
Separation of Distributed Real-Time Embedded Concerns with

Theme/UML

Cormac Driver, Vinny Cahill and Siobhán Clarke

Distributed Systems Group
School of Computer Science and Statistics

Trinity College Dublin
Ireland

{firstname.lastname}@cs.tcd.ie

Abstract

Model-driven engineering (MDE) addresses plat-
form complexity issues by abstracting platform-
independent models for subsequent transformation to
platform-specific models. This facilitates the design
of a single system model and the subsequent genera-
tion of multiple model transformations targeted towards
specific platforms. However, the increasing complex-
ity of distributed real-time embedded (DRE) systems
complicates the development of adequate system models
by requiring multiple concerns, some of which may be
crosscutting, to be modelled. Separation of concerns,
a software engineering technique that decomposes sys-
tems into distinct features with minimal overlap, can
be used to manage complexity. Aspect-oriented soft-
ware development (AOSD) is an emerging technique to
separate crosscutting concerns in software and has been
demonstrated to improve modularity and thereby reduce
the complexity of software. In this paper we show how
Theme/UML, an aspect-oriented design approach, can
be used to better modularise DRE concerns at the model
level.

1 Introduction

Model-driven engineering addresses complexity aris-
ing from the need to port systems to multiple plat-
forms by abstracting platform-independent models
from which platform-specific models and code can be
generated. The MDE focus on high-level abstractions
and subsequent concrete transformations affords devel-
opers a number of benefits including time savings, code
quality improvements and enhanced platform migra-

tion [6]. Most importantly, MDE enables the devel-
opment of systems that are “correct-by-construction”
[10].

While MDE can enhance the software development
process, the increasing complexity of distributed, real-
time embedded systems impacts on the ease with which
adequate system models can be created using stan-
dard object-oriented modelling techniques. DRE sys-
tem models are typically required to represent non-
functional quality of service (QoS) concerns relating to,
for example, time and performance, that have system-
wide impact [9, 4, 12]. Such concerns are considered
crosscutting because they affect the structure and be-
haviour of functional concerns and cannot be cleanly
decomposed. The presence of crosscutting concerns in
a system results in the tangling of behaviours that rep-
resent distinct concerns and therefore impacts nega-
tively on system complexity.

Separation of concerns has long been recognised as
a useful way to manage system complexity [5]. How-
ever, it has been established that total separation of
concerns is not possible with the object-oriented soft-
ware development paradigm [8]. Aspect-oriented soft-
ware development (AOSD) extends the modularisation
capabilities of the object-oriented paradigm and has
demonstrated effectiveness at modularising crosscut-
ting concerns in DRE systems [7, 12, 1]. AOSD works
by decomposing systems into modules that each rep-
resent a distinct concern and then binding or weaving
the modularised concerns together to form a complete
system.

Theme/UML [3] is an aspect-oriented design ap-
proach that extends standard UML. In this paper we
introduce Theme/UML and show by means of example
how it can modularise concerns at the modelling level,

5th International Workshop on Model-based Methodologies for Pervasive and Embedded Software (MOMPES 2008)

0-7695-3104-0/08 $25.00 © 2008 IEEE
DOI 10.1109/MOMPES.2008.8

27

5th International Workshop on Model-based Methodologies for Pervasive and Embedded Software (MOMPES 2008)

0-7695-3104-0/08 $25.00 © 2008 IEEE
DOI 10.1109/MOMPES.2008.8

27

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on December 22, 2008 at 04:52 from IEEE Xplore. Restrictions apply.

thereby reducing complexity in DRE systems.
The remainder of the paper is as follows. Section 2

presents an overview of Theme/UML. Section 3 illus-
trates how Theme/UML can be used to modularise a
timing concern in an in-car driver information system
and a memory management concern (discussed outside
of any particular application scenario). Finally, Section
4 discusses current work.

2 Theme/UML

Theme/UML is part of the broader Theme ap-
proach. Theme is an integrated methodology for AOSD
that covers the requirements analysis, design and im-
plementation phases of the software development life-
cycle [3]. Theme/UML extends standard UML to ex-
plicitly support the modularisation and composition of
concerns in design. The associated methodology ex-
tends existing object-oriented design methods and pro-
vides guidance on how to use these extensions. The
extensions to the UML include a new type of classifier
called a theme and a new type of relationship called a
composition relationship.

A theme is a package-like structure that encap-
sulates UML diagrams, e.g., class diagrams and se-
quence diagrams, that describe the structure and the
behaviour of a concern. Themes representing crosscut-
ting concerns are called aspect themes, while those that
do not are called base themes. Theme/UML provides
means to compose (e.g., merge or override) concepts
and behaviours between themes.

