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Electrocardiogram Based Neonatal Seizure Detection
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Abstract—A method for the detection of seizures in the new-
born using the electrocardiogram (ECG) signal is presented.
Using a database of eight recordings, a method was developed
for automatically annotating each 1-min epoch as “nonseizure”
or “seizure.” The system uses a linear discriminant classifier
to process 41 heartbeat timing interval features. Performance
assessment of the method showed that on a patient-specific basis
an average accuracy of 70.5% was achieved in detecting seizures
with associated sensitivity of 62.2% and specificity of 71.8%.
On a patient-independent basis the average accuracy was 68.3%
with sensitivity of 54.6% and specificity of 77.3%. Shifting the
decision threshold for the patient-independent classifier allowed
an increase in sensitivity to 78.4% at the expense of decreased
specificity (51.6%), leading to increased false detections. The
results of our ECG-based method are comparable with those
reported for EEG-based neonatal seizure detection systems and
offer the benefit of an easier acquisition methodology for seizure
detection.

Index Terms—ECG, linear discriminant, neonatal, seizure
detection.

I. INTRODUCTION

Aneonatal seizure is defined as a paroxysmal alteration in
neurological function [1] and results from an excessive

synchronous discharge of neurons. Seizures occur in 6%–13%
of low birth weight infants and 1–2 per 1000 infants born at term
[2]. Although changes in heartbeat timing have been described
during neonatal seizures [1]–[4], they are much neglected in au-
tomatic seizure detection research. Clinical evidence suggests
that neonates with seizures have poor health outcomes, with
morbidity in 50% of survivors, and a high (30%) probability
of death [5]. Early detection and treatment of seizures may sig-
nificantly improve prognosis, however, early detection can be
difficult as neonatal seizures are often unaccompanied by no-
ticeable clinical signs, particularly after treatment [6]. As a re-
sult, there is a need for an automated system to notify physicians
of the presence of seizures in the newborn and to enable timely
medical intervention. Neonatal seizure detection algorithms are
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primarily based on the electroencephalogram (EEG). There are
a number of published neonatal seizure detection methods and
we will briefly review four such methods, (those of Gotman [7],
Liu [8] and Celka [9]). Faul et al. [10] provided a review and
experimental comparison on the same data set of three of these
methods. This particular data set was also used in this study
and seizures were annotated by the same expert (G. B. Boylan).
These results are included to give an unbiased objective com-
parison between competing algorithms and to set our results in
context. Where possible, we have tried to present and compare
results in the same format as that used by Faul et al. Faul et al.
define sensitivity as “the percentage of seizure epochs which
were classified correctly” and the specificity as the percentage of
nonseizure epochs which were classified correctly, where each
EEG epoch was 1 min in duration.

The Gotman [7] method is a frequency-based method that
assumes the dominant characteristic of neonatal seizures is pe-
riodicity and was also the basis of the methods used by Liu [8]
and Altenburg [11]. The method uses fast Fourier transform
(FFT)-based frequency spectrum analysis to detect periodic
discharge. The EEG is divided into 10-s windows, moving in
2.5–s increments. The frequency spectrum of each 10-s epoch is
calculated and a number of features, such as the frequency and
width of the dominant spectral peak as well as the relative power
of that frequency band (the power in the frequency band is com-
pared to the power in the same band in the background EEG) are
extracted to detect neonatal seizures. Gotman et al. report a good
detection rate or “seizure sensitivity” of 71% with 1.7 false detec-
tions/h. Good detection rate (GDR) is defined as the percentage
of seizures identified from the EEG data by an expert in neonatal
electroencephalography that is correctly identifiedby the system.
These results were based on analysis of a data set containing EEG
records from 43 neonatal subjects from three medical centers.
Theresults for theGotmanmethodwerevalidated inasubsequent
paper [12] by analyzing a separate data set containing 281 h of
EEG data from 54 patients again in three medical centers. The
sensitivity for this set was 69% with an average false detection of
2.3/h. On their data set, Faul et al. report a sensitivity of 62.5%
and a specificity of 64.0% for the Gotman method.

