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ABSTRACT

Case-based reasoning (CBR) is an AI technique that emphasises the role of past experience during

future problem solving. New problems are solved by retrieving and adapting the solutions to similar

problems, solutions that have been stored and indexed for future reuse as cases in a case-base. The

power of CBR is severely curtailed if problem solving is limited to the retrieval and adaptation of a

single case, and for this reason the strategy of reusing multiple cases is immediately appealing. This

paper describes the technique of hierarchical case-based reasoning, which allows complex problems to

be solved by reusing multiple cases at various levels of abstraction. The technique is described in the

context of Déjà Vu, a CBR system aimed at automating plant-control software design.
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1 INTRODUCTION

In contrast to traditional first-principles artificial intelligence (AI) systems, which solve problems “from scratch”,

case-based reasoning (CBR) emphasises the role of past experience and reuse during problem solving. New

problems are solved by retrieving and adapting the solutions to similar problems, solutions that have been stored

and indexed for future reuse as cases in a case-base. The power of CBR is severely curtailed if problem solving

is limited to the retrieval and adaptation of a single case. For complex problem domains, it is unlikely that a

single case will be available which closely matches all of the target problem details, and hence sophisticated

adaptation support will be necessary. However, the same problem may be more readily solved by combining

parts of many different solutions, without the need for the same level of sophisticated adaptation. For this reason,

the strategy of reusing multiple cases is immediately appealing.

There are two important related issues that must be considered to support multiple-case reuse: (1) Should

complex problems be represented as single, large cases, or as inter-related collections of simpler cases? (2)

During problem solving, how can complex new problems be broken up into simpler sub-problems which can be

solved by the retrieval and adaptation of individual cases?

The paper reports on a novel technique called hierarchical case-based reasoning (HCBR) used in a software

design system called Déjà Vu ([28],[29],[30],[31]). Déjà Vu solves complex plant-control (PC) software design

problems by reusing multiple cases at varying levels of abstraction. Plant-control software designs are stored, not

as single cases, but as hierarchies of cases. These hierarchies are made up of abstract cases (offering high-level

solutions or “rough” designs) and concrete design cases (containing actual plant-control code). This organisation

makes it possible to do three things: (1) Decompose target problems into simpler sub-problems; (2) Reuse parts

of complex problems as individual cases; (3) Recombine solution parts into a coherent whole.

This paper describes hierarchical case-based reasoning in the context of Déjà Vu, focusing on the technique’s

knowledge requirements, main algorithms, and its beneficial implications. The next section briefly introduces the

Déjà Vu system and the plant-control software domain. Section 3 motivates the hierarchical reuse of multiple

cases by drawing on planning research. Section 4 goes on to explain Déjà Vu's case representation and

hierarchical case-base organisation, while section 5 describes the HCBR process model. CBR is an important

machine learning technique and case learning within the HCBR framework is the subject of section 6. Section 7
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traces through an example HCBR session, and section 8 discusses the main benefits and expected applicability of

HCBR. Finally section 9 describes related work reported in the CBR literature.

2 DÉJÀ VU & THE PLANT-CONTROL DOMAIN

Many industrial environments today have been partially automated by the use of device-control or process-

control software, which is well suited for tasks such as the control of robot equipment or environmental sensing

and monitoring. Plant-control software is used in factory environments such as steel mills to control milling

equipment during the steel production process [8]. Automating the design of this type of software is an important

and challenging research task [13] because of the current overwhelming need for high quality software [7]. While

there have been some successful demonstrations of partial automation in this area ([3],[8],[22],[27],[40]), on the

whole progress has been slow and limited. The main focus of the Déjà Vu project has been to investigate the

potential for CBR to improve matters, and by way of a demonstration, to build a case-based system for

automating the design of steel-mill control software.

2.1 An Overview of the Plant-Control Domain

Plant-control software is software for controlling autonomous, robotic vehicles within steel-mills. These vehicles

are called coil-cars and they travel throughout the steel-mills on a series of interconnecting tracks. As shown in

Fig. 1(a) the layout of these tracks and the placement of various devices can vary from steel-mill to steel-mill.

SKID-2

TR-2

TR-3

JUNCTION-1

CC-2

SKID

Forward Backward

Raise/Lower

TENSION-REEL
(b)(a)

SENSOR

SPOOL/
COIL

COIL-CAR

Fig. 1. (a) A sample mill layout showing the location of various plant machinery. (b) The load/unload task scenario,

whereby a coil-car is used to unload (load) spools or coils of steel between skids and tension-reels.

Coil-cars can be directed to travel in particular directions and at certain speeds. Their main task is to carry spools
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and coils of steel from one section of the plant to another. The next two most important devices in a steel mill are

the tension-reels and the skids (as shown in Fig. 1(a)). A tension-reel is a piece of equipment that feeds a coil of

steel into a milling press. A skid is a holding area for empty spools.

For the most part, the type of tasks that will be examined in this work are loading and unloading tasks. These

tasks are concerned with loading or unloading spools and coils of steel to and from the skids and tension-reels.

For example, one common task calls for the unloading of an empty spool of steel from a tension-reel, and its

delivery to a waiting skid; see Fig. 1(b).

2.2 Plant-Control Software

The software code that is needed for loading or unloading task is very complex. For example, the vehicle

involved in the task must be controlled as it travels to and from the appropriate machinery, coils or spools of steel

have to be loaded onto and unloaded from this vehicle, and various sensory data must be continually monitored

to determine certain operational features such as vehicular location and speed. As Fig. 1(b) indicates coil-cars,

tension-reels, and skids are complex devices, made up of a number of components, which themselves must be

individually controlled.

Plant-control software code is represented as sequential function charts (SFCs), a high-level graphical source

language representation. Programs correspond to interconnected graphs, control flow being dictated by the

interconnection scheme, and individual commands corresponding to actual graph nodes. These graphs can

implement sequential or parallel control-flow making them highly suitable for real-time control tasks. For

example, a coil-car buggy may be moved towards a tension-reel at the same time as its lifter is

lowered into place. A simple stepping logic program is shown in Fig. 2. The program demonstrates how a coil-

car (CC-1) is moved in a forward direction to a tension-reel (TR-1), using two speed motion.