Of particular relevance to this paper is the merg-
ing of behaviour from DRE aspect themes with that in
base themes. The behavioural flow in an aspect theme
is crosscutting, i.e., it is meant to be inserted in the be-
havioural flow of other themes. The composition of two
flows belonging to different themes is achieved by iden-
tifying a trigger method in one theme that defines the
actual place, known as the join point, where the other
flow should be inserted. Join points from base themes
are specified as part of the composition process. This
behaviour allows crosscutting non-functional DRE con-
cerns to be modularised and subsequently composed
with specific points in the base behaviour of a system.

The following section illustrates how Theme/UML
can be used to modularise two DRE concerns - timing
of system behaviour and memory management.

3 Separating DRE Concerns with
Theme/UML

This section shows how, using Theme/UML, it is
possible to separate non-functional crosscutting con-

cerns from core DRE system behaviour at the mod-
elling level.

3.1 Timing Concern

A driver information system (DIS) is an automo-
tive vehicle’s display and information centre. A DIS
is responsible for providing an interface to various as-
pects of a vehicle’s current operating environment e.g.,
navigation instructions, collision avoidance warnings,
climate control information and stereo and telephone
data. Such systems can often be controlled via multiple
user interfaces e.g., voice, touch and gesture.

DISs are composed of multiple services. Depend-
ing on a vehicle’s operating context e.g., location and
speed, it is desirable to constrain the execution times
of certain services in order to favour more important
services. For example, in the case that a vehicle is
travelling at high speed in the presence of other vehi-
cles, the collision avoidance service should be favoured
over services such as the driver’s mobile phone or the
vehicle’s stereo system.

An object-oriented design of the execution time
monitoring behaviour in this scenario involves scatter-
ing and tangling execution monitoring code throughout
the system so that the behaviour of each DIS service
can be subjected to timing constraints. The execution
timing concern is orthogonal to the core behaviour of-
fered by each DIS service and therefore they should be
modelled separately.

Figure 1 illustrates the design of the DIS using
Theme/UML. The design consists of two themes.
DriverSystem (on the right-hand side of the figure)
is a base theme that represents the core behaviour of
the DIS. The base theme contains a number of classes
that represent a subset of common DIS services. Each
class in the DriverSystem theme contains a method
called processEvent() that is responsible for coordi-
nating the behaviour of the service represented by the
class.

TimedBehaviour is an aspect theme that is applied
to DriverSystem. The aspect theme describes the
structure and behaviour of the timing constraints to
which the services in the base theme are subjected.
The structure is described by two classes, Timed and
Timer. Timed contains a trigger method called op()
and timing behaviour to execute before and after the
trigger method. Timed uses the services of a timer ob-
ject which is modelled by the Timer class. Template
parameters to a theme (including trigger methods) are
illustrated in the top right-hand corner of the theme.

The behaviour of the aspect theme is modelled by a
sequence diagram. Later in the development process,

2828

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on December 22, 2008 at 04:52 from IEEE Xplore. Restrictions apply.

<<theme>>

DriverSystem

<<theme>>

TimedBehaviour
<Timed.op(), t>

CollisionAvoidance
processEvent()

Navigation
processEvent()

VoiceRecognition
processEvent()

Timed

op()
_do_op()
invokeTimer(num)
cancelTimer()

op()
Timed

invokeTimer(t)

_do_op()

Timer
run()
cancel()

sd op
Timer

run()

cancelTimer() cancel()
alt

x

t

[op returns
before timer]

[timer ends
before op]

interrupt

bind[<{Navigation,VoiceRecognition}.processEvent(), 4>,
<CollisionAvoidance.processEvent(), 20>]

Figure 1. Separation of the timing concern in the driver information system using Theme/UML

2929

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on December 22, 2008 at 04:52 from IEEE Xplore. Restrictions apply.

during composition, templates are replaced by base ele-
ments specified in a bind statement in the composition
relationship between themes. The actual execution of
this real behaviour is captured by prepending do be-
fore the template trigger name. In this example, the
TimedBehaviour sequence diagram illustrates two al-
ternate behaviours. When the trigger method op() is
invoked the timer is initiated for some period of time.
The amount of time can be specified through a fur-
ther template parameter called t. If the timed method
(represented by do op()) returns within the specified
time period then the timer is cancelled. Alternatively,
if the trigger method fails to return within its allotted
time then the timer will expire and interrupt the ser-
vice that is currently executing i.e., the operation that
triggered this timing behaviour.

