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Radial oscillations of local density of states in carbon nanotubes
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By performing an analytical study of the electronic structure of metallic carbon nanotubes, we show that the
local density of states exhibits well-defined oscillations as a function of the nanotube radius. The periods of
such oscillations are obtained from size quantization effects derived from folding up finite graphene sheets into
tubular structures. A clear analogy with the de Haas—van Alphen effect in metals is established to explain the
origin and features of such oscillations. Results of energy change calculations for impurity-doped carbon
nanotubes also show the same type of oscillations.
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[. INTRODUCTION nanotubes, radial oscillations of the LDOS have not been
reported. As a SWNT consists of a single layer of graphite
Cylindrical molecules of carbon, known as carbon nano<olded up into a cylinder, the electronic structure of graphite
tubes(CN'’s), have been attracting considerable attention beis expected to be recovered for very large tube diameters. We
cause of their especial physical properties. They are found ishow that this asymptotic limit is reached in an oscillatory
a wide variety of geometries with unique transport and elecway, and discuss the physical origin of such oscillations by
tronic features. The possibility of being either metallic or analogy with the de Haas—van Alphen effect in metals. It is
semiconducting, depending merely on geometrical aspects @fell known that some features of the de Haas—van Alphen
their Stl’UCtUI’é’,_3 is one of the most remarkable properties of oscillations, such as period and amp"tude decay, are associ-
CN's. The combination of interesting transport properties ated with wave vectors of the bulk Fermi surface of the cor-
mechanical strength, and flexibility makes CN's ideal candi-esponding metal. Likewise, a similar relation with the Fermi
dates for building blocks of 'nanoscale electronic devices. Iy, face of the CN is used to explain the oscillations of the
fact, several CN-based devices have been proposed, such§§0g as a function of the tube diameter. The study of elec-
double qua_ntum_sdofs,_recnfymg diodes; and nanotube- i properties of SWNT's as a function of the tube radius
based transistofs” A single-walled nanotub€SWNT) can should reflect some characteristic features of their multi-

be regarded as a single layer of graphite folded up into Walled counterparts. Such radial oscillations of the LDOS, in

cylinder. These tubular molecules are also found in multiple articular. mav be observed by probing different shells. of
shells, where several cylinders are arranged in coaxial align- WNT's ' y y P 9

ment, forming so-called multiwalled nanotub@8WNT's). Th . . | evid h b b
Although some interwall interaction is expected in these co- | Nere IS experimental evidence that nanotubes gﬁ?ty €
axial multitubule structures, the coupling between neighbordoPed by atoms attached to their walls during their growh,

ing shells tends to be wedkand multiwalled systems are and also by charge transfer from metal electrodes. Here we
sometimes described as a collection of independent singlélsO treat the case of a substitutional impurity in single-
wall CN's. walled and multiwalled metallic CN’s. We first extend our
Motivated by the advances in growth techniques of CNapproach to calculate the impurity binding energy as a func-
junctions, where different CN are seamlessly fusedion of the tube diameter in single-walled tubes. Our results
togethert® we recently addressed the question of how theexhibit a clear oscillatory behavior which is associated with
local electronic properties of metallic-semiconducting CNthe electronic structure of the nanotube host. We then repeat
heterostructures change as one moves along the tube frotimne calculations for a multiwalled NT structure, and show
the metallic side to the semiconducting side of a junction. that the interwall interaction does not affect much the ob-
Sufficiently far from the junction, the one-electron local den-tained results.
sity of states(LDOS) at the Fermi energyHg) vanishes This paper is organized as follows: First, in Sec. Il, we
exponentially on the semiconducting side, but oscillateslerive an analytical expression for the one-electron Green
around the bulk-limit value in the metallic side. Oscillations function of a semi-infinite armchair carbon nanotube, and
of the LDOS along the tube axis were experimentally ob-show that it leads to a LDOS that may have an oscillatory
served in very short structuré$but they still need to be behavior. In Sec. Ill we explicitly calculate the LDOS, and
observed in long nanotubes. Commensurability between thehow that, in fact, it oscillates as a function of the tube di-
periods and the lattice, together with intracell phase-shift efameter. Oscillation features such as periods and rates of de-
fects, may be responsible for hiding the LDOS oscillationscay are discussed, and a clear correspondence with the de
from experimental observations. Haas—van Alphen effect in metallic systems is established.
In this work we show that the LDOS of metallic SWNT’s In Sec. IV, we discuss the effect of oscillations on local
oscillates as a function of the nanotube radius. Althougtelectronic properties of MWNT'’s and impurity binding en-
there have been several studies of the electronic structure efgies. Finally, in Sec. V, we draw our main conclusions.
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Il. SINGLE-PARTICLE GREEN FUNCTIONS dimensional band structure. The integral above can be evalu-
gted by extending, to the complex plan&: We change the
Integration contour from a straight line on the real axis to the
boundaries of a semi-infinite rectangle in the upper half-

