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Radial oscillations of local density of states in carbon nanotubes
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By performing an analytical study of the electronic structure of metallic carbon nanotubes, we show that the
local density of states exhibits well-defined oscillations as a function of the nanotube radius. The periods of
such oscillations are obtained from size quantization effects derived from folding up finite graphene sheets into
tubular structures. A clear analogy with the de Haas–van Alphen effect in metals is established to explain the
origin and features of such oscillations. Results of energy change calculations for impurity-doped carbon
nanotubes also show the same type of oscillations.
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I. INTRODUCTION

Cylindrical molecules of carbon, known as carbon nan
tubes~CN’s!, have been attracting considerable attention
cause of their especial physical properties. They are foun
a wide variety of geometries with unique transport and el
tronic features. The possibility of being either metallic
semiconducting, depending merely on geometrical aspec
their structure,1–3 is one of the most remarkable properties
CN’s. The combination of interesting transport properti
mechanical strength, and flexibility makes CN’s ideal can
dates for building blocks of nanoscale electronic devices
fact, several CN-based devices have been proposed, su
double quantum dots,4 rectifying diodes,5 and nanotube-
based transistors.6–8 A single-walled nanotube~SWNT! can
be regarded as a single layer of graphite folded up int
cylinder. These tubular molecules are also found in multi
shells, where several cylinders are arranged in coaxial al
ment, forming so-called multiwalled nanotubes~MWNT’s!.
Although some interwall interaction is expected in these
axial multitubule structures, the coupling between neighb
ing shells tends to be weak,9 and multiwalled systems ar
sometimes described as a collection of independent sin
wall CN’s.

Motivated by the advances in growth techniques of C
junctions, where different CN are seamlessly fus
together,10 we recently addressed the question of how
local electronic properties of metallic-semiconducting C
heterostructures change as one moves along the tube
the metallic side to the semiconducting side of a junction11

Sufficiently far from the junction, the one-electron local de
sity of states~LDOS! at the Fermi energy (EF) vanishes
exponentially on the semiconducting side, but oscilla
around the bulk-limit value in the metallic side. Oscillatio
of the LDOS along the tube axis were experimentally o
served in very short structures,12 but they still need to be
observed in long nanotubes. Commensurability between
periods and the lattice, together with intracell phase-shift
fects, may be responsible for hiding the LDOS oscillatio
from experimental observations.

In this work we show that the LDOS of metallic SWNT
oscillates as a function of the nanotube radius. Althou
there have been several studies of the electronic structu
0163-1829/2001/63~24!/245111~7!/$20.00 63 2451
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nanotubes, radial oscillations of the LDOS have not be
reported. As a SWNT consists of a single layer of graph
folded up into a cylinder, the electronic structure of graph
is expected to be recovered for very large tube diameters.
show that this asymptotic limit is reached in an oscillato
way, and discuss the physical origin of such oscillations
analogy with the de Haas–van Alphen effect in metals. I
well known that some features of the de Haas–van Alph
oscillations, such as period and amplitude decay, are ass
ated with wave vectors of the bulk Fermi surface of the c
responding metal. Likewise, a similar relation with the Fer
surface of the CN is used to explain the oscillations of
LDOS as a function of the tube diameter. The study of el
tronic properties of SWNT’s as a function of the tube rad
should reflect some characteristic features of their mu
walled counterparts. Such radial oscillations of the LDOS
particular, may be observed by probing different shells
MWNT’s.

There is experimental evidence that nanotubes may
doped by atoms attached to their walls during their growth13

and also by charge transfer from metal electrodes. Here
also treat the case of a substitutional impurity in sing
walled and multiwalled metallic CN’s. We first extend ou
approach to calculate the impurity binding energy as a fu
tion of the tube diameter in single-walled tubes. Our resu
exhibit a clear oscillatory behavior which is associated w
the electronic structure of the nanotube host. We then re
the calculations for a multiwalled NT structure, and sho
that the interwall interaction does not affect much the o
tained results.

