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Exploration of the reaction of potassium organotrifluoroborates 
with porphyrins 

Sabine Horn,a Bob Cundellb and Mathias O. Sengea* 

a School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity College Dublin, Dublin 2, Ireland 
b Frontier Scientific Europe Ltd., Carnforth, Lancashire LA6 1DE, United Kingdom 

 

Abstract— A general method which uses potassium organotrifluoroborates in the Suzuki-Miyaura cross-coupling reaction with ring-
brominated porphyrins has been investigated. The reaction conditions tolerate various functional groups and are applicable to the meso- and 
β-positions as well as to aryl- and alkyl-substituted porphyrins. Depending on the nature of the potassium organotrifluoroborate, the 
coupling products can be obtained in yields of up to 75%.  

Keywords: porphyrin, potassium organotrifluoroborate, Suzuki reaction, cross-coupling reaction, C-C bond formation, Pd-catalyzed 
reaction, alkyl-substituted © 2009 Elsevier Science. All rights reserved 
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The development of new synthetic pathways and strategies 
in the field of porphyrin chemistry is important for 
continued growth of their applications in industry and 
medicine. Depending on the substitution pattern, different 
porphyrins are widely used in various areas ranging from 
photophysics (non-linear optics), electron transfer (solar 
energy conversion), to medicinal chemistry (photodynamic 
therapy).1 

Amphiphilic porphyrins are of special interest in the field 
of photodynamic therapy.2 The design of these compounds 
requires the introduction of alkyl substituents onto the 
porphyrin moiety as a crucial step. However, apart from 
total synthesis, only a limited number of procedures are 
available to generate alkyl-substituted porphyrins. One of 
the most common methods is the use of alkyllithium 
reagents which is limited to certain functional groups.3 
Hence, there is a need for the development of alternative 
pathways towards alkyl-substituted porphyrins. 

One of the most straightforward methods for the design of 
new compounds is the use of C–C coupling reactions. 
Among palladium-catalyzed reactions, the Suzuki cross-
coupling reaction is very popular in porphyrin chemistry.4 
Interestingly, arylboronic derivatives are used 
predominantly in these reactions as coupling partners with 

halogenated porphyrins. So far, there is only one example 
reported previously where a porphyrin was reacted with an 
alkylboronic acid, namely the reaction of methylboronic 
acid with a β-brominated porphyrin.5 This lack of examples 
is probably due to the fact that cross-coupling reactions 
using alkyl-metallic compounds have proven problematic 
as the organopalladium intermediates can undergo β-
hydride elimination.6 However, it has been shown in other 
areas that the use of potassium organotrifluoroborates 
instead of boronic acids or esters offers various 
advantages.6 The most significant benefit is their higher air 
stability. Additionally, there are a number of commercially 
available potassium organotrifluoroborates that cannot be 
obtained as the boronic acid or ester analogue due to their 
instability.  

In relation to our ongoing development of new metal-
mediated reactions on porphyrins,7,8 we have undertaken a 
study of the reaction of potassium organotrifluoroborates 
with porphyrins. Only one example using zinc-metalated 
porphyrins has been previously reported,9 however, this 
involved the reaction with a brominated meso-phenyl ring 
targeted at cationic porphyrins. Here, we present a detailed 
study of the reaction of various potassium 
organotrifluoroborates, focusing on the use of potassium 
alkyltrifluoroborates with free-base porphyrins directly 
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brominated in the meso- and β-position and containing aryl 
and alkyl substituents as well as different substitution 
patterns. 

For ease of comparison with literature data, the reaction of 
5-bromo-10,15,20-tris(4-methyphenyl)porphyrin8 1 (see 
Fig. 1) with potassium vinyltrifluoroborate was chosen as a 
model reaction. After optimizing the reaction conditions of 
Molander et al.10,11 for the Suzuki couplings involving 
meso-porphyrins,12 5,10,15-tris(4-methylphenyl)-20-
vinylporphyrin 6 was obtained in 61% yield (Scheme 1).13 
The reaction of potassium vinyltrifluoroborate at the meso-
bromophenyl position of [5-(4-bromophenyl)-10,15,20-
tri(4-pyridyl)porphyrinato]zinc(II) gave the vinylphenyl 
analogue in 56% yield.9 The synthesis of 5,10,15-tris(4-
methylphenyl)-20-vinylporphyrin 6 using the boronic ester 
analogue, namely vinylboronic acid pinacol ester, was 
reported earlier by us in 52% yield.8 This result is in 
agreement with observations made by Molander and co-
workers that potassium trifluoroborates give slightly higher 
yields than their boronic acid or ester analogues.10 
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Figure 1. Structures of the starting materials. 