We are interested in studying the electronic properties o
infinitely long CN’s as a function of their radius. For the

sake of simplicity, and with no loss of generality, we studyplane whose base lies on the real axis betweer/a and

achiral CN’s. More specifically, we consider metallic arm- /a. By determining the poles and their respective residues
chair nanotubes, but our results and analysis can easily bv%e .car): evaluate tge intg ral for each bar? d indexThe '
extended to other geometries, including chiral metallic tubes. 9

To investigate the LDOS'’s of SWNT's and MWNT's, it is poles, labeledr, , are given by

convenient to treat the electronic structure in terms of single-
particle Green functions, which have been previously used to a 1 m 0> [m7
CO{ :_E[C(){N_E)t _Z_SInZ(N_E)]’
X Yo X
()

study nanotube heterojunctioh’s'* and the conductance of am3

CN’s with defects'® In those cases, due to the inhomoge-

neous nature of the systems considered, the so-called Green

function matching method was used, where Green functiongq the corresponding residues are

of different defect-free tubes were matched to represent com-

posite tubes. The corresponding Green functions fgﬁ{/the pure o

tubes were numerically calculated by recursiveor @ mm | =2

iterative'” techniques. Reddm]= 2 [COS{ N, Z)Sm m3
Carbon nanotubes are fullerenelike structures, which can

be regarded as graphene sheets wrapped up in cylindrical . -t

shape. The electronic structures of both graphene and CN'’s +C°5<qm§ ] ' )

are well described by a single-band tight-binding model for

the 7 orbitals, the only difference between them being theEquation(3) does not define the poleg, uniquely. By de-

wave-vector quantization along the circumferential directionfining the cosine oy, but not its sine, the residue in E@)

of the tubes. The one-dimensional energy dispersion for thg free to assume two distinct values. The residue depends on

armchair CN is given by the correct sign of sfioj(a/2)], which is obtained by impos-

ing that the imaginary part of the retarded local Green func-

a

sin qéz

E-(k )==% 170 1+4co mw cod k é tions must be negative. The expression &fw) then be-
e Nx ’2 comes
a 1/2
+4 cog kyf” : » ma [ .a
G(w)=—; 2 {co N 2/S A5
wherea=2.46 A, is the lattice parameter of graphene, and Yo o, X
vo is the hopping integral between nearest neighbors, here- 1
a\ . a
after used as our energy un, corresponds to the number +cos(q;1—) sin a5 ] . (5
of carbon sites in the CN unit cell, amd=1,2, . .. N, la- 2 2

bels the different bands. For such a simple band structure, it
is possible to obtain the single-particle Green functions ana- It is noteworthy that the poleg,, depend upon botlw

