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Abstract. Because of the volume of spam email and its evolving nature, any 
deployed Machine Learning-based spam filtering system will need to have 
procedures for case-base maintenance. Key to this will be procedures to edit the 
case-base to remove noise and eliminate redundancy. In this paper we present a 
two stage process to do this. We present a new noise reduction algorithm called 
Blame-Based Noise Reduction that removes cases that are observed to cause 
misclassification. We also present an algorithm called Conservative 
Redundancy Reduction that is much less aggressive than the state-of-the-art 
alternatives and has significantly better generalisation performance in this 
domain. These new techniques are evaluated against the alternatives in the 
literature on four datasets of 1000 emails each (50% spam and 50% non spam). 

1. Introduction 

This paper presents an analysis of case-base editing techniques in a case-based 
reasoning (CBR) system for filtering spam email. The contributions of this work are 
twofold. First the analysis exercises the best case-base maintenance techniques 
currently available on a challenging problem with exacting accuracy requirements, 
namely spam filtering. Second, we present two new techniques for case-base 
maintenance, one for noise reduction and the other for redundancy reduction that 
significantly enhance the competence of the case-base.  

While a case-based approach to spam filtering has great promise [1-3], a 
requirement for a deployed system is a process for maintaining the case-base. This is 
due to the issue of concept drift and the volume of messages that may be involved. A 
user may receive over a hundred legitimate emails a week and a multiple of that in 
spam. Our analysis suggests that between 600 and 1000 cases will provide good 
coverage for a spam filtering system. So there is an ongoing need to discard cases that 
are not contributing to competence.  

The noise reduction technique we present, which we call Blame-Based Noise 
Reduction (BBNR), extends the competence based modelling ideas of Smyth and 
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colleagues [4,5]. Their case coverage measure, used in case selection, indicates how 
well a case contributes to correctly classifying other cases in the case-base. We extend 
this model to include the notion of blame or liability. We introduce a measure for a 
case of how often it is the cause of, or contributes to, other cases being incorrectly 
classified. Traditional noise reduction mechanisms tend to focus on removing the 
actual cases that are misclassified. However, a misclassified case could have been 
classified incorrectly due to the retrieved cases that contributed to its classification. In 
contrast to traditional approaches we attempt to identify those cases causing the 
misclassifications and use this liability information coupled with coverage 
information to identify training cases we would be better off without. Our evaluation 
shows that, in the domain of spam-filtering, this is a better way of identifying noisy 
cases.  

Some analysis of case-base editing techniques in the past has presented algorithms 
that aggressively prune the case-base at the cost of some classification accuracy [6,7]. 
This is not acceptable in spam filtering and our technique for redundancy reduction, 
which we call Conservative Redundancy Removal (CRR), focuses on a more 
conservative reduction of the case-base. It uses the competence characteristics of the 
case-base to identify and retain border cases.  

This paper begins with a review of existing research on case-base editing 
techniques in Section 2. The enhanced competence model and our new case editing 
techniques are presented in Section 3. A comprehensive evaluation of these 
techniques on four email datasets is presented in Section 4. Some conclusions and 
directions for future work are presented in Section 5.  

2. Review of Existing Case Editing Algorithms 

Case base editing techniques involve reducing a case-base or training set to a smaller 
number of cases while endeavouring to maintain or even improve the generalization 
accuracy. There is significant research in this area, described in this section.  

2.1. Early Techniques 

Case editing techniques have been categorised by [8] as competence preservation or 
competence enhancement techniques. Competence preservation corresponds to 
redundancy reduction, removing superfluous cases that do not contribute to 
classification competence. Competence enhancement is effectively noise reduction, 
removing noisy or corrupt cases from the training set. Editing strategies normally 
operate in one of two ways; incremental which involves adding selected cases from 
the training set to an initially empty edited set, and decremental which involves 
contracting the training set by removing selected cases.  

An early competence preservation technique is Hart’s Condensed Nearest 
Neighbour (CNN) [9]. CNN is an incremental technique which adds to an initially 
empty edited set any case from the training set that cannot be classified correctly by 
the edited set. This technique is very sensitive to noise and to the order of presentation 
of the training set cases. Ritter [10] reported improvements on the CNN with his 
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Selective Nearest Neighbour (SNN) which imposes the rule that every case in the 
training set must be closer to a case of the same class in the edited set than to any 
other training case of a different class. Gates [11] introduced a decremental technique 
which starts with the edited set equal to the training set and removes a case from the 
edited set where its removal does not cause any other training case to be misclassified. 
This technique will allow for the removal of noisy cases but is sensitive to the order 
of presentation of cases. 