Encouraged by this result, various potassium 
organotrifluoroborates were subjected to the same reaction 
conditions (Scheme 1). All the reactions were carried out in 
a sealed Schlenk tube and heated until completion 
(monitored by TLC). Apart from compound 7, with a 
reaction time of two days, all of the reactions were 
complete within 12 h. The reaction conditions were tolerant 
towards various functional groups with yields ranging from 
moderate to good.14 Note, that the potassium 
organotrifluoroborates used for the synthesis of compounds 
9-13 are not commercially available as their boronic acid or 
ester analogues and thus the present approach offers 
significant advantages. Usually, the synthesis of 
compounds 7-13 would include several steps. An 
alternative pathway for the synthesis of 8 could be provided 
by the use of MeLi in SNAr reactions. However, this 
presents problems through multiple reactions at the meso 
position.15 
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Scheme 1. Reaction of potassium organotrifluoroborates with 5-bromo-
10,15,20-tris(4-methylphenyl)porphyrin. Reaction conditions: 
bromoporphyrin (1 equiv), potassium organoborate (10 equiv, a20 equiv.), 
Cs2CO3 (20 equiv), Pd(dppf)Cl2 (25 mol%). 

To investigate the general applicability of the reaction 
conditions for porphyrins with other substitution patterns, 
5,15-dibromo-10,20-bis(4-methylphenyl)porphyrin 2,7a 5-
bromo-10,15,20-trihexylporphyrin 3,8 and 2-bromo-
5,10,15,20-tetraphenylporphyrin 516 were reacted with 
potassium cyanoethyltrifluoroborate to give compounds 14-
16, respectively (Figure 2).17 In the case of the 
dibrominated starting material, the amounts of potassium 
cyanoethyltrifluoroborate and cesium carbonate were 
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doubled according to the number of bromide-substituents. 
Compounds 14 and 15 were obtained in lower yields than 
16. Surprisingly, the difference in the reaction at the meso- 
versus the β-position is very small and compound 16 was 
obtained in a yield comparable to that for 9. 
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Figure 2. Cyano derivatives. 

In an attempt to synthesize a methyl-bridged porphyrin 
dimer, compound 1 was reacted with potassium 
bromomethyltrifluoroborate. However, as no reaction was 
observed and only starting material was recovered, a more 
reactive porphyrin, namely [5-iodo-10,15,20-tris(4-
methylphenyl)porphyrinato]nickel(II) 4, was subjected to 
the same reaction conditions. Surprisingly, the only product 
obtained was the directly meso-meso linked bisporphyrin 
17 in 10% yield (Figure 3). The reaction mechanism 
remains unclear but investigations are ongoing. Possibly, a 
radical dimerization took place similar to that reported 
previously in oxidative coupling reactions.7b,18 

In conclusion, we have presented a detailed investigation of 
the reaction of various potassium organotrifluoroborates 
with directly brominated porphyrins. The method is 
generally applicable to the meso- and β-position of the 
macrocycle as well as to aryl- and alkyl-substituted 
porphyrins with different substitution patterns. The reaction 
conditions tolerate various functional groups and depending 
on the nature of the potassium organotrifluoroborate, the 
new compounds were obtained in moderate to good yields. 
As potassium organotrifluoroborates offer a good 
alternative to boronic acids or esters, many of which are 

commercially available, we believe this method presents a 
useful tool for the synthesis of novel porphyrins and we are 
currently expanding the scope of this application. 
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Figure 3. Bisporphyrin 17. 
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NH), 2.78 (t, 2H, 3J = 7.31 Hz, CH2CN), 3.22 (t, 2H, 3J = 
7.60 Hz, CH2CH2CN), 7.79 (m, 12H, HAr), 8.15 (d, 2H, 3J = 
7.02 Hz, HAr), 8.24 (m, 6H, HAr), 8.68 (d, 1H, 3J = 4.68 Hz, 
Hβ), 8.71 (s, 1H, Hβ), 8.81 (d, 1H, 3J = 4.68 Hz, Hβ), 8.83 (d, 
1H, 3J = 4.68 Hz, Hβ), 8.87 (m, 3H, Hβ) ppm; UV-vis 
(CH2Cl2): λmax (lg ε) = 419 nm (5.4), 516 (4.2), 551 (4.0), 591 
(3.9), 648 (3.9); HRMS (ES+) [C47H33N5+H]: calcd 
668.2814, found 668.2836. 

18.  (a) Osuka, A.; Shimidzu, H. Angew. Chem. Int. Ed. 1997, 36, 
135–137; (b) Yoshida, N.; Shimidzu, K.; Osuka, A. Chem. 
Lett. 1998, 55–56; (c) Senge, M. O.; Feng, X. Tetrahedron 
Lett. 1999, 40, 4165–4168. 