lytically. andN,, as shown in Eq(3). Each term of the summation
The LDOS is given by the imaginary part of the diagonalcorresponds to a band contribution to the single-particle
Green function, Green function. Figure 1 shows the real and imaginary parts
of the diagonal Green function of an armchair CN obtained
1 1 from Eq. (5). One benefit of having such an analytical ex-
Glw)= 2N < w—E*(K) +w+E*(k) ' (@) pression for the Green function is the fact that it allows a

transparent analysis of the relationship between the elec-
wherew is the energyN is the number of unit cells in the tronic structure and the relevant parameters involved. Con-
tube, and k=(ky,ky) is a wave vector in the two- trary to previous analytical treatmerifs:® our approach
dimensional graphene Brillouin zone. We recall thatas- makes no assumption about the energy bands being linear.
sumes discrete valuda§,m=(m/Nx)(w/a\/§), wheremis an  Therefore, within a single-orbital approximation, it is valid
integer number labeling the wave-vector quantization alongn the entire energy-band range. Other effects, however, such
the circumferential direction. The sum oviey may be re- as thes-7 hybridization, may limit our single-orbital treat-

placed by an integral, and E@L) can be rewritten as ment. One particular advantage of E§) is that it yields an
explicit expression for th&l, dependence of the LDOS. We
a wla ) recall that, apart from a W, multiplying factor, all the other
G(w)= AN, 7 4 Wladky wz—Er;Z(ky) ' 2 N,-dependent terms appear inside trigonometric functions.

As previously mentioned, the poleg, depend orlN,, and,
We recall thatN, is directly associated with the tube diam- as shown in Eq(3), such a dependence is governed by simi-
eter. For each value df,, we have a corresponding one- lar elementary trigonometric functions. Therefore, EB).
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FIG. 1. Realfull line) and imaginary(dotted curve parts of the
diagonal Green function of a metallic armchair CB5) obtained

from Eq. (5). All energy values are in units of,~3 eV.
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explicitly shows that the diagonal Green functions, hence the
LDOS, of infinitely long armchair CN’s may oscillate as the
tube diameter is increased.

IIl. RADIAL OSCILLATIONS OF THE LDOS

In Sec. I, we showed that the diameter dependence of the
Green function is governed by trigonometric functions,
which may lead to an oscillatory behavior of the LDOS as
the tube radius is changed. Here we explicitly calculate the
Green functions, and confirm the existence of such oscilla-
tions. Rather than plotting the LDOS along the entire energy
band for different tubes, we plot it as a function of the tube
radius for different energies. Four curves are displayed cor-
responding tc&e=0, 0.10, 0.15, and 0.30, respectively. Fig-
ure Aa), associated witle=0, shows no oscillations, but a
monotonically decaying behavior toward the asymptotic
LDOS value of graphene. More precisely, the LDOS decays
as 1R, whereR is the tube radiu&® However, forE+0,
clear oscillations become evident in the LDOS, as shown in
Figs. 4b), 2(c), and 2d). Those oscillations have well-
defined periods that decrease with increasing energy, for
relatively small energy changes aroufe- 0. All cases con-
sidered here show aR/overall decaying rate. One should
note that the radius of an armchair CN is constrained by
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FIG. 2. Local density of states as a function of the tube radiugaioE=0, (b) 0.10 ,(c) 0.15, and(d) 0.30. The nanotube radiusis
related to the integen of an (n,n) armchair NT bya\/3n/(27), a being the lattice parameter. All energy values are in unitsy@f

~3 eV.
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geometrical aspects of the hexagonal lattice and tube chiral-
ity. Thus it can only acquire a discrete set of values. The
dashed lines shown in Fig. 2 serve as a guide for the eye, and
the points represent the actual possible values of the tube
diameters.

To understand the nature of the oscillations, we establish
an analogy with the de Haas—van Alphen effect in metallic
system&? It is well known that several electronic properties
depending on the density of stateskat oscillate as a func-
tion of an applied magnetic field. Such oscillations are
caused by magnetic-field-induced quantized levels periodi-
cally crossing the Fermi energy as the field strength is varied.
The shape of the metallic Fermi surface determines the os-
cillation features, making the de Haas—van Alphen effect a
useful tool to map out Fermi surfaces of several métals.

