., 1995). The U-Pb apatite ages were mostly moderately reversely
discordant which was attributed to possible elemental fractionation of Pb and U
isotopes relative to the external standard during laser ablation.

Carrapa et al. (2009) dated detrital apatite from the Cenozoic Salar de Pastos
Grandes and Arizaro basins of the central Andean Puna plateau by multi-collector
ICPMS. U/PDb laser-induced fractionation was constrained by analysis of Bear Lake
Road titanite (quoted age of 1050 + 1 Ma), a Sri Lanka zircon crystal (563.5 + 3.2 Ma,



Gehrels et al., 2008) and NIST SRM 610 trace element glass (*°Pb/?*®U = 0.2565,
Stern and Amelin, 2003). Common Pb correction employed the measured ***Pb
assuming an initial Pb composition from Stacey and Kramers (1975).

However, there are presently no studies that demonstrate the applicability of
the LA-ICPMS U-Th-Pb apatite chronometer by dating apatite standards of known
crystallization age, which is the focus of this study. The ultimate aim is to develop
the U-Pb and Th-Pb apatite chronometers for use in sedimentary provenance studies.
Hence analytical procedures and common Pb corrections, which are described in

section 3, are optimised for single analyses of small apatite grains.

2. Apatite samples

This study has determined U-Pb and Th-Pb ages for seven well known apatite
occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mudtank, Otter Lake and
Slyudyanka) along with one apatite sample of unknown age. All seven apatite
occurrences along with the sample of unknown age have independent temporal
constraints on the timing of apatite crystallization which are summarized below and in
Table 1. The apatites in all seven occurrences are megacrysts (typically prisms several
cm long and at least 1 cm in diameter). Closure temperatures were calculated using
the program Closure (Brandon et al., 1998) for the apatite megacrysts (minimum
radius a = 0.5 cm) with a pre-exponential coefficient (Dg) = 2 x 10™ cm?/s and an
activation energy (E) = 231.5 kJ/mol (Cherniak et al. (1991). This yields closure
temperatures of ca. 640 °C for a cooling rate of 1 °C / Ma and ca. 790 °C for a cooling
rate of 100 °C / Ma. Sample DC 4/5/2 has a mean grain radius of ca. 100 microns,
yielding closure temperatures estimates of ca. 460 °C for a cooling rate of 1 °C / Ma
and ca. 550 °C for a cooling rate of 100 °C / Ma.

2.1 Durango apatite

The Durango apatite is a distinctive yellow-green fluorapatite that is found as
exceptional coarse crystals within the open pit iron mine at Cerro de Mercado, on the
northern outskirts of Durango City, Mexico. It is a widely available and widely used
mineral standard in apatite fission-track and (U-Th)/He dating and apatite electron

micro-probe analyses. More details on the deposit are available in McDowell et al.



(2005) and are summarised here. The apatite is associated with emplacement of small
felsic intrusions along the southern margin of the Chupaderos caldera complex, and
formed between the eruptions of two major ignimbrites from the caldera. Four single-
crystal sanidine-anorthoclase “’Ar—*Ar ages from these ignimbrites have yielded a
reference age of 31.44 £ 0.18 Ma (20) for the apatite itself (McDowell et al., 2005,
Table 1). 24 (U-Th-Sm)/He ages yield a mean of age of 31.02 £ 1.01 (1c), with a
mean U/Th (wt/wt) ratio of 0.054 calculated from 30 analyses (McDowell et al.,
2005).

2.2 Emerald Lake apatite

Coulson et al. (2002) present a detailed petrological and chemical study of the
mid-Cretaceous, composite Emerald Lake pluton, which crops out in the northern
Canadian Cordillera in the Yukon Territory. It was intruded as a series of magmatic
pulses which produced a strong petrological zonation from augite syenite, hornblende
quartz syenite and monzonite, to biotite granite. Apatite is an accessory mineral in the
syenite, monzonite and granite. The U-Pb and “°Ar—*°Ar geochronological study of
Coulson et al. (2002) is summarised in Table 1. The oldest age is a 94.5 £ 0.2 Ma U-
Pb zircon age from a syenite, while the youngest age is a 92.2 £ 0.9 Ma U-Pb titanite
age from a granite. The titanite age of 92.2 £ 0.9 Ma is adopted for the Emerald Lake
apatite (Table 1).

2.3 Kovdor carbonatite apatite

The ca. 40 km? Kovdor massif is part of the Palaeozoic Kola Alkaline
Province, which consists of more than twenty-four intrusive complexes of Devonian
age (Kramm et al., 1993). The Kovdor massif is an economically important ultrabasic-
alkaline complex which exhibits a wide compositional range of magmatic and
metasomatic rocks. Two components of the complex, phoscorites and carbonatites,
have been the subject of a detailed geochronological study using several isotopic
systems (U-Pb, Th-Pb and Rb-Sr) on various phases (baddeleyite, zircon, apatite,
phlogopite) (Amelin and Zaitsev, 2002). More details on the Kovdor carbonatite are
available in Amelin and Zaitsev (2002) and references therein. Amelin and Zaitsev

(2002) analysed apatite from six phoscorite and three carbonatite samples, with U and



Th contents ranging from 0.2 to 3.6 ppm and 62 to 150 ppm respectively. Co-existing
low-U calcite was used to constrain the initial Pb isotopic composition of the apatite.
A total Pb/U isochron of all apatite and calcite analyses yielded an age of 380.6 + 2.6
Ma (MSWD = 38), while a regression of apatite analyses only yielded a total Pb/U
isochron of 377.5 £ 3.5 Ma (MSWD = 27), which is the reference age adopted in this
study (Table 1). In a global study which analysed over 700 apatite grains from a
range of rock types to investigate the potential usefulness of apatite as an indicator
mineral in mineral exploration, Belousova et al. (2002) found the highest Th values

(over 2000 ppm) in apatite from the Kovdor carbonatite.

2.4 Mineville apatite

The Kiruna-type Fe-REE deposit at Mineville, Essex County, New York State
is hosted by the Lyon Mountain gneiss and contains magnetite, hematite, apatite,
stillwellite-Ce, fluorian edenite, ferro-actinolite, titanite, zircon and allanite in the
main ore bodies (Lupulescu and Pyle, 2005). The host rock and ore bodies commonly
exhibit the same tectonic fabrics and layering. Foose and McLelland (1995) interpret
the Lyon Mountain gneiss as a late- to post-tectonic intrusive suite emplaced during
the waning stages of the Ottowan orogeny, although other authors favour a pre-
tectonic, volcanic protolith for the host rocks (Whitney and Olmsted, 1988; Whitney,
1996). U-Pb zircon determinations from weakly to undeformed rocks in the Lyon
Mountain gneiss yield ages of ca. 1048 and 1035 Ma, respectively, while an
undeformed, cross-cutting pegmatite yields a U-Pb zircon age of ca. 1035 Ma
(McLelland and Foose, 1996). These results demonstrate that regional Ottowan
deformation ended in the Adirondacks by ca. 1040 Ma. Several U/Pb garnet and
sphene ages from this region cluster in the 1030 — 990 Ma age range and are
interpreted as metamorphic ages while metamorphic rutile ages cluster at ca. 900 Ma
(Mezger et al., 1991). Given the high closure temperatures for the Mineville apatite
sample (c. 650 °C for the cooing rate of 1.5 °C / Ma quoted in Mezger et al., 1991) it
likely records cooling shortly after the Ottowan thermal peak. The assumed U-Pb age
of the Mineville apatite is thus relatively poorly constrained, and a reference age of
1040 — 990 Ma is adopted in this study (Table 1).