This paper is organized as follows: First, in Sec. II, w
derive an analytical expression for the one-electron Gr
function of a semi-infinite armchair carbon nanotube, a
show that it leads to a LDOS that may have an oscillat
behavior. In Sec. III we explicitly calculate the LDOS, an
show that, in fact, it oscillates as a function of the tube
ameter. Oscillation features such as periods and rates o
cay are discussed, and a clear correspondence with th
Haas–van Alphen effect in metallic systems is establish
In Sec. IV, we discuss the effect of oscillations on loc
electronic properties of MWNT’s and impurity binding en
ergies. Finally, in Sec. V, we draw our main conclusions
©2001 The American Physical Society11-1
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II. SINGLE-PARTICLE GREEN FUNCTIONS

We are interested in studying the electronic properties
infinitely long CN’s as a function of their radius. For th
sake of simplicity, and with no loss of generality, we stu
achiral CN’s. More specifically, we consider metallic arm
chair nanotubes, but our results and analysis can easil
extended to other geometries, including chiral metallic tub
To investigate the LDOS’s of SWNT’s and MWNT’s, it i
convenient to treat the electronic structure in terms of sing
particle Green functions, which have been previously use
study nanotube heterojunctions,11,14 and the conductance o
CN’s with defects.15 In those cases, due to the inhomog
neous nature of the systems considered, the so-called G
function matching method was used, where Green functi
of different defect-free tubes were matched to represent c
posite tubes. The corresponding Green functions for the p
tubes were numerically calculated by recursive16 or
iterative17 techniques.

Carbon nanotubes are fullerenelike structures, which
be regarded as graphene sheets wrapped up in cylind
shape. The electronic structures of both graphene and C
are well described by a single-band tight-binding model
the p orbitals, the only difference between them being t
wave-vector quantization along the circumferential direct
of the tubes. The one-dimensional energy dispersion for
armchair CN is given by

Em
6~ky!56g0F114 cosS m

Nx
p D cosS ky

a

2D
14 cos2S ky

a

2D G1/2

,

wherea52.46 Å, is the lattice parameter of graphene, a
g0 is the hopping integral between nearest neighbors, h
after used as our energy unit.Nx corresponds to the numbe
of carbon sites in the CN unit cell, andm51,2, . . . ,Nx la-
bels the different bands. For such a simple band structur
is possible to obtain the single-particle Green functions a
lytically.

The LDOS is given by the imaginary part of the diagon
Green function,

G~v!5
1

2N (
k

F 1

v2E1~k!
1

1

v1E1~k!
G , ~1!

wherev is the energy,N is the number of unit cells in the
tube, and k5(kx ,ky) is a wave vector in the two
dimensional graphene Brillouin zone. We recall thatkx as-
sumes discrete valueskx,m5(m/Nx)(p/aA3), wherem is an
integer number labeling the wave-vector quantization alo
the circumferential direction. The sum overky may be re-
placed by an integral, and Eq.~1! can be rewritten as

G~v!5
a

4Nxp
(
m

E
2p/a

p/a

dkyF v

v22Em
12~ky!

G . ~2!

We recall thatNx is directly associated with the tube diam
eter. For each value ofkx , we have a corresponding one
24511
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dimensional band structure. The integral above can be ev
ated by extendingky to the complex plane.11 We change the
integration contour from a straight line on the real axis to
boundaries of a semi-infinite rectangle in the upper ha
plane whose base lies on the real axis between2p/a and
p/a. By determining the poles and their respective residu
we can evaluate the integral for each band indexm. The
poles, labeledqm

6 , are given by

cosS qm
6

a

2D52
1

2 H cosS m

Nx

p

2 D6Av2

g0
2

2sin2S m

Nx

p

2 D J ,

~3!

and the corresponding residues are

Res@qm
6#5

v

2ag0
2 H cosS m

Nx

p

2 D sinS qm
6

a

2D
1cosS qm

6
a

2D sinS qm
6

a

2D J 21

. ~4!

Equation~3! does not define the polesqm
6 uniquely. By de-

fining the cosine ofqm
6 but not its sine, the residue in Eq.~4!

is free to assume two distinct values. The residue depend
the correct sign of sin@qm

6(a/2)#, which is obtained by impos-
ing that the imaginary part of the retarded local Green fu
tions must be negative. The expression forG(v) then be-
comes

G~v!5
iv

Nxg0
2 (

qm
6

H cosS m

Nx

p

2 D sinS qm
6

a

2D
1cosS qm

6
a

2D sinS qm
6

a

2D J 21

. ~5!

It is noteworthy that the polesqm
6 depend upon bothv

and Nx , as shown in Eq.~3!. Each term of the summation
corresponds to a band contribution to the single-part
Green function. Figure 1 shows the real and imaginary p
of the diagonal Green function of an armchair CN obtain
from Eq. ~5!. One benefit of having such an analytical e
pression for the Green function is the fact that it allows
transparent analysis of the relationship between the e
tronic structure and the relevant parameters involved. C
trary to previous analytical treatments,18,19 our approach
makes no assumption about the energy bands being lin
Therefore, within a single-orbital approximation, it is val
in the entire energy-band range. Other effects, however, s
as thes-p hybridization, may limit our single-orbital treat
ment. One particular advantage of Eq.~5! is that it yields an
explicit expression for theNx dependence of the LDOS. W
recall that, apart from a 1/Nx multiplying factor, all the other
Nx-dependent terms appear inside trigonometric functio
As previously mentioned, the polesqm