The analogy between the radial oscillations of the LDOS
in CN’s with the de Haas—van Alphen effect is then clear.
Instead of being caused by a magnetic field, the energy quan-
tization in the nanotubes comes from the boundary condi-
tions imposed on the graphene electronic structure, as a re-
sult of folding up the graphite sheet into a tubular structure.
The wave-vector quantization along the circumferential di-
rection is a size effect, and depends on the perimeter of the
tube. By changing the tube diameter, the quantized levels
move along the energy spectrum. Analogously to the de
Haas—van Alphen effect, oscillations will occur as the quan-
tized levels cross the Fermi energy. Figuf@ 3hows sev-
eral contour plots of constant-energy lines in the two- <§\ /é)
dimensional hexagonal Brillouin zone of graphene. Eor
=0, the contour plot is a set of isolated points that coincide \§7

with the six vertices of the Brillouin zone. As the energy
increases, they become small contours around those vertices,
up to the point where the energy reaches the van Hove sin- (b)

gularity of graphene aE=1. At this energy, the constant- ] o
energy plot becomes a collection of straight lines crossing F!G- 3- (@ Contour plots for some constant-energy lines within
the first Brillouin zone at the middle of their six edges, con-h€ two-dimensional hexagonal Brillouin zone of graphe(s.
necting the nearestl points. Further changes in energy lead Brillouin zone for the armchair CN. Full vertical lines correspond to

to increasingly smaller circular contours approaching theNX:z‘ and the dashed lines M, =3. The circle close to the zone

center of the zone at thE point. Figure 8b) shows the Eejtoe; 2:3 tthSt”ran%Z'Sr{vseTf pgiie%oir;]touunrsst;%:e; p:z/nd 10 energies
Brillouin zone for the armchair CN, for two different tube ' A ' '

diameters and for two distinct values of ener§yFor the local electronic properties &= 0.2° However, the distribu-
sake of clarity, and to avoid a confusing figure with manytion of constant-energy plots in the 2DBZ changes for
guantized lines, we consider small diameters and well<#0, as illustrated in Fig. ®) by circular and triangular-
separated energies only. The full vertical lines correspond tshaped contours. The oscillations for each valuEof seen
N,=2, and the dashed ones are fdy=3. The dashed and in Figs. 2b)—2(d), come from thek,-quantized levels inter-

full lines coincide at the center and at the edge of the twosecting the corresponding constant-energy contours, as the
dimensional Brillouin zone, because those high-symmetrjube radius varies. This is illustrated in Fighg where we
values ofk, are common to all diameters. Therefore, it is Show two energy plots selected from Figa together with
clear why the LDOS does not oscillate f6r=0 in Fig. 2a).  the ky-quantized lines. Clearly, by changirg,=2 to Ny

The constant-energy plot in this case corresponds to six isg= 3 the dashed lines approach both contours.

lated points at the high-symmetry comers of the hexagonal The intersections between the constant-energy plots and
two-dimensional Brillouin zon€2DBZ). Since we are deal- the size-quantize, lines may be detgrmlneq by setting
ing with metallic armchair CN'’s, there is only one quantized‘QE(ky)/.‘?kyzo' whereE(ky)_ Is the one-d|men3|onal energy
wave vector k,=0) that intersects the isolated points asso-dispersion for the armch.a|r'CN. This leads 0 boal) =
ciated withE=0. As the diameter is increased, the density of_(llz)COS(mT/NX.)' Subst|_tut|ng such expression B(ky),

lines in the Brillouin zone also increases, but no additionalV® S€€ that the intersections occur when
lines ever intersect the corners of the Brillouin zone. There-

fore, no oscillations occur in this case, in agreement with =
previous calculations concerning the radial dependence of sin™*(Eg /o)

mar

(6)
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It follows that the LDOS aEg, and properties that depend o— T
on it, will oscillate as a function of the CN radius, with a :

period p=AN,a+3/(2 7). The relation above is in perfect
agreement with our numerical calculations, and has beer
verified for all cases considered.