Competence enhancement or noise reduction techniques start with Wilson’s Edited 
Nearest Neighbour (ENN) algorithm [12], a decremental strategy, which removes 
cases from the training set which do not agree with their k nearest neighbours. These 
cases are considered to be noise and appear as exceptional cases in a group of cases of 
the same class. Tomek [13] extended this with his repeated ENN (RENN) and his “all 
k-NN” algorithms. Both make multiple passes over the training set, the former 
repeating the ENN algorithm until no further eliminations can be made from the 
training set and the latter using incrementing values of k. These techniques focus on 
noisy or exceptional cases and do not result in the same storage reduction gains as the 
competence preservation approaches.  

Competence preservation techniques aim to remove internal cases in a cluster of 
cases of the same class and can predispose towards preserving noisy cases as 
exceptions or border cases. Noise reduction on the other hand aims to remove noisy or 
corrupt cases but can remove exceptional or border cases which may not be 
distinguishable from true noise, so a balance of both can be useful. Later editing 
techniques can be classified as hybrid techniques incorporating both competence 
preservation and competence enhancement stages. Aha et al. [14] presented a series of 
instance based learning algorithms to reduce storage requirements and tolerate noisy 
instances. IB2 is similar to CNN adding only cases that cannot be classified correctly 
by the reduced training set. IB2’s susceptibility to noise is handled by IB3 which 
records how well cases are classifying and only keeps those that classify correctly to a 
statistically significant degree. Other researchers have provided variations on the IBn 
algorithms [15,16,17]. 

2.2. Competence-based Editing 

More recent approaches to case editing build a competence model of the training data 
and use the competence properties of the cases to determine which cases to include in 
the edited set. Measuring and using case competence to guide case-base maintenance 
was first introduced by Smyth and Keane [5] and developed by Zhu and Yang [18]. 
Smyth and McKenna [3] introduce two important competence properties, the 
coverage and reachability sets for a case in a case-base. These are discussed in 
Section 3. The coverage and reachability sets represent the local competence 
characteristics of a case and are used as the basis of a number of editing techniques. 

McKenna & Smyth [6] presented a family of competence-guided editing methods 
for case-bases which combine both incremental and decremental strategies. The 
family of algorithms is based on four features; (1) an ordering policy for the 
presentation of the cases that is based on the competence characteristics of the cases; 
(2) an addition rule to determine the cases to be added to the edited set, (3) a deletion 
rule to determine the cases to be removed from the training set and (4) an update 
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policy which indicates whether the competence model is updated after each editing 
step. The different combinations of ordering policy, addition rule, deletion rule and 
update policy produce the family of algorithms.  

Brighton and Mellish [8] also use the coverage and reachability properties of cases 
in their Iterative Case Filtering (ICF) algorithm. The ICF is a decremental strategy 
contracting the training set by removing those cases c, where the number of other 
cases that can correctly classify c is higher that the number of cases that c can 
correctly classify. This strategy focuses on removing cases far from class borders. 
After each pass over the training set, the competence model is updated and the 
process repeated until no more cases can be removed. ICF includes a pre-processing 
noise reduction stage, effectively RENN, to remove noisy cases.  

McKenna and Smyth compared their family of algorithms to ICF and concluded 
that the overall best algorithm of the family delivered improved accuracy (albeit 
marginal, 0.22%) with less than 50% of the cases needed by the ICF edited set [6].  

Wilson & Martinez [7] present a series of Reduction Technique (RT) algorithms, 
RT1, RT2 and RT3 which, although published before the definitions of coverage and 
reachability, could also be considered to use a competence model. They define the set 
of associates of a case c which is comparable to the coverage set of McKenna & 
Smyth except that the associates set will include cases of a different class from case c 
whereas the coverage set will only include cases of the same class as c. The RTn 
algorithms use a decremental strategy. RT1, the basic algorithm, removes a case c if 
at least as many of its associates would be classified correctly without c. This 
algorithm focuses on removing noisy cases and cases at the centre of clusters of cases 
of the same class as their associates will most probably still be classified correctly 
without them. RT2 fixes the order of presentation of cases as those furthest from their 
nearest unlike neighbour (i.e. nearest case of a different class) to remove cases 
furthest from the class borders first. RT2 also uses the original set of associates when 
making the deletion decision, which effectively means that the associate competence 
model is not rebuilt after each editing step which RT1 does. RT3 adds a noise 
reduction pre-processing pass based on Wilson’s noise reduction algorithm.  