2.5 Mudtank apatite



Apatite megacrysts occur within the Mud Tank Carbonatite, in the Strangways
Ranges of the Northern Territory NE of Alice Springs. A zircon U-Pb age of 732 + 5
Ma and a whole-rock Rb—Sr age of 735 + 75 Ma were reported by Black and Gulson
(1978) while younger Rb-Sr biotite ages between 319 and 349 Ma were interpreted as
representing overprinting during the Alice Springs Orogeny (Haines et al., 2001). A
pooled apatite fission track age of 298 + 23 Ma is just slightly younger than the biotite
Rb-Sr ages suggesting rapid post-orogenic cooling (Green et al., 2006). The adopted
age of the Mudtank apatite in Table 1 is taken as the oldest biotite age (349 Ma) from
the study of Haines et al. (2001). The apatite fission track data demonstrate that the
Mudtank apatite has a low U content of only 3.2 ppm.

2.6 Otter Lake (Yates Mine) apatite

The Otter Lake area, Québec, is located north of the Bancroft domain within
the Grenville Province. The rocks of the Otter Lake area comprise marbles, gneisses,
amphibolites, and skarns that underwent upper-amphibolite-facies metamorphism at
temperatures and pressures of 650 to 700 °C and 6.5-7 kbar in connection with the
Elzevirian and Ottowan phases of the Grenville orogeny (Kretz et al., 1999). Barfod
et al. (2005) have dated apatite by the Lu-Hf and **’Pb/?°®Pb stepwise leaching
methods from the Yates Mine locality in the Otter Lake region, where apatite
specimens typically take the form of dark-green — brown, long hexagonal prisms with
pyramidal terminations set in a hydrothermally altered, salmon-pink calcite matrix.
Three apatite fractions from the Otter Lake apatite yield a single-crystal Lu-Hf
isochron of 1042 + 16 Ma (MSWD = 1.0). Combining analyses from this apatite and a
titanite from the same area leads to a more precise Lu-Hf age of 1031 £ 6 Ma (MSWD
= 1.7). ®’Pb/*®Pb stepwise leaching analyses from five HBr leaching steps and a
bulk dissolution on an aliquot from the same crystal lie on an isochron of 913 + 7 Ma
(MSWD = 0.24) in "Pb/?*ph-2°ph/?*Ph space, which is the reference age adopted
in this study (Table 1). Pb, Th and U concentration estimates by ICPMS are 74, 722
and 92 ppm respectively (Barfod et al., 2005).

2.7 Slyudyanka apatite



The Slyudyanka Complex is a granulite-facies supracrustal sequence which
crops out on the southwest coast of Lake Baikal. The Slyudyanka Complex is
dominated by metamorphosed siliceous—carbonate phosphorites, which are composed
of apatite (from 1-2 to 60 wt %), quartz, diopside, calcite, forsterite and dolomite with
minor retrograde tremolite (Reznitskii et al., 1998). Reznitskii et al. (1998) present
207pp2%ph apatite - whole rock isochrons of 465 + 3 Ma (MSWD = 5.5) and 456 + 18
Ma (MSWD = 1.3) corresponding to the age of high-grade metamorphism. A
phlogopite-calcite-apatite paragenetic assemblage has yielded a Rb-Sr isochron age of
460 = 7 Ma Reznitskii et al., 1999). This is further constrained by U-Pb zircon ages
of 471 £ 1 Ma (Salnikova et al. 1998) and 447 + 2 Ma (Reznitskii et al., 2000) from
early syenites and monzonites and later 'post-phlogopitic’ pegmatites respectively.
Given the high closure temperatures for the Slyudyanka apatite megacrysts, a
reference age of 460 Ma (corresponding to the timing of peak metamorphism) is
adopted for Slyudyanka apatite in this study (Table 1). Dempster et al. (2003) present
Th and U concentrations of 111.4 and 61.4 ppm respectively for Slyudyanka apatite.

2.8 Sample DC 4/5/2

In contrast to the other dated samples which were large, single crystal
specimens, sample DC 4/5/2 was a pure apatite separate with a mean grain size of ca.
200 pm. It thus has a much lower closure temperature (c. 460 °C for a cooling rate of
1°C / Ma and ca. 550 °C for a cooling rate of 100 °C / Ma) compared to the
megacrysts dated in this study. It was selected to investigate the spread in U / total Pb
ratios in apatites on the scale of a large hand specimen (c. 5 kg). The sample is a
strongly-foliated granodiorite (termed the Sitabamba orthogneiss) which intrudes
Lower Palaeozoic metasedimentary rocks in the Eastern Cordillera of Peru (Chew et
al., 2007). The crystallization of the granodioritic protolith of the Sitabamba
orthogneiss has been constrained by a U-Pb TIMS zircon Concordia age of 442.4 +
1.4 Ma and a LA-ICPMS U-Pb zircon Concordia age of 444.2 £ 6.4 Ma. It exhibits
conspicuous augen of relic igneous plagioclase along with a metamorphic assemblage
of garnet, biotite, muscovite, epidote and plagioclase. Thermobarometric estimates
for the metamorphic assemblages are 700 °C and 12 kbar (Chew et al., 2005).
Subsequent post-metamorphic rapid cooling is constrained by an unpublished “°Ar—
$9Ar biotite age of 394.6 + 2 Ma. This biotite age is adopted as the age of this sample



(Table 1). LA-MC-ICPMS Pb analyses of K-feldspar from sample DC 4/5/2 yield
207pp2%%ph and 2°8Pb/?%®Ph values of 0.857 + 0.008 and 2.089 + 0.023 respectively
(Table 1).

