Accepted Manuscript

Exploration of the reaction of potassium organotrifluoroborates with porphyrins

Sabine Horn, Bob Cundell, Mathias O. Senge

PII:S0040-4039(09)00635-2DOI:10.1016/j.tetlet.2009.03.098Reference:TETL 35776

To appear in: Tetrahedron Letters

Received Date:18 December 2008Revised Date:24 January 2009Accepted Date:12 March 2009

Please cite this article as: Horn, S., Cundell, B., Senge, M.O., Exploration of the reaction of potassium organotrifluoroborates with porphyrins, *Tetrahedron Letters* (2009), doi: 10.1016/j.tetlet.2009.03.098

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Tetrahedron Letters

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron Letters

TETRAHEDRON LETTERS

Exploration of the reaction of potassium organotrifluoroborates with porphyrins

Sabine Horn,^a Bob Cundell^b and Mathias O. Senge^{a*}

^a School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity College Dublin, Dublin 2, Ireland

^b Frontier Scientific Europe Ltd., Carnforth, Lancashire LA6 1DE, United Kingdom

Abstract— A general method which uses potassium organotrifluoroborates in the Suzuki-Miyaura cross-coupling reaction with ringbrominated porphyrins has been investigated. The reaction conditions tolerate various functional groups and are applicable to the meso- and β -positions as well as to aryl- and alkyl-substituted porphyrins. Depending on the nature of the potassium organotrifluoroborate, the coupling products can be obtained in yields of up to 75%.

Keywords: porphyrin, potassium organotrifluoroborate, Suzuki reaction, cross-coupling reaction, C-C bond formation, Pd-catalyzed reaction, alkyl-substituted © 2009 Elsevier Science. All rights reserved

The development of new synthetic pathways and strategies in the field of porphyrin chemistry is important for continued growth of their applications in industry and medicine. Depending on the substitution pattern, different porphyrins are widely used in various areas ranging from photophysics (non-linear optics), electron transfer (solar energy conversion), to medicinal chemistry (photodynamic therapy).¹

Amphiphilic porphyrins are of special interest in the field of photodynamic therapy.² The design of these compounds requires the introduction of alkyl substituents onto the porphyrin moiety as a crucial step. However, apart from total synthesis, only a limited number of procedures are available to generate alkyl-substituted porphyrins. One of the most common methods is the use of alkyllithium reagents which is limited to certain functional groups.³ Hence, there is a need for the development of alternative pathways towards alkyl-substituted porphyrins.

One of the most straightforward methods for the design of new compounds is the use of C–C coupling reactions. Among palladium-catalyzed reactions, the Suzuki crosscoupling reaction is very popular in porphyrin chemistry.⁴ Interestingly, arylboronic derivatives are used predominantly in these reactions as coupling partners with halogenated porphyrins. So far, there is only one example reported previously where a porphyrin was reacted with an alkylboronic acid, namely the reaction of methylboronic acid with a β -brominated porphyrin.⁵ This lack of examples is probably due to the fact that cross-coupling reactions using alkyl-metallic compounds have proven problematic as the organopalladium intermediates can undergo β hydride elimination.⁶ However, it has been shown in other areas that the use of potassium organotrifluoroborates instead of boronic acids or esters offers various advantages.⁶ The most significant benefit is their higher air stability. Additionally, there are a number of commercially available potassium organotrifluoroborates that cannot be obtained as the boronic acid or ester analogue due to their instability.

In relation to our ongoing development of new metalmediated reactions on porphyrins,^{7,8} we have undertaken a study of the reaction of potassium organotrifluoroborates with porphyrins. Only one example using zinc-metalated porphyrins has been previously reported,⁹ however, this involved the reaction with a brominated meso-phenyl ring targeted at cationic porphyrins. Here, we present a detailed study of the reaction of various potassium organotrifluoroborates, focusing on the use of potassium alkyltrifluoroborates with free-base porphyrins directly

^{*} Corresponding author. Tel.: +353 1 896 8537; fax: +353 1 8536; e-mail: sengem@tcd.ie.