The basic move and stop actions are shown as action nodes, while two sensor check nodes are used to detect the

arrival the coil-car at its slowing down point and its final destination. Note that the sensor check nodes are

connected to the main logic stream by AND connectives. This synchronises the two speed motion, and ensures,

for example, that the coil-car does not slow down until it reaches the correct distance from the destination. The

inserts in Fig. 2 expand two of these nodes to show how their precise details are represented in the system.
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Move  
CC-1-Buggy

Fast 
Forward

Move 
CC-1-Buggy

Slow 
Forward

Stop 
CC-1-Buggy

SFC*1

SFC*2

SFC*3

SFC*4

SFC*5

SFC*6

SFC*7

CC-1-Buggy
At 200mm 
Before 
TR-1

CC-1-Buggy
At 
TR-1

SFC*2 
 
  Type        : Check 
  Check       : Distance-Check 
 
  Input       :  
  Output      : SFC*3 
 
  Device      : CC-1-Buggy 
  Destination : TR-1 
  Orientation : Before 
  Distance    : 200mm

SFC*1 
 
  Type      : Action 
 
  Input     : *START* 
  Output    : SFC*3 
 
  Action    : Move-Device 
  Device    : CC-1-Buggy 
  Direction : Forward 
  Speed     : Fast

Fig. 2. A sample program for moving CC-1 forward to TR-1 using two speed motion.

The program shown in Fig. 2 represents just one small part of a complete UNLOAD program which would also

include code segments for aligning the coil-car and the tension-reel, unloading the empty spool of steel, and

delivering this to the waiting skid. These operations are themselves composed of many simpler code segments

like the one shown in Fig. 2. In all, a typical UNLOAD program will contain approximately 100 individual

commands.

3 HIERARCHICAL, MULTIPLE-CASE REUSE

Solving complex problems by decomposition is a common strategy which is appealing for much the same reason

that macros and subroutines are appealing in programming; problems can be solved more easily by breaking them

into manageable chunks, rather than trying to solve them “all in one go” ([5],[15]). Thus, the extension of single-

shot case-based reasoning systems to multiple-case reuse systems is a natural one. Many of the systems that have

implemented multiple-case reuse have drawn on ideas from more traditional first-principles planning research.

However, the transfer of ideas from first-principles to case-based methods is not a straightforward one, and a
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number of issues must be resolved that impact on how cases are represented and organised, before we can

support their combined reuse.

3.1 Towards Hierarchical Reuse in Case-Based Reasoning

Early goal-directed problem solving systems used decomposition to break up complex problems into collections

of individual sub-goals. Each goal is separately planned for, generating a number of separate plan segments (a

partial-order plan), which are combined to produce the final complete solution (a total-order plan).

Unfortunately, depending on how partial plans are combined, interactions and conflicts between planning

operators may or may not pose a serious threat to success; for example, plan segments to satisfy goal A and goal

B might work fine when taken in isolation, but taken together they may conflict, preventing both goals from

being simultaneously satisfied ([20],[37],[38],[25]). The first case-based reasoners to employ multiple-case reuse

did so in a fashion that was analogous to early goal-directed decomposition. Redmond [23] describes a system

that solves diagnosis problems by reusing many single cases to solve individual target sub-goals, and the final

solution is constructed by chaining together these cases (for further details see section 9).

Early goal-directed planners carried out their search at a single level of abstraction; the level of primitive

operators. Difficulties arose because the space of plans was so huge that brute-force search often failed to find

suitable plans within acceptable time bounds; these planners would spend large amounts of time on fine-grained

plan details, without considering how a more abstract perspective might better focus search. Once the usefulness

of abstraction was recognised, researchers began to consider the idea of hierarchical planning ([24],[26],[34]).

These planners employed a hierarchy of problem spaces, called abstraction spaces, to restrict search and deal

with problematic goal interactions early on. Abstract plans, made up of abstract operators, are first created to act

as “skeletal” or outline solutions. As planning proceeds these plans are refined through successive levels of

abstraction by replacing their abstract operators with collections of more detailed (less abstract) operators.

Eventually, a complete plan is built which contains only primitive operators. Studies have shown that such

hierarchical approaches can significantly reduce search while developing high quality solution plans ([1], [11]).
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3.2 Introducing Hierarchical Case-Based Reasoning

Hierarchical planning has motivated the development of hierarchical case-based reasoning, which also solves

problems within a hierarchy of abstraction spaces, by storing, retrieving, and adapting abstract cases as well as

concrete design cases. By analogy with hierarchical planning, abstract cases are made up of abstract operators,

while design cases are made up of primitive operators. One of the central concepts in HCBR is that abstract cases

offer much more than just abstract solutions. As we shall see, their abstract operators can be viewed as sub-

problem specifications, and used to decompose complex problems into collections of simpler sub-problems.

The decision to retain and reuse abstract cases offers a number of advantages. Firstly, the search reduction

witnessed in traditional hierarchical planners is transferred to case-based methods. However, it is manifested

differently, as it corresponds to a reduction in matching and adaptation costs, rather than a reduction in

conventional search costs. Furthermore, the idea of preserving abstract solutions, and in particular the idea of

promoting these solutions as sub-problem specifications, suggests a novel indexing technique, whereby detailed

cases are indexed in terms of more abstract cases.

Problem A Problem B

Abstract Case Concrete Case

Fig. 3. Problems A and B are represented by two case hierarchies which are interconnected because they share a

similar sub-problem and hence similar solution components. Allowing cases to interconnect in this way means that

complex solutions can be represented very efficiently, without duplication.

Using HCBR, each complex problem is actually represented in the case-base as a case hierarchy which is made

up of abstract cases and concrete design cases. Thus, the case-base is no longer viewed as a loosely connected

collection of cases, but instead as a set of highly structured case hierarchies. Furthermore, a number of

hierarchies may share the same sub-hierarchies, or individual cases, to reflect the fact that similar problems have

similar solution parts. This leads to interconnections between case hierarchies and greatly reduces redundancy
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within the case-base. For instance, one example of sharing between case hierarchies is shown in Fig. 3, which

illustrates the solution structure of two problems, sharing common solution components. However, this sharing is

only possible when the solutions are represented in a hierarchical fashion as a collection of individual cases.

Indeed, using conventional approaches, and representing each problem as a single, monolithic case, necessarily

means having to represent the shared solution components twice in the case-base.

4 CASE REPRESENTATIONS

Usually cases are represented in two parts, a description part and a solution part. The description part is basically

a set of features describing the solution task. Design case solutions are plant-control sequential function charts,

and the same representation is used for the solutions of abstract cases, although some extensions are necessary to

support the idea of abstract solution operators (or commands). The hierarchical organisation of the case-base is a

direct result of the way in which abstract and design cases are represented.