The Liu [8] method also relies on periodicity as the dominant
characteristic of neonatal seizures in the EEG. The degree of
periodicity in the autocorrelation of 30-s epochs of EEG data is
scored and used to classify the epoch as seizure or nonseizure.
Liu et al. report a sensitivity of 84% for this method and a speci-
ficity of 98%. Faul et al. report a sensitivity of 42.9% and a
specificity of 90.2% for the Liu method.

The Celka [9] method is a time-domain method employing
patient-specific preprocessing. The preprocessing involves esti-
mating an autoregressive moving average model of the prere-
corded normal EEG. The inverse of this is applied to the signal
being analyzed, leaving only seizure components and Gaussian
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white noise. A singular value decomposition (SVD)-based algo-
rithm is then used to extract seizure features from noise. A sen-
sitivity of 93% and a false detection rate (FDR) of 4% were de-
scribed for four neonatal subjects. Faul et al. report a sensitivity
of 66.1% and a specificity of 56.0% for their modified Celka
method, when tested on their data set. In the results reported by
Celka, channels known to contain seizures were chosen for pro-
cessing. Although this does not bias the results on a per-channel
basis, a real-time seizure detection system would require pro-
cessing and polling of all channels in parallel, as the spatial lo-
cation of the seizure is a priori unknown.

Hassanpour et al. [13] investigated time-frequency domain
(TFD)-based neonatal seizure detection methods. The EEG
was segmented into 30-s epochs. An SVD was performed on
the TFD representation of each epoch. To discriminate between
seizure and nonseizure activities in each EEG epoch using
the TFD, this method uses two left and two right singular
values (SVs). The left and right SVs correspond to the time-
and frequency-domain components of the signal. The features
extracted through the histograms of the four SVs are organized
into a feature vector and fed into a trained neural network, to
classify each feature vector as seizure or nonseizure. Results for
eight babies gave an average sensitivity of 92.5% for a FDR of
3.7%. We present a performance comparison for this algorithm
against the Gotman, Liu, and Celka neonatal seizure detection
algorithms, demonstrating an impressive improvement for this
method over the others. The EEG data used for training and
testing this algorithm employed a database of 30-s seizure
and nonseizure epochs as opposed to including continuous
recordings of the duration and quality that would be found in
real-world, neonatal intensive care unit (ICU) conditions. The
results reported by Liu et al. were for EEG recordings selected
for “typicality.”

In our opinion, selection of EEG epochs has the effect of op-
timistically biasing results and we believe detection methods
should be evaluated over several hours. Short-duration record-
ings cannot be considered in the same light as results presented
for methods such as Gotman, which use more realistic recording
lengths and do not exclude any record regardless of length or
quality.

Karayiannis et al. [14] report a video-based method for mea-
suring motion strength and motor activity in seizing neonates.
Motor strength signals are extracted by measuring the area of
the body parts that move during the seizure and the relative
speed of the motion, using a combination of spatiotemporal sub-
band decomposition of video, nonlinear filtering, and segmen-
tation. By tracking the infants’ extremities in adjacent frames
in a video image, the speed of limb movement can be calcu-
lated using the Kanade Lucas Tomasi algorithm. The temporal
signals produced by these methods provide the basis for distin-
guishing myoclonic from focal-clonic seizures and differenti-
ating these types of seizures from normal infant behaviors. This
neonatal seizure detection method is the only published method
that provides noncontact monitoring. A second important con-
tribution of [14] is the distinction made between different types
of neonatal seizures. However, clinical manifestations of seizure
such as the physical movements detected by this method are,
by no means present in all neonatal seizures (in [15] Bye and
Flanagan found that 85% of seizures were subclinical) and as

a result this method cannot provide a complete solution to the
problem, a limitation acknowledged by Karayiannis et al. [16],
[17]. Furthermore, many neonates under observation in the ICU
are therapeutically paralyzed and so for these cases seizure-de-
tection systems based on physical movement are not viable.