Tetrahedron Letters

brominated in the meso- and β -position and containing aryl and alkyl substituents as well as different substitution patterns.

For ease of comparison with literature data, the reaction of 5-bromo-10,15,20-tris(4-methyphenyl)porphyrin⁸ 1 (see Fig. 1) with potassium vinyltrifluoroborate was chosen as a model reaction. After optimizing the reaction conditions of Molander et al.^{10,11} for the Suzuki couplings involving meso-porphyrins,¹² 5,10,15-tris(4-methylphenyl)-20vinylporphyrin 6 was obtained in 61% yield (Scheme 1).¹³ The reaction of potassium vinyltrifluoroborate at the mesobromophenyl position of [5-(4-bromophenyl)-10,15,20tri(4-pyridyl)porphyrinato]zinc(II) gave the vinylphenyl analogue in 56% yield.⁹ The synthesis of 5,10,15-tris(4methylphenyl)-20-vinylporphyrin 6 using the boronic ester analogue, namely vinylboronic acid pinacol ester, was reported earlier by us in 52% yield.⁸ This result is in agreement with observations made by Molander and coworkers that potassium trifluoroborates give slightly higher yields than their boronic acid or ester analogues.

Figure 1. Structures of the starting materials.

this result, Encouraged by various potassium organotrifluoroborates were subjected to the same reaction conditions (Scheme 1). All the reactions were carried out in a sealed Schlenk tube and heated until completion (monitored by TLC). Apart from compound 7, with a reaction time of two days, all of the reactions were complete within 12 h. The reaction conditions were tolerant towards various functional groups with yields ranging from moderate to good.¹⁴ Note, that the potassium organotrifluoroborates used for the synthesis of compounds 9-13 are not commercially available as their boronic acid or ester analogues and thus the present approach offers significant advantages. Usually, the synthesis of compounds 7-13 would include several steps. An alternative pathway for the synthesis of 8 could be provided by the use of MeLi in S_NAr reactions. However, this presents problems through multiple reactions at the meso position.

 Scheme 1. Reaction of potassium organotrifluoroborates with 5-bromo-10,15,20-tris(4-methylphenyl)porphyrin.
 Reaction
 conditions:

 bromoporphyrin (1 equiv), potassium organoborate (10 equiv, ^a20 equiv.), Cs₂CO₃ (20 equiv), Pd(dppf)Cl₂ (25 mol%).
 Cs
 Cs

To investigate the general applicability of the reaction conditions for porphyrins with other substitution patterns, 5,15-dibromo-10,20-bis(4-methylphenyl)porphyrin 2^{7a} 5-bromo-10,15,20-trihexylporphyrin 3^{8} and 2-bromo-5,10,15,20-tetraphenylporphyrin 5^{16} were reacted with potassium cyanoethyltrifluoroborate to give compounds 14-16, respectively (Figure 2).¹⁷ In the case of the dibrominated starting material, the amounts of potassium cyanoethyltrifluoroborate and cesium carbonate were

Tetrahedron Letters

doubled according to the number of bromide-substituents. Compounds 14 and 15 were obtained in lower yields than 16. Surprisingly, the difference in the reaction at the mesoversus the β -position is very small and compound 16 was obtained in a yield comparable to that for 9.

Figure 2. Cyano derivatives.

In an attempt to synthesize a methyl-bridged porphyrin dimer, compound **1** was reacted with potassium bromomethyltrifluoroborate. However, as no reaction was observed and only starting material was recovered, a more reactive porphyrin, namely [5-iodo-10,15,20-tris(4methylphenyl)porphyrinato]nickel(II) **4**, was subjected to the same reaction conditions. Surprisingly, the only product obtained was the directly meso-meso linked bisporphyrin **17** in 10% yield (Figure 3). The reaction mechanism remains unclear but investigations are ongoing. Possibly, a radical dimerization took place similar to that reported previously in oxidative coupling reactions.^{70,18}

In conclusion, we have presented a detailed investigation of the reaction of various potassium organotrifluoroborates with directly brominated porphyrins. The method is generally applicable to the meso- and β -position of the macrocycle as well as to aryl- and alkyl-substituted porphyrins with different substitution patterns. The reaction conditions tolerate various functional groups and depending on the nature of the potassium organotrifluoroborate, the new compounds were obtained in moderate to good yields. As potassium organotrifluoroborates offer a good alternative to boronic acids or esters, many of which are commercially available, we believe this method presents a useful tool for the synthesis of novel porphyrins and we are currently expanding the scope of this application.