'
N
o

T T T

IV. DOPED SINGLE-WALLED AND MULTIWALLED
NANOTUBES

¢/An (arb. units)

The study of impurity-related physical properties of semi- -
conducting systems is very important, because transport an< -40
optical phenomena are strongly affected by the presence o O —@—E,=0.15
impurities. Moreover, impurity segregation in metallic alloys N Poew :
and ultrathin films is also relevant from a technological point I e "
of view. In the nanotube structure, substitutiomabnd n I
doping with B and N atoms, respectively, was theoretically -600‘ T T T e T T T e T T T s T T s s
suggestet and experimentally accomplished. Impurity- radius (A)
screening properties are found to be completely dominated
by the 7 bands’® and they are also sensitive both to the  FIG. 4. Total-energy change as a function of the tube radius for
impurity position and to the tubular structure. different Fermi energies. Dotted lines are just to guide the eye,

Here we show that the oscillatory behavior displayed bysince the nanotube radius is a discrete quantity. Filled symbols cor-
the LDOS as a function of the tube diameter is also presertespond to the connectd8,5-(10,10-(15,15 MWNT'’s. All en-
in the binding energy of a substitutional impurity placed onergy values are in units of,~3 eV.
single-walled and multiwalled nanotubes. We highlight that
such radial oscillations may induce absolute minima in theVo is usually obtained by imposing either local or global
binding energy, leading to energetically favorable positionscharge neutrality. The latter provides a simple prescription,
for the impurities. We suggest that modulation in the impu-known as the Friedel sum rule, to determMgin terms of
rity concentration as a function of the tube radius may occuthe atomic number difference between the impurity and the
in multiwalled nanotubes. host?® Here, rather than discussing specific impurities, we

We first concentrate on the case of doped single-walle@re interested in studying the general dependence of the im-
nanotubes. The energy variation due to the insertion of @urity binding energy on the CN radius. It is then instructive
single substitutional impurity can be written in terms of theto consider the weak-scattering limit, correspondingVvtp
Green functions of the pure nanotubes via the Dyson equa<1. In this case, Eq8) reduces to
tion F=G+GV,F=G+GTG, where T=Vy(1-GV,) 1,

F andG are the perturbed and unperturbed Green functions, Ae~Vo{ng—Erpo(Ep)}, 9

respectively, and/, denotes the scattering potential associ-yhere p, andn, are the unperturbed electronic LDOS and
ated with an isolated impurity at the site labeled 0. The totalqccypation number at the impurity site, respectively. Also, in
energy variatioml e due to the impurity is given by the weak-scattering limit, according to the Friedel sum rule,

1 (€ .
Ae=—;j "do ImTrY, (Fj;~ G ), (7) Vo~ —An/po(Eg), (10
© J

whereAn is the valence difference between the impurity and
wherej runs over the CN unit cells, and the trace is over thethe host material. It follows from Ed9) that
carbon sites in each unit cell. Therefore, by using cyclic
properties of the trace, and integrating by parts, such an en-
ergy change may be rewritten as

No
po(EF)

Due to the fact thap, oscillates as a function of the CN

radius, it is clear that\ e will also do so, and with the same

periods as discussed in Sec. lll. This is explicitly demon-
Er strated in Fig. 4, where we show resultsfof/ An calculated

B J_wd“’ IN[1=God@)Vol |, (®  as a function of the CN radius for different Fermi energies.

o The oscillations are evident, except fBg=0 where they
where GO,O denotes the Slte-dlagonal Unperturbed Greelhre not expected, as previous|y discussed.