Several authors have published on the relationship of changes
in the electrocardiogram (ECG) signal with adult epileptic onset
and its utility for epileptic seizure detection. Quint et al. [18]
studied the changes in the ECG during epileptic seizure onset in
adults, and conclude that characteristic changes in mean heart
period are frequently, if not always, present upon detection of
seizure onset in adult EEG. Zijlmans et al. [19] attempted to
rigorously document cardiac behavior during epileptic seizure
onset in adults. They found that there was an increase in heart
rate of at least 10 beats/min in 73% of seizures (93% of patients)
around the point of seizure onset from a point 30 s prior to the
moment of clinical or electrographic seizure onset. They did not
find any correlation between cardiac abnormality and seizure.
These results were for 281 seizures in 81 epileptic patients. The
large size of this data set provides weight and statistical signif-
icance to the results presented. Kerem et al. [20] used the RR
interval time series to forecast epileptic seizure in adults. Using
successive heart rate timing intervals in an unsupervised fuzzy
clustering algorithm they report a prediction sensitivity of 86%
for eight epileptic patients.

II. AIM

The issues noted in the literature suggest that an approach to
neonatal seizure detection based on signals other than the EEG
is warranted. The aim of this study is to detect seizures in the
newborn using the ECG signal, taking a supervised statistical
pattern classification approach to the problem.

III. DATA SET

A data set of eight recordings from seven term neonates
containing 520 seizure events, were recorded and analyzed.
Electrographic seizures were identified and annotated by an
expert in neonatal EEG (G.B. Boylan). This is the same data
set used by Faul et al. [10]. Annotations give information
on the time of onset and the duration of the electrographic
seizure. The mean seizure duration across records was 3.86
min. The records had a mean duration of 12.70 h. Table I gives
a breakdown of record duration and number of seizure events
for each record. Each recording contained simultaneous record-
ings of multichannel EEG and single-channel ECG. Seven
recordings were made in the neonatal intensive care units of the
Unified Maternity Hospitals in Cork, Ireland, using the Viasys
NicOne video-EEG system with sampling rate of 256 Hz. The
remaining recording, sampled at 200 Hz was recorded in the
neonatal intensive care unit of Kings College Hospital, London,
U.K., was made using a Telefactor Beehive video-EEG system.
All babies were term (GA: 40–42 weeks) and were diagnosed
clinically as having hypoxic ischaemic encephalopathy. All the
data for each recording was included in the analysis regardless
of record length or quality. Each patient record consisted of the
complete ECG signal from each available recording. No ECG
record contained any cardiac abnormality. As the ECG and
EEG signals were recorded simultaneously, these annotations
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TABLE I
DATA CHARACTERISTICS FOR EACH OF THE EIGHT RECORDINGS: NUMBER OF

SEIZURE EVENTS, DURATION OF RECORDING, AND MEAN SEIZURE DURATION

could be mapped to the time domain for the ECG signal. The
ECG was considered in 60-s epochs, so each seizure event was
rounded to the nearest minute when mapping annotations to the
epoch domain. An epoch containing 50% seizure was labeled
as a seizure epoch.

IV. METHOD

A. QRS Detection

Detection of the R wave maximum points in each ECG
signal was performed using a QRS detection algorithm as
described by Benitez et al. [21]. Before filtering, the mean of
the ECG was removed from the signal. All ECG signals were
filtered with a 20th-order finite impulse response band-pass
filter (corner frequencies 8 and 18 Hz) to remove baseline
wander, power-line noise, and out of band noise. The Hilbert
transform was then taken of the first derivative of the signal
to emphasize the R peaks. A moving-window peak search
was carried out with an adaptive threshold; a step-back search
was then performed to isolate the P peak. Neonatal ECG often
manifests elevated P-wave so this was done to ensure robust
detection of the R-wave maximum.

Correction for missing and extra QRS points was performed
by comparing each RR interval to an estimate of the mean RR
interval (defined as the time in seconds between adjacent R wave
maximum points). The estimate of the mean RR interval was
calculated by median filtering the RR interval time series and
taking the mean of the result. Best results for correction were
obtained by using a median filter of length 25. Missing QRS
points were calculated by taking the ratio of the RR interval to
the mean RR interval was then rounded to the nearest integer
Z. Z-1 QRS points were then inserted between the current QRS
point and the previous point. The interpolating points inserted
were set equal to the mean RR interval as described by de Chazal

et al. [22]. Extra QRS points were corrected by comparing the
sum of adjacent RR intervals to the robust mean RR interval
estimate. If the sum was numerically closer to the mean than
the individual interval, then the two intervals were merged to
form a single interval.