Figure 3. Bisporphyrin 17.

Acknowledgment

This work was generously supported by a Science Foundation Ireland Research Professorship grant (SFI/04/RP1/B482).

References

- Pandey, R. K.; Zheng, G. In *The Porphyrin Handbook*; Kadish, K. M.; Smith, K. M.; Guilard, R. Eds.; Academic Press: New York, 2000; pp. 157–230.
- Boyle, R. W.; Dolphin, D. Photochem. Photobiol. 1996, 64, 496–485.
- 3. Senge, M. O. Acc. Chem. Res. 2005, 38, 733-743.
- (a) Sharman, W. M.; Van Lier, J. E. J. Porphyrins Phthalocyanines 2000, 4, 441–453; (b) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437–3440.
- Zhou, X.; Zhou, Z.-Y.; Mak, T. C. W.; Chan, K. S. J. Chem. Soc., Perkin Trans. 1 1994, 2519–2520.
- Molander, G., A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275– 286.
- (a) Horn, S.; Sergeeva, N. N.; Senge, M. O. J. Org. Chem. 2007, 72, 5414–5417; (b) Feng, X.; Senge, M. O. J. Chem. Soc., Perkin Trans. 1 2001, 1030–1038; (c) Esdaile, L. J.; Senge, M. O.; Arnold, D. P. Chem. Commun. 2006, 4192– 4194; Fazekas, M.; Pintea, M.; Senge, M. O.; Zawadzka, M. Tetrahedron Lett. 2008, 49, 2236–2239
- 8. Horn, S.; Senge, M. O. Eur. J. Org. Chem. 2008, 4881-4890.
- Tremblay-Morin, J.-P.; Ali, H.; van Lier, J. E. *Tetrahedron* Lett. 2006, 47, 3043-3046.
- 10. Molander, G., A.; Ito, T. Org. Lett. 2001, 3, 393-396.
- 11. Molander, G., A.; Rivero, M. R. Org. Lett. 2002, 4, 107-109.
- Shi, B.; Boyle, R. W. J. Chem. Soc., Perkin Trans. 1 2002, 1397-1400.
- 13. General procedure: A 20 mL Schlenk tube was flushed with argon and charged with porphyrin (30 mg, 1 equiv) and Cs_2CO_3 (20 equiv) in THF/H₂O (10:1, v/v). The solution was degassed *via* three freeze-pump-thaw cycles and placed under argon. Potassium organotrifluoroborate (10 equiv) and Pd(dppf)Cl₂ (0.25 equiv) were added and the reaction mixture was heated to 80 °C overnight. The solvent was removed and the residue was dissolved in dichloromethane. The crude product was washed with a saturated solution of sodium

Tetrahedron Letters

bicarbonate, water and brine. The organic phase was dried over magnesium sulfate, the solvent evaporated and the crude product purified by column chromatography on silica gel (CH₂Cl₂/*n*-hexane, 1:1, v/v).