Wilson & Martinez concluded from their evaluation of the RTn algorithms against 
IB3 that RT3 had a higher average generalization accuracy and lower storage 
requirements overall but that certain datasets seem well suited to the techniques while 
others were unsuited. Brighton & Mellish evaluated their ICF against RT3 and found 
that neither algorithm consistently out performed the other and both represented the 
“cutting edge in instance set reduction techniques”. 

3. Editing using an Enhanced Competence Model 

Smyth and McKenna’s competence model defines how well a case performs when 
classifying other cases in the case-base. We have extended this competence model to 
include how badly a case performs when classifying other cases. This section firstly 
discusses our extensions to the competence model and then shows how they can be 
used in an alternative noise reduction algorithm BBNR that focuses on apportioning 
blame for misclassifications. We also present our competence-based redundancy 
reduction algorithm CRR which aims to maintain (and even improve) the 
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generalisation accuracy of the case-base by focussing on less aggressive pruning of 
cases compared to that performed by many of the existing editing techniques.  

3.1. The Enhanced Competence Model 

Smyth and McKenna’s case-base competence modelling approach proposes two sets 
which model the local competence properties of a case within a casebase; the 
reachability set of a target case t is the set of all cases that can successfully classify t, 
and the coverage set of a target case t is the set of all cases that t can successfully 
classify. Using the case-base itself as a representative of the target problem space, 
these sets can be estimated as shown in definitions 1 and 2.  

Coverage { }),(:)( tcClassifiesCcCtSet ∈=∈  (1) 

Reachability { }),(:)( ctClassifiesCcCtSet ∈=∈  (2) 

where Classifies(a,b) means that case b contributes to the correct classification of 
target case a. This means that target case a is successfully classified and case b is 
returned as a nearest neighbour of case a and has the same classification as case a. 

We propose to extend the model to include an additional property; the liability set 
of a case t which is defined as the set of all cases that t causes to be misclassified or 
contributes to being misclassified, see definition 3.  

{ }),(:)( tciesMisclassifCcCtetLiabilityS ∈=∈  (3) 

where Misclassifies(a,b) means that case b contributes in some way to the incorrect 
classification of target case a. In effect this means that when target case a is 
misclassified by the case-base, case b is returned as a neighbour of a but has a 
different classification to case a. For k-NN with k=1, case b causes the 
misclassification but for k>1 case b contributes to the misclassification. Case a is 
therefore a member of the liability set of case b. 

3.2 Blame Based Noise Reduction (BBNR) 

Although a number of the competence-based editing techniques described in 
section 2 are designed to focus on removing redundant cases, all of them include both 
noise reduction and redundancy reduction stages. The noise reduction stage used by 
all the techniques is based on Wilson’s noise reduction.  

Noisy cases can be considered as training cases that are incorrectly labelled. 
Wilson’s noise reduction technique removes from the case-base cases that would be 
misclassified by the other cases, implying that these are incorrectly labelled and are 
therefore noisy cases. However, a misclassified case may not necessarily be a noisy 
case but could be classified incorrectly due to the retrieved cases which contribute to 
its classification. Mislabelled cases which are retrieved as nearest neighbours of a 
target case can affect the classification of the target case. Therefore just because a 
case is misclassified does not imply that it is noise and should be removed.  
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Our BBNR approach emphasises the cases that cause misclassifications rather than 
the cases that are misclassified. In effect we are not just accepting the presumption 
that if a case is misclassified it must be mislabelled but try to analyse the cause of the 
misclassification. In our policy on noise reduction we attempt to remove mislabelled 
cases; we also remove “unhelpful” cases that cause misclassification. For example, a 
case that represents an actual spam email but looks just like a legitimate email.  

The liability set captures this information. The greater the size of the liability set of 
a case, the more impact it has had on misclassifying other cases within the case-base. 
It is however important to consider this in light of how well cases are performing, 
how often they actually contribute to correct classifications. The coverage set captures 
this information. Our BBNR technique looks at all cases in the case-base that have 
contributed to misclassifications (i.e. have liability sets with at least one element). For 
each case c with a liability set of at least one element, if the cases in c’s coverage set 
can still be classified correctly without c then c can be deleted. The BBNR algorithm 
is described in Figure 1. 