2.9 Summary of the age constraints

Three of the apatite samples (Durango, Emerald Lake and Kovdor carbonatite apatite)
have robust independent age constraints and simple post-crystallization histories
(rapid thermal relaxation following magmatic emplacement). In addition, Kovdor
carbonatite apatite is constrained by extremely high quality U-Th-Pb TIMS data
(section 5.2) Three of the apatite samples (Slyudyanka, Otter Lake and Mineville
apatite) have reasonable independent age constraints and more complicated thermal
histories (cooling from an upper amphibolite- to granulite-facies metamorphic peak),
but given the high closure temperatures of these apatite megacrysts (650 — 750 °C)
they are likely in many cases to be recording crystallisation or cooling shortly after
the metamorphic peak. Two samples (Mudtank apatite and sample DC 4/5/2) have

poor independent age and thermal history constraints.
3. Methods
3.1 Common Pb correction methods employed in this study

As the aim of this study is to develop the U-Pb and Th-Pb apatite
chronometers as a sedimentary provenance tool, common Pb corrections and
analytical procedures were optimised for single analyses of small apatite grains. No
204pp correction was undertaken in this study because of 2**Pb interference by 2**Hg in
the argon gas supply. **Hg typically represented 75 — 95% of the 204 peak, and
hence ?**Pb could not be measured accurately without using a prohibitively long dwell
time on the 204 peak. Total-Pb/U isochrons (Ludwig, 1998) or 2**Pb correction were
therefore not possible. Common Pb correction employed four separate approaches.
These include the “°’Pb-correction method, and the 2*®Pb-correction method for
samples with low Th concentrations and Th/U <5. The ?°’Pb and ?°®Pb corrections
employed either the initial Pb isotopic composition where known, or used the Stacey
and Kramers (1975) model for crustal Pb evolution. In both cases an uncertainty of



5% (20) was propagated on the initial °’Pb/?°°Pb and 2®Ph/**®Pb isotopic ratios to the
final age calculation. The 5% uncertainty in initial Pb isotopic ratios is based on the
North Atlantic Pb isotopic data compilation of Tyrrell et al. (2007) and the Andean Pb
isotopic data compilation of Mamani et al. (2008). It is by necessity an approximation,
but appears to capture the potential Pb isotopic variation in crustal provinces with
varying Pb isotopic signatures and their deviation from the Stacey and Kramers (1975)
Pb evolution model.

Common Pb correction also employed a Tera—Wasserburg Concordia
approach. The variability in U / total Pb ratio of the uncorrected data was used to
determine the common Pb-component on the 2°’Pb/*®Pb axis and an intercept age on
the 22U/*Pb axis, similar to the approach adopted by Cox and Wilton (2006) and
Simonetti et al. (2006). It should be noted that this approach is not feasible for the
analysis of detrital minerals which will have different initial 2°’Pb/?°°Pb isotopic
compositions. The final approach also involved plotting the uncorrected data on a
Tera-Wasserburg Concordia but the intercept was anchored through the initial Pb
isotopic composition using either the Stacey and Kramer’s model or independent

constraints.
3.2 Laser-induced Pb / U fractionation correction employed in this study

Elemental fractionation is an important consideration in U-Pb dating of
accessory minerals by LA-ICPMS. Several technigues have been used to both
minimize this fractionation or to correct for it, primarily in U-Pb dating studies of
zircon. The reader is referred to Kosler and Sylvester (2003) for a detailed account of
these techniques.

One approach to correcting elemental fractionation involves using an external
standard of known age to derive an empirical correction factor that can be applied to
the unknown sample (e.g., Jackson et al. 1996). Pb/U ratios of the standard are
measured before and after analysis of the unknown, and a correction factor (ratio)
between the true standard age and the measured age of the standard is calculated. The
true age (Pb/U ratio) of the unknown can then be derived from the measured sample
ratios using this correction factor. The data need also be corrected for instrument drift
(change in sensitivity with time) prior to correction for elemental fractionation. This

method assumes instrument parameters remain constant between analysis of the



standard and the unknown, and there are no significant matrix effects on the measured
Pb/U and Pb isotopic ratios between the standard and the sample. As presently there
are no well characterised U-Pb apatite standards, this approach was not adopted in this
study. Elemental fractionation of Pb and U can also be corrected for by using
empirical equations that describe the fractionation (e.g., Horn et al. 2000). This
method assumes that for a given laser spot size and laser energy density, there is a
linear relationship between the depth of the laser pit and the measured Pb/U ratio. It is
therefore possible to derive an external fractionation correction based on empirical
equations that quantify the fractionation slope for different spot sizes.

The final commonly used approach to correct for Pb/U elemental fractionation,
and the approach adopted in this study, is that of Kosler et al. (2002). This method is
based on the premise of Sylvester and Ghaderi (1997) that laser-induced,
volatile/refractory element fractionation is a linear function of time, and therefore it
can be corrected by extrapolating the measured ratios back to the start of ablation.
Pb/U ratios at the start of laser ablation therefore are biased only by the mass
discrimination (bias) of the ICPMS instrument. The fractionation-corrected Pb/U
isotopic ratios are calculated as zero ablation time intercepts of least-squares linear
regression lines fitted to the time-resolved isotopic ratio data. This correction
eliminates potential matrix differences between external standards and unknown
samples because the intercept is calculated from the data for each individual sample.
This method has been applied U-Pb LA-ICPMS dating of zircon (Kosler et al., 2002),
monazite (Kosler et al., 2001) and perovskite (Cox and Wilton, 2006) and is well
suited to target minerals, such as apatite, for which no matrix-matched standard exists.

The analytical uncertainty due to the elemental fractionation corrections
increases with the size of the correction. It is therefore important to minimize
fractionation, and various laser parameters can be used to suppress it. Laser-induced
fractionation may also be limited by scanning the stage beneath the stationary laser
beam. This produces a linear traverse or raster in the sample (Kosler et al. 2002), and
the effect is similar to drilling a large shallow laser pit, which produces only limited
Pb/U fractionation (Eggins et al. 1998, Mank and Mason 1999).

3.3 Analytical procedure



Samples were mounted on 2.5 cm diameter epoxy disks and analysed using a Thermo
ELEMENT XR double focusing magnetic sector field ICP-MS in combination with a
Geolas 193 nm ArF Excimer laser located in the Inco Innovation Centre, Memorial
University of Newfoundland, Canada. Samples were ablated using a 10 um laser
beam that was rastered over the sample surface to create a 40 x 40 um square to
minimize laser-induced Pb/U fractionation. A small subset of analyses employed a 60
x 60 pum square using a 20pum laser beam. The laser energy was set at 3 J/cm? with a
repetition rate of 10 Hz. The ablated apatite material was flushed from the sample
cell with a helium carrier gas and combined with argon gas before entering the plasma
source of the mass spectrometer. A T-piece tube attached to the back end of the
plasma torch enabled simultaneous nebulization of an internal standard tracer solution
consisting of a mixture of natural TI (*®T1/°%T| = 2.3871) and enriched **U, *Bi
and Z"Np (concentrations of ca. 1 ppb per isotope) which was used to correct for
instrumental mass bias (Figure 1). The isotopic ratios in the tracer solution have a
mean isotopic mass similar to that of the isotopic ratios being corrected in the
analyzed apatites and the tracer isotopes also have ionization potentials and rates of
oxide formation in the ICPMS which are similar to the isotopes of interest in the
apatite sample (cf. Hirata 1996). The tracer solution approach to monitoring mass
bias is preferred to analysing the equivalent isotopic ratios (e.g., 2°TI//%TI) in NIST
SRM 610 standard glass because it facilitates monitoring of the mass bias at all times.
For example, if the machine mass bias drifts or changes due to matrix effects of a
particular ablation it can be observed when analysing both standards and unknowns.
In dry plasma or bracketing mode it is assumed the mass bias stays constant between
analyses of the NIST SRM 610 glasses which is not always the case.