14. All new compounds reported herein showed spectral data consistent with the assigned structures. Selected data: compound 7: Yield: 6.2 mg (0.01 mmol, 21%); mp >300 °C; $R_{\rm f} = 0.52 \; (\text{CH}_2\text{Cl}_2/n\text{-hexane}, 1:1, v/v); {}^{1}\text{H} \; \text{NMR} \; (600 \; \text{MHz},$ CDCl₃): $\delta = -2.68$ (s, 2H, NH), 1.00 (t, 3H, ³J = 7.34 Hz, $(CH_2)_4CH_3$, 1.59 (t, 2H, ³J = 7.70 Hz, $(CH_2)_3CH_2CH_3$), 1.83 (t, 2H, ${}^{3}J = 7.70$ Hz, (CH₂)₂CH₂CH₂CH₃), 2.59 (t, 2H, ${}^{3}J =$ 7.34 Hz, CH₂CH₂(CH₂)₂CH₃), 2.73 (s, 3H, C₆H₄CH₃), 2.75 (s, 6H, C₆H₄C H_3), 5.05 (t, 2H, ³J = 8.07 Hz, CH₂(CH₂)₃CH₃), 7.57 (d, 2H, ${}^{3}J$ = 7.34 Hz, H_{Ar}), 7.59 (d, 4H, ${}^{3}J$ = 7.34 Hz, $H_{\rm Ar}$), 8.10 (d, 2H, ${}^{3}J$ = 8.07 Hz, $H_{\rm Ar}$), 8.12 (d, 4H, ${}^{3}J$ = 7.34 Hz, H_{Ar}), 8.83 (s, 4H, H_{β}), 8.96 (d, 2H, ${}^{3}J = 4.40$ Hz, H_{β}), 9.50 (d, 2H, ${}^{3}J = 5.14$ Hz, H_{B}) ppm; UV-vis (CH₂Cl₂): λ_{max} $(\lg \varepsilon) = 419 \text{ nm} (5.7), 517 (4.6), 553 (4.5), 593 (4.4), 649$ (4.4); HRMS (ES+) [C46H42N4+H]: calcd 651.3488, found 651.3495. Compound 8: Yield: 7.8 mg (0.013 mmol, 29%); mp >300 °C; $R_f = 0.43$ (CH₂Cl₂/*n*-hexane, 1:1, v/v); ¹H NMR (400 MHz, CDCl₃): $\delta = -2.63$ (s, 2H, NH), 2.72 (s, 3H, $C_6H_4CH_3$), 2.75 (s, 6H, $C_6H_4CH_3$), 4.71 (s, 3H, CH_3), 7.57 (d, 2H, $^3J = 8.03$ Hz, H_{Ar}), 7.59 (d, 4H, $^3J = 7.78$ Hz, H_{Ar}), 8.10 (d, 2H, ${}^{3}J = 7.53$ Hz, H_{Ar}), 8.12 (d, 4H, ${}^{3}J = 7.78$ Hz, H_{Ar}), 8.84 (s, 4H, H_{β}), 8.96 (d, 2H, ${}^{3}J = 4.77$ Hz, H_{β}), 9.53 (d, 2H, ${}^{3}J = 4.77 \text{ Hz}, H_{\beta}$ ppm; UV-vis (CH₂Cl₂): λ_{max} (lg ε) = 419 nm (5.6), 517 (4.5), 552 (4.4), 593 (4.4), 651 (4.4); HRMS (ES+) $[C_{42}H_{34}N_4$ +H]: calcd 595.2862, found 595.2843. Compound 9: Yield: 21.1 mg (0.033 mmol, 73%); mp >300 °C; $R_{\rm f} = 0.58$ (CH₂Cl₂/*n*-hexane, 1:1, v/v); ¹H NMR (600 MHz, CDCl₃): $\delta = -2.75$ (s, 2H, NH), 2.72 (s, 3H, C₆H₄CH₃), 2.76 (s, 6H, C₆H₄CH₃), 3.56 (t, 2H, ³J = 8.07 Hz, CH₂CN), 5.46 (t, 2H, ${}^{3}J$ = 8.07 Hz, CH₂CH₂CN), 7.58 (d, 2H, ${}^{3}J$ = 8.07 Hz, H_{Ar}), 7.60 (d, 4H, ${}^{3}J$ = 7.34 Hz, H_{Ar}), 8.09 (d, 2H, ${}^{3}J$ = 7.34 Hz, $H_{\rm Ar}$), 