The aspect and base themes are associated with each
other through the bind tag of the composition relation-
ship, located at the top of Figure 1. The bind tag iden-
tifies which methods in the base theme cause the be-
haviour in the aspect theme to be triggered i.e., which
methods replace op(). The bind relationship specifies
that the processEvent() method in each class in the
base theme triggers the timing concern. Specifically, it
specifies that all services apart from collision avoidance
are restricted to 4 units of execution time e.g., millisec-
onds, while the collision avoidance service is favoured
with an execution restriction of 20 units of time.

3.2 Memory Management Concern

Real-time, embedded systems typically cannot tol-
erate the unpredictable delays associated with garbage
collection. Consequently, programming languages tar-
geting real-time embedded platforms provide tech-
niques for accessing memory that avoid the use of au-
tomatic garbage collection. The use of these memory
management constructs generally involves manually al-
locating and deallocating memory as necessary, before
and after core system functionality. This results in a
situation where non-functional memory management
behaviour is tangled with the system’s functional be-
haviour. Memory management can therefore be con-
sidered a crosscutting concern and has been previously
identified as such [11, 12, 8].

Figure 2 illustrates the Theme/UML design of a
memory management concern that can be applied to
any system behaviour that requires access to memory.
BaseSystem is a base theme that represents a collec-
tion of core system behaviours. The theme contains
a single module that has one method responsible for
executing core system functionality involving manipu-
lation of variables. This method requires the applica-

tion of memory management behaviour to allocate and
deallocate physical memory for its variables.

MemoryManagement (on the left-hand side of the fig-
ure) is an aspect theme that is bound to the base
theme. The aspect theme describes the structure and
behaviour of the separated memory management func-
tionality. The theme’s structure is defined by the
MemMan class which contains methods responsible for
the allocation and deallocation of memory. This class
also contains a trigger method, op(), that performs
the same function as the trigger method in the timing
aspect discussed in Section 3.1 i.e., it is bound to a
method in the base theme and triggers the execution
of the behaviour in the aspect theme. The template
parameters to the aspect theme are shown in the top
right-hand corner of the theme and specify that meth-
ods in the base theme can map to op() in the aspect
theme.

Beneath the MemMan class in the aspect theme is a se-
quence diagram that models the behaviour of the mem-
ory management concern. When the template method
op() is invoked, the alloc() method is executed to
allocate memory. When the actual behaviour from the
base theme, represented by the do op() method, has
terminated, the dealloc() method is invoked to deal-
locate the memory. The aspect theme’s behaviour ter-
minates when the memory has been deallocated.

The base and aspect themes are composed through
the composition relationship specified by the bind tag,
which is positioned above the base theme in Figure
2. The bind tag illustrates that the sole method in the
base theme is composed with the memory management
behaviour i.e., method() replaces op(). In cases where
the base theme consists of more than one module with
one method i.e., the vast majority of cases, the bind
tag could be extended in the same manner as is shown
in Figure 1 to specify that the memory management
behaviour should also be applied to other methods in
the base theme.

3.3 Summary

The design of the timing and memory management
concerns using Theme/UML illustrates that aspect-
oriented design can better modularise core behaviour
by extracting non-functional requirements and encap-
sulating them in aspect themes. The crosscutting be-
haviour can then be merged with the core behaviour in
base themes as necessary. The parameterisation of the
bind relationship illustrates how it is possible to alter
the crosscutting behaviour that is applied to the base
as appropriate.

3030

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on December 22, 2008 at 04:52 from IEEE Xplore. Restrictions apply.

<<theme>>

MemoryManagement
<MemMan.op()>

<<theme>>

BaseSystem

Module
method()

MemMan
op()
_do_op()
alloc()
dealloc()

op()
MemMan

_do_op()

sd op

bind[<Module.method()>]

alloc()

dealloc()

Figure 2. Separation of the memory management concern with Theme/UML

3131

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on December 22, 2008 at 04:52 from IEEE Xplore. Restrictions apply.

4 Current Work

Figure 3. Model-driven engineering with
Theme/UML

We have recently developed tool support for
Theme/UML model transformations targeting perva-
sive computing environments, specifically the J2ME
and .NET CF platforms [2]. The tool produces
platform-specific transformations using the Eclipse
Modelling Framework and has been shown to aid sep-
aration of concerns during the model-driven develop-
ment of mobile, context-aware systems. We are cur-
rently investigating revisions to this approach with a
focus on supporting both the modularisation of DRE
concerns at the model level and transformations to em-
bedded platforms.