 
Blame-based Noise Reduction (BBNR) Algorithm 
 
T, Training Set 
/* Build case-base competence model */ 
For each c in T 
 CSet(c) � Coverage Set of c 
 LSet(c) � Liability Set of c 
End-For 
/* Remove noisy cases from case-base */ 
TSet � T sorted in descending order of LSet(c) size 
c � first case in TSet 
While |LSet(c)| >0 
 TSet � TSet - {c}  
 misClassifiedFlag � false 
 For each x in CSet(c) 
  If x cannot be correctly classified by TSet 
   misClassifiedFlag � true 
   break  
  End-If 
 End-For 
 If misClassifiedFlag = true 
  TSet � TSet + {c} 
 End-If 
 c � next case in TSet 
End-While 
 

Fig. 1. Blame-Based Noise Reduction Algorithm 

This principle of identifying damaging cases is also there in IB3. Aha’s IB3 
algorithm is an algorithm more applicable for data streams and online learning in that 
the training set does not exist as a collection of cases before editing can be performed. 
The decision as to whether cases are kept in the case-base or not is made as the cases 
are presented.  

There are a number of differences between IB3 and BBNR. First, IB3 maintains 
the classification records during the editing process rather than using the competence 
of the full training set as BBNR does through use of the competence model. Secondly, 
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the classification record maintained by BBNR is based on actual classifications, 
whereas that maintained by IB3 is based on possible or potential classifications. IB3 
updates the classification record of all cases that could potentially be neighbours 
whereas BBNR only uses the k retrieved neighbours to build its competence model. 
However, the most significant difference between the two algorithms is how they use 
case liability information. Although IB3 does collect information on the likely 
damage that certain cases may cause, it is not used actively to determine whether 
these potentially damaging cases should be removed or not. IB3 uses the classification 
accuracy, rather than classification error, to indicate how well a case is performing 
and waits for a case not to classify correctly at a satisfactory level before removing it. 
BBNR, on the other hand, uses the liability information available from the 
competence model of the case-base to decide whether these potentially damaging 
cases have any merit in being kept in the case-base. 

3.3 Conservative Redundancy Reduction 

The second stage in our competence-based editing technique is to remove redundant 
cases. Our proposed algorithm for removing redundant cases is based on identifying 
cases that are near class borders. The coverage set of a case captures this information. 
A large coverage set indicates that a case is situated in a cluster of cases of the same 
classification whereas a small coverage set indicates a case with few neighbours of 
the same classification. Cases near the class border will have small coverage sets. 
Cases with small coverage sets are presented first to be added to the edited set. For 
each case added to the edited set, the cases that this case can be used to classify (that 
is the cases that this case covers) are removed from the training set. This is the same 
as McKenna & Smyth’s coverage deletion rule [6]. The CRR algorithm is presented 
in Figure 2. 

 
Conservative Redundancy Removal(CRR) Algorithm 
 
T, Training Set 
/* Build case-base competence model */ 
For each c in T 
 CSet(c) � Coverage Set of c 
End-For 
/* Remove redundant cases from case-base */ 
ESet � {}, (Edited Set) 
TSet � T sorted in ascending order of CSet(c) size 
c � first case in TSet 
While TSet � {} 
 ESet � ESet + {c}  
 TSet � TSet – CSet(c) 
 c � next case in TSet 
End-While 
 

Fig. 2. Conservative Redundancy Removal Algorithm 

Existing editing techniques are very aggressive in their pruning of cases. Various 
cross validation experiments using existing techniques (ICF, RTn and a number of 
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McKenna & Smyth’s algorithmic variations) over our four datasets produced edited 
case-base sizes ranging from 3.5% to 46.4% of original case-base size with the 
average edited size of 22%. Such aggressive reductions in case-base size can have a 
detrimental effect on generalisation accuracy. By adding the cases near class borders 
to the edited set first, rather than working in the reverse order (that is with cases that 
are in the centre of a large cluster of cases of the same classification), our coverage 
deletion rule results in a more conservative reduction of the case-base. This, as shown 
in Section 4.4, results in larger edited case-bases and improved generalisation 
accuracy.  

4. Evaluation  

This section presents our results at two levels; firstly, an evaluation of the 
performance of our competence-based BBNR algorithm against Wilson’s noise 
reduction as used by a majority of existing case editing techniques and secondly, an 
evaluation of the performance, in the domain of spam filtering, of existing case-based 
editing techniques compared with our new two-phased Competence-Based Editing 
technique incorporating BBNR and CRR. 