B. Feature Extraction

A number of ECG window lengths were investigated. The
variation of classification accuracy with window length along
with the suitability of the window length was used to decide on
the window length for the algorithm. As a result of this anal-
ysis, the ECG was considered in epochs of 60 s. Features were
extracted for each epoch. Sixty-second time windows were con-
sidered suitable for the algorithm as the majority of neonatal
seizures are found to be 60 s or longer in duration [1]. A se-
quence of RR intervals was associated with each 60-s epoch.
A large number of RR interval-based features were tested in
this study and included: mean RR interval, relative mean RR
interval, RR interval standard deviation, the relative mean stan-
dard deviation, RR interval coefficient of variation, RR interval
power spectral density (PSD), change in RR interval, relative
change in the RR interval, and RR interval spectral entropy.

The mean RR interval feature (meanRR) was calculated by
taking the mean of the RR interval sequence associated with
each 60-s interval. Similarly, the RR interval standard deviation
feature (stdRR) was calculated by taking the standard deviation
of the RR intervals for each epoch. The coefficient of variation
feature (cvRR) is defined as the ratio of the square of the stan-
dard deviation to the mean value for each epoch. The
change in RR interval feature (delRR) is defined as the mean
difference between adjacent RR interval values for each epoch.
The relative features were obtained by subtracting the mean of
the feature for the four preceding epochs as well as the mean
for the four subsequent epochs (meanRR_ratio, stdRR_ratio,
delRR_ratio, and cvRR_ratio). It should be noted that the use
of such relative features in a real-time system would lead to a
4-min detection delay in any real-time system.

The RR interval PSD features were calculated on an interval
basis as opposed to a rate basis as described in [22]. The mean of
the RR intervals for each epoch was subtracted to yield a zero-
mean sequence. The sequence was then zero-padded to length
256 and the FFT taken. The resulting sequence was multiplied
by its complex conjugate to yield a periodogram estimate of
the RR interval PSD. By averaging the values in four adjacent
frequency bins, a 64-point periodogram was obtained. Only the
first 32 of these constituted a valid PSD so each of these 32
points was taken as a feature in its own right for each 60-s epoch.

Non-linear dynamical methods have been used with some
success in predicting and detecting epileptic seizures in adults
[23], [24]. These results provide evidence to support the hy-
pothesis that, during an epileptic seizure, the brain behaves as
a highly nonlinear chaotic system. As a similar hypothesis for
neonatal seizures seemed reasonable, we tested a number of
nonlinear heart rate variability features. Acharya et al. [25] used
spectral entropy, Poincaré plot geometry and the largest Lya-
punov exponent for the classification of cardiac abnormalities.
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TABLE II
VARIATION IN CLASSIFICATION ACCURACY FOR THE PATIENT INDEPENDENT

CLASSIFIER AS WINDOW LENGTH IS VARIED IN THE RANGE 30–120 s

They describe spectral entropy as a measure of the spectral
complexity of the time series. It is calculated using the formula:

(1)

where is the probability density function (PDF) at frequency
. The PDF is calculated by normalizing the RR interval PSD

with respect to the total spectral power. The spectral entropy
was calculated for each 60-s epoch. Spectral entropy lends itself
well to an online implementation as it has a low computational
requirement.

The ECG-derived respiration signal (EDR) was calculated by
calculating the area under the ECG signal at each QRS point,
where the area is defined by 40 ms on either side of the QRS
point. It was hypothesized that the EDR PSD may provide useful
information about the onset of seizure based on earlier inves-
tigations by the authors on changes in the respiration rate in
neonates during seizure [26]. The EDR PSD was calculated in a
similar manner as the RR interval PSD as described above. The
EDR PSD contributed 32 features per epoch.