Data were collected in peak-jumping mode, using 1 point per mass peak with a
60 s gas blank and a 180 s signal. Measured masses were: 2°Hg, *Hg, 2Tl,
20%Hg+Pb, 2°TI, 2%°ph, 27ph, 28pp, 2°°Bj, 32Th 23y, 2'Np, *U and oxide masses of
248 (***Th'°0), 249 (**U™0), 253 (*'Np*©0) and 254 (**U*0). The natural
2%8/75U ratio of 137.88 was used to calculate >*U. The level of oxide production is
less than 0.5% for dry analyses, but is ca. 3% for NpO, 5% for UO and 15% for ThO
during aspiration of the tracer solution. Raw data were processed off-line using an
Excel spreadsheet program (LAMDATE) to integrate signals from each sequential set
of 10 sweeps. The spreadsheet corrects for U-Pb, Th-Pb and Th-U fractionation due
to volatility differences during laser ablation by using the back-calculated intercept of



the time resolved signal (already corrected for mass bias) (Figure 1) following the
method described in Kosler et al. (2002). 2°’Pb/?%Pb, 2°8Pb/2%pPh, 2°Ph/>*8U,
207pp/233Yy, 298pp/232Th and 2**Th/*®U ratios were calculated and blank corrected for
each analysis.

Several external standards were analysed after every five analyses of apatite
unknowns as a quality control to monitor variability and drift in operating conditions
during a session. 2’Pb/?®®Pb (and hence also ?*®Pb/*°°Pb) and 2°°Pb/***U ratios were
monitored by analysis of two zircon standards: 337.13 + 0.37 Ma PleSovice zircon
(Slama et al., 2008) and ca. 1065 Ma Harvard 91500 zircon (Wiedenbeck et al., 1995)
whose U-Pb and 2*’Pb/*®Pb ages have previously been determined by ID-TIMS.
20Tpp/2%ph (and also 2°2Pb/*°Pb) ratios were also monitored by analysis of the STDP5
phosphate glass (Klemme et al., 2008) which yields a value of 0.8572 + 0.0020 (26)
in this study. 2°®Pb/***Th ratios were monitored by analysis of Plesovice zircon
(Slama et al., 2008) and 91500 zircon which yields a *®®Pb/?**Th age of 1062.1 + 2.2
Ma (Amelin and Zaitsev, 2002). 2*°Pb/*®U, ?"Pb/**®Pb, and *®Pb/***Th ages for
Plesovice zircon are 337.7 £ 4.0 Ma, 329.1 + 9.3 Ma and 327 + 10 Ma (20, n = 29)
and 1076 = 26 Ma, 1068 £ 15 Ma and 1070 * 65 Ma for 91500 zircon (2o, n = 6)
respectively. ***Th/*®U ratios were monitored by analysing NIST SRM 610 standard
glass which has a mean TIMS Th/U ratio of 0.9866 + 0.0018 (Stern and Amelin,
2003), which corresponds to a 2*2Th/?*8U ratio of 1.0136 + 0.0018 using the 2*2U/**U
abundance ratios of 417.8 in NIST SRM 610 standard glass (Stern and Amelin, 2003).
This is within analytical uncertainty of the value of 1.0156 + 0.0051 (26, n = 36)
reported in this study. NIST SRM 610 standard glass cannot be used in this study to
monitor any Pb isotopic ratio as it contains Bi and Tl which interferes with the
solution-based mass bias correction.

Isotopic ratios and uncertainties on individual analyses are reported with 2c
errors in Table 2. Error ellipses on the individual analyses on the Tera-Wasserburg
Concordia (Figure 2) are displayed at the 1o level for clarity, while error bars on the
weighted average ages in Figure 2 are at the 26 level. Tera-Wasserburg Concordia
ages, Tera-Wasserburg Concordia ages anchored through common Pb, and weighted
average 2’Pb-corrected and 2®®Pb-corrected ages are all reported with 26 errors in
Table 3 and on Figure 2. Representative Th, U and Pb concentrations for each apatite
sample were calibrated against NIST SRM 610 standard glass and are listed in Table
3. Although glass is not an ideal concentration standard as it is not matrix matched to



apatite, the data serve as a useful approximation for the absolute element
concentrations of the apatite samples. Relative elemental concentration ratios

between the apatite samples are also independent of this standard glass calibration.
4. Results

Age calculations employed between 11 and 33 analyses per sample (Fig. 2,
Table 2). Of the four separate approaches for common Pb correction, the weighted
average of the ?*’Pb-corrected ages and the Tera-Wasserburg Concordia intercept age
anchored through common Pb are very similar (Table 3). This is not surprising given
that a 2’Pb-corrected age is a projection through common Pb onto the *®U/?*°Pb axis
of the Tera-Wasserburg Concordia. Hence the ?*’Pb-corrected ages and the anchored
Tera-Wasserburg Concordia intercept ages will be considered together.

26 weighted-mean age uncertainties on the 2°’Pb-corrected ages range from
1.2% - 8.8%, which are very similar to the uncertainties on the Tera-Wasserburg
Concordia intercept ages (1.3% — 8.5%). The samples with the greatest age
uncertainties are either U-poor samples (Mudtank apatite with 8.96 ppm U and a 8.8%
26 uncertainty on the weighted average 2°’Pb-corrected age and DC 4/5/2 apatite with
9.89 ppm U and a 7.6% 2o uncertainty on the weighted average 2°’Pb-corrected age)
or young (the 31.44 £ 0.18 Ma Durango apatite with a 7.6% 2c uncertainty on the
weighted average *°’Pb-corrected age. Two of the weighted average 2°’Pb-corrected
ages and anchored Tera-Wasserburg lower intercept ages fall just outside the
uncertainty limits on the assumed age of the reference material (Table 3). These are
the ca. 460 Ma Slyudyanka apatite (TW anchored Concordia age of 448 + 7.3 Ma, Fig.
2Y; ?O’Pb-corrected age of 447 + 7.3 Ma, Fig. 2a) and the ca. 395 Ma granitoid
sample, DC 4/5/2 (TW anchored Concordia age of 364 + 21 Ma, Fig. 2c; %°’Pb-
corrected age of 361 £ 27 Ma, Fig. 2e). Additionally the assumed age of Otter Lake
apatite (913 + 7 Ma) is 1 Ma outside the uncertainty limit on the TW anchored
Concordia age of 933 + 12 Ma, Fig. 2U), although the possibility remains that that the
assumed Pb-Pb age is discordant.