4.1. Experimental Setup 

The objective is to find a suitable case-base editing technique to reduce a case-base of 
spam and non-spam cases while maintaining case-base accuracy. Four datasets were 
used. The datasets were derived from two corpora of email collected by two 
individuals over a period of one year. Two datasets of one thousand cases were 
extracted from each corpus. Each included five hundred spam emails and five 
hundred non-spam or legitimate emails. Datasets 1.1 and 2.1 consisted of emails 
received up to and including February 2003 while datasets 1.2 and 2.2 consisted of 
emails received between February 2003 and November 2003. Given the evolving 
nature of spam it was felt that these datasets gave a representative collection of spam. 

The emails were not altered to remove HTML tags and no stop word removal, 
stemming or lemmatising was performed. Since the datasets were personal it was felt 
that certain headers may contain useful information, so a subset of the header 
information was included. Each email, ie  was reduced to a vector of features 

ni xxxe ,,, 21 Κ=  where each feature is binary. If the feature exists in the email, 1=ix , 

otherwise 0=ix . It is more normal in text classification for lexical features to convey 
frequency information but our evaluation showed that a binary representation works 
better in this domain. We expect that this is due to the fact that most email messages 
are short. Features were identified using a variety of generic lexical features, 
primarily by tokenising the email into words. No domain specific feature 
identification was performed at this stage although previous work has indicated that 
the efficiency of filters will be enhanced by their inclusion [19].  

Feature selection was performed to reduce the dimensionality of the feature space. 
Yang and Petersen’s evaluation of dimensionality reduction in text categorisation 



9 

found that Information Gain (IG) [20] was one of the top two most effective 
techniques in aggressive feature removal without losing classification accuracy [21]. 
Using IG with a k-nearest neighbour classifier, 98% removal of unique terms yielded 
an improved classification accuracy. The IG of each feature was calculated and the 
top 700 features were selected. Cross validation experiments, varying between 100 
and 1000 features across the 4 datasets, indicated best performance at 700 features. 

The classifier used was k-nearest neighbour with k=3. Due to the fact that false 
positives are significantly more serious than false negatives the classifier used 
unanimous voting to determine whether the target case was spam or not. All 
neighbours returned had to have a classification of spam in order for the target case to 
be classified as spam.  

4.2. Evaluation Metrics 

Previous studies into case editing techniques have compared performance on two 
measures; the accuracy of the edited casebase and the resulting size of the edited 
casebase. In the domain of spam filtering size and accuracy are not adequate measures 
of performance. A False Positive (FP), a legitimate email classified incorrectly as 
spam, is significantly more serious than a False Negative (a spam email incorrectly 
classified as a legitimate email). The occurrence of FPs needs to be minimised, if not 
totally eliminated. Accuracy (or error) as a measure, does not give full transparency 
with regard to the numbers of FPs and FNs occurring. Two filters with similar 
accuracy may have very different FP and FN rates.   

Previous work on spam filtering use a variety of measures to report performance. 
The most common performance metrics are precision and recall [8]. Sakkis et al. [3] 
introduces a weighted accuracy measure which incorporates a measure of how much 
more costly a FP is than a FN. Although these measures are useful for comparison 
purposes, the FP and FN rate are not clear so the base effectiveness of the classifier is 
not evident. For these reasons we will report the error rate, the rates of FPs and the 
rate of FNs. For information purposes we will also indicate the resulting sizes of the 
edited case-bases.  

A final justification for reporting this set of metrics is the fact that it reflects how 
commercial spam filtering systems are evaluated on the web and in the technical 
press.  

4.3  Evaluation Methods  

For each dataset we used 20 fold cross-validation, dividing the dataset into 20 
stratified divisions or folds. Each fold in turn is considered as a test set with the 
remaining 19 folds acting as the training set. For each test fold and training set 
combination we calculated the performance measures for the full training set without 
editing and the performance measures for the training set edited with each selected 
editing technique. Where one case-base editing technique appeared to out perform 
another, confidence levels were calculated using a t-test on the paired fold-level 
results.  
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The case editing techniques that we evaluated include ICF, RT2, RT3 and a 
selection of the McKenna & Smyth’s family of case editing techniques described in 
Section 2. The McKenna & Smyth algorithms can be identified as “adc_o”; where a 
indicates whether the addition rule is used (True/False), d indicates whether the 
deletion rule is used (T/F), c indicates whether the competence model is updated (T/F) 
and o indicates the order of presentation of cases. Their top two performing 
algorithms are FTF_o and FTT_o, where the addition rule is not used (a=F) and the 
deletion rule is used (d=T) irrespective of whether the competence model was rebuilt 
or not. The top two ordering sequences are order by relative coverage (RC) and reach 
for cover (RFC) [6]. Preliminary tests indicated those algorithms which require the 
competence model to be rebuilt after each editing step (i.e. FTT_RC and FTT_RFC) 
were not significantly different in accuracy but were prohibitively computationally 
expensive and were discarded.  