8.11 (d, 4H, ${}^{3}J$ = 8.07 Hz, $H_{\rm Ar}$), 8.85 (s, 4H, H_{β}), 9.03 (d, 2H, ${}^{3}J = 5.14$ Hz, H_{β}), 9.46 (d, 2H, ${}^{3}J = 4.40$ Hz, H_{β} ppm; UV-vis (CH₂Cl₂): λ_{max} (lg ε) = 419 nm (5.7), 516 (4.6), 551 (4.5), 592 (4.5), 648 (4.4); HRMS (ES+) [C44H35N5+H]: calcd 634.2971, found 634.3000. Compound **10**: Yield: 7.9 mg (0.012 mmol, 26%); mp >300 °C; $R_{\rm f} = 0.26$ (ethyl acetate); ^TH NMR (400 MHz, CDCl₃): $\delta = -2.77$ (s, 2H, NH), 1.82 (s, 4H, NCH₂(CH₂)₂), 2.72 (s, 3H, C₆H₄CH₃), 2.75 (s, 6H, C₆H₄CH₃), 2.94 (s, 4H, NCH₂(CH₂)₂CH₂), 6.00 (s, 2H, CH₂N), 7.57 (d, 2H, ${}^{3}J = 5.87$ Hz, H_{Ar}), 7.59 (d, 4H, ${}^{3}J = 6.85$ Hz, H_{Ar}), 8.10 (d, 2H, ${}^{3}J = 4.89$ Hz, H_{Ar}), 8.12 (d, 4H, ${}^{3}J = 7.83$ Hz, H_{Ar}), 8.85 (d, 4H, ${}^{3}J = 2.93$ Hz, H_{β}), 8.98 (d, 2H, ${}^{3}J = 4.89$ Hz, H_{β}), 9.69 (d, 2H, ${}^{3}J = 3.91$ Hz, H_{β}) ppm; UV-vis (CH₂Cl₂): λ_{max} (lg ε) = 421 nm (5.4), 519 (4.3), 554 (4.2), 594 (4.2), 651 (4.1); HRMS (ES+) [C₄₆H₄₁N₅+H]: calcd 664.3461, found 664.3440. Compound 11: Yield: 4.9 mg $(0.007 \text{ mmol}, 16\%); \text{ mp } >300 \text{ °C}; R_{f} = 0.28 (CH_{2}Cl_{2}/n)$ hexane, 1:1, v/v); ¹H NMR (600 MHz, CDCl₃): $\delta = -2.72$ (s, 2H, NH), 2.73 (s, 3H, C₆H₄CH₃), 2.75 (s, 6H, C₆H₄CH₃), 3.59 (t, 2H, ${}^{3}J = 8.44$ Hz, CH₂CH₂OCH₃), 3.80 (s, 3H, CH₂CH₂OCH₃), 5.42 (t, 2H, ${}^{3}J = 8.44$ Hz, CH₂CH₂OCH₃), 7.57 (d, 2H, ${}^{3}J = 8.07$ Hz, H_{Ar}), 7.59 (d, 4H, ${}^{3}J = 7.34$ Hz, $H_{\rm Ar}$), 8.09 (d, 2H, ${}^{3}J$ = 8.80 Hz, $H_{\rm Ar}$), 8.11 (d, 4H, ${}^{3}J$ = 7.34 Hz, H_{Ar}), 8.84 (s, 4H, H_{β}), 8.98 (d, 2H, ${}^{3}J = 4.40$ Hz, H_{β}), 9.53 (d, 2H, ${}^{3}J = 4.40$ Hz, H_{β}) ppm; UV-vis (CH₂Cl₂): $\lambda_{\text{max}}^{'}$ $(\lg \epsilon) = 419 \text{ nm} (5.6), 516 (4.5), 552 (4.3), 593 (4.2), 651$ (4.2); HRMS (ES+) [C₄₅H₃₈N₄O₂+H]: calcd 667.3073, found 667.3093. Compound 12: Yield: 6.7 mg (0.009 mmol, 21%); mp 273 °C; $R_f = 0.69$ (ethyl acetate); ¹H NMR (600 MHz, $CDCl_3$): $\delta = -2.70$ (s, 2H, NH), 2.73 (s, 5H, $C_6H_4CH_3$, CH_2O), 2.76 (s, 6H, $C_6H_4CH_3$), 2.91 (t, 2H, ${}^{3}J = 4.40$ Hz, NCH₂), 3.47 (t, 2H, ${}^{3}J = 4.77$ Hz, OCH₂), 3.57 (t, 2H, ${}^{3}J =$