C. Feature Selection

Several different combinations of features were applied to
the classifier in order to determine the efficacy of different fea-
ture subsets. Receiver operating characteristic (ROC) analysis
[27] was performed on individual features to quantify the ability
of each feature to discriminate between the seizure and non-
seizure classes. The area under the ROC curve (ROC area) was
used to select the best performing features. The larger the ROC
area, the better the feature will discriminate between seizure and
nonseizure epochs. Table II gives the ROC area and rank sum

-value for each feature for each record, showing the statistical
significances of the discriminability of each feature.

D. Classifier Model

Supervised linear discriminant (LD) classification was em-
ployed in this study. An LD classifier finds the linear combina-
tion of features that best discriminates among classes. Training
of an LD classifier assumes that the classifier parameters can be
estimated directly from the data. These parameters were calcu-
lated using “plug-in” maximum likelihood estimation, assuming
equal covariance matrices, Gaussian class distributions, and dif-
ferent mean vectors for each class [28]. If a feature vector is

to be assigned to one of possible classes, a total of fea-
ture vectors are available for training and feature vectors are
available for training class then

(2)

The th feature vector for training in class is designated as
. As a result, the class conditional mean vectors can be

calculated using

(3)

The common covariance matrix is then calculated from the
training data using

(4)

Feature vectors are then classified by assuming values for the
prior probabilities for each class and calculating the discrim-
inant value using

(5)

The final class is then that class with the largest discriminant
value.

E. Classifier Performance Estimation

The performance of a patient-specific classifier was estimated
using tenfold cross-validation on each record. This involves ran-
domly splitting each record into ten sections or “folds.” Nine of
these folds are used to train the classifier and the remaining fold
is used to test the performance of the classifier. By rotating or
“shuffling” the data and repeating the above procedure times
and averaging the resulting accuracies for the test sets an unbi-
ased estimate of the classifier performance can be obtained. In
this study, 10 shuffles were used. This test provides an estimate
of the performance of the system as a local or “patient-specific”
classifier and can give a measure of the utility of this approach
to neonatal seizure detection.

The patient-independent classifier performance was also esti-
mated using cross-fold validation. This was done by training the
classifier model on of the ECG records and using the

th record to test the classifier performance and then rotating
through the possible combinations of training and test sets,
taking the mean of the result for all iterations as the patient-in-
dependent classifier performance estimate. This test provides an
idea of the classifier’s ability to generalize from the training set
and classify from “unseen” records.

F. Classifier Performance Metrics

A wide variety of classifier performance metrics are em-
ployed in the literature, making it necessary to carefully define
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those used here. Our system is epoch-based so all results are
quoted on an epoch basis. The sensitivity is defined as the
percentage of labeled 60-s seizure epochs correctly classified
as containing seizure while the specificity is defined as the
percentage of labeled 60-s nonseizure epochs correctly clas-
sified as nonseizure. The overall accuracy is defined as the
percentage of 60-s epochs correctly classified by the system.
We define a true detection as a seizure event correctly identified
by the system. A false detection is a nonseizure epoch falsely
identified as a seizure epoch by the system. The FDR is then the
percentage of nonseizure epochs falsely identified as seizures
epochs and is equivalent to (100-specificity). An ROC curve
is a plot of class sensitivity against specificity as a threshold
parameter is varied. The area under the ROC curve is equivalent
to the Mann Whitney version of the two sample nonparametric
Wilcoxon rank-sum statistic [27]. The ROC area, (calculated
using trapezoidal numerical integration) is an effective way of
comparing the performance of different features or classifiers.
A random discrimination will give an area of 0.5 under the
curve while perfect discrimination between classes will give
unity area under the ROC curve.

G. Improving Classifier Performance

As the eight neonatal ECG records used in this study were of
varying lengths, the contribution of each record to the LD clas-
sifier training was weighted, so as to ensure each record con-
tributed an equal amount. This was achieved by summing the
covariance matrices and mean vectors for each record and aver-
aging these across all records. As a result the covariance matrix
and mean vectors for the weighted LD classifier becomes:

(6)

(7)

where is the number of records available for training,
is the weighted covariance matrix and is the

weighted mean vector for each class. Weighting of the training
data was found to greatly improve the classification accuracy
of the cross-record validation scheme. Weighting of the con-
tribution of each class to the training data was implemented as
described in [29]. The weighting was determined by the relative
occurrence of each class in a record.