4.4. Results 

Figure 3 shows the results of comparing BBNR with RENN across the 4 datasets and 
the overall average results across all datasets. The graphs show percentage values for 
error, FP and FN rates. The average size across all 20 folds of the edited casebase is 
indicated (on the x-axis) as a percentage of the unedited training case-base size for the 
individual datasets.  
The results can be summarised as follows: 

• BBNR performs very well and has a lower error rate than RENN (significant 
at confidence level 99.9% across all datasets). There are also significant 
improvements in FP rate and FN rate (at 99.9% level). 

• The individual training sets reduced with BBNR have error rates that are at 
least as good as or better than the unedited training sets with the overall 
average showing significant improvement in FN rate and error rate at 99.9% 
level and FP rate at 99% level. 

As BBNR shows better performance than Wilson noise reduction in the spam 
domain, we also evaluated replacing the noise reduction stage of those competence 
based case editing techniques with BBNR. Figure 4 displays these results for ICF, 
FTF_RC and FTF_RFC. Technique X with the Wilson based noise reduction phase 
replaced by BBNR is labelled as X-bbnr in Figure 4. Although RT2 and RT3 could be 
considered competence-based editing techniques, they use a different competence 
model without a liability set so BBNR was not applied to these. Figure 4 also includes 
overall average results across all datasets. The results can be summarised as follows: 

• Using BBNR to perform the noise reduction stage improves the overall 
performance across all the datasets for techniques ICF, FTF_RC and 
FTF_FRC with significant improvements in FP, FN and error rates at 99.9% 
level or higher.  

• Using BBNR for noise reduction in each editing technique improves 
performance in average error, FP and FN rates over the unedited training sets 
for ICF-bbnr (at levels of 95% or higher) and FTF_RFC-bbnr (at 90% level or 
higher). Although FTF_RC-bbnr’s FP rate shows significant improvement (at 
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99.9% level) its deterioration in FN rate leads to an overall deterioration in 
error rate.  
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Fig. 3. Results of BBNR versus RENN. 

Figure 4 also includes results for RT2 and our new Competence-Based Editing 
(CBE) technique (i.e. BBNR+CRR). Results for RT3 were not included as RT2 
outperformed RT3 for these datasets. The results for CBE can be summarised as 
follows: 

• Taking average results across all datasets, CBE significantly improves (at 
99.9% level) the generalisation accuracy achieved on an unedited training set 
of cases. The FP rate is reduced (significant at 99.9% level) as is the FN rate 
(significant at 97% level). 

• CBE and FTF-RFC-bbnr are the best performing editing techniques on 
average across all datasets with the lowest average error rates (significant at 
90% level). 
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• McKenna & Smyth’s FTF_RFC technique with the noise reduction stage 
replaced by BBNR is a close second to CBE. It also demonstrates improved 
accuracy in average error, FP and FN rates when compared with an unedited 
training set, however, the improvements are at a lower level of significance.  

• It may appear that CBE is out performed in specific datasets by other 
techniques, e.g. by RT2 in dataset 2.1 or ICF-bbnr in dataset 1.2. However 
CBE demonstrates the most consistent performance across all datasets.  

It is interesting to note that CBE and FTF_RFC-bbnr (the top two editing 
techniques) result in the largest average edited casebase size (69% for CBE and 43% 
for FTF_RFC-bbnr).  

6. Conclusions and Further Work 

We have argued that a key component in any operational Machine Learning based 
spam filtering system will be procedures for managing the training data. Because of 
the volume of the training data a case-base editing process will be required. We have 
presented a novel competence-based procedure which we call CBE for this. CBE has 
two stages, a noise reduction phase called BBNR and a redundancy elimination phase 
called CRR.  
BBNR focuses on the damage that certain cases are causing in classifications. 
Comparative evaluations of this algorithm with the standard Wilson’s noise reduction 
technique in the domain of spam filtering have shown an improved performance 
across all four datasets. Experiments incorporating BBNR into existing competence-
based case-base editing techniques have shown that BBNR improves all these 
techniques over the four datasets on which it was evaluated.  

