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Abstract 

Self-organizing techniques have successfully been used 
to optimize software systems, such as optimization of route 
stability in ad hoc network routing and optimization of the 
use of storage space or processing power using load bal- 
ancing. Existing self-organizing techniques typically focus 
on a single, usually implicitly specijied, system goal and 
tune systems parameters towards optimally meeting that 
goal. 

In this papel; we consider optimization of large-scale 
multi-agent ubiquitous computing environments, such as 
urban trafJic control. Applications in this class are typ- 
ically required to optimize towards multiple goals simul- 
taneously. Additionally, these multiple goals can poten- 
tially be conjicting, change over time, and apply to vari- 
ous parts of the system such as a single agent, a group of 
agents, or the system as a whole. In contrast to existing 
self-organizing systems in which agents are homogeneous 
to the extent that they are working towards a common goal, 
agents in these systems are heterogeneous in that they may 
have di!ering goals. Thus, existing self-organizing opti- 
mization techniques must be extended to deal with multiple 
goal optimization and the resulting heterogeneity of agents. 
In this paper we present a research agenda for extending 
Collaborative Reinforcement Learning (CRL), an existing 
self-organizing optimization technique, to support multiple 
policy optimization. 

balancing using Collaborative Reinforcement Learning [6], 
and player performance in the robot soccer championship 
RoboCup using evolutionary algorithms [I 11. 

The above systems optimize with respect to only one sys- 
tem policy expressing the single goal of the system. How- 
ever, the use of self-organizing techniques for the engineer- 
ing of large real-world decentralized systems requires these 
techniques to be able to optimize with respect to multiple 
policies representing multiple goals of these systems. For 
example, Urban Traffic Control (UTC) applications must 
deal with optimizing general traffic throughput, but also 
minimize public transport and emergency vehicle waiting 
times. 

Multiple policies can apply to a system simultaneously, 
or the system can switch between policies over time, influ- 
enced by the system's state or environment. These multiple 
policies can be of differing importance to the system, i.e., 
they can be of the same importance for system operation 
and therefore have the same priority, or some policies can 
have higher priorities than others. Policies can apply to dif- 
ferent levels of the system; they can be global, i.e., apply to 
a system as a whole, apply only to parts of the system, i.e., 
to a specific group of agents, or only to a single agent. in 
contrast to single-policy systems where agents are homoge- 
neous and work towards a single common goal, this leads to 
a situation where agents are heterogeneous. Heterogeneity 
of agents brings up a number of issues. Agents can compete 
with each other and be selfish in implementing only their - - 
own policies. Alternatively, agents implementing different 
policies could collaborate to meet global system goals even 

1. Introduction if that means temporarily sacrificing performance w.r.t their 
local policies i1 they are 01 lesser importance to the system 

Self organizing algorithms have been used as a technique as a whole. Game theory [8] deals with competing agents 
for engineering ubiquitous systems that are required to opti- but is out of scope of this work as we will initially con- 
mize system performance without global knowledge or cen- centrate on heterogenous collaborating agents. In the situa- 
tral control. Examples of such implementations are rout- tion where collaborating agents implement different poli- 
ing using Ant Colony optimization algorithms [3, 51, load cies, protocols for exchange of feedback between agents 
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and the type of information passed should be modified to 
include information on the sending and receiving agents' 
current policies. Agents need to be able to decide which 
agent's feedback to take into account and to what degree. 
Techniques used to engineer large-scale multi-agent decen- 
tralized systems should be able to deal with these character- 
istics and more generally with heterogeneity of agents. 

Our approach to addressing these problems is an exten- 
sion of the self-organizing technique Collaborative Rein- 
forcement Learning. Section 2 of this paper presents back- 
ground on CRL, background on multiple policy optimiza- 
tion for a single agent using basic reinforcement learning 
algorithms, and background on applications of RL in Ur- 
ban Traffic Control that will be our initial application area. 
Section 3 defines elements of multiple-policy CRL and the 
relationships between them and discusses the research chal- 
lenges and implementation decisions we face in extending 
CRL. Section 4 introduces our approach to answering rel- 
evant research questions using Urban Traffic Control, and 
Section 5 concludes the paper. 