In contrast, the unanchored Tera-Wasserburg Concordia intercept ages yield
by far the most imprecise age data, with 2c uncertainties ranging between 11 and 64%
(Table 3). Five of the eight ages are within 2 uncertainty of the adopted reference
ages (Table 1), with Mineville (Fig. 2N, 883 + 98 Ma, reference age 990 — 1040 Ma),



Emerald Lake (Fig. 2X, 260 + 150 Ma, reference age 92.2 Ma) and Mudtank (Fig. 2R,
1163 = 750 Ma, reference age 349 Ma) not overlapping with the adopted age of the
reference material. The uncertainty on the unanchored Tera-Wasserburg Concordia
intercept ages is a function of the data spread on the Tera-Wasserburg Concordia.
Assuming that all the **U/?°®Pb* ages overlap within analytical uncertainty, then
there needs to be both a large spread in common Pb / radiogenic Pb ratios and for
some analyses to contain low amounts of common Pb in order to define a well
constrained linear array on the Concordia. The samples with the highest uncertainties
(Emerald Lake with a 2c uncertainty of 58% and Mudtank with a 2c uncertainty of
64%, Table 3) have error ellipses which cluster closely together on the Tera-
Wasserburg Concordia, and in the case of Mudtank apatite, also contain significant
proportions of common Pb.

The weighted average 2°®Pb-corrected ages yield the most variable data with
2c uncertainties ranging between 0.8 and 81% (Table 3). Ages denoted with an
asterisk in Table 3 are uncorrected 2°®Pb/***Th ages. A *®Pb-correction cannot be
applied to these high Th/U samples (the Durango, Kovdor, Mineville and Otter Lake
apatites) as the ®®Pb correction becomes inappropriate as the 2°Th/?*8U ratio
approaches 7 (see Appendix A). However, these samples are characterised by high
Th concentrations and high radiogenic “®Pb to common 2°®Pb ratios (Table 2) and so
uncorrected 2°®Ph/**Th ages are presented instead. Even so, these 2®Pb/?**Th ages
still contain some common Pb and therefore represent maximum age constraints.
Analytical uncertainties on the 2°®Pb/**Th ages of these high Th samples are low,
even for the 31.44 Ma Durango apatite which yields an uncorrected °®Pb/*?Th age of
32.5 + 1.2 Ma (20 uncertainty of 3.7%, Fig. 2D). Analytical uncertainties are greatest
on low Th, high Th/U samples such as Mudtank apatite. This yields a weighted
average 2®Pb-corrected age of 459 + 370 Ma (20 uncertainty of 81%) with a low Th
concentration of 47.3 ppm and a Th/U ratio of 5.27 (Table 3). In contrast, even
though it has a much lower Th concentration (7.28 ppm) and is of similar age to
Mudtank apatite, the uncertainty on the granitoid sample DC 4/5/2 is much lower (2o
uncertainty of 24% on an age of 390 + 92 Ma) due to the low Th/U ratio of 0.74. Two
of the Th-Pb ages fall marginally outside the uncertainty limits on the assumed age of
the reference material (Table 3). These are the ca. 92.2 Ma Emerald Lake apatite
(weighted average 2°®Pb-corrected age of 105.0 + 9.0 Ma, Fig. 2H) and the 913 + 7
Ma Otter Lake apatite (weighted average “®Pb/?**Th age of 941 + 8.5 Ma, Fig. 2X).



5. Discussion

The samples yield U-Pb and Th-Pb ages which are in general consistent with
independent estimates of the U-Pb apatite age, which demonstrates the suitability of
the both analytical protocol and the correction methods (for common Pb and laser-
induced Pb / U fractionation) employed. Laser-induced Pb / U fractionation was
relatively minor (typically less than + 5%), and was easily corrected for using the
back-calculated intercept of the time resolved signal (Figure 1). In an attempt to
monitor the effect of laser-spot size and analyte volume on the final age precision, a
subset of analyses of two reference materials (Durango and Emerald Lake apatite, Fig.
2C and Fig. 2G) was undertaken by rastering a 20um laser beam over a 60 x 60um
square. This resulted in a four-fold increase in signal intensity and a slight increase in
laser-induced Pb / U fractionation, but did not result in a significant improvement in
the precision on the isotopic ratios. For the Durango sample, the average precision on
206p}y/238 ratios actually decreased from 17.1% to 17.4% and the average precision
on 2’Pb/?®Pb ratios decreased from 8.1% to 10.8%. In contrast, for the Emerald Lake
sample, the average precision on *®®*Pb/?U ratios increased from 9.4% to 6.7% and
on 2"Pb/?®Pb ratios from 3.6% to 2.4% when using the 60 x 60um raster.

5.1 Common Pb correction and implications for provenance analysis

As one of the main applications of U-Th-Pb apatite dating by ICPMS is likely
to be detrital apatite dating in sedimentary provenance studies, it is important that the
common Pb correction employed is applicable to single apatite grains. The spread in
U / total Pb ratios in the apatite samples of this study in general do not yield precise
unanchored Tera-Wasserburg Concordia intercept ages. For example, the
granodiorite sample (DC 4/5/2), which would be a typical source of sand-sized detrital
apatite grains, did not yield a large spread in U / total Pb ratios and thus has a large 2c
uncertainty on the unanchored Tera-Wasserburg Concordia age (2¢ uncertainty of
28%, Table 3, Fig. 2d). The °’Pb- and 2°®Pb-correction methods used in conjunction
with the Stacey and Kramers (1975) model for crustal Pb evolution would appear to
be the most applicable for single grain detrital apatite dating, as the intercept age-

based approaches using the Tera-Wasserburg Concordia would require multiple



analyses on the same detrital grain which is unlikely to yield a sufficient spread in the
common Pb / radiogenic Pb ratio. Obtaining both U-Pb and Th-Pb ages also has the
added advantage of yielding two separate age constraints for the same grain. In
samples which have high Th concentrations, high Th/U ratios (> 5) and low fyg
values, the uncorrected 2®Pb/?*?Th age may be preferred to the ?®®Pb-corrected age.

However, Pb correction using the Stacey and Kramers (1975) model does
require an initial assumption of the age of the grain, which is not typically known for
a suite of grains in a detrital sample. However, it can be approximated successfully
using an iterative approach combined with the Stacey and Kramers (1975) model.
The approach involves calculating a ?°’Pb-corrected age (or equally a *®Pb-corrected
age) using a Pb isotopic composition calculated with the Stacey and Kramers (1975)
model for an initial age estimate of 1 Ga. This **’Pb-corrected age is then used to
calculate a new Pb isotopic composition using the Stacey and Kramers (1975) model,
and an updated *°’Pb-corrected age is calculated. This iterative approach is repeated
five times, by which stage the change in the ?’Pb-corrected age between iterations is
negligible. The final 2’Pb-corrected age differs by < 0.05% if an initial age estimate
of 1 Ma is used instead of 1 Ga, demonstrating it is not dependent on the choice of
initial age.