Our redundancy reduction process (CRR) was motivated by the observation that 
state-of -the-art techniques were inclined to be too aggressive in removing cases and 
tended to result in some loss of generalisation accuracy – at least in this domain. This 
is in effect a tendency to overfit the training data by finding minimal sets that cover 
the data. CRR is much more conservative in removing cases and produces larger 
edited case-bases that have the best generalisation accuracy in this domain.  

This research will continue along two lines. We will continue working on case-
base management for spam filtering, focusing next on managing concept drift. We 
will also evaluate CRR and BBNR in other domains to see if the good generalisation 
performance we have found on spam is replicated elsewhere.  

References 

1. Cunningham, P., Nowlan, N., Delany, S.J., Haahr, M., A Case-Based Approach to Spam 
Filtering that Can Track Concept Drift,  The ICCBR'03 Workshop on Long-Lived CBR 
Systems, Trondheim, Norway, (2003). 

2. Androutsopoulos, I., Koutsias, J., Paliouras, G., Karkaletsis, V., Sakkis, G., Spyropoulos, 
C., & Stamatopoulos, P..: Learning to filter spam e-mail: A comparison of a naive 
Bayesian and a memory-based approach. In: Workshop on Machine Learning and Textual 



13 

Information Access, at 4th European Conference on Principles and Practice of Knowledge 
Discovery in Databases (PKDD) (2000) 

3. Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos C.D., &. 
Stamatopoulos, P., A Memory-Based Approach to Anti-Spam Filtering for Mailing Lists 
Information Retrieval, Vol 6 No 1, Kluwer (2003) 49-73 

4. Smyth, B., McKenna, E.: Modelling the Competence of Case-Bases. In: Smyth, B. and 
Cunningham, P. (eds.): Advances in Case-Based Reasoning. Lecture Notes in Artificial 
Intelligence, Springer-Verlag (1998) 208-220  

5. Smyth, B., Keane, M.: Remembering to Forget: A Competence Preserving Case Deletion 
Policy for CBR Systems. In: Mellish, C. (ed.): Proceedings of the Fourteenth International 
Joint Conference on Artificial Intelligence, Morgan Kaufmann  (1995) 337-382 

6. McKenna, E., Smyth, B.: Competence-guided Editing Methods for Lazy Learning. In 
Proceedings of the 14th European Conference on Artificial Intelligence, Berlin (2000) 

7. Wilson, D.R., Martinez, T.R.: Instance Pruning Techniques. In: Fisher, D. (ed.) 
Proceedings of the Fourteenth International Conference on Machine Learning, Morgan 
Kaufmann, San Francisco, C.A. (1997) 404-411 

8. Brighton.H., & Mellish. C.: Advances in Instance Selection for Instance-Based Learning 
Algorithms. In: Data Mining and Knowledge Discovery, Vol. 6. Kluwer Academic 
Publishers, The Netherlands (2002) 153-172 

9. Hart, P.E.: The Condensed Nearest Neighbor Rule. IEEE Transactions on Information 
Theory. Vol. 14, No. 3 (1968) 515-516  

10. Ritter, G.L., Woodruff, H.B., Lowry, S.R., Isenhour, T.L.: An Algorithm for a Selective 
Nearest Neighbor Decision Rule. IEEE Transactions on Information Theory, Vol. 21, No. 
6 (1975)  665-669 

11. Gates, G.W. : The Reduced Nearest Neighbor Rule. IEEE Transactions on Information 
Theory, Vol. 18, No. 3 (1972) 431-433 

12. Wilson, D.L.: Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE 
Transactions on Systems. Man, and Cybernetics, Vol. 2, No. 3 (1972) 408-421 

13. Tomek, I.: An Experiment with the Nearest Neighbor Rule. IEEE Transactions on 
Systems, Man, and Cybernetics, Vol 6. No. 6 (1976) 448-452 

14. Aha, D.W., Kibler, D., Albert, M.K.: Instance-Based Learning Algorithms. Machine 
Learning, Vol. 6 (1991) 37-66 

15. Zhang, J.: Selecting Typical Instances in Instance-Based Learning. In: Proceedings of the 
Ninth International Conference on Machine Learning (1992) 470-479 