At the moment the onus is on the knowledge-engineer to build suitable case hierarchies from abstract and design

cases. This adds to the knowledge engineering from a case-base building perspective. However, it must be

recognised that hierarchical CBR greatly reduces the adaptation overhead and, we argue, greatly reduces the

more difficult knowledge-engineering task of encoding suitable adaptation knowledge structures. This will be

discussed further in section 8.

4.1 Describing Cases

Certain case solutions can be described in terms of simple goals and contexts while others may address multiple

(possibly interacting) goals with overlapping contexts. To capture this range of possibilities Déjà Vu uses a task-

structured representation scheme. Cases are defined according to the type of plant-control task they carry out.

Each task has a well defined top-level structure and may achieve a number of different goals. Moreover, tasks

group together the plant-control devices that partake in a specific operation, and the roles that they play.

In more concrete terms, each case specification is represented as a collection of frames (see Fig. 4). A header

frame describes the case task structure and introduces its main features. For example, if a case performs an

UNLOAD task then its task frame will be a type of UNLOAD frame. This frame will introduce the following

features: a vehicle (the device performing the unloading) a content (the coil or spool being
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unloaded), source and target containers (where the content is being unloaded from and delivered to), and the

source and target locations of the vehicle (where the vehicle begins and finishes).

The task frame is linked into the system knowledge-base and plant-models where it points to frames that

correspond to the domain entities involved in the task. These entity frames provide additional details. For

example, the vehicle used in Fig. 4 is a coil-car, CC-2, which has featuers that are important during the UNLOAD

solution. For instance, the slowing distance of the CC-2’s buggy is significant during any MOVE sub-problems.

Obviously, to fully specify an UNLOAD program it is not sufficient to simply state the vehicle, the content, the

locations, and the containers involved, and clearly these features do not fully determine the internal structure of

the final solution. However, because problems are represented at multiple levels of abstraction, many details will

be omitted from the high-level cases, but introduced by lower-level cases. For instance, one sub-problem of the

UNLOAD task is concerned with moving the vehicle to the source container, and in this MOVE sub-problem

additional features, such as the required speed of motion, will be specified.

TASK-0

Type 
 
Vehicle 
Content 
 
Source-Loc 
Target-Loc 
 
Source-Cnt 
Target-Cnt

: Unload 
 
: CC-2 
: Spool-2 
 
: Skid-2 
: TR-2 
 
: TR-3 
: Skid-2

CC-2-Buggy

Type 
 
Speed-Type 
 
Slowing-Dist

: Buggy 
 
: 2-Speed 
 
: 300mm 

CC-2

Type 
 
Buggy 
Lifter 
Socket

: Coil-Car 
 

: CC-2-Buggy
: CC-2-Lifter
: CC-2-Socket

CC-2-Lifter

Type 
 
Speed 
 
Slowing-Dist
Lower-Limit 
 

: Lifter 
 
: 2-Speed 
 
: 300mm
: 100mm
 Upper-Limit 

Carrying-Limit 
: 1000mm
: 500mm

Fig. 4. Part of a case task structure that describes a specific UNLOAD solution. The task frame describing the UNLOAD

problem is linked directly to device and component frames which describe the UNLOAD coil-car, CC-2.

4.2 Representing Abstract Solutions



9

The representation of a concrete design case is straightforward. It contains a task description and a plant-control

solution chart. The representation of an abstract case is complicated by the fact that it must contain an abstract

solution. For example, consider the problem of collecting a coil of steel from a skid using a coil-car. An abstract

case for this problem contains abstract operators that describe actions such as moving the coil-car to the skid,

aligning the coil-car’s lifting platform with the coil, and finally releasing the coil onto the coil-car. Representing

the same problem as a primitive design case means specifying how the coil-car moves to the skid in terms of its

direction and speed, when it should slow down, when it stops, what track junctions it crosses, and so on.

Two extensions must be made to the existing solution representation language to support abstract cases. Firstly, a

technique for describing the structure of abstract solutions is needed. The plant-control solution structures of

design cases are represented using the sequential function chart formalism introduced in the previous chapter, and

fortunately this formalism can be easily extended to cover abstract cases as well. All that is needed is one new

type of node, called a link-descriptor node, to store abstract operator details; these are drawn as octagonal nodes

in future solution graphs. There are many advantages to be gained from reusing the SFC formalism to represent

abstract case solutions. Obviously, both sequential and parallel actions can still be represented, but also, when it

comes to adapting solutions, the same basic adaptation operators can be used to change both abstract and

concrete solutions.

The second extension deals with how to specify the contents or details of an abstract operator. Currently there are

no plant-control commands that can represent the high-level operations of an abstract solution. Again, the answer

is already at hand, in the form of task structures. Each type of task structure defines a different type of abstract

operator. For example, an abstract operator for specifying a particular MOVE task is an instantiation of the MOVE

task structure, specifying details such as the vehicle, speed, locations and so on. This means that during problem

solving, the abstract operators can be treated as case specifications, as well as high-level solution code.

Consequently, abstract solutions can be used to facilitate problem decomposition, their abstract operators

defining new sub-problem specifications, which will be solved by the retrieval and adaptation of more detailed

cases.  In this way the solutions of Déjà Vu’s abstract cases are similar to the abstract solution plans often used

by the planning community. This form of operator abstraction is also used by Bergmann & Wilke [2].

4.3 Case Hierarchies



10

We have already introduced the idea that complex problems are to be represented as hierarchical collections of

abstract and design cases. It is important at this stage to emphasise that these hierarchies are not automatically

created by Déjà Vu. Instead, they must be engineered from complex cases, and so this form of hierarchical case-

based reasoning increases the knowledge engineering cost of CBR. However, there is promising research

available that leads us to believe that it may be possible to automatically generate these hierarchies ([2], [6],

[12]). Furthermore, as we will discuss in section 8, there are also distinct advantages associated with HCBR,

including a reduced need for adaptation knowledge, and corresponding decrease in the knowledge engineering

effort associated with the compilation of this knowledge.
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Fig. 5. The case hierarchy for the UNLOAD problem first introduced in section 2.

Fig. 5 shows the case hierarchy for a typical UNLOAD problem.. Each node represents a named case. In this

hierarchy there are four levels of abstraction. The top-level or root case, UNLOAD-1, contains the most abstract

solution to the problem. The next level describes the problem in terms of three separate tasks, collection,

delivery, and parking. In turn, more cases are introduced at levels three and four for dealing with the specific

parts of these tasks, such as moving the coil-car, aligning it with tension-reels and skids, and releasing spools.