2. Background 

The self-organizing multiple policy optimization tech- 
nique that we propose has its roots in Reinforcement Learn- 
ing (RL) [17]. In order to motivate the design decisions and 
challenges, we provide a summary of basic RL, a cooper- 
ative multi-agent extension of RL called CRL [6], existing 
work on multiple-goal learning using RL, and existing work 
in applying RL to UTC. 

2.1. Collaborative Reinforcement Learning 

Reinforcement Learning algorithm is a single-agent, sin- 
gle (implicit) policy, unsupervised learning technique [17]. 
Decision making is modelled as Markov Decision Process 
[17]. An agent can be in one of the predefined states in the 
state set. State set depends on the agent's circumstances 
relevant to performing w.r.t. the specified goal. Agents are 
capable of performing actions. Performing an action can 
leave an agent in the current state, or cause transition to 
another state in the state space. This transition function is 
probabilistic. Each action an agent performs is rewarded 
based on whether the new state is preferred over the state 
in which the agent was prior to performing the action (see 
Figure 1). Over time, agents learn the best action to perform 
lor each particular state, i.e., the action that will maximize 
their long term reward, the so-called value function [17]. 
Optimization w.r.t to a particular goal is achieved by agents 
learning to perform actions that maximize their long term 
accumulated reward. Most popular algorithms for learning 
and selecting the best action are Q-Learning and Sarsa [17]. 

State Action 

AGENT 

Figure 1. Reinforcement Learning 

Collaborative Reinforcement Learning [6] extends RL to 
multi-agent learning. CRL introduces exchange of action 
rewards between the agents so that agents learn from each 
other's actions as well (see Figure 2). By exchanging feed- 
back on actions performed, agents converge towards the so- 
lution optimal for the system performance, not to their indi- 
vidually best solutions. This overcomes the lack of central 
control and global knowledge. CRL has so far been used 
to implement. only single policy optimization in load bal- 
ancing, ad-hoc network routing, and urban traffic control 
[7,61. 

ENVIRONMENT 

AGENT AGENT 

_I_ _I_ 
advertise (feedback) 

Figure 2. Collaborative Reinforcement Learn- 
ing 

2.2. Multiple Policy optimization 

Use of basic RL for multiple goal optimization has been 
a subject of a lot of research as it is recognized that most 
goals do not exist in isolation. Most of the techniques in- 
volve learning for each goal in isolation, comparing the 
selected outcomes for each learning process, and selecting 
one action based on various criteria [lo]. Learning is per- 
formed separately as combining state spaces for each learn- 
ing process, i.e., policy, leads to very complex state spaces. 
Another technique suggested is using reduced combined 
state spaces [4], where all goals have a joint state space, but 
the state space is reduced by using prior knowledge to elim- 
inate invalid state-action pairs. Also, there is a debate as to 
which particular RL algorithm should be used when imple- 
menting multiple policy optimization [16,9], or should new 
variations of RL algorithms be introduced [lo]. 
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2.3. Reinforcement Learning in UTC 

Various reinforcement learning techniques, alone or in 
combination with other algorithms, have been applied in 
UTC, but there is currently no fully decentralized imple- 
mentation that deals with multiple policies. Cunningham et 
al. [7], Wiering et al. [IS], Abdulhai et al. [I], Pendrith 
[14], and Camponogara and Kraus [2] apply Q-learning to 
optimization of a single-policy relating to traffic congestion. 
Cunningham et a1 base the control decisions on traffic ar- 
rival rates, Abdulhai uses queue length, Weiring uses cars' 
own estimates of travel time, while Pendrith's decisions are 
made centrally based on a single shared policy. Richter et al. 
[15] use natural actor-critic algorithms, which is a combina- 
tion of four different reinforcement learning techniques, to 
optimize traffic volumes. Unlike in other UTC applications 
of RL, they model the environment as Partially Observable 
Markov Decision Process (POMDP) [17], where the state 
of the system is not observable but the probability of the 
system being in a certain state is calculated and action se- 
lection is based on that probability. Mikami et al. [13] 
as well as Yang et al. [19] combine reinforcement learn- 
ing implemented at local agents (traffic lights) with global 
centralized genetic algorithms that tune the parameters for 
local learning. Li et al. [12] introduce four traffic-light con- 
trol strategies, including the emergency vehicle strategy, but 
they suggest that the scheduling and planning is performed 
by a central manager, and they do not provide implementa- 
tion details. 