The meanRR, stdRR, delRR, and cvRR patient features all
had patient-specific values. Normalization of these features by
subtracting the mean of the feature and dividing by the stan-
dard deviation for each record was found to improve the classi-
fier performance for the patient-independent classifier. This pro-
vided a record independent feature to be applied to the classifier.

The performance of a LD classifier is degraded if the prob-
ability distribution of the features is far from Gaussian. As a
result performance may be improved by applying transforma-
tions to force the distributions of the relevant features into taking
on a more Gaussian profile. Taking the natural logarithm of the

Fig. 1. The variation in classification accuracy for the patient-independent clas-
sifier as window length is varied in the range 30–120 s.

PSD features and the spectral entropy yielded an increase in
performance.

In any seizure detection system, it can be argued that there
is a larger cost associated with incorrectly classifying a seizure
epoch as a nonseizure epoch, than incorrectly classifying a non-
seizure epoch as a seizure epoch. Identifying a nonseizure epoch
as a seizure epoch may lead to unnecessary anticonvulsant med-
ication which could lead to ventilator dependency and increased
morbidity. Consequently, increasing the sensitivity of the clas-
sifier to seizure epochs, while decreasing the sensitivity of the
system to nonseizure epochs, may be considered an acceptable
tradeoff. Previously, the prior probabilities were set equal for
the two classes . By biasing the priors in favor of
the seizure class an increase in sensitivity was achieved at the
expense of decreased specificity. It should be noted using un-
equal prior probabilities does not change the parameters of the
classifier. It simply allows the user to choose the most suitable
operating point for the given population. Increased sensitivity
can be achieved but this is always at the expense of increased
false detections.

V. RESULTS

In order to determine the optimum ECG window length for
the algorithm, a study was carried out to observe the variation
in classification accuracy as window length is increased from
30–120 s. Table II shows how the classification accuracy of the
patient-independent classifier varied with a number of a number
of values of window length.

Varying the window length for this algorithm was not found to
have any noticeable effect on the algorithm performance. Fig. 1
is a plot of the variation of ECG classification accuracy as the
window length is varied from 30 to 120 s.

ROC analysis was performed on a per feature basis in order to
ascertain the best performing features. Those features with the
largest ROC area were selected. From analysis on all records,
the best performing features were found to be meanRR, H,
stdRR, and the RR PSD features. The EDR PSD features were
not found to have good discriminability between classes, rarely
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Fig. 2. ROC curves for the RR interval time domain features for the typical
records 2 and 7. Visual analysis confirms that meanRR, delRR, and H are the
best performing features.

performing better than random chance. The discrimination is
said to be better than random chance if the rank-sum -value is
less than 0.05. Fig. 2 shows the ROC curves for the time domain
RR PSD features for records 2 and 7. Fig. 3 shows the first eight
RR interval PSD features for records 4 and 8. The first eight
RR PSD features for each record were found by ROC analysis
to provide the best class discrimination and are included here
for demonstration purposes. The performance metric used to
evaluate each feature and select the best performing features
was the area under the ROC curve. Table III gives the mean
area under the ROC curve as well as -values for the Wilcoxon
rank-sum test across all records for the time domain features.

Table IV gives the mean patient-specific results for each
record. The mean accuracy of classification was 70.31% with a
mean sensitivity of 61.70% and a mean specificity of 71.74%.
The use of unequal prior probabilities in favor of seizure

led to an increase in sensitivity to
75.52% and a decrease in accuracy and specificity to 66.04%
and 57.70%, respectively.

Fig. 3. ROC curves for the RR interval PSD; features 1–8. First eight RR in-
terval PSD features for the typical recordings 4 and 8. Visual analysis confirms
the relatively poor performance of the RR PSD features when compared to the
time domain RR interval features.