6 depend onNx , and,
as shown in Eq.~3!, such a dependence is governed by sim
lar elementary trigonometric functions. Therefore, Eq.~5!
1-2
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FIG. 1. Real~full line! and imaginary~dotted curve! parts of the
diagonal Green function of a metallic armchair CN~5,5! obtained
from Eq. ~5!. All energy values are in units ofg0'3 eV.
24511
explicitly shows that the diagonal Green functions, hence
LDOS, of infinitely long armchair CN’s may oscillate as th
tube diameter is increased.

III. RADIAL OSCILLATIONS OF THE LDOS

In Sec. II, we showed that the diameter dependence of
Green function is governed by trigonometric function
which may lead to an oscillatory behavior of the LDOS
the tube radius is changed. Here we explicitly calculate
Green functions, and confirm the existence of such osc
tions. Rather than plotting the LDOS along the entire ene
band for different tubes, we plot it as a function of the tu
radius for different energies. Four curves are displayed c
responding toE50, 0.10, 0.15, and 0.30, respectively. Fi
ure 2~a!, associated withE50, shows no oscillations, but
monotonically decaying behavior toward the asympto
LDOS value of graphene. More precisely, the LDOS dec
as 1/R, whereR is the tube radius.20 However, forEÞ0,
clear oscillations become evident in the LDOS, as shown
Figs. 2~b!, 2~c!, and 2~d!. Those oscillations have well
defined periods that decrease with increasing energy,
relatively small energy changes aroundE50. All cases con-
sidered here show a 1/R overall decaying rate. One shoul
note that the radius of an armchair CN is constrained
FIG. 2. Local density of states as a function of the tube radius for~a! E50, ~b! 0.10 , ~c! 0.15, and~d! 0.30. The nanotube radiusr is
related to the integern of an (n,n) armchair NT byaA3n/(2p), a being the lattice parameter. All energy values are in units ofg0

'3 eV.
1-3
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FERREIRA, DARGAM, MUNIZ, AND LATGÉ PHYSICAL REVIEW B 63 245111
geometrical aspects of the hexagonal lattice and tube ch
ity. Thus it can only acquire a discrete set of values. T
dashed lines shown in Fig. 2 serve as a guide for the eye,
the points represent the actual possible values of the
diameters.

To understand the nature of the oscillations, we estab
an analogy with the de Haas–van Alphen effect in meta
systems.21 It is well known that several electronic propertie
depending on the density of states atEF oscillate as a func-
tion of an applied magnetic field. Such oscillations a
caused by magnetic-field-induced quantized levels peri
cally crossing the Fermi energy as the field strength is var
The shape of the metallic Fermi surface determines the
cillation features, making the de Haas–van Alphen effec
useful tool to map out Fermi surfaces of several metals.22

The analogy between the radial oscillations of the LDO
in CN’s with the de Haas–van Alphen effect is then cle
Instead of being caused by a magnetic field, the energy q
tization in the nanotubes comes from the boundary con
tions imposed on the graphene electronic structure, as a
sult of folding up the graphite sheet into a tubular structu
The wave-vector quantization along the circumferential
rection is a size effect, and depends on the perimeter of
tube. By changing the tube diameter, the quantized le
move along the energy spectrum. Analogously to the
Haas–van Alphen effect, oscillations will occur as the qu
tized levels cross the Fermi energy. Figure 3~a! shows sev-
eral contour plots of constant-energy lines in the tw
dimensional hexagonal Brillouin zone of graphene. ForE
50, the contour plot is a set of isolated points that coinc
with the six vertices of the Brillouin zone. As the energ
increases, they become small contours around those ver
up to the point where the energy reaches the van Hove
gularity of graphene atE51. At this energy, the constan
energy plot becomes a collection of straight lines cross
the first Brillouin zone at the middle of their six edges, co
necting the nearestM points. Further changes in energy le
to increasingly smaller circular contours approaching
center of the zone at theG point. Figure 3~b! shows the
Brillouin zone for the armchair CN, for two different tub
diameters and for two distinct values of energyE. For the
sake of clarity, and to avoid a confusing figure with ma
quantized lines, we consider small diameters and w
separated energies only. The full vertical lines correspon
Nx52, and the dashed ones are forNx53. The dashed and
full lines coincide at the center and at the edge of the tw
dimensional Brillouin zone, because those high-symme
values ofkx are common to all diameters. Therefore, it
clear why the LDOS does not oscillate forE50 in Fig. 2~a!.
The constant-energy plot in this case corresponds to six
lated points at the high-symmetry corners of the hexago
two-dimensional Brillouin zone~2DBZ!. Since we are deal
ing with metallic armchair CN’s, there is only one quantiz
wave vector (kx50) that intersects the isolated points ass
ciated withE50. As the diameter is increased, the density
lines in the Brillouin zone also increases, but no additio
lines ever intersect the corners of the Brillouin zone. The
fore, no oscillations occur in this case, in agreement w
previous calculations concerning the radial dependence
24511
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local electronic properties atEF50.23 However, the distribu-
tion of constant-energy plots in the 2DBZ changes forE
Þ0, as illustrated in Fig. 3~b! by circular and triangular-
shaped contours. The oscillations for each value ofEF , seen
in Figs. 2~b!–2~d!, come from thekx-quantized levels inter-
secting the corresponding constant-energy contours, as
tube radius varies. This is illustrated in Fig. 3~b!, where we
show two energy plots selected from Fig. 3~a!, together with
the kx-quantized lines. Clearly, by changingNx52 to Nx
53, the dashed lines approach both contours.