16. Cameron-Jones, R.M.: Minimum Description Length Instance-Based Learning. In: 
Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence (1992) 368-
373 

17. Brodley, C.: Addressing the Selective Superiority Problem: Automatic Algorithm/Mode 
Class Selection. In: Proceedings of the Tenth International Machine Learning Conference 
(1993) 17-24 

18. Zhu, J., Yang, Q.: Remembering to Add: Competence Preserving Case-Addition Policies 
for Case-Base Maintenance. In: Proceedings of the Sixteenth International Joint 
Conference on Artificial Intelligence, Morgan Kaufmann (1997) 234-239 

19. Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E., A Bayesian Approach to Filtering 
Junk Email, In: AAAI-98 Workshop on Learning for Text Categorization pp. 55-62, 
Madison ,Wisconsin. AAAI Technical Report WS-98-05, (1998). 

20. Quinlan, J. Ross: C4.5 Programs for Machine Learning, Morgan Kaufmann Publishers, 
San Mateo, CA. (1993). 

21. Yang Y., Pedersen J.O.: A comparative study on feature selection in text categorization. 
In: Proceedings of ICML-97, 14th International Conference on Machine Learning, 
Nashville, US, (1997) 412–420. 



14  

DataSet 1.1 (Feb)

6.1

8.9

5.9
5 4.4

5.9

4.1
4.9

3.6

10.2

17

9.4
8.2

3

10.6

3.4 3.2 3.4
2

0.8
2.4 1.8

5.8

1.2

4.8

6.6

3.8

0

5

10

15

20

Unedited
(100%)

ICF (30.2%) ICF-bbnr
(30.7%)

FTF_RC
(19.3%)

FTF_RC-
bbnr

(23.2%)

FTF_RFC
(37.2%)

FTF_RFC-
bbnr

(36.4%)

RT2 (4.3%) CBE (74.9%)

%Err
%FPs
%FNs

 
DataSet 1.2 (Nov)

3.7
4.5

3.7

5 4.7 4.7 4.8

6.5

4.5

1.2 1.2 1
0.6

1 0.8 1

5.4

1

6.2

7.8

6.4

9.4

8.4 8.6 8.6

7.6
8

0

5

10

Unedited
(100%)

ICF (30.9%) ICF-bbnr
(32.1%)

FTF_RC
(17.6%)

FTF_RC-
bbnr

(25.3%)

FTF_RFC
(46.8%)

FTF_RFC-
bbnr

(49.8%)

RT2 (3.5%) CBE (72%)

%Err
%FPs
%FNs

 
DataSet 2.1 (Feb)

6.6

7.8

5.4
6.2 5.9

7.2

5.8

4.3
4.9

7.2

8.6

3.2
4

2.6

6.4

3.4
3 3

6

7
7.6

8.4
9.2

8 8.2

5.6

6.8

0

5

10

Unedited
(100%)

ICF (39.1%) ICF-bbnr
(41.6%)

FTF_RC
(18.2%)

FTF_RC-
bbnr

(23.2%)

FTF_RFC
(34.6%)

FTF_RFC-
bbnr

(36.9%)

RT2 (4.5%) CBE (61.7%)

%Err
%FPs
%FNs

 
DataSet 2.2 (Nov)

12.2

17

9.7

25.3

16.3 16.8

6.2
7.9 6.9

0.4 0.4 1.2 0.8 0.6 0.8 1.6
5

2

24

33.6

18.2

49.8

32 32.8

10.8 10.8 11.8

0

10

20

30

40

50

Unedited
(100%)

ICF (31.1%) ICF-bbnr
(36.2%)

FTF_RC
(14.9%)

FTF_RC-
bbnr

(30.3%)

FTF_RFC
(40.7%)

FTF_RFC-
bbnr

(48.9%)

RT2 (10.9%) CBE
(69.4%)

%Err
%FPs
%FNs

 
Average Results over 4 Datasets

7.2

9.6

6.2

10.4

7.8
8.7

5.2
5.9

5.04.8

6.8

3.7 3.4
1.8

4.7

2.4

4.2

2.4

9.6

12.3

8.7

17.4

13.9
12.7

8.1 7.7 7.6

0.0

10.0

20.0

Unedited ICF ICF-bbnr FTF_RC FTF_RC-
bbnr

FTF_RFC FTF_FRC-
bbnr

RT2 CBE

%Err
%FPs
%FNs

 
Fig. 4. Results of various case editing techniques 