A cross-validation estimate of the patient-independent clas-
sifier with equal prior probabilities gave an accuracy of 68.3%,
a sensitivity of 54.6%, and a specificity of 77.3%. This corre-
sponded to a FDR of 22.7%. The best tradeoff was achieved by
setting the prior probability for the seizure class,
and the prior for the nonseizure class, . This led
to an increased sensitivity of 78% and a decrease in accuracy
and specificity to 61.80% and 51.75%, respectively. This corre-
sponded to a FDR of 48.25% which, in clinical practice, would
be considered unacceptably high. This trade off is illustrated by
the patient-independent ROC curve in Fig. 4. The area under the
ROC curve had a value of 0.73 . The classification
accuracy obtained from cross-fold validation estimates for the
patient-specific and patient-independent classifiers was maxi-
mized by removing the EDR PSD features from the 73 available
features to form a 41-feature subset. Weighting of the contribu-
tion of each record to the training data led to an average 5% in-
crease in classification accuracy for both classifiers. Weighting
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TABLE III
AREA UNDER THE ROC CURVES AND THE WILCOXON RANK-SUM p-VALUE FOR EACH RECORD, FOR THE RR INTERVAL TIME-DOMAIN FEATURES

TABLE IV
PATIENT-SPECIFIC CLASSIFICATION RESULTS FOR EQUAL AND UNEQUAL PRIOR PROBABILITIES FOR EACH OF THE EIGHT RECORDS

Fig. 4. Patient-independent classifier ROC curve. Area = 0:73, p < 0:001.
Prior probabilities � = 0:5, � = 0:5.

of the training data by the relative occurrences of each class did
not yield any improvement in performance.

Excluding the RR interval PSD features from the feature
vector led to a 4% decrease in the mean patient-specific clas-
sification accuracy (66%) and an 8% decrease in specificity
(69%). However, the sensitivity was increased by 8% to 69%.
In the patient-independent case, exclusion of the RR interval
PSD features led to a decrease in performance across the
board. Classification accuracy decreased by 1.49%–67.27%,
sensitivity by 2%–52.66%, and specificity by 1%–76.10%.
This reduction led to the decision to retain the RR interval
PSD features in the algorithm. Table V gives the performance
for both classifier configurations, for equal and unequal prior
probabilities, as well as the results quoted by Faul et al. [10] on
the same data set, for the Gotman, Liu and Celka methods.

VI. DISCUSSION AND CONCLUSION

The aim of this study is to attempt to accurately detect
seizures in the newborn using the ECG signal. The results
given in Table V for our ECG-based neonatal seizure detection
approach compare favorably with those for existing EEG-based
neonatal seizure detection methods. To the best or our knowl-
edge, this paper represents the first attempt to detect neonatal
seizure using the ECG signal alone. In terms of sensitivity, our
algorithm produced similar results to the Gotman method as
quoted in the source paper [7] and are significantly lower than
those reported by Liu [8], Celka [11], and Hassanpour [12].
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TABLE V
MEAN CLASSIFICATION PERFORMANCE FOR BOTH PATIENT-SPECIFIC AND PATIENT-INDEPENDENT ECG-BASED CLASSIFIERS

COMPARED TO RESULTS FOR THREE EEG-BASED METHODS AS REPORTED BY FAUL et al.

However, as discussed earlier, the results based on these algo-
rithms may be biased. When our results are compared to the
independent evaluation of three seizure detection methods by
Faul et al. [10], the results presented here offer an improvement
on reported EEG-based methods.

Caution must be exercised when comparing source results
that have used different performance measures. As discussed
earlier our results are reported in the same format and taken
from the same data set used by Faul et al., allowing direct com-
parison across methods. The results format used in this paper
differs from that used in other reports of neonatal seizure al-
gorithms [7], [30]. Our results are based entirely on classifica-
tion of 60-s seizure and nonseizure ECG epochs. It is arguable
that clinically relevant results for a seizure detection algorithm
should give some measure of the number of seizure events cor-
rectly detected, however, epoch-based results give a fair assess-
ment of the performance of an algorithm from an engineering
point of view. A similar point can be made about the reporting of
false detection results. Previous algorithms have reported false
detections in terms of “clusters” of false detections/h [7] rather
than an epoch-based false detection/specificity measure as is
used here . Although this
can be a useful measure of clinical utility of the algorithm, it is
not always a fair assessment of algorithm performance for the
reason that an entire hour of false detections could theoretically
be taken as a single false detection for that hour.