8.07 Hz, CH₂CH₂CO), 3.66 (t, 2H, ${}^{3}J = 4.40$ Hz, CH₂N), 5.47 (t, 2H, ${}^{3}J$ = 9.17 Hz, CH₂CH₂CO), 7.58 (d, 2H, ${}^{3}J$ = 8.80 Hz, H_{Ar}), 7.60 (d, 4H, ${}^{3}J$ = 7.34 Hz, H_{Ar}), 8.10 (d, 2H, ${}^{3}J$ = 4.40 Hz, H_{Ar}), 8.11 (d, 4H, ${}^{3}J$ = 8.07 Hz, H_{Ar}), 8.85 (s, 4H, $H_{\rm B}$), 8.99 (d, 2H, ${}^{3}J$ = 4.40 Hz, $H_{\rm B}$), 9.53 (d, 2H, ${}^{3}J$ = 4.40 Hz, H_{β}) ppm; UV-vis (CH₂Cl₂): λ_{max} (lg ε) = 419 nm (5.5), 518 (4.5), 552 (4.4), 592 (4.4), 647 (4.4); HRMS (ES+) $[C_{48}H_{43}N_5O_2+H]$: calcd 722.3495, found 722.3404. Compound 13: Yield: 24.2 mg (0.034 mmol, 75%); mp >300 °C; $R_{\rm f} = 0.23$ (ethyl acetate/*n*-hexane, 1:2, v/v); ¹H NMR (600 MHz, CDCl₃): $\delta = -2.73$ (s, 2H, NH), 2.73 (s, 3H, C₆H₄CH₃), 2.74 (s, 6H, C₆H₄CH₃), 3.72 (s, 3H, NCH₃CH), 3.75 (s, 3H, CONCH₃CO), 7.59 (m, 6H, H_{Ar}), 8.00 (s, 1H, CH), 8.12 (m, 6H, H_{Ar}), 8.87 (d, 4H, ${}^{3}J = 3.67$ Hz, H_{β}), 8.94 (d, 2H, ${}^{3}J = 3.67$ Hz, H_{β}), 9.06 (d, 2H, ${}^{3}J = 4.40$ Hz, H_{β}) ppm; UV-vis $(CH_2Cl_2): \lambda_{max} (lg \epsilon) = 420 \text{ nm} (5.8), 516 (4.6), 551 (4.4), 591$ (4.3), 648 (4.3); HRMS (ES+) $[C_{47}H_{38}N_6O_2+H]$: calcd 719.3126, found 719.3134.