The links between successive levels of case hierarchies correspond to the abstract operators found in abstract

solutions. Most notably, these links are implicit and indirect. That is, abstract cases do not explicitly name their

lower level cases in any way. Instead, the cases that are found linked to some abstract case are those cases that

match the specification requirements laid out in its link-descriptors.
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to 

TR-2 
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CC-2 to 

Tk-4-Jnct-1  
using 2-Speed

Cross 
CC-2 

from Tk-4 
to Tk-3

Move 
CC-2 

to  TR-2 
using 2-Speed 

Align 
CC-2 

Lifter with 
TR-2 

Spool-Stand

Engage 
CC-2 

 with TR-2 for 
Spool-2  
Release

Release 
Spool-2 from 

TR-2 to 
CC-2

Disengage 
CC-2 
from 
TR-2

Lower 
CC-2 to

Lower-Limit 
using  
1-Speed-Fast

Set 
CC-2 
Brake 
On

Connect 
CC-2 
Socket 
TR-2 Socket

Connect-Chk 
CC-2-Socket
TR-2-Socket 

SIDING -UNLOAD -1Unload-1

Collect-1

Move-1 Engage-1

C

C1
C2

C3O2 O3O1

Fig. 6. A portion of the UNLOAD hierarchy shown in Fig. 5 as it would appear in the case-base at run-time. Notice

how lower-level cases are implicitly linked to their higher-level parent cases. The link-descriptor nodes are

represented as octagonal nodes in the solution diagrams, distinguishing them from the standard rectangular and

oval nodes of the action and sensor check plant-control commands, respectively.

An abstract case (call it C) at level i might be linked to 3 less abstract cases (call them C1, C2, C3) at level i+1.

However, these 3 cases are not “mentioned” directly by the solution of case C. The cases C1, C2, C3 are linked

to case C by virtue of the fact that they fit the requirements laid out by the abstract operators in case C’s solution.

That is, case C1 fits the specification requirements laid out in an abstract operator O1, C2 fits those of O2, and

C3 fits those of O3. In other words, C1 provides a solution for sub-problem specified by O1, and so on. This can

be seen in Fig. 6, which will be examined more closely in a moment.

This indirect referencing of cases is a powerful and flexible mechanism. It means that abstract solutions can be

used as indexing structures for more detailed solutions. It also means that exact matches between abstract

operator specifications and cases are not strictly enforced, or required. For example, returning to Fig. 6, C1 may
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not be an exact match for the sub-problem specified by operator O1, but as long as it can be adapted to fit O1,

adequate problem coverage is assured.

The use of indirect referencing between hierarchy levels, and the flexibility to support non-exact matches

between these levels, promotes storage efficiency by facilitating the sharing of cases. For example, consider a

number of abstract cases each requesting a piece of code that moves a coil-car from one location to another. Each

abstract case may specify a slightly different form of this MOVE task. For instance, the locations may differ or the

directions of motion may differ. However, it may be possible to use the same MOVE design case to satisfy each

situation, if the case can be adapted to account for the various location or directional differences.

If case-base size is a concern then this facility can represent a considerable advantage, and it means that the case-

base can be optimised for performance without necessarily affecting the competence or coverage of the cases.

For obvious reasons this type of sharing is not possible if compound cases are used to represent complex

problems.

Returning to Fig. 6,  a part of the case hierarchy for the problem outlined in Fig. 5 is shown. The solutions of 4

cases have been highlighted, and are shown in detail. UNLOAD-1 and COLLECT-1 are both abstract cases while

MOVE-1 and ENGAGE-1 are primitive design cases. Notice that the structure of the final solution is inherited from

higher abstraction levels, since the structure of an abstract solution at level i specifies how the more detailed

solutions at level i+1 are to be connected. For example, in Fig. 7, the UNLOAD solution indicates that the

solutions to its COLLECT, DELIVER and PARK link-descriptors are to be sequentially joined. On the other hand, the

COLLECT solution indicates a more complex combination of solution segments, a combination that includes both

parallel and sequential connections. For example, the first two operators of the COLLECT abstract solution are

connected in parallel so that the coil-car may move towards the indicated track junction while at the same time

adjusting its lifter height.
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5 THE HCBR PROCESS MODEL

To make hierarchical problem solving work it must be possible to decompose a target specification into abstract

sub-problems. Different approaches have been used to perform decomposition ([14],[16],[17],[19]). The main

problem with adding decompositional methods to CBR, is that they introduce the need for additional knowledge

sources (the decomposition knowledge), and additional procedures to perform the actual decomposition

(algorithms for selecting and applying decomposition knowledge).

Compared to existing approaches, hierarchical case-based reasoning is a more complete integration of CBR and

decomposition, and it does not require separate decompositional knowledge or procedures. The decompositional

“know-how” is part of the case-base, and the decomposition procedure is a “side-effect” of the retrieval and

adaptation of an abstract case. That is, when an abstract case is retrieved and adapted its modified link-

descriptors are used as new sub-problem specifications, and result in the retrieval and adaptation of additional

cases.

The following sections will refer to the retrieval and adaptation of cases within HCBR. Unfortunately these topics

lie outside of the scope of this paper. However, further information can be found in [31] and [32].

5.1 The Main HCBR Algorithm

Hierarchical case-based reasoning adds complexity to the standard CBR model, since problem solving is now an

iterative process whereby many cases are retrieved and adapted, problems are decomposed, and new solution

components are integrated into an evolving target solution. The HCBR algorithm is shown in Table 1.

Each HCBR cycle corresponds to the retrieval and adaptation of a single case. As a target problem is

decomposed, new specifications are added to a specification queue, and during each HCBR cycle the current

specification is removed from the head of this queue. Decomposition only occurs if an abstract case is reused

(retrieved and adapted), its abstract operators corresponding to the new specifications that are added to the

queue.  As new sub-problems are decomposed and solved, the overall target solution is built up. During

integration, each newly adapted solution (abstract or concrete) is added to the evolving target solution, which

itself takes the form of an abstraction hierarchy.
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Inputs:

Target-Spec : The initial target specification

CB       : The Case-Base

A-KN : The Adaptation Knowledge

Outputs:

Target-Sol : The complete target solution.