With unequal priors, a mean sensitivity of 75.52% for the
patient-specific classifier was achieved, this is an improvement
over the sensitivities reported in [10] for the Gotman, Liu, and
Celka methods (62.5%, 42.9%, and 66.1%, respectively). Simi-
larly, a mean specificity of 57.7% for this scheme compares fa-
vorably with altered results reported by Faul et al. for Gotman
and Celka.

The use of a statistical classifier presents a number of ad-
vantages over threshold-based methods such as Gotman, Liu
and Celka. The key advantage is that the thresholds values are
automatically decided based on the available (real) training
data supplied, avoiding using empirically derived thresholds
in the classifier decision functions. A rigorous methodology
was adopted in this study to ensure robust reliable results. A
number of methods were used to verify the performance of this
algorithm on the available data set. Cross-fold validation is an

unbiased estimate of classifier performance and was used to get
performance estimates for the patient-specific and patient-in-
dependent classifiers. The results quoted for this scheme were
confirmed by ROC analysis. The patient-specific results were
found to be better than the patient-independent results and leave
open the possibility of patient-specific, ECG-based neonatal
seizure detection systems. Improved feature normalization
schemes may allow for improvement in the robustness of the
generalized patient-independent classifier.

The influence of bias on performance estimates was lessened
further as the training and test data were completely unselected;
all records were included in the analysis regardless of duration
or quality. This approach was taken with a view to producing re-
alistic results using data as would be encountered in a neonatal
ICU. However, as a result artifacts were included in the training
data which may have led to classification error, further inac-
curacies may have been introduced by imperfect detection of
QRS points. Further uncorrected errors in the RR interval vector
would lead to suboptimal performance.

A variety of time and frequency domain heartbeat timing fea-
tures were tested and measures of their ability to discriminate
between classes are supplied here (ROC area and Wilcoxon
rank-sum test -value, Table II). As there were 32 RR PSD
features used for classification of each epoch, there was po-
tentially a large amount of redundant information contained in
these features, considering the relatively small impact they have
on the classification performance. The inclusion of the electro-
cardiogram derived respiration (EDR) features did not impact
the performance of the classifier. As a result these features were
removed from further analysis. The EDR signal is highly sus-
ceptible to artifact and noise, and so improved calculation of
this quantity may yield improved classification performance.
Possible future research directions include the use of other non-
linear features to better describe the dynamical changes in the
signal during seizure and the use of feature selection. Such ad-
vances may allow the deployment of an ECG-based neonatal
seizure detection system in a clinical environment.

The annotation paradigm used in this study assumes that any
manifestations of seizure in the ECG signal will be simulta-
neous with electrographic (EEG) seizure onset. Examination
of our data suggests that autonomic changes such as heartbeat
timing changes may precede the electrographic onset in some
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instances. As a result this may have led to epochs labeled as non-
seizure which genuinely contained seizure activity being taken
as an incorrect classification leading to unfairly high FDR. This
point has not been proven although it is certainly arguable that
EEG and ECG manifestations do not have simultaneous onset.
The ECG in the study was classified using two classes—seizure
and nonseizure. By expanding this class list to include the many
different electrographic neonatal seizure types [31] including
subtle, focal, multifocal, etc., we would hope to improve the
classifier performance. This would allow the classifier to take
account of the different signal characteristics associated with
each seizure type, corresponding to the different physiological
responses of the patient to each.

A major advantage of an ECG-based seizure detection
method is that the ECG is an inherently easier signal to acquire,
with a higher signal to noise ratio to that of EEG and can
be recorded on a single channel. The results presented here,
present the option of portable, less cumbersome monitoring for
neonatal seizures. A second possibility presented by this paper
is the combination of EEG and ECG-based neonatal seizure
classifiers to improve classification performance.
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