This approach is demonstrated using sample DC 4/5/2 as a case study, for
which there are robust independent constraints on the initial Pb isotopic composition
derived from K-feldspar analyses (Table 1, 3). Table 4 lists the ?°’Pb- and 2°®Pb-
corrected ages employing an initial Pb isotopic composition based on the K-feldspar
analyses and compares them with the data derived from the iterative approach
outlined above. The weighted means of the 2°’Pb- and 2®®Pb-corrected ages which
employ a Pb isotopic composition derived from K-feldspar analyses are 361 + 27 Ma
and 390 + 92 Ma respectively (Table 4). The weighted means of the 2*’Pb- and 2*®Pb-
corrected ages using the iterative approach are 366 + 27 Ma and 394 + 92 Ma, which
represent a difference of 1.4% and 1% respectively (Table 4), demonstrating the
suitability of the iterative approach for calculating an appropriate initial Pb isotopic
composition for single detrital grains. It should be noted that the assumption that the
initial Pb isotopic composition derived from the Stacey and Kramers (1975) model is
correct may not always be appropriate, and that this assumption cannot be verified in
samples where there is no independent control on the initial Pb isotopic composition

such as detrital samples.



U-Th-Pb apatite dating by ICPMS has potential to be combined with other
analytical methods for provenance work. Analytical techniques that could in principle
be undertaken in conjunction with U-Th-Pb dating include fission track, (U-Th)/He or
Nd isotopic analysis. Combining U-Th-Pb dating with either the apatite fission track
or apatite (U-Th)/He thermochronometers would yield two pieces of information from
the same grain — the age of formation of the apatite (using the U-Pb method), and the
time the grains passed through the low temperature window for the retention of either
fission tracks or radiogenic “He. Combining apatite U-Th-Pb dating with the apatite
fission track method has an additional advantage. Fission track dating requires
precise measurements of 2®U, which are conventionally determined by irradiating the
sample with thermal neutrons in a nuclear reactor to induce fission in a proportion of
2% atoms. These induced fission events are then recorded in an external detector
(typically low U muscovite) to give a map of uranium distribution (Gleadow, 1981).
This irradiation step is one of the disadvantages of the external detector method.
However U concentrations in apatite fission track dating can also be determined by
LA-ICPMS (Hasebe et al., 2004) with *Ca typically used as an internal standard.
Although modification of the analytical protocol to include a peak jump to **Ca would
be prohibitively slow on a magnetic sector instrument such as the one used in this
study, U concentrations could be easily determined on a spot adjacent to the site of the
U-Th-Pb analysis. Combining U-Th-Pb apatite dating by LA-ICPMS with the apatite
(U-Th)/He thermochronometer is slightly more challenging as (U-Th)/He dating is
performed on whole crystals, not polished grain mounts. However several studies
have undertaken U-Pb detrital zircon dating by LA-ICPMS on the exterior of
unmodified zircon grains (e.g., Rahl et al., 2003), and modifying this procedure for
apatite double dating is entirely possible. Combining U-Th-Pb apatite dating with Nd
isotopic analysis (e.g., Foster and Vance, 2006) is also feasible. This would yield
similar information to combined U-Pb and Hf isotopic studies on zircon, with the U-
Th-Pb age data and the Nd isotopes yielding information concerning the apatite

crystallization age and melt source respectively.
5.2 Effect of excess 2>Pb on age calculations

U-PDb dating of minerals characterized by high Th/U ratios (e.g., Durango and
Kovdor Carbonatite apatite in this study) can be affected by excess ?*Pb derived from



2%9Th, an intermediate daughter nuclide of the ***U decay series incorporated in excess
of its secular equilibrium ratio (Scharer, 1984). This results in apparent “°Pb/*®U
ages which are older than the corresponding %°’Pb/**U and 2°®Pb/***Th ages from the
same sample, and is a particularly important effect in young minerals where the
excess 2°Pb is not diluted by radiogenic ?®Pb. In high-precision TIMS studies of
monzatite this effect can be accounted for by evaluating the concordance of

206ppy 238y 207235 and 2°8Ph/***Th ages. With more imprecise LA-ICPMS data,
the effect of “*°Th disequilibrium in high Th/U samples (particularly apatite which
requires a substantial common Pb correction) is more difficult to evaluate without
independent constraints on the magma Th/U ratio.

The effect of 2°Th disequilibrium is most pronounced when apatite with a
high Th/U ratio crystallises from a melt with a low Th/U ratio. However, partition
coefficients for U and Th in apatite crystallising from silicate melts are close to unity,
and are not significantly affected by variations in magma compositions such as
increasing SiO,-content of the melt (Prowatke and Klemme, 2006). Hence ?°Th
disequilibrium in apatite is unlikely to be a major factor in most silicate melts. U, Th
are compatible in apatite crystallising from a carbonatite melt with Dy, apatite /
carbonatite > 5 and Dy apatite / carbonatite ~ 2 (Hammouda et al., in press), and
therefore it is possible to crystallise high Th/U apatite from carbonatitic liquids with a
relatively low Th/U ratio. Despite the high Th/U of Kovdor Carbonatite apatite, it
appears to have crystallized from a magma with Th/U ratios between 2 and 4 with
uranium-series isotopes in the magma in secular equilibrium (Amelin and Zaitsev,
2002). All three decay schemes (*°°Pb/?®U, 2"Pb/*°U and *®Pb/?*2Th) yield
compatible TIMS ages with a small difference in 2°Pb/?*8U vs ?°’Pb/**U age due to
an excess of unsupported 2®Pb of about 1.5 Ma (or 0.4% of the age) (Amelin and
Zaitsev, 2002). Such an age correction is insignificant when dealing with the level of

precision routinely achieved through LA-ICPMS analysis of apatite.

5.3 A matrix-matched apatite standard for LA-ICPMS dating

An ideal matrix-matched apatite standard for LA-ICPMS dating would contain
no common Pb, would have high U, Th and radiogenic Pb concentrations and would
yield precise U-Pb and Th-Pb ages determined by TIMS. Currently, no such standard
exists. Of the samples analysed in this study, the Kovdor carbonatite apatite exhibits



the most promise as an apatite standard for LA-ICPMS dating. It has high Th (3539
ppm), U (55.7 ppm) and Pb (65.0 ppm) concentrations, and the initial Pb isotopic
composition is known (Amelin and Zaitsev, 2002). It should be noted that the Th and
U concentrations reported here are significantly higher than those reported by Amelin
and Zaitsev (2002), and so apatite samples from the Kovdor massif are variable in
composition. Kovdor carbonatite apatite yields precise and reproducible 2°’Pb-
corrected, 2*2Th-2"®Ph, and common Pb-anchored Tera-Wasserburg Concordia
intercept ages (Figs. 11 — 1L), with low precision on the *?Th-?®pb age (0.8% 2o,
Table 3).