Procedure HCBR (Target-Spec, CB, A-KN)

Begin

1  Spec-Q ← {Target-Spec}

2  Until Empty?(Spec-Q) Do

3    Current-Spec ← First(Spec-Q)

4    Current-Base ← RETRIEVE(Current-Spec, CB, A-KN)

5    Current-Sol ← ADAPT(Current-Spec,Current-Base,A-KN)

6    If Abstract?(Current-Base) Then

7      Spec-Q ← DECOMPOSE(Current-Sol, Spec-Q)

8    End-If

9    Target-Sol ←INTEGRATE(Current-Spec,Current-Sol,Target-Sol)

10  LEARN (Current-Spec,Current-Sol,Current-Base)

11  End-Until

12  Return(Target-Sol)

End

Table 1. The Hierarchical Case-Based Reasoning Algorithm

5.2 Decomposition

The main point about the decomposition process is that it is essentially a direct extension of the retrieval and

adaptation of an abstract case (Table 2). An adapted abstract solution contains certain link-descriptors that

describe sub-problem specifications relevant to the current problem, and during decomposition these link-

descriptors are extracted and added to the main specification queue. For reasons of generality and flexibility there

are no hard-wired constraints which control how new problem specifications are added to the queue during

decomposition. In the current system, new specifications are added to the head of the queue, thereby

implementing a depth-first search of the abstraction space. However, different queuing policies can be enforced

depending on the application and domain requirements; for instance, new specifications can be added to the end

of the queue to implement a breadth-first search, or various sorting methods can be used (either before or after
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queuing) to implement hill-climbing or branch-and-bound type searches.

Inputs:

Current-Sol : The adapted abstract solution

Spec-Q : The specification queue

Outputs:

Spec-Q’ : The new, updated specification queue.

Procedure DECOMPOSE (Current-Sol, Spec-Q)

Begin

1  Sub-Specs ← {}

2  For each Node ∈  Nodes(Current-Sol) Do

3    If Link-Descriptor?(Node) Then

4      Sub-Specs ← Sub-Specs ∪  Details(Node)

5    End-If

6  End-For

7  Spec-Q’ ← Combine(Sub-Specs,Spec-Q) {Eg, Spec-Q ←Sub-Specs ∪  Spec-Q}

8  Return(Spec-Q’)

End

Table 2. The Decomposition Algorithm.

5.3 Integration

The overall target solution is constructed during integration as new solution components (abstract or concrete)

are combined (Table 3). The evolving target solution is an abstraction hierarchy that corresponds to the

hierarchical structure of the target problem.

After the first HCBR cycle, the target solution contains the newly adapted solution of the first case retrieved.

During subsequent cycles new solutions will be attached to the link-descriptor nodes of this initial solution, as

more detail is added. This attachment is made efficient by labelling link-descriptors during decomposition and

passing these labels with their sub-specifications to retrieval and adaptation. When it comes to integrating a new

solution its label is easily located, and the solution can be inserted.

During integration, attachments must also be made between new solution components and adjacent sibling

components. Furthermore, it is not sufficient to simply connect sibling solutions in sequence. The appropriate
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connection information is stored within the structure of the parent abstract solution and must be used to guide the

connection process.

Inputs:

Current-Spec: The current specification

Current-Sol : The current solution

Target-Sol : The target solution tree

Outputs:

Target-Sol : The updated target solution tree

Procedure INTEGRATE (Current-Spec,Current-Sol,Target-Sol)

Begin

1  Parent-Node ← Locate(Current-Spec,Target-Sol)

2  Sibling-Nodes ← Locate-Siblings(Parent-Node,Target-Sol)

3  Target-Sol ← Parent-Attach(Parent-Node,Current-Sol)

4  Target-Sol ← Sibling-Attach(Sibling-Nodes,Current-Sol)

5  Return(Target-Sol)

End

Table 3.  The Integration Algorithm

An example of integration is depicted in Fig. 7 which shows three layers of abstraction. The top-level contains an

abstract solution with three sequentially connected link-descriptor nodes. Subsequent HCBR cycles produce three

second-level solutions which are linked to each of the top-level link-descriptor nodes, and connected together in

sequence as directed by the top-level solution structure. Part of the third level of abstraction is shown which

corresponds to the concrete plant-control code of three design cases, connected together according to their

parental solution structure; this time two of the design solutions need to be connected in parallel.
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Fig. 7. Part of an evolving solution tree.
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6 LEARNING IN HCBR

One of the main advantages of CBR is its simple, but powerful, form of learning. As new problems are solved

their solutions can be learned by repackaging them as cases and adding them to the case-base. However, this all-

or-nothing approach has its problems, mainly because entire solutions must be learned even if only a small part is

novel enough to warrant addition into the case-base. HCBR offers a new twist on case learning by  facilitating the

learning of relevant solution parts without imposing the need to learn entire solution structures.

6.1 Learning New Cases

After retrieving and adapting a case to produce a new target solution, the simplest way of learning is to package

the target specification and solution as a new case, and to insert it into the case-base. The basic assumption is that

learning new cases will improve system performance by making more cases available during problem solving,

and therefore increasing the likelihood of finding a relevant case with which to solve future target problems.

Unfortunately, one of the side-effects of this simplistic approach to learning is that it can cause system

performance to degrade rather than improve. This effect is known as the utility problem and has been the subject

of considerable research by the machine learning community ([18],[21],[35],[36],[39]), and more recently, by

case-based reasoning researchers ([9],[10],[30]).

In general, the utility problem describes how the performance of knowledge-based systems can degrade if the

knowledge-base becomes populated with “harmful” or redundant knowledge items. In case-based reasoning this

can happen if new cases are learned without due care or attention being paid to their quality, or to their

relationship with existing cases in the case-base. For example, if a very similar case already exists, then the new

case may offer no performance advantages. By over-populating the case-base in this way, increasing retrieval

costs will eventually degrade overall system efficiency.

There is a straightforward way to avoid adding redundant cases to the case-base which goes a long way to

reducing the damaging effects of the utility problem: cases should only be learned if they are substantially

different from the existing cases. This can be verified by checking the adaptation distance between the target and

the base case; that is the cost of adapting the retrieved case to fit the target problem. If this cost is less than some

predefined threshold then cases already exist which can very easily solve the target problem, and so the new case

is not needed. However, if it is greater than the threshold then the target cannot be solved without significant
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adaptation effort, and so the new target case should be learned (see Table 4).