The intersections between the constant-energy plots
the size-quantizedkx lines may be determined by settin
]E(ky)/]ky50, whereE(ky) is the one-dimensional energ
dispersion for the armchair CN. This leads to cos(kya/2)5
2(1/2)cos(mp/Nx). Substituting such expression inE(ky),
we see that the intersections occur when

Nx5
mp

sin21~EF /g0!
. ~6!

FIG. 3. ~a! Contour plots for some constant-energy lines with
the two-dimensional hexagonal Brillouin zone of graphene.~b!
Brillouin zone for the armchair CN. Full vertical lines correspond
Nx52, and the dashed lines toNx53. The circle close to the zone
center and the triangular-shaped contours correspond to ene
E50.6 and 2.65, respectively, given in units ofg0'3 eV.
1-4
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It follows that the LDOS atEF , and properties that depen
on it, will oscillate as a function of the CN radius, with
period p5DNxaA3/(2 p). The relation above is in perfec
agreement with our numerical calculations, and has b
verified for all cases considered.

IV. DOPED SINGLE-WALLED AND MULTIWALLED
NANOTUBES

The study of impurity-related physical properties of sem
conducting systems is very important, because transport
optical phenomena are strongly affected by the presenc
impurities. Moreover, impurity segregation in metallic allo
and ultrathin films is also relevant from a technological po
of view. In the nanotube structure, substitutionalp and n
doping with B and N atoms, respectively, was theoretica
suggested24 and experimentally accomplished. Impurit
screening properties are found to be completely domina
by the p bands,25 and they are also sensitive both to t
impurity position and to the tubular structure.

Here we show that the oscillatory behavior displayed
the LDOS as a function of the tube diameter is also pres
in the binding energy of a substitutional impurity placed
single-walled and multiwalled nanotubes. We highlight th
such radial oscillations may induce absolute minima in
binding energy, leading to energetically favorable positio
for the impurities. We suggest that modulation in the imp
rity concentration as a function of the tube radius may oc
in multiwalled nanotubes.

We first concentrate on the case of doped single-wa
nanotubes. The energy variation due to the insertion o
single substitutional impurity can be written in terms of t
Green functions of the pure nanotubes via the Dyson eq
tion F5G1GV0F5G1GTG, whereT5V0(12GV0)21,
F andG are the perturbed and unperturbed Green functio
respectively, andV0 denotes the scattering potential asso
ated with an isolated impurity at the site labeled 0. The to
energy variationDe due to the impurity is given by

De52
1

pE2`

EF
dv Im Tr(

j
~F j , j2Gj , j !, ~7!

wherej runs over the CN unit cells, and the trace is over
carbon sites in each unit cell. Therefore, by using cyc
properties of the trace, and integrating by parts, such an
ergy change may be rewritten as

De52
1

p
ImH EF ln@12G0,0~EF!V0#

2E
2`

EF
dv ln@12G0,0~v!V0#J , ~8!

where G0,0 denotes the site-diagonal unperturbed Gre
function at the impurity site.