Figure 3 depicts an overview of the application de-
velopment process that the will be facilitated by the
new tools we are developing. Theme/UML, along with
an accompanying composition model, is used to design
well modularised platform-independent models. These
models are used to automatically generate platform-
specific models (PSM) e.g., C, C++ or Real-Time Java
models, by transforming the Theme/UML platform-
independent meta-model to a platform-specific meta-
model. The PSMs are then automatically transformed
to platform-specific code.

Our previous work used the Java Emitter Templates
(JET), an Eclipse Modelling Framework-based technol-

ogy, to transform PSMs to executable source code. We
are currently investigating alternative approaches to
code generation that meet our requirements in terms of
transforming models to code for deployment on embed-
ded platforms. The platforms our Theme/UML MDE
tool will target include C and C++.

5 Acknowledgements

We would like to acknowledge the support of
Lero: The Irish Software Engineering Research Cen-
tre, funded by Science Foundation Ireland.

References

[1] F. Afonso, C. Silva, S. Montenegro, and A. Tavares.
Applying aspects to a real-time embedded operating
system. In ACP4IS ’07: Proceedings of the 6th work-
shop on Aspects, components, and patterns for infras-
tructure software, New York, NY, USA, 2007. ACM
Press.

[2] A. Carton, S. Clarke, A. Senart, and V. Cahill.
Aspect-Oriented Model-Driven Development for Mo-
bile Context-Aware Computing. In SEPCASE ’07:
Proceedings of the 1st International Workshop on Soft-
ware Engineering for Pervasive Computing Applica-
tions, Systems, and Environments, Washington, DC,
USA, 2007. IEEE Computer Society.

[3] S. Clarke and E. Baniassad. Aspect-Oriented Analysis
and Design: The Theme Approach. Addison-Wesley,
1st edition, March 2005.

[4] G. Deng, D. C. Schmidt, and A. Gokhale. Addressing
crosscutting deployment and configuration concerns
of distributed real-time and embedded systems via
aspect-oriented & model-driven software development.
In ICSE ’06: Proceeding of the 28th international con-
ference on Software engineering, pages 811–814, New
York, NY, USA, 2006. ACM Press.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice
Hall, 1976.

[6] A. Hovsepyan, S. V. Baelen, B. Vanhooff, W. Joosen,
and Y. Berbers. Key Research Challenges for Success-
fully Applying MDD Within Real-Time Embedded
Software Development. In SAMOS 2006: 6th Inter-
national Workshop on Embedded Computer Systems:
Architectures, Modeling, and Simulation, pages 49–58,
2006.

[7] A. Iqbal and T. Elrad. Modeling Timing Constraints
of Real-Time Systems as Crosscutting Concerns. In
Proceedings of the 9th International Workshop on
Aspect-Oriented Modeling (AOM), 2006.

[8] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In M. Akşit and S. Matsuoka,
editors, Proceedings European Conference on Object-
Oriented Programming, volume 1241, pages 220–242,

3232

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on December 22, 2008 at 04:52 from IEEE Xplore. Restrictions apply.

Berlin, Heidelberg, and New York, 1997. Springer-
Verlag.

[9] M. Panahi, T. Harmon, and R. Klefstad. Adaptive
Techniques for Minimizing Middleware Memory Foot-
print for Distributed, Real-Time, Embedded Systems.
In Proceedings of the IEEE 18th Annual Workshop on
Computer Communications, pages 54–58., 2003.

[10] D. C. Schmidt. Model-Driven Engineering. IEEE
Computer, 39(2):25–31, February 2006.

[11] S. L. Tsang, S. Clarke, and E. Baniassad. An Evalua-
tion of Aspect-Oriented Programming for Java-Based
Real-Time Systems Development. In ISORC 2004:
7th IEEE International Symposium on Object-oriented
Real-time distributed Computing, pages 291–300, Los
Alamitos, CA, USA, 2004. IEEE Computer Society.

[12] M. A. Wehrmeister, E. P. Freitas, C. E. Pereira, and
F. R. Wagner. An Aspect-Oriented Approach for Deal-
ing with Non-Functional Requirements in a Model-
Driven Development of Distributed Embedded Real-
Time Systems. In ISORC ’07: Proceedings of the
10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Comput-
ing, pages 428–432, Washington, DC, USA, 2007.
IEEE Computer Society.

3333

Authorized licensed use limited to: TRINITY COLLEGE DUBLIN. Downloaded on December 22, 2008 at 04:52 from IEEE Xplore. Restrictions apply.