Inputs:

Target-Spec : The current target specification

Target-Sol  : The new target solution

Base-Case : The retrieved case

CB : The case-base

Outputs:

CB’ : The new case-base after learning

Procedure LEARN (Target-Spec, Target-Sol, CB)

Begin

1  Adaptability ← Adaptability (Target-Spec, Base-Case)

2  If Adaptability > *ADAPTABILITY-THRESHOLD*

3    Target-Case ← MakeCase (Target-Spec, Target-Sol)

4    CB’ ← InsertCase (Target-Case, CB)

5  End-If

6  Return(CB’)

End

Table 4. The basic case learning algorithm.

6.2 Learning Case Hierarchies

The threshold-based learning idea is commonly used in many standard, single-shot case-based reasoning systems.

Of course the hierarchical CBR model introduces an added dimension to learning because during the solution of

a target problem there are many learning opportunities. With each HCBR cycle a new case (abstract or design)

can be learned (see Algorithm 1), and this in turn means that new case hierarchies (complete or partial) can be

acquired.

Fig. 8 illustrates how partial case hierarchies can be learned and linked into the existing case hierarchies. Two

existing case hierarchies (A and B) are shown. Four new cases are learned as a new partial hierarchy, whose

missing cases are to be found in A and B.
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Abstract Case Concrete Case

Hierarchy A Hierarchy B

Fig. 8. Partial case hierarchies can be learned if their missing cases are readily available as part of existing

hierarchies. Two existing hierarchies (A and B) are shown in grey. A new partial hierarchy is shown in black and

links to various cases in A and B; the newly learned cases are highlighted with shading.

In particular, this facility for selectively learning parts of more complex solutions, ensures that case redundancy is

limited during learning. In contrast, single-shot CBR systems have an all-or-nothing approach to learning; either

an entire new solution is learned as a new case or it is not. Frequently however, only part of such a complex

solution will be genuinely worth learning as many parts of it may already exist in other cases. So single-shot

systems can increase redundancy if they learn new cases

7 AN EXAMPLE

The following is a description of part of a problem solving episode illustrating the basic operation of hierarchical

case-based reasoning. The example problem is to UNLOAD an empty spool (SPOOL-2) from a tension-reel (TR-2)

and deposit it on a skid (SKID-2); this problem is situated in the plant model shown in Fig. 1(a). The top-level

(abstract) case that is retrieved is an INSERT case; a coil stored on TR-3 is inserted into TR-2. UNLOAD and

INSERT tasks are similar in many ways, particularly at this high level of abstraction. For instance, both types of

problem can be broken into common COLLECT and DELIVER sub-tasks. In this example the only adaptations

necessary to the retrieved abstract solution are substitutions which account for differences in the load object

(replacing a coil with a spool) and the source and target containers.

Fig. 9 shows part of the case hierarchy for the INSERT problem. After retrieving the top-level INSERT case, its

adapted solution is decomposed and integrated into the overall target solution. During decomposition the

COLLECT and DELIVER link-descriptors (which have of course been modified to fit the target) are extracted and

queued, where they will be used during future HCBR cycles.
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Consider what happens when the DELIVER sub-specification is served from the queue. Suppose further, that it

results in the retrieval of the DELIVER case belonging to the original base INSERT hierarchy. The target delivery

requirements specify the delivery of an empty spool, whereas the retrieved delivery case caters for the delivery of

a full coil of steel.

Deliver

MoveLift

Collect 
Coil-2 from 
TR-3 using  

    CC-2 at 
Skid-2

Deliver 
Coil-2 to 

TR-2 using  
       CC-2 at 
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Junction-1

using 2-Speed
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Insert

Sequential
execution due to

coil carrying
restriction

Fig. 9. Part of an INSERT case hierarchy highlighting how the sequential connection of link-descriptor nodes in the

DELIVER case is inherited by the corresponding lower level LIFT and MOVE design cases.

Now, one of the implications of carrying a full coil of steel is that coil-car movement and lifting operations

cannot be carried out in parallel, for plant safety reasons. This can be seen in the base delivery solution shown in

Fig. 9; the link-descriptors for the MOVE and LIFT sub-tasks are connected in sequence resulting in the serial

connection of the corresponding MOVE and LIFT plant-control code segments. If a coil-car is carrying a spool

however (as it is in the target problem) then lifting and moving can be performed in parallel. Therefore, changes

will need to be made to the retrieved delivery solution to re-order the delivery link-descriptors to support this
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parallel structure; this is illustrated in Fig. 10 where an adaptation to the DELIVER case ensures that the

subsequent design cases are organised correctly. Of course many more adaptations are also needed, but for the

sake of clarity these are left out of this example.

Deliver

Lift

Move

Unload

Adapt 
(Re-Order)

Parallel
execution due
to removal of
coil carrying
restriction

Fig. 10. A portion of the evolving target solution tree highlighting how a high-level adaptation of an abstract case

can save considerable work during the future adaptations of lower level cases.

The re-ordering adaptation is typical of the type of interaction problem that can occur when multiple cases are

reused in combination. It is seen in many design and planning domains, not just plant-control software. Déjà Vu's

coping strategy is to deal with such interactions early on, during adaptation, instead of later, during integration,
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and this can lead to significant adaptation savings. For instance, by adapting the abstract delivery solution the re-

ordering problem was solved by rearranging two solution nodes (which happened to be link-descriptors). If a lazy

resolution policy is enforced instead, and the re-ordering is delayed until integration time, then a more complex

adaptation will be required, since the entire MOVE and LIFT solutions will have be re-ordered; that is, seven

nodes instead of two must be re-ordered.

Returning to the example: having adapted the delivery case and integrated it into the target solution tree,

decomposition again occurs as the link-descriptors of the DELIVER solution are extracted and queued. The

solution specifies the need for a LIFT and a MOVE case, and in contrast to the earlier HCBR iterations, these

specifications result in the retrieval and adaptation of concrete design cases rather than abstract cases.

Furthermore, the retrieved design cases do not come from the original INSERT hierarchy because more suitable

cases exist as part of another hierarchy. These are retrieved and adapted and their solutions integrated into the

target solution. The final and complete target solution can then be constructed from the design cases at the leaf

nodes of the solution tree.

8 DISCUSSION

There are a number of advantages to supporting hierarchical case-based reasoning. Firstly, it is an elegant way of

integrating decompositional and case-based design techniques. Secondly, the support of multiple-case reuse

reduces the adaptation burden, facilitating the solution of complex design problems. Thirdly, the hierarchical

case-base improves storage efficiency by eliminating redundancy. Finally, the additional knowledge-engineering

effort due to the construction of the case hierarchies is offset by a reduced need for adaptation, and subsequently

the knowledge-engineering cost for adaptation knowledge is greatly diminished.