- (a) Senge, M. O.; Kalisch, W. W.; Runge, S. *Tetrahedron* 1998, 54, 3781–3798; (b) Runge, S.; Senge, M. O. Z. *Naturforsch.* 1998, 53b, 1021–1030; (c) Kalisch, W. W.; Senge, M. O. *Angew. Chem. Int. Ed.* 1998, 37, 1107–1109.
- 16. Liu, C.; Shen, D.-M.; Chen, Q.-Y. Chem. Commun. 2006, 770–772.
- 17. All new compounds reported herein showed spectral data consistent with the assigned structures. Selected data: compound 14: Yield: 9.4 mg (0.016 mmol, 35%); mp >300 °C; $R_{\rm f} = 0.22$ (CH₂Cl₂/*n*-hexane, 2:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ = -2.80 (s, 2H, NH), 2.77 (s, 6H, C₆H₄CH₃), 3.56 (t, 4H, ${}^{3}J$ = 7.89 Hz, CH₂CN), 5.41 (t, 4H, ${}^{3}J$ = 7.89 Hz, CH_2CH_2CN), 7.61 (d, 4H, ${}^{3}J = 7.60$ Hz, H_{Ar}), 8.09 (d, 4H, ${}^{3}J$ = 7.60 Hz, H_{Ar}), 9.00 (d, 4H, ${}^{3}J$ = 4.68 Hz, H_{β}), 9.43 (d, 4H, ${}^{3}J = 5.26$ Hz, H_{β}) ppm; UV-vis (CH₂Cl₂): λ_{max} (lg ε) = 418 nm (5.6), 516 (4.4), 551 (4.4), 594 (4.4), 650 (4.4); HRMS (ES+) [C₄₀H₃₂N₆+H]: calcd 597.2759, found 597.2767. Compound 15: Yield: 7.1 mg (0.0115 mmol, 25%); mp 117 °C; $R_{\rm f} = 0.18$ (CH₂Cl₂/*n*-hexane, 1:1, v/v); ¹H NMR (400 MHz, CDCl₃): $\delta = -2.73$ (s, 2H, NH), 0.99 (t, 9H, ${}^{3}J = 7.28$ Hz, CH₃), 1.45 (m, 6H, (CH₂)₄CH₂CH₃), 1.55 (m, 6H, (CH₂)₃CH₂CH₂CH₃), 1.84 (m, 6H, (CH₂)₂CH₂(CH₂)₂CH₃), 2.53 (m, 6H, $CH_2CH_2(CH_2)_3CH_3$), 3.47 (t, 2H, ³J = 8.78 Hz, CH₂CN), 4.94 (m, 6H, CH₂(CH₂)₄CH₃), 5.32 (t, 2H, ${}^{3}J = 8.78$ Hz, CH₂CH₂CN), 9.39 (d, 2H, ${}^{3}J = 4.77$ Hz, H_{β}), 9.49 (d, 4H, ${}^{3}J = 4.77$ Hz, H_{β}), 9.53 (d, 2H, ${}^{3}J = 5.02$ Hz, H_{β}) ppm; UV-vis $(CH_2Cl_2): \lambda_{max} (lg \epsilon) = 418 \text{ nm} (5.6), 518 (4.5), 554 (4.4), 600$ (4.3), 656 (4.3); HRMS (ES+) $[C_{41}H_{53}N_5+H]$: calcd 616.4379, found 616.4367. Compound 16: Yield: 20.2 mg (0.03 mmol, 70%); mp 123 °C; $R_f = 0.22$ (CH₂Cl₂/*n*-hexane, 1:1, v/v); ¹H NMR (400 MHz, CDCl₃): $\delta = -2.75$ (s, 2H, NH), 2.78 (t, 2H, ${}^{3}J = 7.31$ Hz, CH₂CN), 3.22 (t, 2H, ${}^{3}J =$ 7.60 Hz, CH_2CH_2CN), 7.79 (m, 12H, H_{Ar}), 8.15 (d, 2H, ${}^{3}J$ = 7.02 Hz, $H_{\rm Ar}$), 8.24 (m, 6H, $H_{\rm Ar}$), 8.68 (d, 1H, ${}^{3}J$ = 4.68 Hz, H_{β}), 8.71 (s, 1H, H_{β}), 8.81 (d, 1H, ${}^{3}J$ = 4.68 Hz, H_{β}), 8.83 (d, 1H, ${}^{3}J = 4.68$ Hz, H_{β}), 8.87 (m, 3H, H_{β}) ppm; UV-vis (CH₂Cl₂): λ_{max} (lg ε) = 419 nm (5.4), 516 (4.2), 551 (4.0), 591 (3.9), 648 (3.9); HRMS (ES+) [C₄₇H₃₃N₅+H]: calcd 668.2814, found 668.2836.
- (a) Osuka, A.; Shimidzu, H. Angew. Chem. Int. Ed. 1997, 36, 135–137; (b) Yoshida, N.; Shimidzu, K.; Osuka, A. Chem. Lett. 1998, 55–56; (c) Senge, M. O.; Feng, X. Tetrahedron Lett. 1999, 40, 4165–4168.