6. Conclusions

This study has determined U-Pb and Th-Pb ages for seven well known apatite
occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mudtank, Otter Lake and
Slyudyanka) and one unknown by LA-ICPMS. Analytical procedures typically
involved rastering a 10um spot over a 40x40um square to a depth of 10um using a
Geolas 193nm ArF excimer laser coupled to a Thermo ElementXR single-collector
ICPMS. All samples yield U-Pb and Th-Pb ages which are in general consistent with
independent estimates of the U-Pb apatite age, which demonstrates the suitability of
the both analytical protocol and the correction methods (for common Pb and laser-
induced Pb / U fractionation) employed. In general, laser-induced Pb / U
fractionation was relatively minor, and was easily corrected for using the back-
calculated intercept of the time resolved signal. Age uncertainties are as low as 1-2%
for Palaeozoic-Neoproterozoic samples with the uncertainty on the youngest sample,
the Cenozoic (31.44 Ma) Durango apatite, ranging from 3.7-7.6% according to the
common Pb-correction method employed.

Common Pb correction employed four separate approaches including the
297pp. and ®pb-correction methods, a Tera—Wasserburg Concordia and a Tera—
Wasserburg Concordia anchored through common Pb. The common Pb composition
for the anchored Tera—Wasserburg Concordia and the 2°’Pb- and ®®Pb-correction
methods employed either the initial Pb isotopic composition where known, or used the
Stacey and Kramers (1975) model for crustal Pb evolution. Common Pb correction
using the Stacey and Kramers model calculated the initial Pb isotopic composition
using either the estimated age of the sample or an iterative approach. The age



difference between these two methods is typically less than 2%, suggesting that the
iterative approach works well for samples where there are no constraints on the initial
Pb composition, such as detrital samples. The unanchored Tera-Wasserburg
Concordia ages typically did not yield a large spread in U / total Pb ratios and thus
have large uncertainties. The ?°’Pb- and ®®Pb-correction methods yielded more
precise and accurate ages and would also appear to be the most suitable for single
grain detrital apatite dating. In samples which have high Th concentrations, high
Th/U ratios (> 5) and low f,0s values, the uncorrected 2°®Pb/***Th age may be
preferred to the 2°®Pb-corrected age.

The accurate and relatively precise common Ph-corrected ages demonstrate
the U-Pb and Th-Pb apatite chronometers are suitable as sedimentary provenance
tools. The Kovdor carbonatite apatite is recommended as a potential U-Pb and Th-Pb
apatite standard for LA-ICPMS analyses as the initial Pb isotopic composition is
known, it has high Th, U and Pb concentrations and it yields precise and reproducible
2ph_corrected, 2*Th-2"®Pb, and common Pb-anchored Tera-Wasserburg Concordia
intercept ages.
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Appendix A. Mathematical correction approaches for common Pb

The 2**Pb-correction method

This method is based on the measurement of the low abundance non-radiogenic **Pb
isotope. Measured Pb isotopic signals are corrected using the assumed 2°°Pb/?**Pb,
207pp204ph and 2°8Pb/?*Ph ratios of the common Pb to extract net signal intensities of
the radiogenic daughter 2°°Pb*, 2’Pb*and *®®Pb* isotopes. A common notation for
common Pb corrections is to define f,os as the fraction of total 2°°Pb (*Pbya) that is

common *®Pb (*®Pbcommon), such that:



fa06 = 206F)bcommon / ZOGPbtotal Eq. (A.1)

It is then possible to calculate f,0s from the assumed “°Pb/***Pb ratio for common Pb
(*°Pb/***Pbeommon) and the measured *°Pb/**Pb ratio (*°°Pb/***Pbyeasured) from:

f206 = (206Pb/204pbcomm0n) / (206Pb/204pbmea5ured) EQ- (AZ)

Radiogenic 2°°Pb/?8U (***Pb*/**®U) can then be calculated from the measured
206Pb/238U (206Pb/238Umeasured) by

208ppyx 238y = (1 - ) (“°°Pb/® U measured) Eq. (A.3)

The 2®®Pb-correction method

This method is based on the assumption that the ratio of >Th to the parent U isotope
in the analyzed sample has not been disturbed following the closure of the U-Pb and
Th-Pb isotopic systems (i.e., the U-Th-Pb system is assumed to be concordant) and
that any excess 2®Pb (e.g., 22 Pbmeasured - ~°°Pb*) can be attributed to the assumed
common Pb component. The proportion of common ?®Pb in this case can be

calculated as
f206 = (“2Pb/P%Phieasured - 2o Pb*/*%°Pb*) / (*®®Pb/2%®Pbecommon - 2o Pb*/*%°Pb*) Eq. (A.4)

where the expected radiogenic “°*Pb*/?®"Ph ratio can be calculated from the
282Th/>*8U ratio of the sample and estimated age (t) by:

208pp*/2%0phy* = (B2Th [ 28U) [(ehys0' — 1) / (€"238' — 1)] Eq. (A.5)

and is relatively insensitive to small errors in t (Williams, 1998). This formulation
works particularly well for targets with very low 2°Th/?*®U (<0.5), but is not suitable
for high Th/U targets (e.g. monazite, or the Durango, Kovdor, Mineville and Otter
Lake apatites in this study), especially those where 2**Th/?®U approaches 7, in which

case the 2°®Pb*/?®®Ph* ratio approaches the 2°2Pb/*®Pbeommon ratio (Williams, 1998).



Similar to Eq. (A.1), the fraction (f,0s) of total 2®Pb (*®*Pby) that is common 2%2Pb

(208Pbcommon) is:
fa08 = 208Pbcommon / 208Pbtotal Eqg. (A.6)

In single-collector ICPMS instruments where it is often difficult to measure the low
abundance 2**Pb isotope directly, f,0s can be estimated from the measured 2®Pb/?®®Ph
ratio (*®Pb/*®Pbymeasured), the assumed 2°®Pb/?%°Pb ratio of common Pb
(*°8Pb/*Pbeommon) and the fags ratio by:

f208 = f206 (Zogpblzoepbcommon) / (Zogpblzospbmeasured) EQ- (A7)

The 2°’Pb-correction method
This method utilizes the measured 2°’Pb/?°°Pb ratios to calculate the proportion of

common *®Pb as:
f206 = (20" Pb/P%Pbimeasured - 2 Pb*/2%°Pb*) / (2 Pb/2%®Pbcommon - 2 Pb*/*%®Pb*) Eq. (A.8)

Similar to the ®Pb-correction method, this correction also assumes that the U-Pb data
are concordant. This method is commonly used in ion micro-probe studies for young
(Phanerozoic) samples where the need to estimate radiogenic 2°°Pb/?**U as accurately

as possible outweighs the need to evaluate data concordance.
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Figure captions

Figure 1 A). Time-resolved signal collected from a dry, single-spot ablation (40 um)
of Otter Lake apatite. Ry is the intercept value calculated from regression of the
fractionating 2°’Pb/**U data. The ***Th/?*®U signal exhibits significantly less
fractionation than the ?°’Pb/**U or ?°Pb/?*®U ratios. B) Non-fractionating, time-
resolved signal collected from laser raster ablation (40 pm x 40 pm raster with a 10
um spot) of Otter Lake apatite with simultaneous nebulization of tracer solution
containing “®°Tl, 2Bi, ?**U and #"Np. The tracer solution ratios are represented by
dashed lines and the tracer solution is continually aspirated during the analysis

session.