3. Extension of CRL for Multiple Policies 

Multiple policy CRL (MPCRL) will have to combine the 
characteristics of CRL and multiple policy RL in order to 
meet the requirements of large-scale decentralized systems 
with multiple goals. Goals will have to be explicitly stated 
in system's policies, which opens a number of issues about 
how to map policy to CRL elements such as state space and 
reward. Additionally, there are a number of issues arising 
from introducing multiple policy learning to CRL that will 
be outlined in this section. However, it is first crucial to 
identify what exact constructs are involved in this extended 
learning technique, what are their characteristics, and how 
do they relate to one another. The first part of this sec- 
tion provides some definitions of MPCRL constructs and 
the second part discusses open research questions we will 
tackle in extending CRL. 

3.1. Elements of Multiple Policy CRL 

Large decentralized multi-agent systems whose perfor- 
mance is to be optimized w.r.t. to multiple policies using 
MPCRL consists of the following elements: 

Set of agents {al ... a,) where an agent is characterised 
by the following: 

- Agents sense their environment including the en- 
tities in the environment. 

- Agents perform actions that affect the environ- 
ment. 

- Agents receive variable rewards for actions they 
perform. 

- Agents learn the best actions to perform for given 
environmental conditions and entity characteris- 
tics, based on the rewards received. 

- Agents have means of exchanging feedback and 
actions learnt with other agents. 

Sets of entities{e,l ... e,,) where: 

- An entity is part of the environment on whose 
characteristics agents' actions depend. 

- x is a type of entity distinguished from other 
types of entity by its static characteristics. Poli- 
cies can assign different priority levels to entity 
type x. 

- Entities have dynamic characteristics that agents 
are able to sense. Policies can assign different 
priority levels to entity type x based on its dy- 
namic characteristics. 

Set of metrics {ml ... m,) where each m is a function 
of the dynamic characteristics that an agent a is capa- 
ble of sensing about entity e or group of entities E, 
and optionally a function of time t .  

Reward r associated with a single action performed by 
a single agent in a given state, received immediately 
after the action is performed. 

- The reward is a function of the metrics changed 
and observed as a result of a performed action. 

- Rewards can be positive, in the case where the 
new state is preferred over the previous state, or 
zero or negative, if the previous state was the 
same or preferred over the new state. 

- The goal of each agent is to maximize the long 
term reward (value function [17]) received rather 
than immediate the single action reward. 

Set of policies {pl . . .p,} where: 

- p is a policy that specifies a single goal of a group 
of agents (where the members and size of the 
group may differ for different policies - global, 
regional, local policies). 
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- Policy can contain the following information: 

* policy identifier and description 

* list of entity types with which it is concerned 
where each entity type is associated with one 
or more metrics required to be observed for 
the implementation of the policy as well as 
the optimal value(s) of the metric that the 
policy is aiming to achieve (minimize, max- 
imize, reach threshold value, set to true or 
false) 

* list of zero or more policy triggers (agent's 
states, context conditions, threshold values 
or patterns). 

- Policies must have a priority level, either relative 
to other policies, or absolute priority for the set 
of agents. 

- Policies can be compatible or in conflict with 
each other. Two policies are compatible if, as 
the result of the learning process, an agent's pre- 
fcrrcd actions for onc policy in all rclcvant statcs 
are the same as the agent's preferred actions for 
the other policy in the corresponding states. If 
this condition is not satisfied, policies are said to 
be conflicting. 

Set of agent's state spaces s such that: 

- states are grouped into state space groups S based 
on the policy to which they are relevant. 

- agent's complete state space consists of all possi- 
ble combinations of all state spaces in all policies 
that the agent is implementing. 