8.1 The Benefits of Case-Based Decomposition

In HCBR, decomposition occurs because abstract cases are retrieved, and the specific type of decomposition

depends on how these cases are adapted. This marrying of decomposition and case knowledge means that the

problem decomposition and solution generation sides of HCBR are always properly synchronised, and suggested

decompositions can always be filled by available cases.

The conventional strategy for integrating decompositional and case-based methods has been to
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dovetail the two techniques, and to provide a mechanism for switching between each one (e.g., [16],[17]). Such

systems use different sources of knowledge for each problem solving technique and serious problems can arise if

these sources are not fully compatible, or not properly synchronised. For example, a decomposition can be

suggested, for which there are no suitable cases in the case-base. Obviously, HCBR avoids this problem because

the cases and the decomposition knowledge are fully integrated, and since future decompositions are always

carried out by adapting parts of existing case hierarchies.

8.2 Reducing the Adaptation Load

Single-case reuse in a plant-control software design system such as Déjà  Vu is not viable. Case-based reasoning

can solve a new target problem only if there is a case which is similar enough to reuse without the need for

complex adaptation. If single-case reuse was used by Déjà Vu, then guaranteeing the retrieval of a single case

that was sufficiently similar to the target problem, would mean providing a huge case-base and complex

adaptation knowledge. However, with a multiple-case reuse technique, the same competence and performance is

possible with a much smaller case-base, as long as access is provided to individually reusable parts of complex

solutions.

Returning to the previous example we saw that an INSERT case was retrieved during the solution of an UNLOAD

case. This INSERT case was similar to the UNLOAD problem at a high-level of abstraction but differed

considerably at lower levels. Part of the full INSERT solution could be correctly adapted to meet the target

specification needs, but other parts could not. The result was that the INSERT solution could not be used in its

entirety, instead additional, easy to adapt, solution parts were selected from other hierarchies. In a single-shot

CBR system it would not be possible to avail of these solution parts from other hierarchies, and so problem

solving would terminate after failing to properly adapt the complete INSERT solution. Therefore, using HCBR,

Déjà Vu can solve a wide range of complex plant-control problems without the need for huge case-bases or

extremely sophisticated adaptation methods.

8.3 Case Redundancy

Case-bases often contain redundant cases or at least partially redundant cases. Moreover, redundancy within

large, over-populated case-bases can have an adverse effect on system performance leading to the utility problem

(see also, [9],[10], [21], [30]). If HCBR helps reduce redundancy then it will improve the memory and
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performance characteristics of a system, and thus help to avoid this problem.

An early observation that can be made about plant-control software concerns its degree of modularity: plant-

control programs (such as UNLOAD or INSERT type programs) are highly modular, containing many commonly

occurring sections of code; for example, most complex programs involve code to move a vehicle from one

location to another. Storing complex problem solutions as single cases means repeating these recurring solution

segments in each case. Storing complex solutions as interconnected hierarchies of cases eliminates this wasteful

repetition by permitting case parts to be stored individually, but referenced by any appropriate case.

Matching efficiency is also improved with HCBR because during retrieval shared cases are only matched against

the target specification once. Using single, monolithic case representations, duplicate structures are repeatedly

matched against the target specification, as retrieval compares each monolithic case to the target.

8.4 Applicability and Knowledge-Engineering Issues

Hierarchical case-based reasoning should be chosen when certain problem characteristics hold. In an application

domain that demands complex problem solutions, the standard, single-shot model of CBR is unlikely to prove

successful without the use of prohibitively large case-bases. Consequently, some method for reusing parts of

many solutions (such as HCBR) is needed to reduce the size of the case-base and relieve the adaptation burden.

To engineer suitable case hierarchies it is important that complex problem solutions can be decomposed into

collections of simpler sub-problem solutions. Moreover, the solutions to these simpler problems should not

interact with one another, or should only interact in a limited way. Fortunately, many domains and applications

do benefit from decomposable solution structures, as is evident from the popularity of hierarchical problem

solving and decompositional design techniques in general.

Obviously the requirement for having a highly structured case-base, which is made up of case hierarchies instead

of independent cases, adds to the knowledge engineering effort during the case acquisition phase of system

design. However, through this paper it has been argued that hierarchical CBR significantly reduces the adaptation

burden on a CBR system. In fact, although more effort is required to engineer the case hierarchies, this is easily

offset by the need for much simpler, and more easily engineered, adaptation knowledge. Indeed, it is our

contention that the adaptation requirements of a traditional single-shot CBR system for sophisticated design
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problem solving are impractical.

9 RELATED WORK

Hierarchical case-based reasoning is one way of supporting multiple-case reuse. Its distinguishing features

include: (1) Using case hierarchies to represent complex problem solutions; (2) Using abstract case solutions to

act as the decomposition knowledge; (3) Promoting the reuse of cases from different case hierarchies in order to

reduce the adaptation overhead. While related work has produced a variety of case-based methods following a

similar theme,  Déjà Vu is unique in that it is the first system to successfully combine all three features.

Redmond [23] implements multiple-case reuse in an automobile diagnosis system called CELIA. Complex

problem solutions are stored as collections of cases, called snippets. Each snippet’s solution contains the actions

taken in the pursuit of a single goal and the results of these actions. Each snippet is represented at the same level

of abstraction as every other snippet. The goal structure of a problem is preserved by directly linking snippets

together, which leads to a coded bias towards sequential snippet access during reuse. That is, CELIA prefers to

directly follow snippet links when solving each successive goal, and therefore tries to reuse complete solutions

rather than continually searching for the best possible case. A snippet from another problem is only reused if the

original snippet fails to be adapted correctly. Redmond’s research confirms the value of multiple-case reuse.

Furthermore, representing problem solutions as groups of snippets is similar to the idea of using case hierarchies

in Déjà Vu, except that goal-directed problem solving is supported in favour of hierarchical problem solving.

However, the implicit commitment by CELIA to reuse the cases from a single problem whenever possible, means

that potential adaptation savings may be lost if a more suitable case exists as part of another snippet group. Déjà

Vu, on the other hand, will always try to reuse the most suitable case to solve a sub-problem.