Figure 2 (A-Z, a-f). Tera-Wasserburg Concordia diagrams anchored through common
Pb (left column), unanchored Tera-Wasserburg Concordia diagrams (second column
from the left), weighted average *°’Pb-corrected ages (second column from the right)
and weighted average (either 2®Pb-corrected or 2®Pb/?2Th) ages (right column) for

the apatite samples dated in this study.
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Summary of apatits aze constramis fom the literature
Apatite Standard Ape=lo(Ma) Method Fleference commion Do "Po, *'Pp ph’  Adoptedage
Dunnge 3144=018Ma2 *“2r™Ar weighted mean of four single crystal sanidine-anorthoclase analyss: McDowell e al. (3005) 2.06793, 0.83771: SE(D.03) 3144=018Ma
31022201 Ma weighted mean (U-Th)/He ape of 14 amalyzes McDowsll et al. (2005)
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045201 Ma  U-Pbzircon, one fraction concordant Coulson et al (2002}
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319-340 Ma Bb-Sr Biotite ages, reset during Alice Springs Orogeny Haines et al. {2001}
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U-Ph zircon age of an carly syenite Salnikova etal (199%)
U-Fh zircon age of a post-phlogonite assemblage pegmatite Fermitskii et al. (20007
DC 450 TU-Ph zircon TIMS Concordia ags Chew et al. {2007) 046=2Ma

U-Pb zircon LA-ICPMS Concordia age
*“Ar™Ar biotite

Chew et al. (2007}
Chew unpublished data

20860023, 0.857 £ 0.008*

"initial Pb compostions are those used for used for common Fb comection i this study. They employ the Stacey and KEramers (1875) Fo evohution mods] (for an age in Ga) unless otherwise stated *LA-MC-ICPMS
analyses of E-feldspar underaken in Memaorial University during the course of this sudy
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Tahle 3
Summary of apatite aze md concenmation da

Tt U Fb TWU o “Bm™m "B *Ph-com average MSWD 6%  ““Ph-com avenz MSWD 6%
Dunnzo 6 317 100 115 10 10608  OEi J05=13 va 78%  Hi5=11 Ma 030 3%
Emenid Lake 1D 471 32 238 33 10750 0.8418S 005=31 Ma 3% 05200 Ma 0357 £6%
Fowdar Carboratite 3538 650 635 20 205591  0.83087 38581 Ma 1 0=31 Ma D7 0%
Minevils 2630 187 687 13 11856 0.91119 1009 =15 Ma 15% *009=13 Ma 160 13%
Mudtark 473 398 527 11 200885  0.86486 #0231 Ma 88% 459=30Ma 067 Bl%
Otter Lakz 1487 961 784 11 114650  0.00300 03212 Ma 12% *M1=85Ma 07 08%
Shyudvaka b} 176 214 11 200885 0.85486 ! #7273 Ma 16% 450=15 Ma 070 34%
DC 450 728 755 074 13 206000 O8I0 3M4=01 Ma L4 SEN 34=87 My 100 8% 361=37 Ma 036 T4% 00=02 My 0B

Al errors are quoted at the 25level TW anchored denotes a T

Table 3

*"Do™*h,. TW Concordia denotes a Ters- Wasserurg lower intercept age with 1o initial Pb constraints. The
weighred average *"Ph-comected and " Po-comected ages ("7 Ph-com. average and **Po-com. averge) nse the TP ™ Th, and PP, values respectively in the commen lead comections. **Po-comectad azes denoted with an
asterish are instead uncomected P Th ames with hizh Th'U and bigh Th concenmtions.



Table 4
Summary of ™Pb- and ™"Pb-comected apatite ages from sample DC 4/52 comrected using i) the Pb isotopic composition derived from co-magmatic E-feldspar and ii) an iterative
approach basad on Stacey and Eramers (1975).

i) Pb corrected nsing K-feldspar if) *™Db-corracted nsing iteration ii) *"Db-corrected using iteration
“*Db-cor._1oMa "Pbcorr. lg Ma Der 1* Tter? Tter3 Tterd4 Ter 5  loMa % diff Iter. 1* Tter.2 Tter 3 Tter. 5
3607 + 1684 3523 401 4016 3655 3635 £ 1682 08% 4273 3640 3572 3564 = 492 11%
3451 + 1540 2984 434 3846 3480 470 & 1538 0.5% 3711 3041 2968 6.0 = 484 -D.8%
630 + 2411 4519 & 723 3370 2655 1581 + 2415 -19% ST0.7 4053 4823 4706 + 725 58%
3028 + 1314 3450 & 389 3363 3039 3025 £ 1314 -0.1% 4017 3518 3407 MT4 = 300 0%
W10 & 2116 3547 & 464 3343 2014 1000 2890 2800 : 2118 -0.4% 4302 3668 3500 3501 & 465 1%
4573 + 1659 4029 + 508 4930 4650 4646 4645 4645 : 1653 16% 4703 4176 4115 4119 + 510 22%
4506 & 1321 3741 & 444 4885 4664 4655 4655 4655 = 1318 13% 4316 3837 370.6 3792 + 446 13%
4083 + 1578 3G+ 472 4418 4141 4128 4128 4128 = 1576 11% 4414 3005 3860 3855 & 474 1%
4013 + 1144 3389 393 S17.7 4986 4979 4970 4979 = 11398 13% P63 3453 34L1 07 : 304 0.5%
07 & 3300 3683 773 4207 3500 3543 3537 3537 & 3306 11% 4906 3087 3824 3790 + 775 28%
3413+ 1609 4081 + 486 3E37 3453 3431 M31 3431 :+ 1607 0.5% 4318 4266 4206 4190 + 487 26%
348+ 2156 3277 & 512 4254 3900 3800 3EB0 3880 = 2150 11% 4060 3375 3308 288 &+ 512 04%
0+ 9 ¥l 2 77 428 396 304 304 304 & 92 10% 431 373 367 366 = 27 14%

*The first iteration uses a staming estimare of 1 Ga for the Stacey and Eramers (1975) Pb modsl. Subsequent iterations use the Ph-comected age in the column ro the lefi "Last row is
comprised of weighted means of the 12 analyses.
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Figure 2B



Research Highlights

e Rapid, accurate U-Pb and Th-Pb apatite dating possible by single collector
LA-ICPMS

e Apatite standards yields ages consistent with independent estimates of the U-
Pb age

e Th-Pb dating yields much promise, particularly in high Th samples

e Accurate common Pb correction can be achieved without measuring “**Pb

e Opens the possibility of detrital apatite dating for sedimentary provenance
analysis