function at the impurity site.
Since Gy g os.cillates as a function of the CN radius, one V. EEFECTS OF INTERWALL INTERACTION
expects an oscillatory behavior fdre. It is noteworthy that IN MWNT'S
the screening, and hentg, changes with the CN radius. In
some cases, the potentid) may be determined by modeling A multiwalled nanotube consists of a set of coaxial
the charge transfer due to the impurity. For metallic systemssingle-walled nanotubes, connected by weak interwall inter-

Ae~An|Eg— . (12)

1
AE: - ;Im[ EF In[l_Go’()( EF)VO]
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FIG. 5. Schematic representation of the adopted interwall con- F!G- 6. Total-energy change as a function of the tube radius for
nections between thé,5)-(10,10-(15,15 trilayered tube. E-=0. Open and filled circles refer to single tubes and to the con-
' ' ' nected (5,5-(10,10-(15,15 MWNT's, respectively. The inset
shows the corresponding averaged LDOEat 0. All the energy

actions. Within the tight-binding approximation we allow Ay

electrons to hop across adjacent tubes at some sites, with 4A'U€S are in units ofo~
effective intersite hopping integral. The interwall distance

is roughly the same as the interlayer distance of graphite VI. CONCLUSIONS
(=~0.34 nm), andy=~ vy,/10. Here we wish to investigate

how this interwall interaction would affect the oscillatory single-walled and multiwalled armchair CN's. We have
features we have obtained. We conside(&h)-(10,10- o S0 "o e Do oscillates as a function of the CN

(15,15 multiwalled structure, radially connected as shown N dius. The physical origin, periods, and other features of

Fig. 5. The unit cell of such a system comprises three Inter'such oscillations are explained in terms of size quantizations
connected rings, and contains a total of 120 carbon atom

We h d | lizati hni ue to the folding up of the CN'’s in the circumferential di-
e have used a real-space renormalization technique t0 C8jz:ion. A close analogy between the LDOS oscillations and

culate the site-diagonal Green function, and the LDOS, af,e ge Haas—van Alphen effect in metallic systems is estab-
each atom along the structureOur results for the LDOS at  |ished. We have calculated the binding energy of substitu-
Er, and for the electronic occupation number, have beeRignal single impurities, and showed that they also oscillate
averaged over the inequivalent carbon sites situated on eagy a function of the CN radius, with the same periods as
ring. For most energies they do not differ much from thosethose of the LDOS oscillations. Such an oscillatory behavior
obtained withy=0, corresponding to a set of isolated tubes.of A e suggests that a radial modulation of the impurity con-
The same applies to the calculated valuesAef as illus-  centration may occur in MWNT’s. The weak interwall inter-
trated in Fig. 4 by filled symbols. FdEz=0, however, in- action in MWNT’s may have very little effect on our results.
terwall interactions in armchair MW structures break the ac-Thus, there is a very good chance for those oscillations to be
cidental degeneracy between the valence and conductigiserved in MWCN’s. Actually, it is currently possible to
bands that takes place kt 27/3a in the one-dimensional control the structure of MWNT's, by peeling off the most
Brillouin zone? Consequently, the Fermi surface ceases txternal layers and removing part of their inner shells, and
be a collection of just six isolated points coinciding with the €xPosing tubes with different d|amet§Fs$uch an experi-
vertices of the 2DBZ. Thus the comensurability between thénental setup may be very convenient to investigate some of
period of oscillations and the lattice no longer exists, and a/Pur Predictions. Multiple shell nanowirés™ are also good
oscillatory behavior for the LDOS ande emerges, as cgndldates for presenting the types of oscillations we have
shown in Fig. 6. discussed.

Quantitatively, our results may depend upon the model
used to describe the interwall interaction. Nevertheless, the ACKNOWLEDGMENTS
radial oscillations reported here are present in MWCN's, and We would like to thank the Brazilian agencies CNPq,
are likely to be observed in such structures. CAPES, and FAPERJ for partial financial support.
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