Sycara and Navinchandra [33] also concur with the goals of multiple-case reuse in their automated design system

called CADET. However, they argue that fragmenting complex designs into loosely coupled collections of cases is

not appropriate because CADET’s domain, mechanical device design, is highly interactive, and robust sub-goal

decompositions cannot be identified a priori. Consequently, complex cases are stored in their entirety, and their

reusable parts are individually indexed using elaborate behavioural and thematic indexing structures. It is argued

that the preservation of complete cases is necessary to encode the fundamental design principles embodied within
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complex solution designs; for example, individual components are often meshed to work efficiently together as

part of the larger design, and may implicitly exploit, or compensate for, various solution interactions. Sycara and

Navinchandra claim that case fragmentation means throwing away much of this implicit knowledge. Of course

this is not necessarily true, and the preservation of this type of structural information is the reason why Déjà Vu

retains abstract solutions. These solutions contain information about how more detailed cases can be effectively

combined and reused. The main difference between CADET and Déjà Vu is a representational one: CADET’s

monolithic cases with complex indexing structures versus Déjà Vu hierarchical, fragmented case-base. In the end,

Déjà Vu’s HCBR approach has the advantage of using abstract cases to guide decomposition, an advantage that

is not immediately available to CADET. Furthermore, the ability to adapt abstract solutions to act as target-

specific decomposition templates is unique to Déjà Vu.

CADSYN  ([16],[17]) is a CBR system for architectural design which, like Déjà Vu, proposes an integrated model

of design by combining case-based and decompositional techniques. However, while Déjà Vu presents a tightly

coupled integration of these techniques, CADSYN’s approach is a more loosely coupled affair. In brief, at each

stage during CADSYN’s iterative design process, the current problem can be solved by using either case-based or

decomposition methods. The choice is mediated by a similarity thresholding technique so that if a suitable case is

not found, the decomposition module is invoked. CADSYN’s decomposition module draws upon knowledge and

techniques that are separate from its CBR module. In contrast, Déjà Vu’s decomposition process is intricately

tied to CBR, since decomposition knowledge is part of the case-base, and the decomposition methods are natural

side-effects of the normal CBR retrieval and adaptation methods. Moreover, CADSYN’s rigid decomposition

knowledge cannot be adapted to precisely meet the needs of the current target problem, whereas in Déjà Vu, the

adaptation of an abstract case, ensures that target-specific decomposition is always carried out. For CADSYN this

means that the issue of compatibility between the decomposition knowledge and the case-base must be

considered explicitly (see section 8.1).

Recently hierarchical case-based reasoning has been embraced in a modified form as Stratified CBR [4]. A

system is described, which operates in a route planning domain, and uses the main HCBR features outlined at the

beginning of this section. In particular, case hierarchies are used to organise collections of cases which together

solve complex route planning problems at varying levels of abstraction. Moreover, abstract cases also serve as

indexing structures for lower-level cases, and as decomposition templates. Branting and Aha have concentrated
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on the efficiency aspects of hierarchical case reuse, and have demonstrated significant performance advantages

over conventional CBR and hierarchical planning techniques.

10 CONCLUSIONS

Hierarchical case-based reasoning supports the reuse of multiple cases, allowing problems to be solved in a top-

down fashion. In contrast to many more conventional CBR architectures, problems are not represented by single

cases at some fixed level of abstraction, but instead by hierarchies of cases, at many levels of abstraction.

Individual cases can then be independently accessed and reused as parts of more complex target solutions.

Cases are also used to support problem decomposition. In particular, the retrieval and adaptation of an abstract

case results in the decomposition of the current problem into a set of simpler problems. In this way a target

problem is gradually decomposed by the reuse of abstract cases, until eventually it has been broken into a number

of sub-problems, each of which can be handled by the reuse of a concrete design case.

HCBR makes it possible to solve a wide range of plant-control problems without the need for huge case-bases or

complex adaptation mechanisms. As it stands, HCBR’s ability to reuse multiple cases from many different

hierarchies, means that complex problems can be solved with the minimum amount of  adaptation. In addition,

the hierarchical organisation of the case-base permits the sharing of cases among many hierarchies, thereby

improving storage efficiency by reducing redundancy.

The applicability of the technique has been proven in two separate software design domains, the plant-control

domain and the MOTIF graphical user interface design domain, with similar benefits emerging from both. In

general the key applicability factor is domain decomposability; if a domain is decomposable then HCBR is

applicable and may be of benefit.

Future work is set to investigate the automatic generation of the case hierarchies. New application domains will

also be investigated, and at the moment feasibility studies are being carried out on the use of HCBR in

telecommunications fraud detection and for other software design tasks.
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Figure Captions

Fig. 1. (a) A sample mill layout showing the location of various plant machinery. (b) The load/unload task

scenario, whereby a coil-car is used to unload (load) spools or coils of steel between skids and tension-reels.

Fig. 2. A sample stepping logic program for moving CC-1 forward to TR-1 using two speed motion.

Fig. 3. Problems A and B are represented by two case hierarchies which are interconnected because they share a

similar sub-problem and hence similar solution components (the shaded cases are shared). Allowing cases to

interconnect in this way means that complex solutions can be represented very efficiently, without duplication.

Fig. 4. Part of a case task structure that describes a specific UNLOAD solution. The task frame describing the

Unload problem is linked directly to device and component frames which describe the Unload coil-car, CC-2.

Fig. 5. The case hierarchy for the UNLOAD problem first introduced in section 22.

Fig. 6. A portion of the UNLOAD hierarchy shown in Fig. 5 as it would appear in the case-base at run-time. Notice

how lower-level cases are implicitly linked to their higher-level parent cases. The link-descriptor nodes are

represented as octagonal nodes in the solution diagrams, distinguishing them from the standard rectangular and

oval nodes of the action and event plant-control commands, respectively.

Fig. 7. Part of an evolving solution tree.

Fig. 8. Partial case hierarchies can be learned if their missing cases are readily available as part of existing

hierarchies. Two existing hierarchies (A and B) are shown in grey. A new partial hierarchy is shown in black and

links to various cases in A and B.

Fig. 9. Part of an INSERT case hierarchy highlighting how the sequential connection of link-descriptor nodes in

the DELIVER case is inherited by the corresponding lower level LIFT and MOVE design cases.

Fig. 10. A portion of the evolving target solution tree highlighting how a high-level adaptation of an abstract case

can save considerable work during the future adaptations of lower level cases.
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Table 1. The Hierarchical Case-Based Reasoning Algorithm

Table 2. The Decomposition Algorithm.

Table 3.  The Integration Algorithm

Table 4. The basic case learning algorithm.