3.2. Design and Implementation Challenges 

There are number of open issues associated with ap- 
plying CRL in multi-agent decentralized systems, such as 
the choice of appropriate rewards for actions performed, 
and dealing with the uncertainty present due to the lack 
of global knowledge and relying on sensors to obtain a 
picture of the world. Additional challenges arise from 
extending CRL to multiple policies, as this requires taking 
into account the heterogeneity of agents and the different 
policies that different agents can be implementing. Our 
research will focus on these challenges, specifically on 
the issues outlined in the following paragraphs, relating to 
three main elements of Multiple Policy CRL: state space, 
learning process, and collaboration. 

STATE SPACE 

Should an agent's state space be separate for each pol- 
icy, or should there be a combined state space for all 
policies? 

- How does either option influence deploying new 
policies at an agent? If state spaces are separate 
then a new policy deployed will have its own sep- 
aratc statc spacc and should not affcct othcr poli- 
cies, however if the state spaces are combined, 
deployment of the new policy will involve chang- 
ing the existing state space for existing policies to 
include combinations of the new states relevant 
to the new policy. 

- How does either option influence the complexity 
of the learning process? A combined state space 
will be much larger than individual state spaces 
and we need to investigate the impact of that on 
the performance of the system, on time needed to 
perform learning processes, and on quality of the 
actions learnt. 

How can we design adequate state space partitioning 
for a given policy? 

- Should state space partitioning be absolute, i.e., 
have fixed values, or should it be relative to the 
metrics observed at other agent's in the system? 
To illustrate this problem we can use an exam- 
ple of traffic congestion in UTC. If the system 
is optimizing for maximum vehicle throughput, 
the state space should contain information about 
the number of vehicles waiting at each traffic 
light. Absolute state partitioning would partition 
the state space by an actual number of vehicles, 
for example state A would be 0 to 10 vehicles, 
state B would be 11 to 50 vehicles and so on. In 
a relative state partitioning state space would be 
divided so that state A means high congestion, 
state B medium congestion, and state C low con- 
gestion, where high, medium and low will have 
different numerical values at different times, rel- 
ative to the count of vehicles at other traffic lights 
in the system. We need to investigate which state 
partitioning technique is more efficient in opti- 
mizing the system's performance. 

- Does suitability of absolute and relative partition- 
ing depend on the policy type and how? We need 
to investigate should we use the same partition- 
ing technique for all policies, or are there policy 
characteristics that influence the suitability of the 
technique. 

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007
International Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS'07)
0-7695-2973-9/07 $20.00  © 2007



LEARNING 

Should learning be done separately per policy or 
should an agent learn for all policies combined? Inves- 
tigation of this relates to the above mentioned group- 
ing of the states by policy or having a combined state 
space. 

- Does learning separately result in suboptimal be- 
havior for combined policies? A separate learn- 
ing process assumes that policies exist in isola- 
tion and that once an agent executes an action it 
affects only a single policy. We need to investi- 
gate how an action chosen to implement a single 
policy in isolation influence system performance 
in the presence of other policies. 

- How much does the learning for all policies si- 
multaneously increase the complexity of learn- 
ing and time needed for convergence towards op- 
timal behaviour? How does the behaviour that 
emerges in this way compare to the behaviour 
obtained by separate learning? We need to inves- 
tigate if and to what extent we will have to trade 
off time of convergence vs quality of the solution. 

What happens with the learning process when policy is 
triggered and when policy is put on hold? Does it af- 
fect the learning process for other policies? This ques- 
tion has to considered both in the case of separate and 
combined learning. 

HETEROGENEITY OF AGENTS 

In collaborative self-organizing techniques agents per- 
form actions, receive feedback from the environment on 
performing them, and then exchange the information about 
the feedback received with their neighboring agents. The 
feedback protocol is relatively straight forward in single 
policy systems as all agents are working towards a common 
goal, but in multiple policy optimization the goals of the 
agent can differ. In order to investigate the implications of 
heterogeneity of agents we need to answer the following 
questions on learning process and feedback exchange. 

Multiple policy systems can be designed so that indi- 
vidual agents only have knowledge of the policies they 
are implementing, or so that each agent has knowl- 
edge of the policies any agent with which it exchanges 
feedback is implementing. What are the implications 
of either design decision on the exchange of the feed- 
back, calculation of the overall reward that is taking 
that feedback into account, and quality of the learning 
outcome? 