SinceG0,0 oscillates as a function of the CN radius, o
expects an oscillatory behavior forDe. It is noteworthy that
the screening, and henceV0, changes with the CN radius. I
some cases, the potentialV0 may be determined by modelin
the charge transfer due to the impurity. For metallic syste
24511
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V0 is usually obtained by imposing either local or glob
charge neutrality. The latter provides a simple prescripti
known as the Friedel sum rule, to determineV0 in terms of
the atomic number difference between the impurity and
host.26 Here, rather than discussing specific impurities,
are interested in studying the general dependence of the
purity binding energy on the CN radius. It is then instructi
to consider the weak-scattering limit, corresponding toV0
!1. In this case, Eq.~8! reduces to

De'V0$n02EFr0~EF!%, ~9!

wherer0 and n0 are the unperturbed electronic LDOS an
occupation number at the impurity site, respectively. Also,
the weak-scattering limit, according to the Friedel sum ru

V0'2Dn/r0~EF!, ~10!

whereDn is the valence difference between the impurity a
the host material. It follows from Eq.~9! that

De'DnFEF2
n0

r0~EF!G . ~11!

Due to the fact thatr0 oscillates as a function of the CN
radius, it is clear thatDe will also do so, and with the sam
periods as discussed in Sec. III. This is explicitly demo
strated in Fig. 4, where we show results ofDe/Dn calculated
as a function of the CN radius for different Fermi energie
The oscillations are evident, except forEF50 where they
are not expected, as previously discussed.

V. EFFECTS OF INTERWALL INTERACTION
IN MWNT’S

A multiwalled nanotube consists of a set of coax
single-walled nanotubes, connected by weak interwall in

FIG. 4. Total-energy change as a function of the tube radius
different Fermi energies. Dotted lines are just to guide the e
since the nanotube radius is a discrete quantity. Filled symbols
respond to the connected~5,5!-~10,10!-~15,15! MWNT’s. All en-
ergy values are in units ofg0'3 eV.
1-5
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FERREIRA, DARGAM, MUNIZ, AND LATGÉ PHYSICAL REVIEW B 63 245111
actions. Within the tight-binding approximation we allo
electrons to hop across adjacent tubes at some sites, wi
effective intersite hopping integralg. The interwall distance
is roughly the same as the interlayer distance of grap
('0.34 nm), andg'g0/10. Here we wish to investigate
how this interwall interaction would affect the oscillator
features we have obtained. We consider a~5,5!-~10,10!-
~15,15! multiwalled structure, radially connected as shown
Fig. 5. The unit cell of such a system comprises three in
connected rings, and contains a total of 120 carbon ato
We have used a real-space renormalization technique to
culate the site-diagonal Green function, and the LDOS
each atom along the structure.11 Our results for the LDOS a
EF , and for the electronic occupation number, have be
averaged over the inequivalent carbon sites situated on
ring. For most energies they do not differ much from tho
obtained withg50, corresponding to a set of isolated tube
The same applies to the calculated values ofDe, as illus-
trated in Fig. 4 by filled symbols. ForEF50, however, in-
terwall interactions in armchair MW structures break the
cidental degeneracy between the valence and conduc
bands that takes place atk52p/3a in the one-dimensiona
Brillouin zone.9 Consequently, the Fermi surface ceases
be a collection of just six isolated points coinciding with th
vertices of the 2DBZ. Thus the comensurability between
period of oscillations and the lattice no longer exists, and
oscillatory behavior for the LDOS andDe emerges, as
shown in Fig. 6.

Quantitatively, our results may depend upon the mo
used to describe the interwall interaction. Nevertheless,
radial oscillations reported here are present in MWCN’s, a
are likely to be observed in such structures.

FIG. 5. Schematic representation of the adopted interwall c
nections between the~5,5!-~10,10!-~15,15! trilayered tube.
2451
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VI. CONCLUSIONS

We have studied some local electronic properties
single-walled and multiwalled armchair CN’s. We ha
shown that the LDOS oscillates as a function of the C
radius. The physical origin, periods, and other features
such oscillations are explained in terms of size quantizati
due to the folding up of the CN’s in the circumferential d
rection. A close analogy between the LDOS oscillations a
the de Haas–van Alphen effect in metallic systems is es
lished. We have calculated the binding energy of subst
tional single impurities, and showed that they also oscill
as a function of the CN radius, with the same periods
those of the LDOS oscillations. Such an oscillatory behav
of De suggests that a radial modulation of the impurity co
centration may occur in MWNT’s. The weak interwall inte
action in MWNT’s may have very little effect on our result
Thus, there is a very good chance for those oscillations to
observed in MWCN’s. Actually, it is currently possible t
control the structure of MWNT’s, by peeling off the mo
external layers and removing part of their inner shells, a
exposing tubes with different diameters.27 Such an experi-
mental setup may be very convenient to investigate som
our predictions. Multiple shell nanowires28,29 are also good
candidates for presenting the types of oscillations we h
discussed.
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