If agents are aware of each other's policies should they 
be aware of relative priorities of their policies versus 
other agent's policies and how does priority specifi- 
cation affect the feedback protocol, calculation of the 
reward based on the feedback, and learning process? 
Agents should be able to learn to perform actions that 
are the best for the policy with the highest priority, 
even if they are not currently implementing that pol- 
icy themselves and even if that policy is in conflict 
with the policies they are currently implementing, i.e. 
the action performed might not be optimal for their lo- 
cal policy. Learning process should prevent greedy lo- 
cal agents from dragging the system into converging 
towards suboptimal global performance only because 
that behaviour optimizes performance of an individual 
agent. 

Answers to any of the above questions relating to state 
space, learning process and feedback exchange between 
heterogeneous agents are difficult to predict and should be 
tackled experimentally. 

4. Research Testbed 

Our initial application area for MPCRL is Urban Traffic 
Control (UTC). Research is currently being done on apply- 
ing CRL to single policy optimization of traffic through- 
put in UTC [7]. We believe UTC is a suitable application 
area for MPCRL because real world adaptive traffic systems 
have multiple objectives to deal with apart from just maxi- 
mizing traffic throughput. An example scenario is presented 
in Figure 3. Traffic lights, modelled as autonomous agents, 
cooperate in order to minimize the waiting time for vehicles 
in the system, while simultaneously prioritizing emergency 
vehicles and public transport vehicles. 

Figure 3. Application of Multiple Policy CRL 
in Urban Traffic Control 

We plan to conduct a number of experiments on sim- 
ulation of UTC system to answer the research questions 
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discussed in 3.2. The experiments will initially involve a 
single junction with two or three approaches and two dif- 
ferent policies, emergency vehicle priority and maximizing 
traffic throughput. The state space for emergency vehicle 
policy needs to include the information about the presence 
of the emergency vehicle at the approach, and the traffic 
throughput policy state space will contain the information 
about the number of vehicles queued. We will conduct ex- 
periments that simulate separate state spaces and learn for 
each policy (so traffic lights will learn the optimal cyclc 
based on the length of the queues in one case, and based 
on the presence of an ambulance in the other case), as well 
experiments that simulate combined learning (where traffic 
lights will learn the optimal cycle taking both policies into 
account). Also, we will vary state space partitioning in this 
experiment to include queues of different absolute and rel- 
ative length to test the influence of state space partitioning 
on learning processes. We will also vary the feedback that 
approaches exchange to include information about the state 
space, policies, and policy priorities of the sending and re- 
ceiving agents, and vary the weight of feedback based on 
thc policy priority. 

Based on the results obtained from these experiments we 
plan to extended the simulation to include various additional 
policies on a global, regional or local level, such as priority 
of cars based on waiting time or on number of passengers, 
priority of public vehicles based on their timetable, priority 
of vehicle fleets, priority of traffic from or to certain areas 
etc. 

5. Conclusion 

Self-organizing algorithms are suitable for engineering 
largc scale dcccntralizcd systcms as thcy cnablc system to 
deal with the lack of global knowledge and central control. 
We believe these algorithms could find a wider application 
in engineering decentralized and ubiquitous systems once 
they are also capable of dealing with optimizing the sys- 
tem's performance towards multiple policies, rather than a 
single policy as the majority of existing techniques currently 
do. We have discussed a specific self-organizing technique 
CRL and have outlined a number of open research questions 
that have to be answered in order to apply it to multiple pol- 
icy optimization. One of the major issues that arises is the 
heterogeneity of agents, meaning that agents need to col- 
laborate to optimize global system performance, even if the 
performance towards their immediate local policy needs to 
be traded off. Additionally, we need to investigate the im- 
pact of multiple policies on the learning process, and evalu- 
ate the quality of system performance in the cases of sepa- 
rate learning processes for each policy or common learning 
process that encapsulates all policies simultaneously. In or- 
der to answer these questions, we will conduct a number 

of experiments by simulating multiple policy optimization 
of Urban Traffic Control systems using various parameters 
and relationships between MPCRL elements. 
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